
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

GRAPHIC DISPLAY SYSTEM
MONITOR MANUAL

DOIMN BIHARY
JULY 7, 1974

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

This work was supported by the Advanced Research Projects Agency of the
Office of the Secretary of Defense under contract number
F44620-73-C-0074 and is monitored by the Air Force Office of Scientific
Research.

GRAPH.SYS is a PDP-11 program for use with the GDP2 super-display.
GDP2 consists of a PDP-11/15 computer, a STANFORD keyboard, a Hewlett
Packard 1310A display scope, a start-up ROM, a line clock, a communications
link to the PDP-10, 8K of 16 bit memory, and the GRAPHIC WONDER processor.
GRAPH.SYS makes GDP2 into an intelligent PDP-10 graphics terminal which can
simultaneously load, link and run PDP-11 programs passed from the PDP-10.

Questions, suggestions, and problems should be brought to:

BRIAN ROSEN [A630GS00]/B/A (for software OR HARDWARE)
GRAPH.XGO (for this manual)
GLSTER.XGO (for other software support).
GDP2.XGO[A210BR11] (FOR HARDWARE DOCUMENTATION)

7/7/74

This document has two parts: the first part is a manual for using the
display as a terminal; part 2 is a REFERENCE MANUAL for those who wish to
run programs on the PDP-11.

2

CONTENTS

SECTION 1: USE AS A TERMINAL

System Startup
Communication with the PDP-10
Meta Characters

Keyboard Numbers
Keyboard M-Characters
The Intra-line Editor
M Characters of Editor
M Characters for Scroller
M Characters for Graphic Action
M Characters for I/O

SECTION 2: SYSTEM DESIGN
Introduction

System Communication
Initiation
Program Loop

UUO Handler
Space Allocator
Utility Routines
Line Clock Service
Error Trapping
Output to the PDP-10

Character Mode Output
Image Mode Output

Input from the PDP-10
Messages form the PDP-10
Parameter Passing
Register Returning
Loading Programs and Data

Intra-line Editor
Character Sets
Graphic Display

Keyboard Module
Scroller Module

INDEX

USE AS A TERMINAL
SYSTEM START-UP

3

SYSTEM START-UP

To bring up the system on the PDP-11 start the ROM by starting the PDP-11 at
address 173000. This will normally load SYS:GRAPH.SYS from the PDP-10. If the user is
already logged-on from the PDP-11 and has the file GRAPH.SYS on his directory, then
this file will be loaded in place of the graphics system that resides on SYS. The
present monitor, GRAPH.SYS, no longer has a character set. The system character set,
SYS:GRAPH.GST, is automatically loaded after the monitor. If the user prefers his own
character set he can name his character set file GRAPH.GST, and after the monitor is
loaded his character set will be loaded in place of SYS:GRAPH.GST. Minor system
crashes can sometimes be fixed by a restart at address 1004 (soft restart). Major
crashes can often be fixed with a restart at 1000. To be completely sure of the
monitor, do a bootstrap at 173000.

A TERMINAL

Except for a more complex keyboard, the graphic system works much like an ordinary
terminal. However, the addition of a PDP-11 computer allows additional features, such
as intra-l ine editing in an SOS alter-mode fashion.

The STANFORD keyboard has 58 keys which produce 6-bit codes. These keys will be
called ENCODED keys to differentiate them from the keyboard's SPECIAL keys. On both
the right and left side of the the keyboard there are four SPECIAL keys; they are
marked by "shift", "top", -control", and "meta". SPECIAL keys function much like the
"shift" key on a ordinary teletype; when depressed they cause no immediate action, but
if a ENCODED key is struck when a SPECIAL key is down, then the meaning, the PDP-11
monitor's interpretation, of the ENCODED key is altered. Each of the SPECIAL keys
independently affects a unique bit in the keyboard hardware buffer. When a ENCODED key
is struck, the PDP-11 monitor is interrupted and it reads a 10-bit character pattern
off the keyboard hardware register. The low order 6 bits decide which ENCODED key
caused the interrupt. Each of the remaining 4 bits is 1 or 0 depending upon whether or
not a particular SPECIAL key is down. Now that the keyboard mechanics are understood,
we can examine the way in which the software interprets each 10 bit pattern.

The keyboard can be used to communicate with the PDP-10, or with a program running
on the PDP-11. Generally, if the "meta" SPECIAL key is used, then the character will
be passed to a PDP-11 program (here, "character" refers to the entire 10 bit pattern
from the keyboard). Communication with the PDP-10 will be considered first.

COMMUNICATION WITH PDP-10

All of the ENCODED keys have one or two engraved symbols representing ascii
characters, or a name of an ascii character. When a ENCODED key is struck without any
SPECIAL keys depressed, then the lower symbol represents the ascii interpretation;
almost, that is, because if the symbol is an alphabetic character its lower case form
is the ascii character interpretation. The "shift" SPECIAL key is used for one

USE AS A TERMINAL 4
COMMUNICATION WITH PDP-10

purpose: to convert an alphabetic character to its upper case form. To obtain the
ascii character represented by the symbol on the upper part of a ENCODED key, one must
have the "top" SPECIAL key depressed when striking the appropriate ENCODED key. If
both the "shift" and "top" SPECIAL keys are depressed when striking a ENCODED key, then
the effect is the same as if just the "top" key was used (the "shift" key does not
effect the upper symbol of a ENCODED key). Helpful note: the rubout key is called
"BS", and is located on the left side of the keyboard adjacent to the letter "A". The
ENCODED key "BS" is unaffected by the SPECIAL keys "top" and "shift".

The "control" SPECIAL key is closely related to the "control" key on an ordinary
teletype, except that the situation is complicated because of the different ways in
which the PDP-10 monitor receives characters. In normal PDP-10 ascii character mode,
control characters are easily separated from text because ascii codes 1 to octal 37 are
are all the control characters. The PDP-10 is also capable of entering "extended
character set mode", which recognizes only the "control C" as a control character, and
a special escape character. The other octal codes (control C is octal 3 and the escape
is tentatively octal 27) are now interpreted as text characters. Now we have increased
our character set, but we have sacrificed many important control functions. To allow
both extended character set mode and control characters the escape character is used to
signal the occurence of a control character. The software on the PDP-11 automatically
inserts the escape character before all control characters in case the user is in
extended character set mode.

To send a control character to the PDP-10 the SPECIAL key "control" is depressed
while striking a ENCODED key. The SPCIAL keys "top" and "shift" still cause the
actions described above, but the effect of the control key is to send the escape
character followed by the low order 5-bits of the ascii interpreted ENCODED character.
Because certain ENCODED characters almost always are used with the SPECIAL key
"control", the PDP-11 now assumes that the SPECIAL key "control" is depressed whenever
those few ENCODED characters are struck. Those keys always interpreted as control
characters are: BREAK (stop output) gives control S, CLEAR (restart output) gives
control Q, ALT, ESC give octal code 33; FORM (form feed),VT (vertical tab),
RETURN (carriage return), and LINE (line feed) have their usual octal codes. The
ENCODED character CALL is sent as a control C.

METACHARACTERS

As was earlier mentioned, the SPECIAL key "meta" signals that the character should
be interpreted by a PDP-11 program. The implementation allows easy entry of numbers
for parametric control of both PDP-11 monitor and PDP-11 user programs, and a simple
mechanism for changing the interpretations of keys depending upon keyboard modes. The
way in which meta-keys (ENCODED characters struck with at least the "meta" depressed),
is not affected by the "top" or "shift" keys; The "control" key, however, usually
affects what action is to be taken. A user program can, of course, access information
about the state of the "top" and "shift" keys. Let us consider two classes of
meta-characters: M-characters are meta characters without the "control" key depressed,

USE AS A TERMINAL
META CHARACTERS

5

and MC-characters are meta-characters with the "control" key depressed when a
particular ENCODED character is struck. Thus, for example, we have M(A) refering to
the meta-character formed by striking the ENCODED character "A" with the "meta" key
depressed; also we can have MC(A), which refers to the character formed by striking the
ENCODED character "A" with both the "meta" and "control" keys depressed.

KEYBOARD NUMBERS

Associated with the keyboard are two variables which can be read directly by
PDP-11 programs when they are interpreting a keyboard character. The numbers contained
in these variables are determined by recent keyboard actions. After processing of a
keyboard character (meta or otherwise), the keyboard variables are set to zero, unless
the keyboard character is an M or MC digit (0,1,2,...9). The characters M(Z), and
MC(Z) are reserved for resetting the keyboard variables to zero. Whenever M(-) , or
MC(-) is input from keyboard both keyboard numbers are set to zero and the following
input number will always be negated. The two keyboard variables are used for inputting
a string of digits that represent a number. Let us call one keyboard variable
DECIMALVALUE, and the other OCTALVALUE. Let the symbol "*" represent any digit 0 to 9,
then the actions of MC(#), and M(#) can be described by the following equations. Where
"#" occurs in the equations it's value is the number digit it represents. i.e.
character "2" has number value equal to 2:

0CTALVALUE<-(0CTALVALUE*8) + *;
DECIMALVALUE<-(DECIMALVALUE* 10) + #.

In other words, typing M(a sequence of digits) or MC(a sequence of digits) will
set the keyboard variables to the approiately represented octal or decimal number. If
the receiving program wants an octal value it will look at OCTALVALUE Similarly for a
decimal value. The above actions of keyboard numbers is identical to the .way in which
numbers are input in SOS intra-line alter mode.

