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ABSTRACT 

The design of programs that generate questions and exercises 
for students is discussed. The task of direct interest is the 
generation of programming exercises. This is dealt with in some 
detail and sets of such exercises produced by programmed 
generators are presented. 

Several design strategies are investigated, starting with the 
use of grammar-like generative mechanisms. The design of 
exercises is then viewed as an assembly task, putting together 
compatible elements to create an acceptable problem-structure, 
accessing knowledge of the task area encoded as a semantic net. A 
sentence synthesizer which generates coherent English sentences to 
describe the assembled problems is then described. Attention is 
also paid to the mechanisms necessary for controlling such an 
assembly process. Directing generators towards problems involving 
specified concepts and making use of information available about 
the student's familiarity with a hierarchy of concepts are two 
issues discussed in this area. 

Other strategies discussed are: generalizing 'good* problems 
to produce useful variants; use of reasoning about actions in a 
task area to recognize good problem situations; and the design of 
surface detail to create problems having a given abstract 
structure. 
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LL. INTRODUCTION 

The notion of a generative CAI system has attracted some 
attention(l). An important issue in this area is the structure of 
generators for problems and exercises, and it is this issue that 
we concern ourselves with in the following pages. Design of 
generators for interesting classes of problems appears within 
reach and is, of course, advantageous. Among the frequently cited 
advantages of generation, as against selection from a long list, 
are the controllability and adaptability that generation provides. 
These features provide for the creation of exercises having 
specified content and posing a specified level of difficulty to 
suit the needs of an individual student at a specific stage in 
learning. And, of course, generative schemes provide for 
potentially larger sets of examples to choose from, compared to 
any f ini te Ii st. 

Developing a generative scheme forces analysis of problems 
and the task area to a level of detail that is usually avoided in 
making a collection of exercises. In fact, such analysis might 
possibly lead to the the definition of knowledge domains 
operationally. For instance, in classifying exercises on the 
basis of complexity, one could use a response measure such as 
^average time taken for solving', but a generative scheme 
motivates attempts to understand the difficulty posed by an 
exercise in terms of its structure. 

Another aspect of generative schemes is the level at which 
information is available to the system that handles the exercises. 
While a collection of exercises could be handled by a more or less 
sophisticated page-turner, generative schemes require a fine-grain 

(1) Uhr, 1969; Uttal et al, 1978; Uexler, 1970 and Koffman, 1972. 

f 
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representation of some knowledge of the task area in order to 
work. Ue use a semantic net in which is encoded a variety of 
information on the task area. In the case of programming 
exercises, the semantic net contains information on types of 
manipulable objects such as numbers, symbols, sets and sequences, 
their attributes, sets of examples for each type of object or 
generative procedures for creating examples, data structures in 
terms of which each type of object may be realized, manipulations 
that may be performed on each type of object, etc.. Dealing with 
information in such detail is essential if we are ever to develop 
systems that understand the task area - to generate answers to 
exercises or to generate code to recognize a variety of acceptable 
answers along with the generation of the exercise, to answer 
questions about a specific exercise or about the task area, and to 
attempt to carry out generated exercises to find out their 
character i st ics. 

The recognition that generative techniques can make good use 
of a fine-grain representation of semantic information relevant to 
a task area hardly concludes the analysis of problem generation. 
In fact, this recognition is more appropriate as the first step 
than as the conclusion in any treatment of the subject. 
Development of a problem generator in a given area should start 
with the identification and analysis of viable sets of problems in 
that area, and proceed to specify suitable structures for programs 
that will generate these sets. Specific strategies for accessing 
representations of knowledge in the process of problem generation 
should be spelt out. 

Undoubtedly, an understanding system with a well integrated 
store of knowledge of a subject area is the proper ultimate form 
for a problem generator. Such a system would be able to answer 
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questions about the area, design good problems in the area, 
discuss them and even solve them. The work reported here does not 
yet aim at such a system. The approach taken here is exploratory 
and quite empirical. The presentation is in the form of a 
discussion of a sequence of simple strategies for using different 
aspects of information about a subject area for generating 
non-trivial problems. Most of the strategies discussed are 
illustrated with examples of problems generated by programs based 
on them. All the examples presented are in the area of 
programming exercises, though the discussions are hopefully 
relevant to other kinds of problems as well. 
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2^ ENUMERATIVE SCHEMES PATTERNED AFTER CONTEXT-FREE GRAMMARS 

The simplest generative scheme is an extension of the 
slot-and-fiIler scheme, as it is called in linguistics. In this 
scheme, one has a set of problem frames incorporating variables. 
There is a specification of the admissible values that these 
variables may assume, either in the form of numerical limits or in 
the form of a set of admissible values for each variable. 

There are two directions of development that enrich this 
scheme. Uhrtl] reports one of them, which is to implement 
computationally defined relations between the variables. By 
choosing certain independent variables randomly within the 
permitted ranges or from sets of admissible values, the others 
cogld be computed from them, thus ensur ing compat ibi I i ty. The 
original scheme, of course, does not provide mechanisms for 
meeting such compatibiIity requirements and forces the variables 
to be chosen independently of each other. 

The second direction of development involves the use of a 
grammar-like scheme. Unlike slot-and-fiIler schemes, the 
grammar-like schemes are not limited to finite-state languages. 
They have been used in the context of problem generation for 
synthesizing sentences having phrase structure. Koffman (1972) 
has reported the use of probabilistic grammars for the generation 
of word problems. Simple programs that use grammar-1 ike schemes 
to generate questions in artificial intelligence (developed by 
Newell and Robertson) and in cognitive psychology (developed by 
Waterman) have been in use at the Carnegie-Mellon University since 
1971. 
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Fig.l shows the enumerative scheme underlying the program 
which deals with artificial intelligence. The questions produced 
by this program are always grammatically and semantically correct, 
and most of the questions are meaningful. Not shown in the scheme 
is a probability assignment convention that allows certain choices 
to be more or less frequent than other choices in the generative 
procedure, increasing the percentage of desirable questions in the 
output. Figures 2 and 3 show some of the questions produced by 
the artificial intelligence program and the cognitive psychology 
prpgram respectively. 

Enumerative schemes such as this derive their power from a 
basic device - classification of a set of phrases into different 
subsets of syntactically and semantical ly similar items. Question 
frames are written incorporating variables which are substitutabIe 
by members of appropriate subsets of phrases. Further, the 
phrases are themselves generatable by this process by expansions 
of embedded variables into suitable sub-phrases, the variables in 
figure 1 are indicated by the terminal angle brackets '<* and *>'. 
sets of phrases that are substitutabIe for the variables are 
defined in the lower half of the figure. 
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<QUESTIONS>: ( ("WHAT IS " <ENTITY> "?") 
("WHAT METHOD DOES " <PROGRAM> " USE?") 
("WHAT TASKS DOES " <PROGRAM> " WORK ON?") 
("HAS " <TASK> " BEEN ACCOMPLISHED BY A PROGRAM?") 
("WHERE IS AI RESEARCH ON " <TASK> " GOING ON?") 
("WHAT IS THE CURRENT ACHIEVEMENT IN " <TASK> "?") 
("WHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO " <AREA> "?") 
("WHAT HAVE BEEN THE CONTRIBUTIONS OF " <AREA> " TO AI?") 
("NAME A TASK THAT " <PROGRAM> " DOES NOT DO, BUT MIGHT DO WITH SOME 
MODIFICATION.") 
("WHY IS " <ENTITY> " SO CALLED?") 
("WHAT PROGRAMMING LANGUAGE WAS USED FOR " <PROGRAM> "?") 
("HAS " <LANGUAGE> " BEEN USED TO ACCOMPLISH " <TASK> "?") ) 

<ENTITY>: ((<PROGRAM>) (<HEURISTIC>) (<PHENOMENA>) (<CONCEPT>) ...) 
<CONCEPT>s (("A METHOD") ("A PROBLEM") ("A HEURISTIC") ...) 
<PROGRAM>: ((<RECOGNITION-SYSTEMS>) (<GAME-PLAYERS>) (<THEOREM-PROVERS>) 

(<QUEST I ON-ANSUERERS>) (<GENERAL-PROBLEM-SOLVERS>) ... 
(UNDERSTANDING-SYSTEMS>) (<DESIGN-SYSTEMS>) 

(<CONSTRAINT-SATISFIERS>)) 
<CHESS-PROGRAMS>: (("NEWELL-SHAW-SIMON CHESS PROGRAM") 

("BERNSTEIN'S CHESS PROGRAM") ("CMU TECHNOLOGY CHESS PROGRAM") ...) 
<TASK>: ((<GAMES>) (<MANAGEMENT-SCIENCE>) (<CONCEPT-FORMATION>) ...) 
<PROGRAM-FEATURE>: ((<HEURISTIC>) ("ALPHA-BETA") ("RECURSION") ...) 

