
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ON THE GENERATION OF PROBLEMS

S.Ramarmv and A.Newel I
November, 1973

Department of Computer Science
Carnegie-HelIon University

Pittsburgh, Pennsylvania 15213

This work was supported by the Advanced Research Projects Agency of the
Office of the Secretary of Defense (F44620-73-C-0074) and is monitored
by the Air Force Office of Scientific Research. This document has been
approved for public release and sale; i ts. distribution is unlimited.

rtOn leave of absence from:
Computer Group,
Tata Institute of Fundamental Research,
Homi Bhabha Road, Bombay 400 005, India.

2

ABSTRACT

The design of programs that generate questions and exercises
for students is discussed. The task of direct interest is the
generation of programming exercises. This is dealt with in some
detail and sets of such exercises produced by programmed
generators are presented.

Several design strategies are investigated, starting with the
use of grammar-like generative mechanisms. The design of
exercises is then viewed as an assembly task, putting together
compatible elements to create an acceptable problem-structure,
accessing knowledge of the task area encoded as a semantic net. A
sentence synthesizer which generates coherent English sentences to
describe the assembled problems is then described. Attention is
also paid to the mechanisms necessary for controlling such an
assembly process. Directing generators towards problems involving
specified concepts and making use of information available about
the student's familiarity with a hierarchy of concepts are two
issues discussed in this area.

Other strategies discussed are: generalizing 'good* problems
to produce useful variants; use of reasoning about actions in a
task area to recognize good problem situations; and the design of
surface detail to create problems having a given abstract
structure.

3

LL. INTRODUCTION

The notion of a generative CAI system has attracted some
attention(l). An important issue in this area is the structure of
generators for problems and exercises, and it is this issue that
we concern ourselves with in the following pages. Design of
generators for interesting classes of problems appears within
reach and is, of course, advantageous. Among the frequently cited
advantages of generation, as against selection from a long list,
are the controllability and adaptability that generation provides.
These features provide for the creation of exercises having
specified content and posing a specified level of difficulty to
suit the needs of an individual student at a specific stage in
learning. And, of course, generative schemes provide for
potentially larger sets of examples to choose from, compared to
any f ini te Ii st.

Developing a generative scheme forces analysis of problems
and the task area to a level of detail that is usually avoided in
making a collection of exercises. In fact, such analysis might
possibly lead to the the definition of knowledge domains
operationally. For instance, in classifying exercises on the
basis of complexity, one could use a response measure such as
^average time taken for solving', but a generative scheme
motivates attempts to understand the difficulty posed by an
exercise in terms of its structure.

Another aspect of generative schemes is the level at which
information is available to the system that handles the exercises.
While a collection of exercises could be handled by a more or less
sophisticated page-turner, generative schemes require a fine-grain

(1) Uhr, 1969; Uttal et al, 1978; Uexler, 1970 and Koffman, 1972.

f

4

representation of some knowledge of the task area in order to
work. Ue use a semantic net in which is encoded a variety of
information on the task area. In the case of programming
exercises, the semantic net contains information on types of
manipulable objects such as numbers, symbols, sets and sequences,
their attributes, sets of examples for each type of object or
generative procedures for creating examples, data structures in
terms of which each type of object may be realized, manipulations
that may be performed on each type of object, etc.. Dealing with
information in such detail is essential if we are ever to develop
systems that understand the task area - to generate answers to
exercises or to generate code to recognize a variety of acceptable
answers along with the generation of the exercise, to answer
questions about a specific exercise or about the task area, and to
attempt to carry out generated exercises to find out their
character i st ics.

The recognition that generative techniques can make good use
of a fine-grain representation of semantic information relevant to
a task area hardly concludes the analysis of problem generation.
In fact, this recognition is more appropriate as the first step
than as the conclusion in any treatment of the subject.
Development of a problem generator in a given area should start
with the identification and analysis of viable sets of problems in
that area, and proceed to specify suitable structures for programs
that will generate these sets. Specific strategies for accessing
representations of knowledge in the process of problem generation
should be spelt out.

Undoubtedly, an understanding system with a well integrated
store of knowledge of a subject area is the proper ultimate form
for a problem generator. Such a system would be able to answer

9

5

questions about the area, design good problems in the area,
discuss them and even solve them. The work reported here does not
yet aim at such a system. The approach taken here is exploratory
and quite empirical. The presentation is in the form of a
discussion of a sequence of simple strategies for using different
aspects of information about a subject area for generating
non-trivial problems. Most of the strategies discussed are
illustrated with examples of problems generated by programs based
on them. All the examples presented are in the area of
programming exercises, though the discussions are hopefully
relevant to other kinds of problems as well.

6

2^ ENUMERATIVE SCHEMES PATTERNED AFTER CONTEXT-FREE GRAMMARS

The simplest generative scheme is an extension of the
slot-and-fiIler scheme, as it is called in linguistics. In this
scheme, one has a set of problem frames incorporating variables.
There is a specification of the admissible values that these
variables may assume, either in the form of numerical limits or in
the form of a set of admissible values for each variable.

There are two directions of development that enrich this
scheme. Uhrtl] reports one of them, which is to implement
computationally defined relations between the variables. By
choosing certain independent variables randomly within the
permitted ranges or from sets of admissible values, the others
cogld be computed from them, thus ensur ing compat ibi I i ty. The
original scheme, of course, does not provide mechanisms for
meeting such compatibiIity requirements and forces the variables
to be chosen independently of each other.