MC CHARACTERS

MC characters are used for putting the keyboard into a special mode which
determines how M characters are subsequently to be interpreted. When an MC-character
is struck a selected initiation routine is executed, and selected M-characters are
given new meaning. At start-up time all M-characters are set to have no action, and
the following system MC characters are available:

MC(K) Keyboard control, MC(E) intra-line Editor,
MC(S) Scroller actions, MC(G) Graphic control,
MC(I) I/O - Input and output.

i.e. typing MC(S) puts the keyboard into a mode where M characters will be
interpreted by the SCROLLER module. Now if the user types MC(E), the M characters will
be interpreted by the intra-line editor. The above arrangement can cause a problem of

USE AS A TERMINAL 6
MC CHARACTERS

not knowing what will happen when a particular M character is struck, since the meaning
of each M character is dependent upon a previous sequence of MC characters. When such
confusion arises one can simply enter the keyboard mode that he wants to be in by
typing the appropriate MC character. Remember that the use of MC characters is
additive - when a new mode is entered the new mode's M characters overwrite only those
M characters which are having their meaning changed. To reset all M characters to
no-action use M(C) while in MC(K) mode (see the following description of the keyboard
MC mode). See description of module SKIT if your interested in finding out how user
programs can add their MC characters to the system.

Several other MC and M characters are available for special situations. Usually
these are used when an auxilliary program is caught in a loop, or the PDP-11 monitor
has been garbaged.

MCfbreak") or M("breakw) - call debugging aids (DDTCAL). DDT coming soon.
MCCcaH") or MCcalD - full system re-initiation, (i.e. restart at 1000).
MC(\) or M(\) - clear clock queue and soft restart
MC(*) or M(*) - run INITIA (system bootstrap).

KEYBOARD M-CHARACTERS
Entered by MC(K). See also the description of the keyboard module SKIT.

M(N), Normal action for non-meta characters. Useful when a user program has altered
character interperpretation, or when exiting "local" mode, (see SKINOR)

M(L), Local mode for non-meta characters only. Non-control characters echo as ascii
equivelents, and control characters as the 8 low order bits read directly off
the hardware keyboard buffer, (see LOCAL).

M(C), Clear the M-characters of their actions (see MCLR).

M(W), turn on Space-War mode (see SKIWAR),

M(P), turn-off Space-War mode (Peace mode-see SKINWR).

M(M), setting Meta-lock software key. The keyboard number will be or'ed with all
future keyboard input, (see METALK).

M<0), if zero keyboard number then turn off escape character, if non-zero then turn on
escape character for output to PDP-10. (see EFCS)

USE AS A TERMINAL
MC CHARACTERS

7

THE INTRA-LINE EDITOR

— The • intra-line -edttor facilitates- editing of text through- use of -commands modeled
after the SOS intra-line edit mode. The editor is entered by typing meta-control "E",
that is. MC(E). The contents of the edit line are displayed immediately after the
display of the scroller. (Actually, the first part of the edit-line may not be
visible; this occurs when this part of the edit line has already been shipped to the
PDP-10). The left side of the edit line is denoted by the scroller's triangular
cursor. The right side of the edit line is the last visible character. Somewhere
between the left and right sides of the editor there is another triangular cursor, the
posit ion-cursor. This cursor is the position where edit commands take place, and where
new characters are entered. When the editor is first entered the cursors overlap, but
when characters are typed the position-cursor is pushed after the last typed character.
When a control character is typed, a check is made to see if it is a break character.
If... the... control ..character... is . .a . break, character,., then the buffered.Jine is.shipped to the
PDP-10 followed by the control character. If the control character is not a break
character, then only the control character is sent; the edit line is not affected.

Generally, the editor is either on or off. When the editor is off, then the only
editor action possible is the turning on of the editor. This is accomplished by a
MC(E). The keyboard number at the time of the MC(E) is used as the size of the editor
buffer; that is, is for example the keyboard number is 100, then a maximum of 100
characters can be placed in the edit buffer line. If the keyboard number is zero, the
the default value is used (initially 140 decimal). If the keyboard number is non-zero
then the default value is permanently changed to the value of the keyboard number.(see
also the Module EDITOR for changing the default value by program control). To exit
from the editor the M(E) command is used. This command de-allocates the edit buffer.
If the editor is in use, then subsequent MC(E) commands will only cause the editor
M-characters to be refreshed. This allows the user to type MC(S), which enters the
scroller mode, make changes to scroller parameters, and then type MC(E) which re -enters
the editor; this series of actions will leave the edit line un-affected allowing the
user to continue his editor actions. The edit line can extend across several lines;
automatic carriage returns and line feeds are inserted into the edit line (these
carriage returns and line feeds are never sent to the PDP-10). The parameter UNITS
controls the number of characters per line. This parameter's value can be changed when
the keyboard is in SCROLLER mode, which is entered with MC(S)-see next section.

The editor meta-actions make use of the decimal keyboard number to determine the
number of times to execute a particular command (where this is meaningful). In the
commands below; H N H refers to the keyboard number, as described earlier, and must be
entered immediately before the command. The commands SKIP, KILL, and INSERT are
special because these require additional characters to be entered without the meta-key.
Examples of edit commands are given after the following table of commands (all commands
are M-characters except the first, which is an ordinary backspace-BS):

USE AS A TERMINAL 8
MC CHARACTERS

M CHARACTERS OF EDITOR (entered by MC(E))

BS, DELETE, Delete N characters left of cursor. Don't confuse this with the command
M(BS).

M(S), SKIP, Move position cursor to N'th occurrence of the next input character. Do
nothing if N occurences do not exist to right of cursor.

M(K), KILL, Like SKIP, except that all passed over characters will be deleted.

M(Line), LINE, Retrieve entire buffered line including characters that have been
"burst" (see below). The edit line is emptied whenever the editor is
entered, and also after typing a non-meta character after any string of
control characters. This allows a line to be retrieved after a return, line,
altmode, etc.

M(SPACE), RIGHT, Move position cursor N positions right.

M(TAB), FAR RIGHT, Move position cursor to end of edit line

M(BS), LEFT, Move positon cursor N positions left

M(RETURN), FAR LEFT, Move position cursor to start of buffer

M(D), DELETE, Delete N characters to right of cursor

M(B), BURST, Send all characters up to the position cursor to the PDP-10. The left
cursor is moved to the current position.

M O ") , RUB RIGHT, Delete all characters right of cursor

M("("), RUB LEFT, Delete all characters left of cursor.

M(U), RUB ALL, Delete all characters.

M(Q), QUIT, Delete all, and send line-feed.

M(E), EXIT, Exit intra-line editor.

M(I), INSERT, Insert the following ENCODED characters at cursor position.

M CHARACTERS FOR SCROLLER (entered by MC(S))

The scroller displays characters coming back from the PDP-10 including echoed
input characters. Commands that use a parameter use the decimal keyboard number unless
otherwise indicated. The scroller now accepts variable width character sets. T w o

USE AS A TERMINAL
MC CHARACTERS

9

parameters control the number of characters per scroller line. CHRS specifies the
number of characters allocted for each scrolled line; CHRS is the upper limit to the
number of character bytes to be entered into a scrolled line. The parameter UNITS
specifies the number of "tab units" per scrolled line. For fixed width characters each
"tab units" is equivalent to the number of characters. The format for variable width
characters, and the meaning of "tab units" is described elsewhere (see MODULE CHR).

M(S), SCALE, Set scale to octal Keyboard number (see SCLCHN).

M(I), INTENSITY, Set intensity to octal keyboard number, (see INTCHN).

M(X), X-POS, Set X-position of left margin of scrolled characters (see XCHN).

M(Y), Y-POS, Set Y-position of top of scrolled lines (see YCHN).

M(L), LINES, Set number of lines to be displayed (see LINCHN).

M(C), CHRS, Set number of characters per line. Applies to editor line too. (See
CHRCHN).

M(U), UNITS, Set number of tab units per line(see UNICHN).

M(N), NEW, Reset all of the above parameters to their default values. (See
SCRNEW). SCALE set to 0. INTENSITY set to 17 (full on). X-POS set to -475.
Y-POS set to 475. LINES set to 56. CHRS set to 98. UNITS set to 98.

M(FORM), Clear all scrolled lines less current line. (see FORM). The current
line consists of of all characters up to the last line sent to the scroller.

M(CLEAR), Like FORM, except that current line is also cleared (see CLEAR).

M CHARACTERS FOR GRAPHIC ACTION
(entered by MC(G))

These commands are for affecting the graphic processor display list. You decide
what is displayed, and what is not.

M(B), BLANK, Remove scroller from display list. (See SCRBNK).

M(U), UNBLANK, Put scroller back into display.

M(R), REMOVE, Remove user graphics from display list (see USECLR).

M(P>, PUT, Put the user graphics back into display list (see USERET).

USE AS A TERMINAL 10
MC CHARACTERS

M(H), HALT, Halt the entire display process. (See HALDIS).

M(G), GODISP, Start the display running again. (See GODISP).

M(D), DISPLAY, Used when the display is halted. The display will be drawn once,
then repeatedly drawn "keyboard number" of times (See DISPIT).

M(C), SETCSR, The graphics will have a new CSR determined by the keyboard number.
Bit 2, if set, doubles clock speed. Bit 3 will turn off wrap.(see LODCSR).
For example: the sequence MC(G),M(4),M(C),M(8),M(C) doubles clock speed and
causes wrap around.

M CHARACTERS FOR I/O (entered by MC(D)

The following commands affect the state the input (LAD) and output (OUT) modules.

M(0), OUTNEW, Reset all output conditions to the PDP-10. (See OUTSET).

M(T), TENLNK, Reset all input conditions from PDP-10.

M(P), PARITY, Uses keyboard number for parity control (see PARITY). (See TENSET).

SYSTEM DESIGN 11

SYSTEM DESIGN

SYSTEM COMMUNICATION

The system is composed of about 15 modules. Communication between modules is mainly by
sub-routine calls, except for several cases of global parameter accesses. All
routines are called by the standard JSR PC.XXXXXX, where XXXXXX is the routines
address. In all cases the routine parameters are passed through the registers
beginning with RO, and values are returned in the the registers beginning with RO.
Except for RO, which is always available (a salute to BUSH), the called routine must
protect all registers not used for passing or returning parameters.

INITIATION - MODULE INIT

Each module that requires initiation has a global initiation procedure. When the system is
loaded (or restarted at address 1000) the module INIT re-initializes the system by
executing the critically ordered list of initiation routines. The last routine it
executes is ACTRTN, which starts up the program loop.