Fia.l Part of an Enumerative Scheme Patterned after 
Context Free Grammars 
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Q: WHAT AI PROGRAMS HAVE BEEN WRITTEN IN MLISP? 
Q: WHY IS FEATURE EXTRACTION SO CALLED? 
Q: HAS THERE BEEN ANY CONTRIBUTION OF AUTOMATA THEORY TO AI? 
Q: WHAT WAS THE FIRST AI EFFORT ON CHESS? 
Q: HAS SAIL BEEN USED TO ACCOMPLISH CHECKERS? 
Q: WHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO PHYSICS? 
Q: HAS APL BEEN USED TO ACCOMPLISH ASSEMBLY LINE BALANCING? 
Q: WHAT IS THE CURRENT ACHIEVEMENT IN CHESS? 
Q: WHAT IS THE CURRENT ACHIEVEMENT IN PLANT LOCATION SELECTION? 
Q: WHAT HAVE BEEN THE CONTRIBUTIONS OF INDUSTRIAL ADMINISTRATION TO AI? 
Q: WHAT IS A HEURISTIC? 
Q: HAS SAIL BEEN USED TO ACCOMPLISH RELATIONAL CONCEPT FORMATION? 
Q: HAS ASSEMBLY LINE BALANCING BEEN ACCOMPLISHED BY A PROGRAM? 
Q: HAS COBOL BEEN USED TO ACCOMPLISH CHESS? 
Q: HAS THERE BEEN ANY CONTRIBUTION OF PHYSICS TO AI? 
Q: WHAT IS HORIZON PHENOMENA? 
Q: WHAT PROGRAMMING LANGUAGE WAS USED FOR REF-ARF? 
Q: WHAT WAS THE FIRST AI EFFORT ON RELATIONAL CONCEPT FORMATION? 
Q: WHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO YOUR EDUCATION? 
Q: WHAT METHOD DOES GPS USE? 
Q: WHAT TASKS DOES FREEMAN'S OSO WORK ON? 
Q: NAME SOME HEURISTICS USED IN SRI ROBOT. 
Q: WHO DEVELOPED EXPONENTIAL GROWTH? 

Fiq,2 Output g_£ ihe. Question Generator fox. Artificial Intel I iqence 
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WHAT CONTRIBUTION HAS LOEHLIN MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY? 
WHAT IS CYBERNETICS? 
WHAT ARE THE SIMILARITIES BETWEEN TREE STRUCTURES AND NETWORKS? 
WHAT ARE THE SIMILARITIES BETWEEN ALGORITHM AND HEURISTIC? 
WHAT CONTRIBUTION HAS ABELSON MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY? 
WHAT IS CONTENT ADDRESSABLE MEMORY? 
WHAT IS AN EXAMPLE OF A GPS GOAL? 
WHAT IS A MAGIC SQUARE? 
WHAT ARE THE DIFFERENCES BETWEEN SYNTAX AND SEMANTICS? 
DEFINE MARKOV PROCESS. 
DESCRIBE A FEW METHODS THAT HAVE BEEN USED IN ARTIFICIAL INTELLIGENCE. 

WHAT IS A BIT? 
WHAT ARE THE DIFFERENCES BETWEEN TEMPLATE MATCHING AND FEATURE 
EXTRACTION? 

WHAT IS ALDOUS? 
WHAT CONTRIBUTION HAS CHOMSKY MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY? 
WHAT IS PANDEMONIUM? 
WHAT CONTRIBUTION HAS WIENER MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY? 
WHAT ARE THE SIMILARITIES BETWEEN COMPUTER AND HUMANS - BY ANALOGY? 
DEFINE DISCRIMINATION NET. 
WHAT ARE THE SIMILARITIES BETWEEN COMPILER AND INTERPRETER? 
WHAT ARE THE SIMILARITIES BETWEEN TEMPLATE MATCHING AND FEATURE 
EXTRACTION? 

Fia.3 Output g_f the Question Generator for. Cognitive Psucholoau 
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Word categorization on a semantic as well as syntactic basis 
enables these programs to produce a surprisingly high percentage 
of semantically meaningful sentences compared to programs that are 
based on generative syntax alone. Restricting oneself to the 
generative power of context-free rewrite rules has its own 
advantages. The control structure of the problem generator 
becomes simple and straightforward, making it easy to construct 
trouble-free programs. The essence of these schemes is the simple 
hierarchical top-down control structure that relates a set of 
choices. For each choice that is made, the grammar simply forces 
the other* (lower level) choices that one is committed to make as a 
result. Each act of choice transfers control to that part of the 
grammar where the available alternatives for lower level choices 
are contained. On the other hand, restriction to such a simple 
program structure does result in severe limitations. 

The basic limitation is the absence of a structured 
representation of the task environment of the kind found in 
practically every system that performs a cognitively significant 
task (Carbonell, 1978, and Uexler, 1970, describe instructional 
systems incorporating structured representations of knowledge). 
Generally in such systems associations are used to impose an 
object-attribute-value scheme on the task environment and to 
implement functional and relational mappings. Computational 
mappings of a functional or relational nature are performed by 
programmed routines. This is in contrast to the implicit 
representation of knowledge in grammar-like systems which provide 
only two devices to ensure coherence in the output: co-occurrence 
of symbols in rewrite rules which ensures co-occurrence of 
complementary parts of the problem in the output; and set 
membership which enables semantically and syntactically equivalent 
items to be distributed in the output in an identical manner. 
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Even the use of variables for holding data and control 
information is not possible. This means for instance, that one 
cannot use a variable to hold on to the name of the data-structure 
that one has chosen to refer to in a problem being generated, so 
that it can be used repeatedly. Instead one requires one set of 
rules for generating, say, sorting exercises on lists and a 
similar but different set of rules for sorting exercises on 
arrays, unless of course there is a single reference to the nature 
of the data-structure. 

Finally, syntactical and semantic similarities of phrases are 
clumped together whi le classifying these phrases into subsets. 
The fact that a particular set of phrases refers to investigators 
in a particular field has to be remembered along with the 
syntactic information that all entries in this subset are singular 
in number, and that in addition they are all only last names. 
Achievements of investigators expressed in the past tense have to 
be segregated from their activities expressed in other tenses. 
Flexibility in reference can be obtained only by entering 
grammatical variants of the same phrase in different subsets. 