The second direction of development involves the use of a
grammar-like scheme. Unlike slot-and-fiIler schemes, the
grammar-like schemes are not limited to finite-state languages.
They have been used in the context of problem generation for
synthesizing sentences having phrase structure. Koffman (1972)
has reported the use of probabilistic grammars for the generation
of word problems. Simple programs that use grammar-1 ike schemes
to generate questions in artificial intelligence (developed by
Newell and Robertson) and in cognitive psychology (developed by
Waterman) have been in use at the Carnegie-Mellon University since
1971.

7

Fig.l shows the enumerative scheme underlying the program
which deals with artificial intelligence. The questions produced
by this program are always grammatically and semantically correct,
and most of the questions are meaningful. Not shown in the scheme
is a probability assignment convention that allows certain choices
to be more or less frequent than other choices in the generative
procedure, increasing the percentage of desirable questions in the
output. Figures 2 and 3 show some of the questions produced by
the artificial intelligence program and the cognitive psychology
prpgram respectively.

Enumerative schemes such as this derive their power from a
basic device - classification of a set of phrases into different
subsets of syntactically and semantical ly similar items. Question
frames are written incorporating variables which are substitutabIe
by members of appropriate subsets of phrases. Further, the
phrases are themselves generatable by this process by expansions
of embedded variables into suitable sub-phrases, the variables in
figure 1 are indicated by the terminal angle brackets '<* and *>'.
sets of phrases that are substitutabIe for the variables are
defined in the lower half of the figure.

8

<QUESTIONS>: (("WHAT IS " <ENTITY> "?")
("WHAT METHOD DOES " <PROGRAM> " USE?")
("WHAT TASKS DOES " <PROGRAM> " WORK ON?")
("HAS " <TASK> " BEEN ACCOMPLISHED BY A PROGRAM?")
("WHERE IS AI RESEARCH ON " <TASK> " GOING ON?")
("WHAT IS THE CURRENT ACHIEVEMENT IN " <TASK> "?")
("WHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO " <AREA> "?")
("WHAT HAVE BEEN THE CONTRIBUTIONS OF " <AREA> " TO AI?")
("NAME A TASK THAT " <PROGRAM> " DOES NOT DO, BUT MIGHT DO WITH SOME
MODIFICATION.")
("WHY IS " <ENTITY> " SO CALLED?")
("WHAT PROGRAMMING LANGUAGE WAS USED FOR " <PROGRAM> "?")
("HAS " <LANGUAGE> " BEEN USED TO ACCOMPLISH " <TASK> "?"))

<ENTITY>: ((<PROGRAM>) (<HEURISTIC>) (<PHENOMENA>) (<CONCEPT>) ...)
<CONCEPT>s (("A METHOD") ("A PROBLEM") ("A HEURISTIC") ...)
<PROGRAM>: ((<RECOGNITION-SYSTEMS>) (<GAME-PLAYERS>) (<THEOREM-PROVERS>)

(<QUEST I ON-ANSUERERS>) (<GENERAL-PROBLEM-SOLVERS>) ...
(UNDERSTANDING-SYSTEMS>) (<DESIGN-SYSTEMS>)

(<CONSTRAINT-SATISFIERS>))
<CHESS-PROGRAMS>: (("NEWELL-SHAW-SIMON CHESS PROGRAM")

("BERNSTEIN'S CHESS PROGRAM") ("CMU TECHNOLOGY CHESS PROGRAM") ...)
<TASK>: ((<GAMES>) (<MANAGEMENT-SCIENCE>) (<CONCEPT-FORMATION>) ...)
<PROGRAM-FEATURE>: ((<HEURISTIC>) ("ALPHA-BETA") ("RECURSION") ...)

Fia.l Part of an Enumerative Scheme Patterned after
Context Free Grammars

9

Q: WHAT AI PROGRAMS HAVE BEEN WRITTEN IN MLISP?
Q: WHY IS FEATURE EXTRACTION SO CALLED?
Q: HAS THERE BEEN ANY CONTRIBUTION OF AUTOMATA THEORY TO AI?
Q: WHAT WAS THE FIRST AI EFFORT ON CHESS?
Q: HAS SAIL BEEN USED TO ACCOMPLISH CHECKERS?
Q: WHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO PHYSICS?
Q: HAS APL BEEN USED TO ACCOMPLISH ASSEMBLY LINE BALANCING?
Q: WHAT IS THE CURRENT ACHIEVEMENT IN CHESS?
Q: WHAT IS THE CURRENT ACHIEVEMENT IN PLANT LOCATION SELECTION?
Q: WHAT HAVE BEEN THE CONTRIBUTIONS OF INDUSTRIAL ADMINISTRATION TO AI?
Q: WHAT IS A HEURISTIC?
Q: HAS SAIL BEEN USED TO ACCOMPLISH RELATIONAL CONCEPT FORMATION?
Q: HAS ASSEMBLY LINE BALANCING BEEN ACCOMPLISHED BY A PROGRAM?
Q: HAS COBOL BEEN USED TO ACCOMPLISH CHESS?
Q: HAS THERE BEEN ANY CONTRIBUTION OF PHYSICS TO AI?
Q: WHAT IS HORIZON PHENOMENA?
Q: WHAT PROGRAMMING LANGUAGE WAS USED FOR REF-ARF?
Q: WHAT WAS THE FIRST AI EFFORT ON RELATIONAL CONCEPT FORMATION?
Q: WHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO YOUR EDUCATION?
Q: WHAT METHOD DOES GPS USE?
Q: WHAT TASKS DOES FREEMAN'S OSO WORK ON?
Q: NAME SOME HEURISTICS USED IN SRI ROBOT.
Q: WHO DEVELOPED EXPONENTIAL GROWTH?