PROGRAM LOOP - MODULE ACTIV

The routine ACTRTN clears an "activity list" and waits for some action such as an
interrupt, to place an address on the active list. When a routine is placed in the
active list, it will be executed at priority level zero when the monitor has time for
it. While running at priority zero, interrupts may occur. Interrupt routines perform
the minimal amount of programming to ensure that no data, or vital system functions
are lost (characters are buffered, and the graphic display will be re-started if
necessary). Interrupts set a flag so that ACTRTN will notice that it must execute the
routine. The user can place up to 3 routines in the activity list. When the monitor
has time a user routine will be executed. When a routine is executed it is at the
same time removed from the activity list. to enter a routine in the activity list,
place its address in RO and call the following routine (the meaning of TRAP is
described in next section):

A C T V A T - TRAP 065
USE

Place a routine in the activity list. Up to 3 different routines allowed.
The routine detects attempts to put the same routine address in twice and
ignores request.

PARAMETERS: RO holds address of routine.
RETURN

RO remains the same if successful, otherwise RO set to zero.

ACTRTN TRAP 165 (no parameters- soft restart). Clear activities.

SYSTEM DESIGN
UUO HANDLER

12

THE UUO HANDLER - MODULE U

The TRAP allows the user to access system routines without knowing their actual core
addresses. EMT is like the TRAP except that all locations in the EMT table of
addresses is reserved for the user to define. The EMT table size is set at initiation
to EMTSZ. (default 20). The assembler instruction EMT is octal (104000+xxx), where
xxx is the EMT number. The assembler instruction for TRAP is (104400+xxx). The
trapping sequence looks just like a JSR PC,XXXXXX for ail aspects of programming,
where XXXXXX is the address in the TRAP table (or EMT TABLE).

TRPADD - TRAP 000, Returns address of TRAP table in RO.

EMTADD - EMT 000, Returns address of EMT table.

EMTSET - TRAP 34
USE Places user routine address in EMT table
PARAMETERS

RO holds address of routine, Rl holds desired EMT calling number.
NORMAL RETURN

If R l is too large for EMT table size then z-bit
(in the processor) is set and no action is taken.
RO is cleared on failure, set to 1 if successful.

EMTSZ - TRAP 141
USE Set size of EMT table (default 20). Don't use size zero.
PARAMETERS RO holds new size (non-zero).
ACTION Old table destroyed, new allocated.

THE SPACE ALLOCATOR - MODULE SPCA

The space allocator handles all core allocations after the system is loaded. To increase
program efficiency, and more importantly, to reduce program size, there is no e r ro r
checking on parameters.

FREE SPACE begins immediately after the SPCA module. The FREE SPACE is divided into
buffers w in use" and buffers that contain free space. Each free buffer begins with a
two word header: first word is a pointer, and second word is the size of the buffer in
bytes (including header words). In a "in use" buffer, there is one header word which
is size of buffer in bytes (including header). Note that the buffer address that is
returned from or given to the allocator routines is the address of the word
immediately after the header words, and is thus the first data word.

At initiation, the space allocator assigns core for both graphics, and program data. The
allocator presently assigns the same area of core for both (for 8K memory only), and

SYSTEM DESIGN 13
SPACE ALLOCATOR

remains unconfused. The very top 3 words of core are for a dummy buffer of zero size
(at top) , a pointer to zero (1 word less), and a word to avoid merges of de-allocated
core directly beneath top dummy buffer. At a low location in core there are two other
headers of zero size: GRABOT, and PRGBOT. Each of these bottom buffers initially
point to a single free buffer (both may be the same in 8K systems). These free space
buffers together contain all the free space before the system starts creating its
runtime tables. In the space allocator routine names, the middle two letters denote
the type of allocator used: GR for graphics, and PG for program data.

GETSPC - TRAP 001
GTGRSP - TRAP 036

USE Retrieves free space buffer
PARAMETERS

RO Number of words of consecutive freespace
NORMAL RETURN

Address of free space buffer stored into RO
RO will be zero if no space available. The z-bit will
be set by a test of RO before the return.
NOTE: the allocator may occasionally give a few
extra words.

BIGSPC - TRAP 002
BGGRSP - TRAP 037

USE
Allocates the largest buffer currently available.

PARAMETERS NONE.
NORMAL RETURN

RO holds address of allocated largest buffer
R l holds size of buffer. If no space is
available, then RO will be set to zero.
A test of RO is made to set z-bit on return.

GIVSPC - TRAP 003
USE

Returns previously allocated free space buffer.
PARAMETERS

RO Address of buffer to be returned to free space list.

SYSTEM DESIGN
SPACE ALLOCATOR

14

SOMSPC - TRAP 004
USE

This routine allows the user to return the top
part of a previously allocated buffer.

PARAMETERS
RO Holds address after which space no longer needed
R l Holds address of start of buffer

NORMAL RETURN
Nothing, except that the core will not be
returned, if amount was miniscule.

In order to allow de-allocation of buffers that are in the display list, the monitor has a
"dead" space list. This is a linked list of those buffers that were deallocated while
in the display. These buffers are returned to free space at the termination of each
graphic display cycle. Two routines correspond GIVSPC, and SOMSPC.

DEDADD - TRAP 013.

USE like GIVSPC. DEDADD immediately destroys the word pointed to by RO (the first word of
the buffer). This word is used by the allocator when forming the linked list of
returned space. The destruction of this value could be disastrous if it is the return
word pointer for a JMS instruction. Users should not use the first word of a buffer
for the return word of a JMS instruction.

S O M D E D - TRAP 021. USE like SOMSPC.

T w o other routines are available for the careful user. APPCLR is used to transfer the
current "dead" list to another list. This new list can be deallocated any time
(assuming APPCLR is called only when graphics is stopped). CLRCLR does the actual
deallocation by continual calls on the routine GIVSPC.

APPCLR - TRAP 017
CLRCLR - TRAP 020

THE UTILITY ROUTINES - MODULE UTI

Only two routines here. They are used for saving an restoring registers. Register saving
and restoring can be done by subroutine calls. Register values are placed on the
stack during saves, and removed from the stack during restoration. The programmer
must be careful -to insure that the stack is at the same "depth" when restoring as when
it was at save time. All registers are saved except RO.

SAVE1 - TRAP 006, and RETUR1 - TRAP 014.

SYSTEM DESIGN 15
LINE CLOCK SERVICES

LINE CLOCK SERVICE - MODULE LI

The system is interrupted every 1/60 of a second. This interrupt allows synchronization of
various system actions. The routine GRAWAT is executed at interrupt time to restart
the graphics, this routine is not available to the user (see GRAWAT in module GRA).
When time becomes available a list of routines is executed. This list is presently
f ixed to a maximum of 8 routines. The system and users can put into and clear
specific addresses in this list of routine addresses. The system never is using more
than two of the eight positions of the queue. When the user routine is called via
JSR PC,XXXXXX, register R0 holds the current system 16-bit time. This register may be
destroyed during routine execution.

LINTIM - TRAP 046
NORMAL RETURN

16 - bit time returned in RO.

LINPUT - TRAP 047
USE

Putting routine into clock service
PARAMETERS

RO - address of routine to be entered
NORMAL RETURN

RO set to one if successful, set to zero
if no space available. If a routine is

already in queue then LINPUT returns
sucessful but dosn't enter the routine a second time.

LIIMCLR - TRAP 050
USE

Removing previously put routine
PARAMETERS

RO Address of routine
NORMAL RETURN

RO set to zero if address not found within
the list of routines.

SYSTEM DESIGN
ERROR TRAPPING

16

ERROR TRAPPING - MODULE TRP

The module TRP's only function is to set the processor to halt on any error conditone The
user is responsible for setting up the traps for special debugging techniques.

OUTPUT TO PDP-10 - MODULE OUT

All output to the PDP-10 passes through a 300 baud (30characters/second) communications
line. The PDP-11 monitor has a built-in multiplexing system for separating 7-bit
character information and 8-bit image data. Eventually the PDP-10 will also have a
corresponding multiplex system. The PDP-10 monitor will recognize a special escape
character. The character following the escape character will be used to affect
changing mode, and forcing the monitor to interpret a control character even when in
extended character set mode. Extended character set mode on the PDP-10 causes all
7 bit codes to pass as text characters except for control C and the escape character.
Of course, escape followed by escape will always be interpreted as escape (that is the
escape octal code will be passed to program). The multiplexing on the PDP-11 is
transparent to the user; the user simply makes calls on the character and image output
routines and the PDP-11 monitor performs all the multiplexing. Data to be sent to the
PDP-10 is processed on a first come first served basis using one large buffer to hold
data until it can be shipped.

The varable CBFSZ. is used to determine the size of the buffer. Initially CBFSZ. is set
to 400 octal, which means that a buffer of size 400 bytes will be allocated at
s tar t -up. The size of the buffer can be dynamically changed.

OUTSET - TRAP 161
USE

For re-setting output state. All output is stopped.
Output state is set to that at start-up time.

PARAMETERS
RO -1 to keep current CBFSZ., otherwise CBFSZ. is set to RO.

SYSTEM DESIGN 17
OUTPUT TO THE PDP-10

CHARACTER MODE OUTPUT

Three routines are available for placing characters into the character output buffer. Once
the character is placed in the buffer, the system will Know to get around to
out-putting it.

SLPONE - TRAP 31
USE

For placing an 8-bit character into the output buffer. The full eight
bits will be sent, but the high order bit will be stripped off by the
PDP-10 monitor.

PARAMETERS
RO holds character in low byte.

CONOUT - TRAP 35
USE

For out-putting an escape control character. That is, the escape character
is sent, followed by the character in RO.

PARAMETERS
RO holds character in low byte.

SLPRTN - TRAP 032
USE

For outputting a 7 bit character. This routine checks to see if the eigth
bit is set. If not then routine SLPONE is executed; otherwise, the eigth
bit is cleared and the routine CONOUT is called. This routine is useful
for out-putting characters from the keyboard since the keyboard uses this
format after tranforming the keyboard character to ascii.