Summing up, it appears that the initial advantages of a 
grammar-like scheme are outweighed by the restrictions it imposes 
on the development of a problem generator. It becomes necessary 
to recognize and separate two concepts imp Iicit in such schemes, 
one being more general than the other. The first is the concept 
of generative syntax with its power to generate well-formed 
sentences in natural language or in mathematical notation. The 
second is the concept of an elegant and economical principle of 
program organization - that of a top-down enumerative scheme for 
generating a recursively defined set of structures. It is 
obviously desirable to employ the latter concept whenever 
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possible, without committing oneself to the formalization of all 
the machinery required for problem generation in the form of 
generative syntax. Steps in this direction are particularly 
important if we visualize CAI systems having access to detailed 
representations of knowledge of task areas. Whatever form such 
knowledge is going to be in - semantic nets, simulation models or 
understanding systems - it certainly is not going to be all 
syntax. 
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Si. GENERATION OF A PROBLEM AS THE ASSEMBLY OF A STRUCTURE  

3.1 Assemblu of Problems 

He can view the creation of exercises as a task in design. 
Given the function of a desired object, how does one decide its 
structure? How does one recognize the system of design decisions 
necessary in a given case? How does one encode decisions made in 
the earlier stages of the process so that their implications for 
later decisions are readily computable? In this section we will 
deal with the generation of a basic kind of programming problem in 
these terms. These problems exercise the student's skills in 
handling arrays and in organizing data in the form of sets and 
sequences of numbers and symbols. A typical hand generated 
problem of this type (1) is: 

YOU ARE GIVEN THE ARRAYS I ARRAY[1:180] AND MARRAY[1:108]. FIND 
ALL SETS OF NUMBERS IN I ARRAY, NO MATTER WHAT THEIR ORIGINAL 
POSITION, WHICH CAN BE PUT IN COUNTING ORDER (I.E. EVERY ELEMENT 
IN A SET, EXCEPTING THE FIRST AND THE LAST, SHOULD HAVE ITS 
SUCCESSOR AND PREDECESSOR IN THE SAME SET). MARK THE FIRST SET BY 
PUTTING T S IN THE CORRESPONDING POSITIONS IN MARRAY, THE SECOND 
SET BY PUTTING 2'S IN THE CORRESPONDING POSITIONS, AND SO ON. PUT 
ZEROES IN THE POSITIONS OF ELEMENTS WHICH DO NOT BELONG TO ANY 
SETS. 

Consider the task of a program that has to generate problems 
in this form. A series of decisions have to be made, some of them 
independent and some contingent on the others. Analysis of a 
number of such problems shows that it is possible to represent in 
a compact manner the basis for making these decisions for 

(1) Courtesy of Ruven Brooks 
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producing reasonably large subsets of the studied problems. It is 
possible in these cases to find a common form in the structures of 
the individual members of the problem set. For example, the 
problems(l) of Fig.4 have a common structure outlined in Fig.5. 
The problems in Fig. 4 as we 11 as those in Fig.G were generated by 
programs having the simple control structure discussed in the last 
paragraph of Section 2. Use of this top-down generative structure 
is based on the recognition that the problem to be constructed has 
a basically tree-like structure. The highest level of the program 
therefore deals with the linking up of the major sub-structures of 
the tree which are assumed to exist. Lower level routines are 
then defined for creating these smaller structures. The 
parcelling out of the assembly task can be spread over several 
levels, the routines at the terminal nodes selecting and creating 
basic elements of the problem, while the higher level routines 
assemble parts created at lower levels into bigger structures. 

(1)Generated by a program to be described shortly. 
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DEFINE AN ARRAY L(288) AND READ NUMBERS INTO THIS ARRAY FROM THE 
FILE F0R81.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT 
BY FIRST TYPING OUT F0R81.GEN AND EXAMINING IT. EXAMINE THE 
ELEMENTS OF L AND IDENTIFY THE MAXIMAL SET EACH ELEMENT OF WHICH 
IS A PRIME. SORT THE ELEMENTS OF THE SELECTED SET IN NUMERICAL 
ORDER. PLACE THIS ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF 
L, IN DECREASING NUMERICAL ORDER. PLACE A ZERO IN ALL THE 
LOCATIONS OF L WHICH DO NOT CONTAIN ONE OF THE FINALLY SELECTED 
NUMBERS. PRINT OUT THE FINALLY SELECTED NUMBERS. 

DEFINE AN ARRAY L(3B,38) AND READ NUMBERS INTO THIS ARRAY FROM THE 
FILE FORB1.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT 
BY FIRST TYPING OUT F0R81.GEN AND EXAMINING IT. EXAMINE ALL THE 
ROWS OF L AND IN EACH ROW, IDENTIFY ALL SEQUENCES OF 7 OR MORE 
NUMBERS HAVING ELEMENTS EACH ONE OF WHICH IS A NUMBER GREATER THAN 
4. POOL THE ELEMENTS OF ALL THESE SEQUENCES AND SORT THEM IN 
NUMERICAL ORDER. PLACE THE 38 LARGEST ELEMENTS ALONG THE LOWEST 
ROW IN NUMERICALLY INCREASING ORDER FROM LEFT TO RIGHT. PLACE A 
ZERO IN ALL THE LOCATIONS OF L WHICH DO NOT CONTAIN ONE OF THE 
FINALLY SELECTED NUMBERS. PRINT OUT THE FINALLY SELECTED NUMBERS. 

DEFINE AN ARRAY L(388) AND ASSUME THAT THIS ARRAY IS FILLED WITH 
NUMBERS IN THE RANGE FROM -1888 TO 1888. EXAMINE THE ELEMENTS OF 
L AND IDENTIFY ALL SEQUENCES OF 3 OR MORE NUMBERS HAVING ELEMENTS 
THAT ARE ALTERNATELY A CUBE AND A NON-CUBE. CONSIDER THE 
SEQUENCES IN THE ORDER OF INCREASING FIRST TERMS. CHOOSE THE 
FIRST 8 SEQUENCES IN THIS ORDER, IF THERE ARE MORE THAN 6 
SEQUENCES. OTHERWISE, CHOOSE ALL THE SEQUENCES. POOL THE 
ELEMENTS OF ALL THE CHOSEN SEQUENCES AND SORT THEM IN NUMERICAL 
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ORDER. PLACE THIS ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF 
L, IN INCREASING NUMERICAL ORDER. PRINT OUT L. 

DEFINE AN ARRAY L(10,18) AND READ NUMBERS INTO THIS ARRAY FROM THE 
FILE FORB1.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT 
BY FIRST TYPING OUT FOR01.GEN AND EXAMINING IT. EXAMINE ALL THE 
ROUS OF L AND IN EACH ROW, IDENTIFY ALL SEQUENCES OF 3 OR MORE 
NUMBERS HAVING ELEMENTS IN THE FOLLOWING ORDER - A NUMBER 
DIVISIBLE BY 7, AN ODD NUMBER, A NEGATIVE NUMBER. SUCH A SEQUENCE 
MAY START WITH ANY ONE OF THE SPECIFIED TYPES OF ELEMENTS. POOL 
THE ELEMENTS OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL 
ORDER. PLACE THE 19 LARGEST ELEMENTS ALONG THE FIRST COLUMN IN 
NUMERICALLY DECREASING ORDER FROM TOP TO BOTTOM. PRINT OUT THIS 
COLUMN. 

DEFINE AN ARRAY L(GBB) AND FILL IT UP WITH RANDOM NUMBERS IN THE 
RANGE FROM -1800088 TO 1880080. EXAMINE THE ELEMENTS OF L AND 
IDENTIFY ALL SEQUENCES OF 7 OR MORE NUMBERS HAVING ELEMENTS EACH 
ONE OF WHICH IS A MULTIPLE OF ITS PREDECESSOR. POOL THE ELEMENTS 
OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL ORDER. PLACE 
THIS ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF L, IN 
DECREASING NUMERICAL ORDER. PLACE A ZERO IN ALL THE LOCATIONS OF 
L WHICH DO NOT CONTAIN ONE OF THE FINALLY SELECTED NUMBERS. PRINT 
OUT L. 

F'q.4 Examples Q± 'Arrau Ordering Problems' 
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, SPECIFIED INPUT. RANGE OF NUMBERS DECIDED HERE 

-SPECIFIED DATA-STRUCTURE. ONE OR TWO DIMENSIONAL ARRAY 
-SOURCE OF DATA 

SUB-STRUCTURES OF GIVEN 
DATA-STRUCTURE (EG. ROWS/COLUMNS) 

PROBLEMH 

•1ST MANIPULATION* 

I OBJECT TO BE SEARCHED FOR 
SPECIFIED SETS 
SPECIFIED SEQUENCES OR 
SUBSTRUCTURES CONTAINING 
SPECIFIED OBJECTS 

I—REORGANIZATION OF OBJECTS DETECTED 
POOL OR/AND ORDER SELECTED OBJECTS 

—RELOCATION OF REORGANIZED OBJECTS 
SPECIFY DESTINATION 
(SUCH AS THE TOP 3 ROWS, 
MIDDLE ROW, LAST COLUMN) 

•FURTHER MANIPULATIONS 

•OUTPUT AS SPECIFIED 

Fig.5 The Structure of a Class of Arrau Manipulation Problems 
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CONSIDER THE LIST L19 AND THE UNNAMED LIST ON THE STACK. SELECT 
THE SET OF ALL EVEN NUMBERS WHICH ARE PRESENT IN L19 BUT NOT IN 
THE UNNAMED LIST. FIND THE SUM OF ALL THE SELECTED NUMBERS AFTER 
ELIMINATING MULTIPLE OCCURRENCES. 