Fiq,2 Output g_£ ihe. Question Generator fox. Artificial Intel I iqence

18

WHAT CONTRIBUTION HAS LOEHLIN MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY?
WHAT IS CYBERNETICS?
WHAT ARE THE SIMILARITIES BETWEEN TREE STRUCTURES AND NETWORKS?
WHAT ARE THE SIMILARITIES BETWEEN ALGORITHM AND HEURISTIC?
WHAT CONTRIBUTION HAS ABELSON MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY?
WHAT IS CONTENT ADDRESSABLE MEMORY?
WHAT IS AN EXAMPLE OF A GPS GOAL?
WHAT IS A MAGIC SQUARE?
WHAT ARE THE DIFFERENCES BETWEEN SYNTAX AND SEMANTICS?
DEFINE MARKOV PROCESS.
DESCRIBE A FEW METHODS THAT HAVE BEEN USED IN ARTIFICIAL INTELLIGENCE.

WHAT IS A BIT?
WHAT ARE THE DIFFERENCES BETWEEN TEMPLATE MATCHING AND FEATURE
EXTRACTION?

WHAT IS ALDOUS?
WHAT CONTRIBUTION HAS CHOMSKY MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY?
WHAT IS PANDEMONIUM?
WHAT CONTRIBUTION HAS WIENER MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY?
WHAT ARE THE SIMILARITIES BETWEEN COMPUTER AND HUMANS - BY ANALOGY?
DEFINE DISCRIMINATION NET.
WHAT ARE THE SIMILARITIES BETWEEN COMPILER AND INTERPRETER?
WHAT ARE THE SIMILARITIES BETWEEN TEMPLATE MATCHING AND FEATURE
EXTRACTION?

Fia.3 Output g_f the Question Generator for. Cognitive Psucholoau

11

Word categorization on a semantic as well as syntactic basis
enables these programs to produce a surprisingly high percentage
of semantically meaningful sentences compared to programs that are
based on generative syntax alone. Restricting oneself to the
generative power of context-free rewrite rules has its own
advantages. The control structure of the problem generator
becomes simple and straightforward, making it easy to construct
trouble-free programs. The essence of these schemes is the simple
hierarchical top-down control structure that relates a set of
choices. For each choice that is made, the grammar simply forces
the other* (lower level) choices that one is committed to make as a
result. Each act of choice transfers control to that part of the
grammar where the available alternatives for lower level choices
are contained. On the other hand, restriction to such a simple
program structure does result in severe limitations.

The basic limitation is the absence of a structured
representation of the task environment of the kind found in
practically every system that performs a cognitively significant
task (Carbonell, 1978, and Uexler, 1970, describe instructional
systems incorporating structured representations of knowledge).
Generally in such systems associations are used to impose an
object-attribute-value scheme on the task environment and to
implement functional and relational mappings. Computational
mappings of a functional or relational nature are performed by
programmed routines. This is in contrast to the implicit
representation of knowledge in grammar-like systems which provide
only two devices to ensure coherence in the output: co-occurrence
of symbols in rewrite rules which ensures co-occurrence of
complementary parts of the problem in the output; and set
membership which enables semantically and syntactically equivalent
items to be distributed in the output in an identical manner.

12

Even the use of variables for holding data and control
information is not possible. This means for instance, that one
cannot use a variable to hold on to the name of the data-structure
that one has chosen to refer to in a problem being generated, so
that it can be used repeatedly. Instead one requires one set of
rules for generating, say, sorting exercises on lists and a
similar but different set of rules for sorting exercises on
arrays, unless of course there is a single reference to the nature
of the data-structure.

Finally, syntactical and semantic similarities of phrases are
clumped together whi le classifying these phrases into subsets.
The fact that a particular set of phrases refers to investigators
in a particular field has to be remembered along with the
syntactic information that all entries in this subset are singular
in number, and that in addition they are all only last names.
Achievements of investigators expressed in the past tense have to
be segregated from their activities expressed in other tenses.
Flexibility in reference can be obtained only by entering
grammatical variants of the same phrase in different subsets.

Summing up, it appears that the initial advantages of a
grammar-like scheme are outweighed by the restrictions it imposes
on the development of a problem generator. It becomes necessary
to recognize and separate two concepts imp Iicit in such schemes,
one being more general than the other. The first is the concept
of generative syntax with its power to generate well-formed
sentences in natural language or in mathematical notation. The
second is the concept of an elegant and economical principle of
program organization - that of a top-down enumerative scheme for
generating a recursively defined set of structures. It is
obviously desirable to employ the latter concept whenever

13

possible, without committing oneself to the formalization of all
the machinery required for problem generation in the form of
generative syntax. Steps in this direction are particularly
important if we visualize CAI systems having access to detailed
representations of knowledge of task areas. Whatever form such
knowledge is going to be in - semantic nets, simulation models or
understanding systems - it certainly is not going to be all
syntax.