EXEPTION: character 221 is sent as 21 and 21 as 221. This is necessary
for interfacing the escape character.

IMAGE MODE OUTPUT

T w o words of data are necessary to specify an image message. The first word is the 2 -by te
header that always procedes the message to be sent, and the second word specifies
where in core the message is found. The low byte of the header word (all words are
sent low-byte high-byte by the output routine) is simply a message ID number. The
PDP-11 monitor reserves the right to freely use message ID's between 1 and 77 octal.
The high byte of the header has two parts. The high byte gives the number of words in
the message, less the header word. This value should never get much larger than about
20 or 30. The entire message has the following format:

HEADER WORD:
bits 0 to 7: mesage ID number.
bits 8 to 15: N, the number of words in message.

MESSAGE DATA:

SYSTEM DESIGN 18
OUTPUT TO THE PDP-10

N words of data (N may be zero).
CHECKSUM:

one byte of data, which is minus the sum of all bytes in the header and
message data. (The user can check this to be confident that the message was
received correctly).

IMGRTN - TRAP 033
USE

For sending an image message to the PDP-10. The entire message is
immediately copied and placed into the output buffer with the multiplexing
controls. Note that the control H N W is also appended to the end of the
image message.

PARAMETERS
R0: low byte holds message ID. High byte holds the size in 8 bits.
NOTE that the size is in words. IF the size is zero, then only the message
header is sent (i.e. the parameter in Rl is ignored).
R l : holds address of message. Beginning at that location the number of
words specified in the header will be sent. NOTE: following the header
word and the data words of the message, a one byte checksum is sent(-sum of
all the bytes that are sent in header and data words).

INPUT FROM PDP-10 - MODULE LAD

All input from the PDP-10 is via a 4800 baud (480 characters/sec) line. The module LAD
services all characters from the PDP-10. All characters off the link are buffered (up
to 100 8-bit characters) until the system has time for servicing them. The service
routine can be used to: send characters to the scroller (the default state); read
various message types; and, in addition, the user can directly take control of the
service routine to read data coming from the PDP-10.

The default state for the servicing routine is to interpret the 8-bit bytes from the PDP-10
as 7-bit ascii characters to be sent to the scroller display. The user can at any
time execute the routine TENSET, which clears the input buffer and resets the link to
send characters to the scroller (default mode).

TENSET - TRAP 162
USE

Full reset of state of input from the PDP-10.

SYSTEM DESIGN 19
INPUT FROM THE PDP-10

PARITY - TRAP 42
RO, if non-zero flags the input to send full 8-bits to scroller.
RO, if zero (the default state) flags input to strip parity bit before

sending to scroller.

MESSAGES from.PDP-10

In designing the message handler, several facilities were deemed important: 1) the message
interpretation should be flexible - the user supplies the routine to service the data
in the message; 2) assorted methods of passing data to the users routine - such as
through registers, stacking, or passing the address of a buffer of inputted
data (useful for graphics data); 3) arbitrary length messages; 4) optional return
messages for relaying message receipt or failure of checksum etc.; 5) optional return
messages for relaying a return message by the called routine. The format of a PDP-10
to PDP-11 message is (words are sent low byte,high byte):

WORD1 1
WORD2 0 (this word no longer needed)
W0RD3 INSTRUCTION WORD
W0RD4 CONTROL WORD
W0RD5 Message size,N
WORDS 6 to WORD5+N N data words
LAST BYTE is checksum of entire message

The INSTRUCTION word will be executed during the message handling. Usually the instruction
word will be an EMT or TRAP instruction, but other possibilities are: "JSR PC,(RO)w,
or "JSR PC,@(RO)+M etc. This one word instruction usually passes control to a
routine which returns control back to the message handler.

The control word has the format:

bits 01 PARAMETER PASSING
BUFFER PASSING - both bits 0
STACK PASSING - bit 0 on, bit 1 off
REGISTER PASSING - bit 0 off, bit 1 on

BIT 2 Use graphic space allocation for buffer.
B IT 3 Register return flag
BITS 4 to 6 Number of registers to return.

PARAMETER PASSING

In BUFFER PASSING, a buffer is allocated to hold the data words. When the INSTRUCTION is
executed RO will hold the buffer's core address. Register R l will hold the number of
data words in message. The buffer will be allocated from free space; if BIT2 of the
CONTROL word is set, then the free space will be taken only from graphics space. For
stack passing a buffer must also be allocated to hold the data words. Prior to

SYSTEM DESIGN 20
INPUT FROM THE PDP-10

INSTRUCTION execution the data words will be pushed down on the stack, register 6.
Both buffer and stack passing require at least one data word. For buffer and stack
passing, if no space is available for the buffer then the message will be largely
ignored. Register passing does not require a space allocated buffer, and the number
of data words can be from zero to six. The data words are stored into consecutive
locations in the REGISTER VECTOR. The REGISTER VECTOR has word elements MRO, MR1,
MR2, MR3, MR4, and MR5. Thus, if the number of data words equals 2, then the data
words will be stored into location MRO, and MR1. If there are no data words, then the
REGISTER VECTOR will not be affected. For all forms of parameter passing, before the
INSTRUCTION is executed the hardware registers RO to R5 are loaded from the
REGISTER VECTOR. Then if buffer passing is used, RO and Rl will be overwritten by the
buffer address; if stack passing is used then the stack will be set-up. Therefore, in
both stack and buffer passing, the user has control over the state of the registers
when the INSTRUCTION is executed. After the INSTRUCTION is executed, the values of
the hardware registers are written into REGISTER VECTOR. This allows one message to
pass information to the next message through any of six registers. Also the called
routine can make any changes to the parameters on the stack, or push extra elements on
the stack, and in general, leave the stack pointer in a new. position. After
INSTRUCTION execution the stack pointer is set back to the value before the message
was interpreted.

REGISTER RETURNING

If BIT3 of the CONTROL word is set, then after the INSTRUCTION execution a message with
ID -22 and size specified by bits 4,5,6 of the CONTROL word, will be sent to the
PDP-10. The message is really a dump of PDP-11 core beginning with MRO of the
REGISTER VECTOR. If the user does not affect the values in the REGISTER VECTOR b y
sending a new message, the message*22 (register return) will indicate the state of the
registers after the particular message INSTRUCTION was executed.

LOADING PROGRAMS AND DATA

Blocks of data to be loaded into PDP-11 core using the following routines. The loader has

one state variable, OFFSET, which is initially zero.

LOADR - TRAP 007
USE

For loading relocateable data or programs, using buffered messages.

PARAMETERS
RO, set by message handler to point to start of buffer passed from the
PDP-10. ' Note that the message handler determines whether or not to use
graphic or program space for the buffer.

ACTION
OFFSET is given the value of RO.

SYSTEM DESIGN 21
INPUT FROM THE PDP-10

RELOC - TRAP 025
USE

RELOC is used (usually several times) just after a call on the routine
LOADR. RELOC is called (by trapping) using a buffered message from the
PDP-10. The buffer is automatically removed from core when the routine
finishes.

PARAMETERS
R0,R1 set by message handler.

ACTION
The first word of the buffer is an address to point to location to begin
relocation. The remaining words of the buffer are a bit pattern to denote
(b i t= l) which successive words to relocate. Consider the following
pseudo-program:

INTEGER ADDRESS, BITWORD, BIT;
ADDRESS<-(word 1 of buffer)+OFFSET;! from routine LOADR;
FOR (BITWORD*-(each successive word of buffer)) DO
FOR (BIT«-(each bit in bitword (left to right))) DO
BEGIN
IF BIT = 1 then (OFFSET added to content ADDRESS);
ADDRESS<-ADDRESS+2>

END;
NOTE: RO is always set to value of OFFSET.

L O A D T R - T R A P O i l
USE

Serves as an "end block" for loads. Usually called using register passing
message.

PARAMETERS
RO, holds transfer address. R l , holds flags: bit 15 signals relocation by
value of OFFSET to transfer address. Bit 7 says that the OFFSET should be
set to non-zero value- signifying a LOADR has occurred. If OFFSET is zero
and Bit 7 of R l then no transfer takes place.

ACTION
If transfer address is even then a JSR PC, to location (RO+OFFSET) is done.
OFFSET is cleared.

LOADA - TRAP 010
USE

For loading absolute locations of PDP-11 core using buffered message mode.
PARAMETERS

RO, R l set by message handler. The first word of the buffer is the address
to load the data. The remaining words are the successive data words to be
loaded.

SPECIAL ACTION
The data words are loaded last to first. This feature is useful when
loading graphic data where the display list must always have a terminator.

SYSTEM DESIGN
INPUT FROM THE PDP-10

22

LNKTAK - TRAP 41
USE Used to reset the routine which processes bytes from PDP-10.
PARAMETERS If RO * 0 then normal monitor handling is restored.

Otherwise, the address in RO is the new routine to be
called for each byte to be processed.

INTRA-LINE EDITOR - MODULE EDIT

Most of the actions of the EDITOR have been previously described
in "USE AS A TERMINAL". The EDITOR has two routines that can be
called globally:

BRKSET - TRAP 146
USE

A single bit in a break table will cause a control character to break. This
routine sets up such a break table.

PARAMETERS
RO: BITS 0 to 17 set the break characters from octal 0 to octal 17. R l :
sets the break characters from octal 20 to octal 37. E.g. if bit 5 of RO is
on, then control character octal 5 will "BREAK"? and if bit 0 of R l is on
then control character octal 20 will "BREAK". Note that bits are numbered
right to left for P D P - l T s . (This is the reverse of numbering for
PDP-10's).

ETASET - TRAP 40
USE

Modifys ETA (Editor Transfer Address). Allows user PDP11 program to
retrieve contents of edit buffer.

PARAMETERS
RO: If 0 then retsore normal sending to PDP11 (routine SLPRTN). Otherwise
RO holds address of routine to service buffer.