YOU ARE GIVEN THE LIST-STRUCTURES L13 L14 LIS AND LI6 AND 4 
UNNAMED LIST-STRUCTURES ON THE STACK. THEY MAY CONTAIN NUMBERS AT 
ANY AND ALL LEVELS. SELECT THE SET OF ALL PRIME NUMBERS WHICH ARE 
PRESENT IN L16 , IN L15 , IN L14 , AS WELL AS IN L13 BUT NOT IN 
EACH UNNAMED LIST-STRUCTURE. FIND THE SUM OF ALL THE SELECTED 
NUMBERS AFTER ELIMINATING MULTIPLE OCCURRENCES. 

CONSIDER THE 3 UNNAMED LIST-STRUCTURES ON THE STACK AND THE 
LIST-STRUCTURES L18 L19 AND L28. THEY MAY CONTAIN NUMBERS AT ANY 
AND ALL LEVELS. SELECT THE SET OF ALL NEGATIVE NUMBERS WHICH ARE 
PRESENT IN L20 BUT NOT IN L19. MERGE THESE WITH THE NUMBERS WHICH 
ARE GREATER THAN 188 FROM THE TOPMOST LIST-STRUCTURE ON THE STACK. 
PLACE ALL THE SELECTED NUMBERS ON L18 AFTER EMPTYING IT FIRST. 
SORT THE CONTENTS OF L18 IN DESCENDING NUMERICAL ORDER. FIND OUT 
ALL SEQUENCES OF PRIME NUMBERS IN IT AND PLACE THEM ON THE 2 OTHER 
UNNAMED LIST-STRUCTURES. 

Fia.6 A Set of Simple List-Processing Problems 
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Some of the terminal routines make random choices, while others 
access the structures already assembled and choose compatible 
elements to be used in the sub-structures being constructed. 
Access to a representation of knowledge of the task area having 
the form described on page 4 also occurs at this level as a part 
of the relevance and compatibility computation. 

It is useful at this stage to evaluate the utility of the 
selective mechanisms discussed above. Very rough estimates can be 
made of the total number of structures that are in some sense 
possible, and the fraction of these structures that are 
meaningful. The number of branchings that occur in the course of 
generating a problem of the type shown in Fig.4 is of the order of 
15, corresponding to the branchings of Figure 5. 

Uhile the choices that create structural differencesbetween 
problems usually involve only two or three alternatives, e.g. the 
choice between one dimensional arrays and two dimensional arrays, 
numerical choices involve large numbers of alternatives. Most of 
the numerical choices are equivalent, but selecting a number in 
the wrong range could create absurd problems, e.g., comparing 
numbers in the range from 8 to 100 with the threshold of 2500. 
Estimating that there are 2 or 3 significant alternatives at most 
branches, the total number of choice sequences that are available 
over 15 steps is in the range from 10t4 to 10t7 . Typically, 
five or six of these decisions are contingent upon others, so that 
the amount of selection exercised by the program in producing a 
coherent problem (out of what would be mostly nonsense problems if 
free choices were made at each point) is roughly 1 in 500. 
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3.2 Assembly of Sentences 

What is the nature of the structure assembled by a problem 
generator in relation to a comprehendable external description of 
the problem? One possibility is that the structures assembled by 
the generator be directly the deep-structures of sentences which 
would constitute a readable description of the problem. In this 
case all the knowledge required to translate these structures into 
readable descriptions can be localized in a 'sentence 
synthesizer'. Such a synthesizer would remove the burden of 
syntactic considerations from the problem-generator. The input 
requirements of this synthesizer would define a range of possible 
formats for the data-structures to be created by the generator. 
We have implemented such a sentence synthesizer (see Simmons and 
Slocum, 1972 for a detailed treatment of sentence synthesis). The 
problems in Figures G, 8, 12 and 13 were all generated by programs 
which first created well-defined deep-structures for their 
sentences. These were then rendered into readable form by the 
sentence synthesizer. A brief discussion of the nature of the 
sentence structures used is given here. Some information on 
programming considerations and on the sentence synthesizer may be 
found in Appendices A and B. 

The deep-structures are in the form of labelled directed 
graph-structures. The nodes are unnamed lists representing 
specific occurences (or 'tokens') of concepts symbolized by 
word-roots, numbers or symbols. The edges are associations 
implemented by using association lists and a hash-coding scheme. 
While tne list itself represents the token, its content, generally 
a word-root (referring to a specific word-sense, in the case of 
ambiguous words), represents the 'type'. There may be several 
lists with the same content to represent different tokens of the 
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same type. Structures are formed by creating labelled (and 
directed) associations between nodes to represent deep-case 
relations between the entities referred to in a sentence. Some of 
the functions performed by these relations are i I lustrated by the 
examples in Fig.7. the two appendices describe briefly the 
construction and interpretation of such sentence-structures. 

Uhile token-to-token associations create sentence structures, 
other associations involving types embody the sentence 
synthesizer's knowledge of the language. For example, such 
associations link words to their syntactic categories and to their 
exceptional plural forms when these exist. They also link 
syntactic categories with appropriate synthesis routines which 
recognize basic sub-structures of sentences and have the 
capabilities to generate appropriate, word-groups for them. Uhile 
token-to-token associations are dynamic in the sense of being 
created and destroyed as sentences are generated and printed out, 
the syntactic and semantic associations are permanent. However, 
the same association mechanism in the programming facility 
provides the three types of associations discussed so far: 
associations embodying information on the task area as described 
on page 4, the token-to-token links which are used to create 
sentence structures and the syntactic and semantic associations 
embodying the sentence synthesizer's knowledge of English. As may 
be expected, there is some overlap between what should belong to 
the first type and what should belong to the third type. 
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-.object. (NUMBER) -J 

(ARRANGE). 

— unique- (TRUE) 

-.number.. 0 

I— location. (ARRAY) 

.conjunction.. (SUCH THAT) 

adverbial phrase. 

-.subject- (ELEMENT), 

(COMMENSURATE)-J 

L conjunct ion. (WHEN) 

[ 

.unique (TRUE) 

.name— (A) 

t subscriptl— (1) 

subscr ipt2 — (40) 

r—unique — (TRUE) 

• name— (A) 

L_ subscript— (I) 

.object- (ELEMENT)-unique- (TRUE) 

L— name— (A) 

L— subscript— (J) 

adverbial phrase-. (COMMENSURATE)subject- (I) 

(J) r1 subject-

object— 
Fig*7 Deep Structure of a One-Sentence Problem 
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3.3 Control of the Generative Process 

In discussing programs having the control structure described 
in Section 3.1 it is useful to talk in terms of a search of the 
'design space* which is a special case of the 'action space', 
using the search representation for problem-solving (Newell and 
Simon, 1972). The series of design decisions that leads to the 
assembly of a suitable object is a special case of the 
' solution-action-sequence'. 

Complementing this description is the set representation for 
problem-generation which deals with the target space of all 
problems that can be produced by the generator. Starting at the 
highest level, the program selects progressively smaller 
subspaces, till it identifies a single point in it which 
represents the problem generated at this attempt. The design of 
the program has to start with the visualization of a rich enough 
space. The control structure has to ensure that all the 
visualized space is accessible by a suitable sequence of choices. 

An important question is concerned with the control of this 
access path. How can one influence a series of choices selecting 
one possible access path out of a large number all of which lead 
to meaningful problems? 