14

Si. GENERATION OF A PROBLEM AS THE ASSEMBLY OF A STRUCTURE

3.1 Assemblu of Problems

He can view the creation of exercises as a task in design.
Given the function of a desired object, how does one decide its
structure? How does one recognize the system of design decisions
necessary in a given case? How does one encode decisions made in
the earlier stages of the process so that their implications for
later decisions are readily computable? In this section we will
deal with the generation of a basic kind of programming problem in
these terms. These problems exercise the student's skills in
handling arrays and in organizing data in the form of sets and
sequences of numbers and symbols. A typical hand generated
problem of this type (1) is:

YOU ARE GIVEN THE ARRAYS I ARRAY[1:180] AND MARRAY[1:108]. FIND
ALL SETS OF NUMBERS IN I ARRAY, NO MATTER WHAT THEIR ORIGINAL
POSITION, WHICH CAN BE PUT IN COUNTING ORDER (I.E. EVERY ELEMENT
IN A SET, EXCEPTING THE FIRST AND THE LAST, SHOULD HAVE ITS
SUCCESSOR AND PREDECESSOR IN THE SAME SET). MARK THE FIRST SET BY
PUTTING T S IN THE CORRESPONDING POSITIONS IN MARRAY, THE SECOND
SET BY PUTTING 2'S IN THE CORRESPONDING POSITIONS, AND SO ON. PUT
ZEROES IN THE POSITIONS OF ELEMENTS WHICH DO NOT BELONG TO ANY
SETS.

Consider the task of a program that has to generate problems
in this form. A series of decisions have to be made, some of them
independent and some contingent on the others. Analysis of a
number of such problems shows that it is possible to represent in
a compact manner the basis for making these decisions for

(1) Courtesy of Ruven Brooks

15

producing reasonably large subsets of the studied problems. It is
possible in these cases to find a common form in the structures of
the individual members of the problem set. For example, the
problems(l) of Fig.4 have a common structure outlined in Fig.5.
The problems in Fig. 4 as we 11 as those in Fig.G were generated by
programs having the simple control structure discussed in the last
paragraph of Section 2. Use of this top-down generative structure
is based on the recognition that the problem to be constructed has
a basically tree-like structure. The highest level of the program
therefore deals with the linking up of the major sub-structures of
the tree which are assumed to exist. Lower level routines are
then defined for creating these smaller structures. The
parcelling out of the assembly task can be spread over several
levels, the routines at the terminal nodes selecting and creating
basic elements of the problem, while the higher level routines
assemble parts created at lower levels into bigger structures.

(1)Generated by a program to be described shortly.

16

DEFINE AN ARRAY L(288) AND READ NUMBERS INTO THIS ARRAY FROM THE
FILE F0R81.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT
BY FIRST TYPING OUT F0R81.GEN AND EXAMINING IT. EXAMINE THE
ELEMENTS OF L AND IDENTIFY THE MAXIMAL SET EACH ELEMENT OF WHICH
IS A PRIME. SORT THE ELEMENTS OF THE SELECTED SET IN NUMERICAL
ORDER. PLACE THIS ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF
L, IN DECREASING NUMERICAL ORDER. PLACE A ZERO IN ALL THE
LOCATIONS OF L WHICH DO NOT CONTAIN ONE OF THE FINALLY SELECTED
NUMBERS. PRINT OUT THE FINALLY SELECTED NUMBERS.

DEFINE AN ARRAY L(3B,38) AND READ NUMBERS INTO THIS ARRAY FROM THE
FILE FORB1.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT
BY FIRST TYPING OUT F0R81.GEN AND EXAMINING IT. EXAMINE ALL THE
ROWS OF L AND IN EACH ROW, IDENTIFY ALL SEQUENCES OF 7 OR MORE
NUMBERS HAVING ELEMENTS EACH ONE OF WHICH IS A NUMBER GREATER THAN
4. POOL THE ELEMENTS OF ALL THESE SEQUENCES AND SORT THEM IN
NUMERICAL ORDER. PLACE THE 38 LARGEST ELEMENTS ALONG THE LOWEST
ROW IN NUMERICALLY INCREASING ORDER FROM LEFT TO RIGHT. PLACE A
ZERO IN ALL THE LOCATIONS OF L WHICH DO NOT CONTAIN ONE OF THE
FINALLY SELECTED NUMBERS. PRINT OUT THE FINALLY SELECTED NUMBERS.

DEFINE AN ARRAY L(388) AND ASSUME THAT THIS ARRAY IS FILLED WITH
NUMBERS IN THE RANGE FROM -1888 TO 1888. EXAMINE THE ELEMENTS OF
L AND IDENTIFY ALL SEQUENCES OF 3 OR MORE NUMBERS HAVING ELEMENTS
THAT ARE ALTERNATELY A CUBE AND A NON-CUBE. CONSIDER THE
SEQUENCES IN THE ORDER OF INCREASING FIRST TERMS. CHOOSE THE
FIRST 8 SEQUENCES IN THIS ORDER, IF THERE ARE MORE THAN 6
SEQUENCES. OTHERWISE, CHOOSE ALL THE SEQUENCES. POOL THE
ELEMENTS OF ALL THE CHOSEN SEQUENCES AND SORT THEM IN NUMERICAL

17

ORDER. PLACE THIS ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF
L, IN INCREASING NUMERICAL ORDER. PRINT OUT L.