SYSTEM DESIGN
CHARACTER SETS

23

CHARACTER SETS - MODULE CHR

When the system is reloaded using WINITIAM (load and start at 173000), the PDP-10 sends to
the PDP-11 a graphic system. After a short wait the PDP-10 monitor will send a
character set. The name "GRAPH.GST" is the standard character set name. If a user is
logged on, and he has a file by the name "GRAPH.GST", then this user file will be the
file sent to the PDP-11 as the character set. If the user does not have a
"GRAPH.GST", then the system character set "SYS:GRAPH,GST" will be loaded. The
standard character set is fixed width (10 screen units) and has a line feed distance
of 17 units (line feed distance includes the spacing between lines). Whenever the
system is restarted, the current character set, if any, is preserved (the space
allocator destroys all other buffers that were allocated from free space). Variable
width character sets can also be used. Note that at the original start-up the system
has a "universal null" character for each character.

CHARACTER PROCESSING

When processing a character byte, the graphics processor requires a character dispatch
table-the DTBAR address. If a character byte has value "N", then the value contained
in address "DTBAR+2N" is used to process the character. If this value is even (bitO
equals 0), then the value is the address of a vector description of the character. If
the address is odd, then the bit zero is removed and the resulting even address must
contain an interrupt routine. The only distinction that the PDP-11 monitor makes
beteen "vector-described" characters and "interrupt" characters is that interrupt
characters always have zero width - both for fixed and variable width character sets.
The graphic monitor sets aside the top 256 words of graphic memory for the character
dispatch table. The user need not know this address, however, because routines are
available to affect values in this table.

TABS

Variable width characters must have the character's width, UNIT length, specified for each
character. This number is usually a small integer, and must be stored in ' the memory
word immediately preceeding the characters "vector description" (tabs need not have
this value, allowing efficient coding of tab characters- see below). Besides
supplying character descriptions and a character dispatch table (the table is copied
by the monitor), a character set must also supply two data words: CHRUNI and CHRSTB.
These two data words are located immediately before the dispatch table (thus when the
monitor obtains the character sets dispatch table it first reads the data words and
then copies the character sets dispatch table into the systems dispatch table). The
first data word/ CHRUNI, if zero,denotes that the character set is variable width. If
non -zero , then the character set is fixed width with each character "CHRUNI" UNITS
wide (if non-zero, CHRUNI probably wants to always have a value of 1). The other data
word , CHRSTB, specifies the first tab character. Now, the last tab character is
always character 367 (all character numbers are octal values). If the lowest tab
character is 360, then we have the usual 8 tab characters. If the lowest tab

SYSTEM DESIGN
CHARACTER SETS

24

character is 350 then we have 16 tab characters (16 distances that we can tab). For
fixed width character sets only 8 tabs are needed, since there are only 8 possible
distances to the next tab character. Tabs are always performed by drawing invisible
vectors. Let U be the number of character UNITS already in a scrolled line (or edit
buffer) , and let T be the number of different tab locations, then ((U mod T)+CHRSTB)
is the tab character chosen for tabbing to the next character position.

Consider a fixed width character set with each character 10 screen units wide. Suppose the
character is made with medium vectors (the standard character set has short vectors) .
The tab characters for such a character set would be:

CHR11:
CHR360: .byte 10,0
CHR361: .byte 10,0

CHR367: .byte 10,0
100000 ; terminator

For a variable width character set with an average character width of 5 UNITS (each
UNIT equal to 2 screen units) we might have:

CHR11:
CHR320: .byte 2,0
CHR321: .byte 2,0

CHR367: .byte 10,0
100000 ; terminator

CHARACTER CONVENTIONS

Characters 0 to 177 are usually standard ascii characters. The null character, octal 0, is
nothing but a full word terminator. Character 200 is illegal when occurring in the
high byte of a character list because it signals a control word for the graphic
processor. Character 200 is reserved for initializing graphics for the current
character set. The character 200 should set format, and force invisible vectors. The
monitor causes the character 200 to be processed before processing the scroller or
edit buffer. Characters 375, 376, and 377 must always be defined as follows: 375 must
be a carriage return (see below) combined with a line feed; 376 must be cursor
(whatever cursor you like, but it should start and end at the same place); and 377
must be the combination of characters 375 and 376. Character 370 is the blink

SYSTEM DESIGN 25
CHARACTER SETS

character, and character 371 is the unblink character. Characters 372 to 374 are
reserved for expansion. The characters immediately below 370 are used as tab
characters. Carriage returns are performed using a SETX control word. Since the
monitor must be able to dynamically change the value of the carriage return position,
the SETX control word must always be at the same position in all characters with a
carriage return (characters 15, 375, and 377). For now the SETX control word is the
second word of the character, the first word should be a zero.

CHARACTER ROUTINES

CHRSET - TRAP 153
USE

Allows user to make single changes to the character dispatch table.
PARAMETERS

RO: holds new value for dispatch of character. If RO is zero, then the
universal null character is used for the character dispatch. If R0*-1
then do not replace the character; only return address of character r l in
RO.
R l : holds the character whose value is to be changed.

RETURN
On return, register RO will hold the value that was previously in the
dispatch table.

CDSCLR - TRAP 154
USE

Clears the dispatch table to all nulls.
PARAMETERS (none)

COSSET - TRAP 155
USE

This routine copies the data words and character dispatch table. After
copying, the user should deallocate his own copy (the system can do this
for y o u - see below).

PARAMETERS
RO: holds address of core allocated from free space for the entire
character set description. This value is saved until core is released, and
is also used by the space allocator for preserving a character set during a
restart.
R l .Holds dispatch table address. Note that the two words preceeding the
dispatch table must be values for CHRUNI, and CHRSTB,respectively.

RETURN
On return, RO holds the system dispatch table address and Rl holds the
address of the dispatch table copied from user.

SYSTEM DESIGN
CHARACTER SETS

26

CHRDEL - TRAP 157
USE

This routine deletes the current character set by Writing the universal
nulls into the character dispatch table, and then deleting the character
description segment.

PARAMETERS (none)

The most likely method of passing a character set to the PDP-11 is by loading a completely
new description from the PDP-10. The following special routine makes loading a new
character set very easy. Simply prepare a character set using the format below, and
then compile the program using MACX11, and linked using LINK. If the program is
relocated to zero (using the "M" AND "G" swicthS in LINK), then the routine will
correct ly relocate the dispatch table.

CHARACTER SET FORMAT
1) Character set vector descriptions. Also any "interrupt" characters.
2) CHRUNI value.
3) CHRSTB value.
4) The dispatch table. Label the first location DTTAB. Remember that

all 256 characters must be given a reasonable value, (repeat your null
character's address if nothing better).

5) Now have another label CHRSTR. Following the label CHRSTR we have the following
short program:

CHRSTR:
MOV #DTTAB,R1; RO already holds relocation value
104556 ; this is trap 156- CHRLOD
RTS PC

.end CHRSTR ; end of program- transfer to CHRSTR

CHRLOD - TRAP 156
USE

This routine facilitates loading of a new character set. Use this routine
with a just loaded module containing a character set description with the
above format.. Any previous character is deleted. The new dispatch table is
copied. After that, all locations beginning with the dispatch are returned
to free space.

PARAMETERS
RO: This must hold the address that the space allocated for the character
set descriptions. Note that the loader automatically supply this value.
R l : Must hold the character dispatch table address (before relocation, if
PDP-11 supplied relocation).

NOTE: Before sending a character set, a message should be sent to delete the old character
set. Also the scroller should be cleared. These two operations will insure that a

SYSTEM DESIGN
CHARACTER SETS

27

large free segment will be available for the space allocator to pass to the newly
arriving character set. Also, for convenience, several messages should be tacked onto
the end of the character set. These messages should contain information about the
number of lines in scroller, UNITS per line, and other related information peculiar to
the new character set.

GRAPHIC DISPLAY - MODULE GRA

The module GRA controls all graphic displays. The GRA module sets up a sequence of graphic
instructions to be executed. Three instruction locations are reserved: one for the
scroller, one for the editor, and one instruction for the user to play with. The only
reasonable instructions that can be put into these slots are XQT's and JMS's. With
the JMS instruction, the user can effectively set up an arbitrarily complex display
list. The following routines are used to affect what is placed into the above three
locations.

SCRCLR - TRAP 071
USE

Removes instruction in scroller position.
(I . E. a jump to the next location is put in).

SCRDIS - TRAP 073
USE: Insert an instruction into scroller position.
PARAMETERS: R0, holds value to put in.

USECLR - TRAP 072
USE

Remove instruction from user position, and save the value.

USERET - TRAP 144
USE

Return the value previously in the user
position. This value is the value that was removed
by the routine USECLR.

SYSTEM DESIGN
GRAPHIC DISPLAY

28

USEDIS - TRAP 074
USE

For putting an instruction into the user position.
PARAMETERS

RO: holds value to be put into the display. Thus, RO should be an address
with the opcode bits for a JMS or XQT (see hardware doc).

EDCLR - TRAP 075, Removing instruction from editor position.

EDDIS - TRAP 076
USE

For putting a value into editor position.
PARAMETERS

RO: holds the value to be inserted into the instruction sequence.

GRAADD - TRAP 027
USE

RO holds address of pointer to the location of the
instruction (graphic JMS) for scroller sub-display.

(RO+2) is address of the location of pointer to the instruction
(graphic XQT) of the line editor.

(RO+4) is address of pointer to location of the user /
sub - picture instruction (graphic XQT or JMS).

Three variables govern graphic display. The variable SIC is 1 when graphics is running.
When the display list is fully processed, SIC is set to 0. TIC is a count of the
number of tics of the line clock that have occured since graphics was last restarted.
If this number grows to 20, then the monitor assumes that the display list is being
quite unreasonable. Graphics will be restarted, unless the variable GODIS is zero .
GODIS, if negative, means that the user wants the graphic processing to be starting at
each appropriate time (in sync with line clock). If GODIS is positive, then each time
the graphics is re-started GODIS is decremented. If GODIS is zero, then graphics will
not be restarted.

GRASTP - TRAP 100, Halt graphic display instantly. Also set GODIS to -1.