A powerful and yet simple control mechanism that provides a 
certain degree of direction in the generative process depends upon 
the use of a quasi-formal language to specify desired sets of 
problems. For example, problems of the type in Fig.8 are easily 
produced by appropriate interpretation of brief high-level 
descriptions, e.g.: 
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(CREATE A LIST) 
(SCAN A CIRCULAR LIST-STRUCTURE) 
(SUBSTITUTE COMPONENTS IN A SYMMETRIC LIST-STRUCTURE) 
(FIND PROPERTY OF GIVEN LIST-STRUCTURE) 
(TEST IF A DATA-STRUCTURE IS RECURSIVE) 
(DELETE COMPONENTS FROM A SYMMETRIC LIST-STRUCTURE) 

A sentence in such a language predetermines a specific set of 
choices to be made by the generator, leaving other choices to be 
made freely. Naturally. the structure of the sentence 
interpreting mechanism will determine the effectiveness of any 
such scheme. The interpreting mechanism has to analyse the 
sentences and determine which steps of the generative process are 
being forced, and in which direction. 

An appealing form for such an interpreter is a semantic 
parser which finds out the deep-case relationships between the 
entities referred to by a sentence, sharing syntactic and semantic 
information used by the sentence synthesizer. 
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CREATE A LIST CONTAINING THE FIRST 42 PRIME NUMBERS 
> 

COUNT OCCURRENCES OF SEQUENCES OF NEGATIVE NUMBERS IN THE CIRCULAR 
LIST-STRUCTURE GIVEN 
> 

SUBSTITUTE ALL OCCURRENCES OF THE COMPONENT-LIST C2 IN THE SYMMETRIC 
LIST-STRUCTURE GIVEN BY THE TERMINAL-NODE GIVEN 
> 

WRITE A PROGRAM TO CONCATENATE THE LISTS LIST-LI AND LIST-L2 
> 

SUBSTITUTE THE LAST-BUT-ONE OCCURRENCE OF THE TERMINAL-NODE T3 IN 
THE SYMMETRIC LIST-STRUCTURE L3 BY THE COMPONENT-LIST GIVEN 
> 

FIND THE LENGTH OF THE LIST-STRUCTURE GIVEN 
> 

FIND IF THE CIRCULAR LIST-STRUCTURE LI IS RECURSIVE 
> 

WRITE A PROGRAM TO CONCATENATE THE LISTS LIST-LI AND LIST-L2 
> 

DELETE ALL OCCURRENCES OF TERMINAL-NODES OF THE TYPE I IN THE 
SYMMETRIC LIST-STRUCTURE GIVEN 

Fig.8 A Sjet g_f Problems Generated bjj. Interpreting  
Brief Problem Soeci ficat ions 
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The high-level descriptions of problems indicate to objects 
and processes which are to be referred to in the problem to be 
generated. Reference is made to them directly or, sometimes, 
indirectly by mentioning sets of entities from which the generator 
may choose suitable members. Fig.9 shows some of the objects and 
processes referred to by the problems being discussed and their 
organization into progressively larger sets. The interpreter has 
to recognize case relationships to find the function each entity 
is to perform in the problem and use this information to control 
the generative process. 

The simple interpreter which produced the problems of Fig.8 
from high-level descriptions was implemented by defining a 'search 
routine' for each word category, the categorization being 
basically syntactic. Interpretation is performed by executing the 
search routine associated with each word, allowing it to find 
other words in the sentence which are related to it. This process 
results in the construction of parts of deep-structures of 
potential sentences to describe entities being referred to and 
their relationships to each other. The associative schemes 
referred to on page 24 are useful here too. After this parsing, 
the interpreter triggers off the problem generator giving it the 
references to the entities it must use in its operation. The 
generator processes any indirect references to obtain suitable 
entities which are to be used in problem generation and completes 
its task. 
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objects. 

_ I i st/1i st-structure 

.circular Iist/list-structure 

Lsymmetrical Iist/Iist-structure 

processes—J 

, create 

examine. r. 
find properties —.count them 

scan for specified 
contents—1— print them 

• — V * U U I I ̂  

— 1 — print 

I—modify. introduce 

L—delete 
.concatenate 

rsubsti tute 

sub-structures 

component objects. 

L- terminal nodes -c 
numbers 

symbol s 

Fig,9 Alternatives for the Choice of Components for the 
Problems in Fig.8 
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Uhile explicitly specified choices are easily forced upon the 
problem generator, there are several possibilities for handling 
the choices that are not forced. One such possibility is that 
information about the generation of sub-problems can be 
accumulated in the course of generating a series of problems. 
This information can then be used to ensure that sub-problems are 
well distributed in a generating run. For instance, from the 
knowledge that a particular series of tasks have been successful ly 
carried out by a student, a set of sub-problems that he has 
carried out can often be identified. It can then be ensured that 
later problems do not incorporate these sub-problems already 
familiar to the student, unless there are special reasons. There 
is also the possibility that hierarchic relationships between 
tasks can be exploited to produce sequences of problems of graded 
difficulty. Fig.10 shows recognizable sub-tasks which are 
incorporated in the problems of Fig.4, organized to exhibit 
hierarchic dependencies. The sub-tasks appearing in underlined 
script are complete in the sense of being usable as self-contained 
exercises. Appropriate organization of the generator should allow 
such exercises to be produced when needed, without use of any 
additional machinery. 
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SOLVING ARRAY PROCESSING PROBLEMS 
OF THE TYPE ILLUSTRATED IN FIG.4 

REARRANGING AN ARRAY BY 
MOVING SEQUENCES IN II 
WITHOUT LOSING ITS CONTENTS 

ACCUMULATING SETS OF 
NUMBERS THAT HAVE 
BEEN SELECTED FOR 
LATER USE 

SCANNING AN ARRAY. STORING REFERENCES 
SELECTING SPECIFIED TO SEQUENCES IN AN 
ELEMENTS ARRAY FOR LATER USE 

1 i 
ACCESSING ELEMENTS OF 
THE ARRAY AND TESTING 
THEM BY COMPUTING 
NUMERICAL PREDICATES 

SCANNING AN ARRAY  
SEARCHING FOR  
SEQUENCES 0£ 
SPECIFIED  
STRUCTURE 

REARRANGING CONTENTS 
0£ AN ARRAY BY 
EXCHANGE AND  
SUBSTITUTION 

CODING INPUT FROM  
DISC-FILE 

CODING OUTPUT TO 
DISC-FILE 

FILLING UE ARRAY  
WITH RANDOM NUMBERS 

Fia. 19 Sub-Tasks Encountered in in§. Arrau Processing Problems g_f Fiq t4 
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4,. GENERALIZATION OF A PROTOTYPICAL PROBLEM 

Is it possible to start from a well-known problem and write a 
generator for producing useful generalizations of the original 
problem? This section describes experiments with this technique of 
generalization, applying it to a problem first discussed by 
Hoare(1964) and then by Djikstra (1971). The problem is: 

Rearrange the elements of the array Atl:N3 such that 
for a given value of f (l<f<N) 

A[k]<Atf] if l<k<f and 
A(f]<Afk] if f<k<N . 

The required arrangement is said to 'split* the array around f. 

As a programming exercise this task has manifold appeal. It 
confronts the student with the problem of planning manipulations 
which interact heavily. If we eliminate the brute force solution 
of sorting the array, perhaps by adding an economy clause to the 
problem statement, the solution is no longer obvious. Djikstra 
describes an elegant solution based on recursion. 

lie look at it from another point of view, attempting to 
generalize it into a class of array-ordering problems which test 
the student's understanding of the concepts relevant to sorting. 
We do not specifically concern ourselves with the existence or 
non-existence of an elegant recursive solution to the problems 
generated. 