DEFINE AN ARRAY L(10,18) AND READ NUMBERS INTO THIS ARRAY FROM THE
FILE FORB1.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT
BY FIRST TYPING OUT FOR01.GEN AND EXAMINING IT. EXAMINE ALL THE
ROUS OF L AND IN EACH ROW, IDENTIFY ALL SEQUENCES OF 3 OR MORE
NUMBERS HAVING ELEMENTS IN THE FOLLOWING ORDER - A NUMBER
DIVISIBLE BY 7, AN ODD NUMBER, A NEGATIVE NUMBER. SUCH A SEQUENCE
MAY START WITH ANY ONE OF THE SPECIFIED TYPES OF ELEMENTS. POOL
THE ELEMENTS OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL
ORDER. PLACE THE 19 LARGEST ELEMENTS ALONG THE FIRST COLUMN IN
NUMERICALLY DECREASING ORDER FROM TOP TO BOTTOM. PRINT OUT THIS
COLUMN.

DEFINE AN ARRAY L(GBB) AND FILL IT UP WITH RANDOM NUMBERS IN THE
RANGE FROM -1800088 TO 1880080. EXAMINE THE ELEMENTS OF L AND
IDENTIFY ALL SEQUENCES OF 7 OR MORE NUMBERS HAVING ELEMENTS EACH
ONE OF WHICH IS A MULTIPLE OF ITS PREDECESSOR. POOL THE ELEMENTS
OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL ORDER. PLACE
THIS ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF L, IN
DECREASING NUMERICAL ORDER. PLACE A ZERO IN ALL THE LOCATIONS OF
L WHICH DO NOT CONTAIN ONE OF THE FINALLY SELECTED NUMBERS. PRINT
OUT L.

F'q.4 Examples Q± 'Arrau Ordering Problems'

18

, SPECIFIED INPUT. RANGE OF NUMBERS DECIDED HERE

-SPECIFIED DATA-STRUCTURE. ONE OR TWO DIMENSIONAL ARRAY
-SOURCE OF DATA

SUB-STRUCTURES OF GIVEN
DATA-STRUCTURE (EG. ROWS/COLUMNS)

PROBLEMH

•1ST MANIPULATION*

I OBJECT TO BE SEARCHED FOR
SPECIFIED SETS
SPECIFIED SEQUENCES OR
SUBSTRUCTURES CONTAINING
SPECIFIED OBJECTS

I—REORGANIZATION OF OBJECTS DETECTED
POOL OR/AND ORDER SELECTED OBJECTS

—RELOCATION OF REORGANIZED OBJECTS
SPECIFY DESTINATION
(SUCH AS THE TOP 3 ROWS,
MIDDLE ROW, LAST COLUMN)

•FURTHER MANIPULATIONS

•OUTPUT AS SPECIFIED

Fig.5 The Structure of a Class of Arrau Manipulation Problems

19

CONSIDER THE LIST L19 AND THE UNNAMED LIST ON THE STACK. SELECT
THE SET OF ALL EVEN NUMBERS WHICH ARE PRESENT IN L19 BUT NOT IN
THE UNNAMED LIST. FIND THE SUM OF ALL THE SELECTED NUMBERS AFTER
ELIMINATING MULTIPLE OCCURRENCES.

YOU ARE GIVEN THE LIST-STRUCTURES L13 L14 LIS AND LI6 AND 4
UNNAMED LIST-STRUCTURES ON THE STACK. THEY MAY CONTAIN NUMBERS AT
ANY AND ALL LEVELS. SELECT THE SET OF ALL PRIME NUMBERS WHICH ARE
PRESENT IN L16 , IN L15 , IN L14 , AS WELL AS IN L13 BUT NOT IN
EACH UNNAMED LIST-STRUCTURE. FIND THE SUM OF ALL THE SELECTED
NUMBERS AFTER ELIMINATING MULTIPLE OCCURRENCES.

CONSIDER THE 3 UNNAMED LIST-STRUCTURES ON THE STACK AND THE
LIST-STRUCTURES L18 L19 AND L28. THEY MAY CONTAIN NUMBERS AT ANY
AND ALL LEVELS. SELECT THE SET OF ALL NEGATIVE NUMBERS WHICH ARE
PRESENT IN L20 BUT NOT IN L19. MERGE THESE WITH THE NUMBERS WHICH
ARE GREATER THAN 188 FROM THE TOPMOST LIST-STRUCTURE ON THE STACK.
PLACE ALL THE SELECTED NUMBERS ON L18 AFTER EMPTYING IT FIRST.
SORT THE CONTENTS OF L18 IN DESCENDING NUMERICAL ORDER. FIND OUT
ALL SEQUENCES OF PRIME NUMBERS IN IT AND PLACE THEM ON THE 2 OTHER
UNNAMED LIST-STRUCTURES.

Fia.6 A Set of Simple List-Processing Problems

20

Some of the terminal routines make random choices, while others
access the structures already assembled and choose compatible
elements to be used in the sub-structures being constructed.
Access to a representation of knowledge of the task area having
the form described on page 4 also occurs at this level as a part
of the relevance and compatibility computation.

It is useful at this stage to evaluate the utility of the
selective mechanisms discussed above. Very rough estimates can be
made of the total number of structures that are in some sense
possible, and the fraction of these structures that are
meaningful. The number of branchings that occur in the course of
generating a problem of the type shown in Fig.4 is of the order of
15, corresponding to the branchings of Figure 5.