DISPIT - TRAP 132
USE Set start up of graphics.
PARAMETERS

R0:The value of RO is given to GODIS. If GODIS results in non-zero then
graphics is restarted.

HALDIS - TRAP 130, Soft stop of graphics. GODIS is set to zero.

GODISP - TRAP 131, Slow start of graphics. GODIS set to -1.

SYSTEM DESIGN
GRAPHIC DISPLAY

29

L O D C S R - TRAP 012
USE

Affecting the CSR register of graphics.
PARAMETERS

R0: bit 2 - turn off clock divide. Bit 3, turn off wrap.

The control word interrupt traps to address 104. This interrupt is serviced by the
monitor. The monitor extracts the 4 bit operand and selects a routine from a 16 word
table of routine addresses. The called routine can use registers register RO.
Graphic display "pauses" during an interrupt. When the routine returns (RTS), the
graphics will be continued from the pause state if RO is non-zero. The interrupt
routine should be very short, and should not make calls on any monitor routines that
could cause "race" conditions. Currently, interrupt 0 turns off intensity every other
1/4 second. Interrupt 1 turns the intensity on to the value obtained in the last
blink interrupt. Interrupt l is "unblink". A control word interrupt that has not been
given a "meaning" will cause a trap at address zero.

INTRST - TRAP 015
USE

Put a routine into the interrupt dispatch table.
PARAMETERS

RO, holds the number of the routine. This value should be between 10 and 17
octal, (codes 0 to 7 reserved for system). R l , holds address of interrupt
routine. Note: currently if the graphic processes an undefined interrupt
then the PDP-11 will HALT.

BLINKING

The interrupt operand 0 causes BLINK-ON, and the operand 1 causes a BLINK-OFF. These
control words must always come in matched pairs with the items to be blinked laying
between the control words. Blinking is accomplished by setting intensity zero when
BLINK-ON occurs. The intensity is restored to its previous value with the BLINK-OFF
character. Blinking characters also exist, see BLINKING CHARACTERS.

STANFORD KEYBOARD - MODULE SKIT

The Stanford keyboard has previously been discussed in terms of actions by the computer
terminal user. The following discussion is concerned with programming interactions
with the user's programs on the PDP-11.

When a key is struck the monitor is usually the program to notice that a character is
waiting to be serviced. However, the user can obtain control of the very lowest level

SYSTEM DESIGN 30
KEYBOARD MODULE

of interrupt handling. The keyboard has a standard interrupt vector at location octal
200. To obtain the keyboard character directly, the user needs only to place an
interrupt routine's address at this location. When the user wishes to return keyboard
handling to the monitor one of the following routines may be chosen:

SKINWR - TRAP 063
SKIWAR - TRAP 023

USE
Reinit the keyboard status and interrupt vector. The only differrence
between SKIWAR and SKINWR. is that SKIWAR will set a bit in the status word
that causes an interrupt to occur each time the bit pattern from the
keyboard changes. Thus in "war" mode, depressing the character "A" will
cause an interrupt, and releasing the key "A" will cause another interrupt.
NOTE: the "war" bit is occasionally called the "space war" bit; do not
confuse the bit with the game of space war. Also as a side affect to both
of the routines: any currently pending character is thrown away.

In case you do write your own keyboard routine, beware that the characters coming off the
buffer (165200 for status, and 165202 for the buffer) do not correspond to ascii
characters. The bits in the hardware buffer have the following format (from left to
right):

"MOOOOIACTSEEEEEE"

M bit: On, if meta key is depressed.
0 bits: These bits are always zero.
1 bit: Service at interrupt time (use very carefully).
A bit: This bit is zero, but when the routine SKIRTN interprets

a keyboard character this bit will (if set)
stop keyboard translation to ascii.
(processing characters form PDP-10).

C bit: On if control key is depressed.
T bit: On if top key is depressed.
S bit: On if shift key is depressed.
E bits: These bits are the or'rd value of

all endoded keys that are depressed. (See table pg. 48)

The bits of the status register correspond exactly to the bits for a standard DEC teletype
reader status, except that bit 0 is used to signal "war" mode (any change in the
hardware buffer causes an interrupt if bit 0 is on).

SYSTEM DESIGN 31
KEYBOARD MODULE

In order to translate the low byte of the keyboard buffer (TSEEEEEE) into an ascii
equivelent, just execute the following routine:

KEYASC - TRAP 064
USE: Transform keyboard value to ascii.
PARAMETERS

RO holds keyboard bits to be decoded. The high byte is ignored.
RETURN: RO holds the ascii equivelent.

The routines SKIWAR and SKINWR are not necessary to gain rather complete control control of
keyboard input. Rather the mechanism of "meta" characters should allow an adequate
PDP-11 program to keyboard interface.

The first action to occur during a character interrupt (with the monitor's routine in
control) is a check for a special interrupt character. These were previously
described in "USE AS A TERMINAL", but are repeated below.

MCfbreak") or M(MbreakM) - call debugging aids (DDTCAL)
No DDT module available at this time.

MCCcaHM) or MCcair) - full system re-initiation
(restart at 1000).

MC(\) or M(\) - clear clock queue and soft restart

MC(break) and M(break) are useful only if the following routine has been executed:
DDTCAL - TRAP 133

USE
Pass the address of a debugging routine. This routine will be JSR'ed to
when the M("DW) or MCCD") character is struck.

PARAMETERS: RO holds address of debug routine.

FAKING KEYBOARD INPUT

T w o routines are available for sending input to the keyboard handler. The routine SKIRTN
is the same routine that handles actual keyboard input.

SYSTEM DESIGN 32
KEYBOARD MODULE

SKISOM - TRAP 126
USE

Allows a buffer of 16 bit characters (in keyboard
input format), to be interpreted by SKIRTN.
In particuly, the SOS "Z" command
can be implemented with this routine.

PARAMETERS
RO: contains address of buffer.
R l : contains number of words to process.

ACTION
Each word in the buffer is processed using SKIRTN.

NOTE
When inputting a buffer from the PDP-10,
the loader (coincidently?) sets up RO and Rl correctly
when using buffered message handling.

KEYBOARD STATE

The actions of the routine SKIRTN must be postponed until after a discussion of the
keyboard's "state". The keyboard has associated with it a state. The state includes
the keyboard numbers, the keyboard transfer address(KBTA), the MC table and the
M table. The keyboard numbers were previously discussed (see KEYBOARD NUMBERS). The
KBTA is a variable which holds the address of the routine that is to process all
non-meta characters. At system start-up the default routine is SLPRTN (this is a
routine common to the output module OUT). Two other routines often are used for the
KBTA: LOCIT which is the routine that outputs to the scroller keyboard characters
(somewhat like local mode on a TTY); the other routine is the routine which services
the non-meta characters during edit mode. Four routines are available for affecting
the value of KBTA.

SKINOR - TRAP 060, Set the value of KBTA to default value: SLPRTN.

LOCAL - TRAP 022
USE

Put keyboard into local mode by placing address of
routine LOCIT into KBTA.

SKIGET - TRAP 056, Return value of KBTA in RO.

SKIPUT - TRAP 057
USE: Changing the value of KBTA.
PARAMETERS: RO: RO is the new value given to KBTA.

EFCS - TRAP 163
USE

Control use of escape character. Ascii output of control characters to

SYSTEM DESIGN 33
KEYBOARD MODULE

PDP-10 will not be preceeded by escape (control P), if RO is set to 0. If
RO is non-zero then a control P will be used. Note this command does not
affect control characters for image mode.

AFFECTING META TABLES

Meta tables are the principal means of communication between a PDP11 program and the
keyboard. Both M and MC tables contain addresses of routines that will be called when
their associated meta characters are struck. At system startup the M and MC tables
are cleared to zeros, then the standard system MC characters are copyed into the MC
table. When an MC character is struck (before the routine associated with it is
called) the keyboard handler copys a table of M characters into the M table. The
table copyed in is called the MCMR table, where MCMR stands for "Meta-Control Meta
Read". The format of the MCMR table must be (where all characters are ENCODED
characters and not ascii):

TABLESTART: ; example of MCMR table
E l ; first character

E1ADDR ; address of routine for this M character
E2
E2ADDR

EN'th
ENADDR

0
; note that the 0 signal the end of table

Rather than keep an address of the MC routine and the the address of its own M table,
it has been decreed that the word proceeding the first word of the routine (MC routine
address -2) must contain a pointer (an address) to the start of its MCMR table. The
method of setting up MC characters is probably still confusing to the reader. T r y
reading the descriptions of the following routines. The mechanism is actually v e r y
simple....

SYSTEM DESIGN
KEYBOARD MODULE

34

MCSET - TRAP 061
USE: Setting up a MC character.
PARAMETERS

RO.The Keyboard encoded character that will cause the MC action. E.G. if RO
is 1, then the character W A M will be an active MC character. NOTE that all
of the upper case ascii letters corresspond to the keyboard encoded letters
(by coincidence).
R l : contains address of routine to be called. Note that immediately
preceeding the routine must be the address of a table of M-characters .

ACTION:
Ve ry little. The value supplied in Rl is put into the
the appropriate MC table location (as determined by RO).

NOTE:
If R l contains zero, then no action will
take place when the particular MC character is struck.

MCLR - TRAP 024
USE

This routine clears the M-Table of all values.
Thus, M characters will cause no monitor actions.

SKIRTN - TRAP 055
USE

SKIRTN is routine which processes all keyboard
characters.

PARAMETERS
RO: holds the keyboard character to be interpreted.

ACTIONS
If the meta bit is not on (bit 15 of RO), then the
low byte of RO is usually converted to ascii using
the previously described routine KEYASC.
To stop conversion to ascii simply set the "A w bit,
bit 9.

SYSTEM DESIGN 35
KEYBOARD MODULE

PROCESSING NON-META CHARACTERS

When processing a non-meta character, the routine SKIRTN sets up register RO to contain the
ascii value of the input character in the low order 7 bits of RO. If the input
character to SKIRTN is a control character, then the 7'th bit (8'th bit from left) of
RO will be turned on. Note also that bit 6 is always chopped off on control
characters. After setting-up register RO, the routine whose address is contained in
variable KBTA (defalt SLPRTN sends the character to the PDP10) will be JSR'ed to.
This routine is free to use all the registers (RO to R5). The user can access the
original input character by examining register R l .