Fig.11 lists some of the skills needed to program basic 
sorting, in an order intended to indicate the dependence of some 
of these skills on others, the more basic ones being generally 
lower in the Iist. 
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REARRANGING ARRAY AS SPECIFIED 

MANIPULATING ELEMENTS OF AN ARRAY LOCALLY 
(SUBSTITUTIONS AND INTERCHANGES) 

PERFORMING ARITHMETIC ON ELEMENTS OF ARRAY 
(COMPUTING FUNCTIONS AND PREDICATES 
DEFINED OVER ELEMENTS OF THE ARRAY) 

SCANNING ARRAY FOR SPECIFIED ELEMENTS 

ACCESSING SPECIFIED ELEMENTS OF ARRAY 
BY GENERATING DESIRED SEQUENCE OF SUBSCRIPTS 

Fig.11 Elements of the Sortino Exercise 

In terms of these operations, sorting turns out to be a 
rearrangement of a given array Atl:N3 such that AIjI > Atil if 

A simple generalization of the Hoare problem which still has 
the listed concepts as essentials is: 

Rearrange elements of the array AU:N] such that 
if Rl(<i>,<j>) then R2(A<i>,A<j>) 

where Rl and R2 stand for relations and <i> and <j> are 
generator variables which are to be substituted by a 
variable such as i,j,k or, when suitable, by a numerical 
constant. 
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A related set of problems is of the form: 

Rearrange elements of array A[1:NJ such that 
if PI (<i>) then P2(A[<i>]) 

where PI and P2 are predicates. 

Fig. 12 shows some of the problems generated by a program 
based on the two generalizations indicated above. Comparison of 
these problems with those presented in Section 3 shows that these 
problems have an element of programming difficulty not generally 
present in the earlier problems. The programmer now has to tackle 
the question of space needed by the contents of the array. Moving 
the content of a cell requires that space be found for it 
elsewhere. Creating space could involve disturbing elements which 
have been properly placed already and considerable interaction 
between desirable changes is caused thereby. This is a 
significant aspect of the original problem that is preserved. 
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ARRANGE THE NUMBERS IN THE ARRAY A[1,48] SUCH-THAT THE ELEMENT IN 
CELL All] IS A SQUARE IF I IS A CUBE. 
> 
ARRANGE THE NUMBERS IN THE ARRAY A 11,251 SUCH-THAT THE ELEMENT A [I] 
IS COMMENSURATE WITH THE ELEMENT A[11] WHEN I IS LESS THAN 11. 
> 
ARRANGE THE NUMBERS IN THE ARRAY A [1,38] SUCH-THAT THE ELEMENT A til 
IS LESS THAN THE ELEMENT A[13] WHEN I IS DIVISIBLE BY 13. 
> 
ARRANGE THE NUMBERS IN THE ARRAY A[1,281 SUCH-THAT THE ELEMENT IN 

ANY AN EVEN-NUMBERED CELL IS A SQUARE. 
> 
ARRANGE THE NUMBERS IN THE ARRAY A[1,381 SUCH-THAT THE ELEMENT All] 
IS LESS THAN THE ELEMENT A[71 WHEN I IS COMMENSURATE WITH 7. 
> 
ARRANGE THE NUMBERS IN THE ARRAY A[1,481 SUCH-THAT THE ELEMENT A til 
IS COMMENSURATE WITH THE ELEMENT At J] WHEN I IS COMMENSURATE WITH J. 

Fia.12 Arrau Ordering Problems 
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A sequence of several problems derived from the same 
prototype would be unsuitable for presentation to a student, if 
they show no more variation than the set of problems in Fig. 12. A 
library of prototypes could provide some coverage and variety. On 
the other hand, focus on selected concepts would be useful, even 
at the expense of variety, when producing problems for certain 
purposes: for introducing important concepts, for testing, for 
remediation or for review. If the student has a convenient 
addressing facility, he would often find it useful to ask for a 
few similar problems involving a specific set o*f concepts to 
confirm his own understanding of these, before he moves on to 
other concepts. 
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5i. REASONING ABOUT ACTIONS 

The basic characteristic of a problem situation is that the 
scheme of actions leading to a solution is not obvious, while the 
elements out of which such a scheme could be constructed are more 
or less available. It is generally important in problem 
generation to estimate and control the complexity of the 
action-schemes which might lead to solutions, ensuring that the 
problem presents a desired level of difficulty to the student. To 
some extent, the generator may also predetermine the content and 
structure of fruitful action-schemes. 

One device for the estimation of complexity of a problem 
involves the visualization of possible problem spaces that might 
be searched for a solution. In the case of programming exercises, 
the cost of searching the most easily intuited space of solutions 
can often be estimated easily by the generator. Ensuring this 
cost is too high forces a step of refinement on the student, 
making him look for clues for augmenting the problem-space or, in 
some cases, compelling him to restructure the program, for example 
by providing for storage of computed values to reduce 
computational cost or by substituting iteration for recursion. 
When dealing with we I I-structured problems, a lower bound for the 
complexity of the program needed to solve a given problem may be 
estimated by identifying those features of the program which have 
been rendered essential. A generator could use such estimates to 
arrive at problems presenting desired levels of difficulty. 

A second device that could be employed is the programming of 
limited deduction about the problem situation. The problems 
appearing in underlined script in Fig.13 provide good examples of 
situations where the scheme of actions needed to perform the given 
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task is of controlled complexity (1). Each of these problems 
involves an action or a set of actions that is to be performed in 
order to achieve a desired change or to achieve a desired state in 
the given situation. The task is meaningful only if the action 
specified is relevant to the state change desired and if the 
performance of this action presents a desired level of difficulty. 
In order to take these requirements into account the problem 
generator has to have information relating possible actions to 
their effects. It also needs estimates of difficulty in carrying 
out possible actions (i.e. 'applying operators*, to use the 
wording in NeweJ I and Simon, 1972). The use of a table of 
connections (ibid) is a possibi I i ty. Deducing the information by 
following a suitable line of reasoning may be necessary in those 
cases where a table of connections becomes unwieldy. 

The problems under discussion deal only with a few possible 
types of simple manipulations that can be performed on graphs, 
i.e. addition or deletion of vertices and edges and the 
repositioning of edges. Each type of manipulation is generally 
capable of multiple application to a graph. 

(1) The other problems shown in 
here. They were produced by 
discussed in Section 3 and share 
problems being discussed in this 

this figure are not discussed 
generators having the structure 
association networks with the 
sect ion. 



38 

> DELETE LESS THAN 3 EDGES FROM THE GRAPH G TO INCREASE ITS RADIUS . 
10 3^ 
> ASSIGN NUMBERS IN THE RANGE FROM 1 TO 18 TO THE EDGES OF THE GIVEN 

GRAPH SUCH THAT THE NUMBER ASSIGNED TO AN EDGE IS COMMENSURATE WITH 
THE TOTAL NUMBER OF THE EDGES ADJACENT TO IT. ENSURE THAT THE SUM OF 
THE ASSIGNED NUMBERS IS A MAXIMUM. 
> FIND BRIDGES WITH A LENGTH OF 4 IN THE GIVEN GRAPH. 
> ADD LESS THAN 5 EDGES J_0 THE GRAPH G SUCH THAT H IS NO. LONGER A 

PLANAR GRAPH. 
> FIND IF THERE ARE CYCLES IN THE GRAPH G. 
> ADD LESS THAN 3 NEW VERTICES WITH NECESSARY INCIDENT EDGES 10 IH£ 

GRAPH G SUCH THAT THE VERTICES V7 V2 V18 VB A M VI ARE, NO LONGER  
THE CENTRAL VERTICES. 
> FIND CYCLES IN THE GRAPH G. 
> ASSIGN A COLOR NAME TO EACH EDGE SUCH THAT THE COLOR OF ANY EDGE 
IS DIFFERENT FROM THE COLOR OF ALL ITS ADJACENT EDGES. 
> ASSIGN NUMBERS, NOT NECESSARILY UNIQUE, IN THE RANGE FROM 1 TO 15 

TO THE EDGES OF THE GRAPH G SUCH THAT THE NUMBER ASSIGNED TO AN EDGE 
IS MULTIPLE THE NUMBER OF THE CYCLES IT IS A MEMBER OF. 
> GENERATE BRIDGES WITH A LENGTH OF 4 FROM THE GRAPH G. 
> FIND IF THE GIVEN GRAPH IS A BLOCK. 
> REPOSITION 3 OR MORE EDGES IN. J_HE GRAPH £ SJJCH IHAI THE. ECCENTRICITY 

QE V9 REMAINS UNCHANGED. 