Uhile the choices that create structural differencesbetween
problems usually involve only two or three alternatives, e.g. the
choice between one dimensional arrays and two dimensional arrays,
numerical choices involve large numbers of alternatives. Most of
the numerical choices are equivalent, but selecting a number in
the wrong range could create absurd problems, e.g., comparing
numbers in the range from 8 to 100 with the threshold of 2500.
Estimating that there are 2 or 3 significant alternatives at most
branches, the total number of choice sequences that are available
over 15 steps is in the range from 10t4 to 10t7 . Typically,
five or six of these decisions are contingent upon others, so that
the amount of selection exercised by the program in producing a
coherent problem (out of what would be mostly nonsense problems if
free choices were made at each point) is roughly 1 in 500.

21

3.2 Assembly of Sentences

What is the nature of the structure assembled by a problem
generator in relation to a comprehendable external description of
the problem? One possibility is that the structures assembled by
the generator be directly the deep-structures of sentences which
would constitute a readable description of the problem. In this
case all the knowledge required to translate these structures into
readable descriptions can be localized in a 'sentence
synthesizer'. Such a synthesizer would remove the burden of
syntactic considerations from the problem-generator. The input
requirements of this synthesizer would define a range of possible
formats for the data-structures to be created by the generator.
We have implemented such a sentence synthesizer (see Simmons and
Slocum, 1972 for a detailed treatment of sentence synthesis). The
problems in Figures G, 8, 12 and 13 were all generated by programs
which first created well-defined deep-structures for their
sentences. These were then rendered into readable form by the
sentence synthesizer. A brief discussion of the nature of the
sentence structures used is given here. Some information on
programming considerations and on the sentence synthesizer may be
found in Appendices A and B.

The deep-structures are in the form of labelled directed
graph-structures. The nodes are unnamed lists representing
specific occurences (or 'tokens') of concepts symbolized by
word-roots, numbers or symbols. The edges are associations
implemented by using association lists and a hash-coding scheme.
While tne list itself represents the token, its content, generally
a word-root (referring to a specific word-sense, in the case of
ambiguous words), represents the 'type'. There may be several
lists with the same content to represent different tokens of the

22

same type. Structures are formed by creating labelled (and
directed) associations between nodes to represent deep-case
relations between the entities referred to in a sentence. Some of
the functions performed by these relations are i I lustrated by the
examples in Fig.7. the two appendices describe briefly the
construction and interpretation of such sentence-structures.

Uhile token-to-token associations create sentence structures,
other associations involving types embody the sentence
synthesizer's knowledge of the language. For example, such
associations link words to their syntactic categories and to their
exceptional plural forms when these exist. They also link
syntactic categories with appropriate synthesis routines which
recognize basic sub-structures of sentences and have the
capabilities to generate appropriate, word-groups for them. Uhile
token-to-token associations are dynamic in the sense of being
created and destroyed as sentences are generated and printed out,
the syntactic and semantic associations are permanent. However,
the same association mechanism in the programming facility
provides the three types of associations discussed so far:
associations embodying information on the task area as described
on page 4, the token-to-token links which are used to create
sentence structures and the syntactic and semantic associations
embodying the sentence synthesizer's knowledge of English. As may
be expected, there is some overlap between what should belong to
the first type and what should belong to the third type.

23

-.object. (NUMBER) -J

(ARRANGE).

— unique- (TRUE)

-.number.. 0

I— location. (ARRAY)

.conjunction.. (SUCH THAT)

adverbial phrase.

-.subject- (ELEMENT),

(COMMENSURATE)-J

L conjunct ion. (WHEN)

[

.unique (TRUE)

.name— (A)

t subscriptl— (1)

subscr ipt2 — (40)

r—unique — (TRUE)

• name— (A)

L_ subscript— (I)

.object- (ELEMENT)-unique- (TRUE)

L— name— (A)

L— subscript— (J)

adverbial phrase-. (COMMENSURATE)subject- (I)

(J) r1 subject-

object—
Fig*7 Deep Structure of a One-Sentence Problem

24

3.3 Control of the Generative Process

In discussing programs having the control structure described
in Section 3.1 it is useful to talk in terms of a search of the
'design space* which is a special case of the 'action space',
using the search representation for problem-solving (Newell and
Simon, 1972). The series of design decisions that leads to the
assembly of a suitable object is a special case of the
' solution-action-sequence'.

Complementing this description is the set representation for
problem-generation which deals with the target space of all
problems that can be produced by the generator. Starting at the
highest level, the program selects progressively smaller
subspaces, till it identifies a single point in it which
represents the problem generated at this attempt. The design of
the program has to start with the visualization of a rich enough
space. The control structure has to ensure that all the
visualized space is accessible by a suitable sequence of choices.

An important question is concerned with the control of this
access path. How can one influence a series of choices selecting
one possible access path out of a large number all of which lead
to meaningful problems?

A powerful and yet simple control mechanism that provides a
certain degree of direction in the generative process depends upon
the use of a quasi-formal language to specify desired sets of
problems. For example, problems of the type in Fig.8 are easily
produced by appropriate interpretation of brief high-level
descriptions, e.g.:

25

(CREATE A LIST)
(SCAN A CIRCULAR LIST-STRUCTURE)
(SUBSTITUTE COMPONENTS IN A SYMMETRIC LIST-STRUCTURE)
(FIND PROPERTY OF GIVEN LIST-STRUCTURE)
(TEST IF A DATA-STRUCTURE IS RECURSIVE)
(DELETE COMPONENTS FROM A SYMMETRIC LIST-STRUCTURE)

A sentence in such a language predetermines a specific set of
choices to be made by the generator, leaving other choices to be
made freely. Naturally. the structure of the sentence
interpreting mechanism will determine the effectiveness of any
such scheme. The interpreting mechanism has to analyse the
sentences and determine which steps of the generative process are
being forced, and in which direction.