PROCESSING META CHARACTERS

Firstly, for all types of M and MC character processing, when a routine is called by
the control of SKIRTN, all registers will be available for use by the called routine.
In particular the registers will contain the following information:

RO: The original input character to SKIRTN.
R l : The decimal keyboard number.
R2: The octal keyboard number.

(in the present implementation R3, and R4 also
hold the octal and decimal keyboard numbers. This will

not be true of later versions).

SYSTEM DESIGN
KEYBOARD MODULE

36

DESCRIPTION OF THE CONTENTS OF RO:

THE CHARACTER CODE FOR THE KEY STRUCK IS STORED IN THE LOW ORDER BYTE
OF RO. BITS 6 AND 7 REPRESENT TOP AND SHIFT. BITS 0-5 ARE THE CHARACTER
CODE ACCORDING TO THE FOLLOWING TABLE:

OCTAL KEY OCTAL KEY OCTAL KEY OCTAL KEY

1 A 21 Q 41 BREAK 61 1

2 B 22 R 42 ESC 62 2

3 C 23 S 43 CALL 63 3

4 D 24 T 44 CLEAR 64 4

5 E 25 U 45 TAB 65 5

6 F 26 V 46 FORM 66 6

7 G 27 w 47 VT 67 7

10 H 30 X 50 (70 8

11 I 31 Y 51) 71 9
12 J 32 Z 52 72 :
13 K 33 RETURN 53 + 73)

14 L 34 54 74 BS

15 M 35 LINE 55 - 75 ALT
16 N 36 56 76

17 0 37 57 / 77

20 P 40 SPACE 60 0

BIT 6: 1 IF SHIFT 0 IF NO SHIFT
BIT 7: 1 IF TOP 0 IF NO TOP

M character processing is simple. Check the M table location for the input character. If
this value is zero then no action. Otherwise the value is taken to be an address to
JSR to. MC character processing is similar, except that before the routine is JSR'ed
to, the MCMR table is read into the M table. This reading of the MCMR table is the
only way in which addresses can be placed into the M table. When communicating with a
program on the PDP-11 it would sometimes be desirable to have a "meta-lock" key; that
is, when meta lock is on, then all software processing would assume that the meta key
was actually pressed when any encoded key is struck.

SYSTEM DESIGN 37
KEYBOARD MODULE

METALK - TRAP 026
USE

Locking and unlocking software meta-lock bit and other bits.
PARAMETERS

RO: value of RO will be or'ed with ail future input from keyboard.

EXAMPLE FOR SETTING UP A MC-CHARACRTER

Suppose we wish to define the MC-character "H". Pretend that "H" is mnemonic for the
routine HELP. We also must create the MCRM(H). This table describes which
M-characters will be affected when MC(H) is struck. Suppose we have routines AHELP,
BHELP, and CHELP that we wish to have called when M(A), M(B), and M(C) are
struck.respectively. The table would be:

BIND MCMRTH-PLIT<"A",AHELP,MB , ,,BHELP,BC",CHELP,0); ! in bliss.

MCMRTH: ; now for assembler
'A
AHELP
'B
BHELP
'C
CHELP
0

Now the routine HELP would look like:

INLINEC MCMRTH ; table address");
ROUTINE HELP-

BEGIN blah blah blah END;

or in assembler:

MCMRTH
HELP:

blah
blah
blah
RTS PC

SYSTEM DESIGN
KEYBOARD MODULE

38

To ready the MC(H) character we must put the address of routine HELP into the MC table.
This can be done as folows:

R1<-HELP 5 ! the address of routine
VREG<-"HM ; ! this is ascii (works for alphabetic)
TRAPC61) ; trap to the MCSET routine

or in assembler:
MOV #HELP,R1 5 address of routine
MOV 'H,RO
TRAP 61 5 trap to routine

And now, each time MC(H) is struck, the following actions will take place:

1) The routine HELP will be called with the registers
having the following values:

2) The addresses of routines AHELP,BHELP, and CHELP will be
copyed into the M table locations for codes 1(MAM),2(MB")
and 3("CM) , respectively.

RO: Bit pattern for MC(H)
R l : Decimal keyboard number.
R2: Octal keyboard number.

THE SCROLLER

Unlike a TTY in which a continuous record of output is kept, the graphic monitor
maintains a display list of characters returned from the PDP-10. This
display list is composed of lines of characters begin at the top of the
screen. As new lines are entered at the bottom of the screen the lines on
the top are removed. The scroller is line oriented. The parameter CHRMAX
holds the maximum number of characters per line. Whenever a new line is
started CHRMAX is used in deciding how big the display buffer for that line
must be. Characters are entered into the "current1* line using the routine
SCRRTN. As each character is entered into the current line, the number of
units (see CHARACTER SETS) is kept. This is necessary to proper tabs. The

SYSTEM DESIGN
SCROLLER MODULE

39

parameter UNIMAX is the maximum number of UNITS that are allowed in one
line. A new line, that is a new buffer, is allocated for one of three
reasons:

1) Line feed. Each occurence of a line feed terminates the
current line and a new buffer is fetched.

2) Unit overflow. Whenever the number of UNITS in a line
exceeds UNIMAX a carriage return/linefeed is inserted, and
a new buffer is fetched. UNIMAX is used to make the line
finish at the same place on each line (for variable width too).

3) Character overflow. Whenever the number of characters in a line
exceeds CHRMAX a carriege return/line feed is inserted and
a new buffer is fetched. Note character overflow signals
that the user should increase the value of CHRMAX.

The following routine is the only routine for entering characters into the
scroller.

SCRRTN - TRAP 120
USE

Entering 8-bit characters into scroller.
PARAMETERS

RO: Low byte of RO holds byte to be entered.

SCRUNB - TRAP 107
USE

Puts the scroller back into the display list.
(see SCRCLRi, TRAP 071, for complementary action).

CLEAR - TRAP 134
USE

Removes all scrolled characters from the
display. The screen is cleared.

PARAMETERS (none)

SYSTEM DESIGN
SCROLLER MODULE

40

FORM - TRAP 104
USE

Works like a CLEAR except that the "current" line
is left in the display.

There are seven basic parameters to the scroller. The following table
shows both the default values and the usual range in parentheses.
Note that some parameters are entered by octal keyboard number.
Other values are decimal.

XCUR Carriage return position. Default -475. (-511)
YCUR Top of screen. Default 475. (to 511).
SCALE The scale for graphics. Default 0. (0 to 17 octal).
INTENS The intensity for graphics. Default 17. (0 to 17 octal).
LINES Number of lines allowed in scroller.Default 56. (0 to 56).
CHRS Number of characters per line. Default 98.
UNITS Number of units per line. Default 98.
JUMP Number of lines to jump when scroller reaches max.

Default 0.

S C R N E W - T R A P 111
USE
Sets all of the above parameters to the default value.

Each of the parameters can be set individually. The following table describes 7
separate routines.
ROUTINE TRAP PARAMETER AFFECTED

XCHN 112 XCUR
YCHN 113 YCUR
SCLCHN 115 SCALE
INTCHN 114 INTENSITY
LINCHN 116 LINES
CHRCHN 117 CHRS
UNICHN 101 UNITS
JMPCHN 016 JUMP

SYSTEM DESIGN
SCROLLER MODULE

41

SCRDEF - TRAP 030
USE

For setting the defaults for the above
8 parameters.

PARAMETERS
RO: holds the address of 8 word buffer of values

to be given to the above 8 parameters,
respectively. I.e. first word changes value
XCUR, and second alters YCUR; and so on.

GRAPHIC SYSTEM DOCUMENTATION 42
INDEX

ACT IV ITY LIST 11
ACTRTN - TRAP 145 11
A C T V A T - TRAP 065 11
APPCLR - TRAP 017 14

BGGRSP - TRAP 037 13
BIGSPC - TRAP 002 13
BLINKING 29
BLINKING CHARACTERS 24
BREAK TABLE 22
BREAKSET - TRAP 146 22

CDSCLR - TRAP 154 25
CDSSET - TRAP 155 25
CHARACTER CONVENTIONS 24
CHARACTER PROCESSING 23
CHARACTER SETS 23
CHRCHN - TRAP 117 40
CHRDEL - TRAP 157 26
CHRLOD - TRAP 156 26
CHRMAX 38
CHRSET - TRAP 153 25
CLEAR - TRAP 134 39
CLRCLR - TRAP 020 14
CONOUT 33
CONOUT - TRAP 035 16
CONTROL CHARACTERS 4
CONTROL P 33
CSR REGISTER 29

DDTCAL - TRAP 133 31
DEDADD - TRAP 013 14
DISPIT - TRAP 132 28

EDCLR - TRAP 075 28
EDDIS - TRAP 076 28
EDITOR 6, 7, 22
EFCS 6
EFCS - TRAP 163 32
EMT 12
EMT ООО - EMT ADD 12
EMTADD - EMT ООО

CM

EMTSET - TRAP 034 12
EMTSZ - TRAP 141 12
EMTSZ. 12
ENCODED CHARACTERS 3

GRAPHIC SYSTEM DOCUMENTATION 43
INDEX

ESCAPE CHARACTER 33
ETASET - TRAP 40 22

FORM - TRAP 104 40

GETSPC - TRAP 001 13
GIVSPC - TRAP 003 13
GODIS 28
GODISP - TRAP 131 28
GRAADD - TRAP 027 28
GRAPH.GST 3
GRAPH.SYS 1,3
GRAPHIC DISPLAY 27
GRAPHIC DISPLAY - MODULE GRA 27
GRASTP - TRAP 100 28
GTGRSP - TRAP 036 13