Fia.13 Graph Manipulation Problems 
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Some of the problems require that the graph be modified to attain 
a given property by performing only a limited number of a 
specified type of manipulation. Other problems require that a 
given number of manipulations of a specified type be performed 
without altering the graph in a specified way. Since these are 
programming problems, the real task is to write a program which 
performs the required manipulations on any graph given as its 
input. 

The problems are interesting because performance of the task 
under the given constraints becomes a critical matter, requiring 
considerable analysis of the problem situation and careful 
planning of the solution. A special difficulty is that the 
solution should be applicable to an indefinitely large set of 
graphs any of which may be given as input to the program that is 
to be written. These features, and the presence of a body of 
theory on graphs, make these problems good exercises in 
non-numerical programming. 

The generator which produced the examples in Fig.13 performs 
limited deduction to arrive at the relation between the five 
allowed manipulations on graphs to a dozen or so state changes 
that could occur in the graphs as a result. In the case of the 
problems in Fig. 13, the deduction is based on the heuristic use of 
knowledge about gross changes that occur in the graph as a result 
of simple manipulations. Two gross indicators are the change in 
the number of paths between an arbitrary pair of points as a 
result of a manipulation and the change in distance between an 
arbitrary pair of points. Table 1 relates manipulations to their 
effects in terms of these gross indicators. Table 2 relates these 
indicators to several state changes that can be produced in 
graphs. In these tables, an entry of a * 1* shows a tendency for 
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the cause to increase the quantity it is related to; and an entry 
of a shows the opposite tendency; and an entry of '0* 
indicates that a predictable link is not present. 

Operation Change in Change in 
Path Length Number si Pgths 

Delete Vertices with edges +1 -1 
Delete Edges +1 -1 

-1 +1 
0 +1 
0 0 

Add Edges 
Add Vertices and edges 
Reposi tion Edges 

Table 1 Operators and Their Effect on graph Parameters 
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State 
Descr iotors 

Increase in 
Path Length 

Increase in Nwber 
01 Path? 

Rad i us +1 
Diameter +1 
Eccentricity +1 
Connectivity 0 
Number of 

Components 0 
PIanar i ty 0 
PossibiIi ty of 

HamiI tonian Paths 0 
Identity of 

Center 0 
Distance Between 
Two Nodes +1 
PossibiIi ty of 

Eulerian Paths 0 

-1 
-1 
-1 
+1 

-1 
-1 

+1 

8 

-1 

0 

Table 2 State Changes and. Associated Variations i n 

Graph Parameters 
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To generate the examples referred to, .the generator chooses a 
permitted manipulation and identifies a relevant state change by 
using the tables. Further, it computes from these tables the 
direction of state change and introduces a suitable constraint 
which ensures that the task being constructed is not too easy. 

• Extensions can easily be made to the generator employing the 
line of reasoning described above. Consider, for instance, the 
problems which require that a particular state change be realized 
without altering a specified feature of the given graph. A simple 
computation involving Table 2 enables the generator to produce 
pairs of state changes requiring opposite directions of change in 
the two parameters involved. A reference to Table 1 identifies a 
relevant manipulation on the graph. These two steps enable the 
generator to create a problem by requiring that the specified 
manipulation be repeatedly performed to obtain a given state 
change ensuring that the other state change does not occur. 
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k_ CPVER gTORI^S 

Large classes of problems can be viewed as having an abstract 
structure. In these problems, the specific objects functions or 
relations that appear are not of much significance, and are 
generally substituted by formal variables early in the 
problem-solving process. The same abstract-structure obtained 
from many problems which differ only trivially describe the 
essence of the problem situation. School text-books on 
mathematical subjects employ the well-known technique of taking 
interesting problem-structures and fleshing them out with 
sufficient surface detail to generate exercises. It is 
conceivable that problems generated by this technique, apart from 
providing variety , also focus attention on the skills necessary 
to. abstract the basic structure of given problems (1). The 
process of creating a coherent surface structure is worth a brief 
discussion, even though we have not yet implemented a program to 
i Ilustrate i t. 

At the lowest level of sophistication would be schemes which 
operate with a fixed number of abstract problem-structures and a 
fixed number of surface structures. Using some indexing scheme, a 
compatible pair of structures would be selected and the formal 
varibles in the abstract structure would be replaced by the 
corresponding terms of the surface structure. At the other end of 
the spectrum would be an understanding system which has strategies 
for finding or creating real-world situations corresponding to any 
given abstract problem-structure. 

(1) Hayes and Simon (1973) are studying subjects' behavior when 
presented with differently structured external cover stories for 
the same abstract problem structure (tower of hanoi). 
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Possible compromises between what is desirable emu Mnat is 
implementable include systems which exploit strong links between a 
large body of theory of a class of structures and a related area 
of Veal-world* problems with adequate diversity. Consider, for 
instance, problems involving transport and communication networks. 
It is obvious that many graph manipulation problems can be 
paraphrased as problems in this area. Implementing a system which 
can perform such a paraphrasing inteIMgent Iy involves several 
problems. Such a system could use a set of associations linking 
entities in the abstract theory with corresponding entities in the 
application area. A partial mapping may be possible, and it will 
indicate, to some extent, those aspects of the theory that are 
relevant to the application area. For example, the concept of a 
weighted graph is specially relevant to the application area being 
considered here because it provides for the possibility of taking 
into account physical lengths of the edges. 

Unless such information on relevance is used to shape the 
abstract problem being created, only a very small fraction of 
generated structures can be paraphrased as natural-looking 
application area problems. However, the complexity of detail that 
has to be attended to appears formidable. This is best 
illustrated with examples. In the area of transport and 
communication networks, some of the information that should be 
available to the generator, directly or indirectly, is: 

Road networks which are non-planar have to be 
constructed with the use of underpasses and 
overpasses which are expensive in relation to the 
cost of roads. This is not the case with 
air-routes and telecommunication circuits. 

The presence of cut-vert ices and sma I I cut-sets is 
related to the problems of reliability of the 
network. 
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Paths passing through every edge (Eulerian paths) 
are relevant to bus routes (edges being streets), 
while they are not of significance in the case of 
telephone networks. 

It is possible to think of railroad stations as 
fuelling or non-fuelling stations (say for 
generating problems involving dominant sets of 
vertices in a graph). This is generally not true 
in the case of airports, all of which can provide 
f ue I. 

These examples illustrate the wealth of knowledge that a 
human designer brings to bear on the task of creating cover 
stories. Programming a generator to design cover stories 
therefore has to face the problems of representing the basis for 
such knowledge and of utilizing it. 
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Z*. CONCLUSIONS 

Uhile simple generative schemes do, in some cases, produce 
surprisingly coherent questions, it is clear that the creation of 
a good problem is in general a design task which involves 
considerable knowledge of the task area. Detailed representations 
of relevant knowledge of the task area are as important in problem 
generators as they are in the case of any program which performs a 
cognitively significant task. These representations structure the 
task area in terms of objects and processes, assign attributes to 
these entities and provide static links as well as computational 
routines to implement functional and relational mappings. 

Given such a representation of knowledge, the questions that 
arise about a problem generator concern its structure and the 
strategies that it incorporates. Are generators arbitrary 
programs which have to be conceived ad-hoc, or is there a common 
set of principles they can be based upon? 

He have developed the view that generators perform a design 
task, assembling a complex object - the problem - while operating 
within a variety of constraints. A top-down generative 
control-structure appears attractive. The second suggestion was 
that this generative mechanism be freed from the burden of 
syntactic considerations it carries in the case of grammar-1 ike 
mechanisms. The data-structures it operates with could be 
deep-structures of sentences, providing a rich representational 
scheme easily extended by borrowing from natural language. A 
sentence synthesizer which creates readable descriptions of 
generated problems was described. 
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Problem generators for specific areas have to be developed by 
inventing appropriate representations for knowledge about problems 
in that area. Some sets of problems have a prototype and a 
process of what might be called semantic generalization results in 
a set of problems which are similar to the original and yet 
provide significant diversity. Some sets of problems can be 
created by performing limited deduction about operators and state 
changes they cause in the relevant problem space. These 
strategies have been discussed and illustrated with examples 
produced by programs based on them. 