An appealing form for such an interpreter is a semantic
parser which finds out the deep-case relationships between the
entities referred to by a sentence, sharing syntactic and semantic
information used by the sentence synthesizer.

2G

CREATE A LIST CONTAINING THE FIRST 42 PRIME NUMBERS
>

COUNT OCCURRENCES OF SEQUENCES OF NEGATIVE NUMBERS IN THE CIRCULAR
LIST-STRUCTURE GIVEN
>

SUBSTITUTE ALL OCCURRENCES OF THE COMPONENT-LIST C2 IN THE SYMMETRIC
LIST-STRUCTURE GIVEN BY THE TERMINAL-NODE GIVEN
>

WRITE A PROGRAM TO CONCATENATE THE LISTS LIST-LI AND LIST-L2
>

SUBSTITUTE THE LAST-BUT-ONE OCCURRENCE OF THE TERMINAL-NODE T3 IN
THE SYMMETRIC LIST-STRUCTURE L3 BY THE COMPONENT-LIST GIVEN
>

FIND THE LENGTH OF THE LIST-STRUCTURE GIVEN
>

FIND IF THE CIRCULAR LIST-STRUCTURE LI IS RECURSIVE
>

WRITE A PROGRAM TO CONCATENATE THE LISTS LIST-LI AND LIST-L2
>

DELETE ALL OCCURRENCES OF TERMINAL-NODES OF THE TYPE I IN THE
SYMMETRIC LIST-STRUCTURE GIVEN

Fig.8 A Sjet g_f Problems Generated bjj. Interpreting
Brief Problem Soeci ficat ions

27

The high-level descriptions of problems indicate to objects
and processes which are to be referred to in the problem to be
generated. Reference is made to them directly or, sometimes,
indirectly by mentioning sets of entities from which the generator
may choose suitable members. Fig.9 shows some of the objects and
processes referred to by the problems being discussed and their
organization into progressively larger sets. The interpreter has
to recognize case relationships to find the function each entity
is to perform in the problem and use this information to control
the generative process.

The simple interpreter which produced the problems of Fig.8
from high-level descriptions was implemented by defining a 'search
routine' for each word category, the categorization being
basically syntactic. Interpretation is performed by executing the
search routine associated with each word, allowing it to find
other words in the sentence which are related to it. This process
results in the construction of parts of deep-structures of
potential sentences to describe entities being referred to and
their relationships to each other. The associative schemes
referred to on page 24 are useful here too. After this parsing,
the interpreter triggers off the problem generator giving it the
references to the entities it must use in its operation. The
generator processes any indirect references to obtain suitable
entities which are to be used in problem generation and completes
its task.

28

objects.

_ I i st/1i st-structure

.circular Iist/list-structure

Lsymmetrical Iist/Iist-structure

processes—J

, create

examine. r.
find properties —.count them

scan for specified
contents—1— print them

• — V * U U I I ̂

— 1 — print

I—modify. introduce

L—delete
.concatenate

rsubsti tute

sub-structures

component objects.

L- terminal nodes -c
numbers

symbol s

Fig,9 Alternatives for the Choice of Components for the
Problems in Fig.8

29

Uhile explicitly specified choices are easily forced upon the
problem generator, there are several possibilities for handling
the choices that are not forced. One such possibility is that
information about the generation of sub-problems can be
accumulated in the course of generating a series of problems.
This information can then be used to ensure that sub-problems are
well distributed in a generating run. For instance, from the
knowledge that a particular series of tasks have been successful ly
carried out by a student, a set of sub-problems that he has
carried out can often be identified. It can then be ensured that
later problems do not incorporate these sub-problems already
familiar to the student, unless there are special reasons. There
is also the possibility that hierarchic relationships between
tasks can be exploited to produce sequences of problems of graded
difficulty. Fig.10 shows recognizable sub-tasks which are
incorporated in the problems of Fig.4, organized to exhibit
hierarchic dependencies. The sub-tasks appearing in underlined
script are complete in the sense of being usable as self-contained
exercises. Appropriate organization of the generator should allow
such exercises to be produced when needed, without use of any
additional machinery.

36

SOLVING ARRAY PROCESSING PROBLEMS
OF THE TYPE ILLUSTRATED IN FIG.4

REARRANGING AN ARRAY BY
MOVING SEQUENCES IN II
WITHOUT LOSING ITS CONTENTS

ACCUMULATING SETS OF
NUMBERS THAT HAVE
BEEN SELECTED FOR
LATER USE

SCANNING AN ARRAY. STORING REFERENCES
SELECTING SPECIFIED TO SEQUENCES IN AN
ELEMENTS ARRAY FOR LATER USE

1 i
ACCESSING ELEMENTS OF
THE ARRAY AND TESTING
THEM BY COMPUTING
NUMERICAL PREDICATES

SCANNING AN ARRAY
SEARCHING FOR
SEQUENCES 0£
SPECIFIED
STRUCTURE

REARRANGING CONTENTS
0£ AN ARRAY BY
EXCHANGE AND
SUBSTITUTION

CODING INPUT FROM
DISC-FILE

CODING OUTPUT TO
DISC-FILE

FILLING UE ARRAY
WITH RANDOM NUMBERS

Fia. 19 Sub-Tasks Encountered in in§. Arrau Processing Problems g_f Fiq t4

31

4,. GENERALIZATION OF A PROTOTYPICAL PROBLEM

Is it possible to start from a well-known problem and write a
generator for producing useful generalizations of the original
problem? This section describes experiments with this technique of
generalization, applying it to a problem first discussed by
Hoare(1964) and then by Djikstra (1971). The problem is:

Rearrange the elements of the array Atl:N3 such that
for a given value of f (l<f<N)

A[k]<Atf] if l<k<f and
A(f]<Afk] if f<k<N .