HALDIS - TRAP 130 28

IMGRTN - TRAP 33 18
INITIATION 11
INTCHN - TRAP 114 40
INTRA-LINE EDITOR 7
INTRST - TRAP 015 29

JMPCHN - TRAP 016 40
JUMP 40

KBTA 32
KEYASC - TRAP 064 31
KEYBOARD 8
KEYBOARD BUFFER FORMAT 30
KEYBOARD LAYOUT 3
KEYBOARD M-CHARACTERS 6
KEYBOARD NUMBERS 5, 35
KEYBOARD STATE 32

LINCHN - TRAP 116 40
LINCLR - TRAP 050 15
LINE CLOCK SERVICES 15
LINKAGE CONVENTIONS 11
LINPUT - TRAP 047 15
LINTIM - TRAP 046 15
LNKTAK - TRAP 041 22
LOADA - TRAP 010 21
LOADING PROGRAMS AND DARA 20
LOADR - TRAP 007 20

GRAPHIC SYSTEM DOCUMENTATION 44
INDEX

LOADTR - TRAP O i l 21
LOCAL 6

' LOCAL - TRAP 022 32
LODCSR - TRAP 012 29

M CHARACTERS FOR GRAPHIC ACTION 9
M CHARACTERS FOR I/O 10
M CHARACTERS FOR SCROLLER 8
M CHARACTERS OF EDITOR 8
M-CHARACTERS FOR KEYBOARD 6
MC 5
MC table 33
MCLR - TRAP 024 34
MCMR 33, 36, 37
MCSET - TRAP 061 34
MESSAGES from PDP-10 19
META KEYS 3
META TABLES 33
METALK - TRAP 026 37
MODULE ACTIV 11
MODULE CHR 23
MODULE EDIT 22
MODULE GRA 27
MODULE INIT 11
MODULE LAD 18
MODULE LI 15
MODULE OUT 16
MODULE SCR 38
MODULE SPCA 12
MODULE TRP 16
MODULE U 12
MODULE UT I 14

OUTNEW 10
OUTPUT TO PDP-10 33
OUTSET - TRAP 161 16

PARITY 10
PARITY - TRAP 42 19
PROGRAM LOOP 11

RELOC - TRAP 025 21
RETUR1 - TRAP 014 14

SAVE1 - TRAP 006 14
SCLCHN - TRAP 115 40
SCRCLR - TRAP 071 27

GRAPHIC SYSTEM DOCUMENTATION 45
INDEX

SCRDEF - TRAP 030 41
SCRDIS - TRAP 073 27
SCRNEW - TRAP 111 40
SCROLLER 8
SCROLLER MODULE 38
SCRRTN - TRAP 120 39
SCRUNB - TRAP 107 39
SIC 28
SKIGET - TRAP 056 32
SKINOR - TRAP 060 32
SKINWR - TRAP 063 30
SKIPUT - TRAP 057 32
SKIRTN - TRAP 055 32, 34
SKISOM - TRAP 126 32
SKIT 29
SKIWAR - TRAP 023 30
SLPONE - TRAP 031 16
SLPRTN - TRAP 032 17
SOMDED - TRAP 021 14
SOMSPC - TRAP 004 14
SPACE ALLOCATOR 12
SPECIAL CHARACTERS 3
SPECIAL INTERRUPT CHARACTERS 6
STANFORD KEYBOARD 29
STANFORD KEYBOARD - MODULE SKIT 29
SYSTEM COMMUNICATION 11
SYSTEM DESIGN 11
SYSTEM START-UP 3

TABS 9, 23
TENLNK 10
TENSET - TRAP 162 18
T I C 28
TRAP 12
TRAP 000 - TRPADD 12
TRAP 001 - GETSPC 13
TRAP 002 - BIGSPC 13
TRAP 003 - GIVSPC 13
TRAP 004 - SOMSPC 14
TRAP 006 - SAVE1 14
TRAP 007 - LOADR 20
TRAP 010 - LOADA 21
TRAP O i l - LOADTR 21
TRAP 012 - LODCSR 29
TRAP 013 - DEDADD 14
TRAP 014 - RETUR1 14
TRAP 015 - INTRST 29

GRAPHIC SYSTEM DOCUMENTATION 46
INDEX

TRAP 016 - JMPCHN 40
TRAP 017 - APPCLR 14
TRAP 020 - CLRCLR 14
TRAP 021 - SOMDED 14
TRAP 0 2 2 - LOCAL 32
TRAP 023 - SKIWAR 30
TRAP 024 - MCLR 34
TRAP 025 - RELOC 21
TRAP 026 - METALK 37
TRAP 027 - GRAADD 28
TRAP 030 - SCRDEF 41
TRAP 031 - SLPONE 16
TRAP 032 - SLPRTN 17
TRAP 033 - IMGRTN 18
TRAP 034 - EMTSET 12
TRAP 035 - CONOUT 16
TRAP 036 - GTGRSP 13
TRAP 037 - BGGRSP 13
TRAP 041 - LNKTAK 22
TRAP 042 - PARITY 19
TRAP 046 - LINTIM 15
TRAP 047 - LINPUT 15
TRAP 050 - LINCLR 15
TRAP 055 - SKIRTN 32, 34
TRAP 056 - SKIGET 32
TRAP 057 - SKIPUT 32
TRAP 060 - SKINOR 32
TRAP 061 - MCSET 34
TRAP 063 - SKINWR 30
TRAP 064 - KEYASC 31
TRAP 065 - ACTVAT 11
TRAP 071 - SCRCLR 27
TRAP 072 - USECLR 27
TRAP 073 - SCRDIS 27
TRAP 074 - USEDIS 28
TRAP 075 - EDCLR 28
TRAP 076 - EDDIS 28
TRAP 100 - GRASTP 28
TRAP 101 - UNICHN 40
TRAP 104 - FORM 40
TRAP 107 - SCRUNB 39
TRAP 111 - SCRNEW 40
TRAP 1 1 2 - X C H N 40
TRAP 113 - YCHN 40
TRAP 114 - INTCHN 40
TRAP 115 - SCLCHN 40
TRAP 116 - LINCHN 40

GRAPHIC SYSTEM DOCUMENTATION 47
INDEX

TRAP 117 - CHRCHN
TRAP 120 - SCRRTN
TRAP 126 - SKISOM
TRAP 130 - HALDIS
TRAP 131 - GODISP
TRAP 132 - DISPIT
TRAP 133 - DDTCAL
TRAP 134 - CLEAR
TRAP 141 - EMTSZ
TRAP 144 - USERET
TRAP 145 - ACTRTN
TRAP 146 - BRKSET
TRAP 153 - CHRSET
TRAP 154 - CDSCLR
TRAP 155 - CDSSET
TRAP 156 - CHRLOD
TRAP 157 - CHRDEL
TRAP 161 - OUTSET
TRAP 162 - TENSET
TRAP 163 - EFCS
TRAP 40 - ETASET
TRPADD - TRAP 000

40
39
32
28
28
28
31
39
12
27
11
22
25
25
25
26
26
16
18
32
22
12

UNICHN - TRAP 101
UNIMAX
UNITS
UNITS (CHARACTER)
USECLR - TRAP 072
USEDIS - TRAP 074
USERET - TRAP 144
UTIL ITY ROUTINES
UUO HANDLER

40
39
9
39
27
28
27
14
12

XCHN - TRAP 112

YCHN - TRAP 113

Z-COMMAND

40

40

31

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Dete Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. R E P O R T N U M B E R 2. G O V T A C C E S S I O N N O . 3. R E C I P I E N T ' S C A T A L O G N U M B E R

4. T I T L E (mnd Subtitle)

GRAPHIC DISPLAY SYSTEM MONITOR MANUAL
5. T Y P E O F R E P O R T & P E R I O D C O V E R E D

6. P E R F O R M I N G O R G . R E P O R T N U M B E R

7. A U T H O R O)

Donn Bihary
8. C O N T R A C T O R G R A N T N U M B E R f »

F44620-73-C-0074

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N O A O O R E S S

Carnegie-Mellon University
Department of Computer Science
Pittsbureh. Pennsylvania 15217

10. P R O G R A M E L E M E N T . P R O J E C T , T A S K
A R E A & W O R K U N I T N U M B E R S

U . C O N T R O L L I N G O F F I C E N A M E A N O A O O R E S S

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

12. R E P O R T D A T E

July, 1974
U . C O N T R O L L I N G O F F I C E N A M E A N O A O O R E S S

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

13. N U M B E R O F P A G E S

48
U . M O N I T O R I N G A G E N C Y N A M E a A O D R E S S f J / dltterent from Controlling Oitice)

Air Force Office of Scientific Research (NM)
1400 Wilson Boulevard

15. S E C U R I T Y C L A S S , (of thim report)

unclassified

Arlington, Virginia 22209 1 5 « . O E C L A S S I F I C A T I O N / D O W N G R A O I N G
S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (ot thim Report)

Approved for public release; distribution unlimited.

17. D I S T R I B U T I O N S T A T E M E N T (ot the mbmtrmct entered In Block 20 . It dltterent too* R Report)

18. S U P P L E M E N T A R Y N O T E S

19. K E Y W O R O S (Continue on reveree elde it neceeemry mnd Identity by block numbmr)

20. A B S T R A C T (Continue o n revmree eide It neceeemry mnd Identity by block numbmr)

GRAPH.SYS is a PDP-11 program for use with GDP2 super-display. GDP2 consists
of a PDP-ll/15 computer, a STANFORD keyboard, a Hewlett Packard 1310A display
scope a start-up ROM, a line clock, a communications link to the PDP-10, 8K
of 16'bit memory, and the GRAPHIC WONDER processor. GRAPH .SYS makes GDP2 into
an intelligent PDP-10 graphics terminal which can simultaneously load, link
and run PDP-11 programs passed from the PDP-10. This document has two parts;
the first part is a manual for using the display as a terminal; part 2 is a
REFERENCE MANUAL for those who wish to "run programs on the PDP-11.

DD i J A N 73 1473 E D I T I O N O F 1 N O V 55 IS O B S O L E T E

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (Wh»n Dmtm Entered)