Another strategy, which is based on the design of cover 
stories for good abstract problems has been introduced. Problems 
of controlling the generative process by using explicit 
specifications and the problems of using information available 
regarding the student's familiarity with a set of concepts have 
also been briefly dealt with. 

Acknowledgement: One of the authors (S.R.) wishes to acknowledge 
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support for this research, he also wishes to thank Dr. Mathai 
Joseph for helpful comments and suggestions on problem generation 
in the early stages of the work reported. 
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APPENDIX Ai PROGRAMMING DETAILS 

1. Languages Used 

All the generators mentioned in the preceding pages were 
programmed in the list processing implementation language Lft(F) 
(Newell, et al, Jan, 1971). The main implication of the use of 
L*(F) is that one adopts a specific approach to system-building 
(Newell, et al, Sept. 71). This approach leads^ to the 
construction of large systems in a layered fashion, adding 
facility after facility (e.g.,: an association mechanism based on 
the use of hash-coding techniques for accessing association lists; 
the semantic parser discussed in Section 3.3) in a number of 
steps, later layers using the tools provided by the earlier ones 
and building on them. The other implication of the use of (Lft(F-) 
is that the total access provided to the language processor's 
machinery encourages the user to adopt this machinnery when needed 
rather than building a language processor on his own. 

2. Pr imi t ive operations 

The basic operations of random choice, weighted choice, value 
assignment, creation of associations and accessing of associations 
are specified by the use of the operators t , # , « - , < « , ? and S 

, the last one being the statement terminator used in conjunction 
with the operators «- and <= . These six operators as well as the 
comma are assigned necessary 'character actions' and 'syntax 
actions' (Newell, et al, Jan. 1971) as per the conventions of 
L*(F), ensuring the proper parsing and interpretation of 
expressions of the following form embedded within regular L>v(F) 
programs. 
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[AI A2 A3 A4] 

[AI A2 A3 A4] t 

[AI 3 A2 5 A3] t 

[Rl R2 R33 t X 

A <- B S S 

ATT. OBJ <« B • 

ATT. OBJ ? 

ATT. — ? 

Comment fields follow the 
semi-co Ions. 
Create the specified data-list 
(of type list on Lft(F)). 
Choose an item randomly from 
the given list. 
Choose by a weighted random 
process. Heights are prefixed 
with the number sign. 
Choose one of the routines in 
the list and execute it, obtaining 
a value. Expressions of the above 
forms can be used in the place of 
the variable B in the following 
statements. 
Replace the contents of list A 
by the contents of list B. used 
mainly to assign values to variables. 
Associates a value, B, with the 
given attribute of the given object. 
Obtains the value of the given 
attribute of the given object. 
Obtains the value of the given 
attribute of the object on top 
of the Lrt(F) working stack. 

The brief description above does not cover all primitives 
used in the system. However, a brief mention should be made of 
variants of the choice operator t. One has a memory cell for its 
most recent choice and avoids repeating it. Another variant 
refers to information associatively linked to its data-list by 
other parts of the program before making a selection. This latter 
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variant is useful in programming generators which are 
controllable. 

3. Creat ion of Data-Structures 

A structure synthesizing routine .C is used extensively by 
the problem generators. The execution of a statement of the form 

([TYP, ASUB1 VSUB1, ASUB2, VSUB2, ASUB3 VSUB33 .C) 
creates a list representing a token, or instance, of an entity of 
the type TYP. Associat i vely linked to this list are the 
attributes ASUB1, ASUB2 and ASUB3 which are assigned to values 
VSUB1, VSUB2 and VSUB3 respectively. If any attribute value pair 
ASUBI VSUBI is followed by the separator .e instead of the comma, 
VSUBI is executed (it is presumed to be a routine) and the value 
obtained is assigned to the attribute ASUBI. SIMILARLY IF TYP is 
followed by .E, the type is obtained by executing the routine TYP, 
the type is obtained by executing the routine TYP. Examples of 
the usage follow: 

([LIST, LINK-TYPE SYMMETRICAL, UNIQUE TRUEI .C) 
creates a structure to represent 'THE SYMMETRICAL LIST*. 

([ARRAY, DIMENSION 2, NUMBER 3] .C) 
creates a structure to represent 'THREE TUO DIMENSIONAL ARRAYS'. 

There are special separators which are used in the place of 
the comma following the type to specify in a compact manner the 
values of the attributes UNIQUE and NUMBER. These separators are 
not used in the illustrations in this Appendix in order to keep 
the illustrations simple. 

The main reason for the utility of the routine .C in the 
programming of top-down generators is that it can be used 
resursively. A specification list on which .C operates may 
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indicate that the value of ASUBI should be computed by the routine 
VSUBI. Frequently. VSUBI itself is defined in terms of a 
construction to be performed by .C, creating a sub-structure which 
is linked to the main structure by the ASUBI ~ VSUBI bond. The 
following example illustrates such usage. The routine TP 
specifies the construction of members of a set of simple 
sentence-structures. 

TP: ([TP1 .E OBJ, TP2 .E LOCATIVE TP3 .El .C) 
TP1: ([FIND DELETE PRINT] t 
TP2: ([NUMBER. QUANT ALL, UNIQUE TRUE, NUMBER 0, 

ADJC TP21 .E] .C) 
TP21:([0DD EVEN POSITIVE NEGATIVE PRIME t) 

Assignment of '0' to NUMBER is interpreted to mean that 
NUMBER>1. The routine TP3, not defined here, accesses a fragment 
of sentence-structure assumed to have been created before the 
execution of the statements in the example. The accessed fragment 
represents an object such as 'THE LIST L l \ 'THE GIVEN LIST', 'THE 
ARRAY L(20)' or THE ARRAY L(30, 30)'. TP3 synthesizes a 
sentence-fragment to refer to the object or its sub-objects. The 
new fragments are translatable as 'THE FIRST ROW OF THE ARRAY', 
'THE ARRAY L \ 'ALL THE SUBLISTS OF L' or 'THE LAST COLUMN OF L'. 

The sentence synthesizer, briefly described in Appendix B, 
synthesizes readable sentences from the sentence-structures of the 
kind produced by the routine TP, to generate sentences such as the 
following: 

FIND ALL THE PRIME NUMBERS IN THE LAST COLUMN OF THE ARRAY L. 
DELETE ALL THE EVEN NUMBERS IN THE FIRST SUBLIST OF L. 
PRINT ALL THE POSITIVE NUMBERS IN THE ARRAY L. 
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APPENDIX Bi ItJE SENTENCE SYNTHESIZER 

The sentence synthesizer deals with associative structures 
representing the content of potentiaI sentences or parts thereof. 
Fig.7 showed an example of such a structure. By convention, the 
sentence structure as given to the synthesizer starts with the 
list-structure representing an occurrence of a predicate term. 
Linked to this list-structure by labelled, directed associations 
are sub-structures representing entities that stand in various 
deep-case relations to the predicate. Each sub-structure 
similarly consists of a list-structure representing the occurrence 
of a word-sense with associations leading off to related entities. 
It is also the convention to bind each occurrence of a word-sense 
with relevant markers such as those for tense, number and gender 
using attribute-value associations. 

The implementation of the synthesizer is based on the 
principle that for each category of semantic entity in the 
sentence structure there should be a synthesis routine which has 
operational knowledge of that category of entity. At the highest 
level, the synthesizer finds out the category of entity it has to 
deal with and triggers off the associated synthesis routine. 
Recursive calls by one synthesis routine to others are necessary 
because parts of the sentence structure are composed of smaller 
sub-structures. 

The routine dealing with predicates looks for associations to 
sub-structures of the following types: subject; voice marker; 
tense marker; object, in case of transitive verbs; indirect 
objects; locatives; adverbial of purpose; and other adverbial 
phrases. The routine dealing with objects attends to any need for 
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jterminers, quantifiers, adjectives, number markers, and several 
jpes of adjectives and adjectival phrases. 
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