The required arrangement is said to 'split* the array around f.

As a programming exercise this task has manifold appeal. It
confronts the student with the problem of planning manipulations
which interact heavily. If we eliminate the brute force solution
of sorting the array, perhaps by adding an economy clause to the
problem statement, the solution is no longer obvious. Djikstra
describes an elegant solution based on recursion.

lie look at it from another point of view, attempting to
generalize it into a class of array-ordering problems which test
the student's understanding of the concepts relevant to sorting.
We do not specifically concern ourselves with the existence or
non-existence of an elegant recursive solution to the problems
generated.

Fig.11 lists some of the skills needed to program basic
sorting, in an order intended to indicate the dependence of some
of these skills on others, the more basic ones being generally
lower in the Iist.

32

REARRANGING ARRAY AS SPECIFIED

MANIPULATING ELEMENTS OF AN ARRAY LOCALLY
(SUBSTITUTIONS AND INTERCHANGES)

PERFORMING ARITHMETIC ON ELEMENTS OF ARRAY
(COMPUTING FUNCTIONS AND PREDICATES
DEFINED OVER ELEMENTS OF THE ARRAY)

SCANNING ARRAY FOR SPECIFIED ELEMENTS

ACCESSING SPECIFIED ELEMENTS OF ARRAY
BY GENERATING DESIRED SEQUENCE OF SUBSCRIPTS

Fig.11 Elements of the Sortino Exercise

In terms of these operations, sorting turns out to be a
rearrangement of a given array Atl:N3 such that AIjI > Atil if

A simple generalization of the Hoare problem which still has
the listed concepts as essentials is:

Rearrange elements of the array AU:N] such that
if Rl(<i>,<j>) then R2(A<i>,A<j>)

where Rl and R2 stand for relations and <i> and <j> are
generator variables which are to be substituted by a
variable such as i,j,k or, when suitable, by a numerical
constant.

33

A related set of problems is of the form:

Rearrange elements of array A[1:NJ such that
if PI (<i>) then P2(A[<i>])

where PI and P2 are predicates.

Fig. 12 shows some of the problems generated by a program
based on the two generalizations indicated above. Comparison of
these problems with those presented in Section 3 shows that these
problems have an element of programming difficulty not generally
present in the earlier problems. The programmer now has to tackle
the question of space needed by the contents of the array. Moving
the content of a cell requires that space be found for it
elsewhere. Creating space could involve disturbing elements which
have been properly placed already and considerable interaction
between desirable changes is caused thereby. This is a
significant aspect of the original problem that is preserved.

34

ARRANGE THE NUMBERS IN THE ARRAY A[1,48] SUCH-THAT THE ELEMENT IN
CELL All] IS A SQUARE IF I IS A CUBE.
>
ARRANGE THE NUMBERS IN THE ARRAY A 11,251 SUCH-THAT THE ELEMENT A [I]
IS COMMENSURATE WITH THE ELEMENT A[11] WHEN I IS LESS THAN 11.
>
ARRANGE THE NUMBERS IN THE ARRAY A [1,38] SUCH-THAT THE ELEMENT A til
IS LESS THAN THE ELEMENT A[13] WHEN I IS DIVISIBLE BY 13.
>
ARRANGE THE NUMBERS IN THE ARRAY A[1,281 SUCH-THAT THE ELEMENT IN

ANY AN EVEN-NUMBERED CELL IS A SQUARE.
>
ARRANGE THE NUMBERS IN THE ARRAY A[1,381 SUCH-THAT THE ELEMENT All]
IS LESS THAN THE ELEMENT A[71 WHEN I IS COMMENSURATE WITH 7.
>
ARRANGE THE NUMBERS IN THE ARRAY A[1,481 SUCH-THAT THE ELEMENT A til
IS COMMENSURATE WITH THE ELEMENT At J] WHEN I IS COMMENSURATE WITH J.

Fia.12 Arrau Ordering Problems

35

A sequence of several problems derived from the same
prototype would be unsuitable for presentation to a student, if
they show no more variation than the set of problems in Fig. 12. A
library of prototypes could provide some coverage and variety. On
the other hand, focus on selected concepts would be useful, even
at the expense of variety, when producing problems for certain
purposes: for introducing important concepts, for testing, for
remediation or for review. If the student has a convenient
addressing facility, he would often find it useful to ask for a
few similar problems involving a specific set o*f concepts to
confirm his own understanding of these, before he moves on to
other concepts.

36

5i. REASONING ABOUT ACTIONS

The basic characteristic of a problem situation is that the
scheme of actions leading to a solution is not obvious, while the
elements out of which such a scheme could be constructed are more
or less available. It is generally important in problem
generation to estimate and control the complexity of the
action-schemes which might lead to solutions, ensuring that the
problem presents a desired level of difficulty to the student. To
some extent, the generator may also predetermine the content and
structure of fruitful action-schemes.

One device for the estimation of complexity of a problem
involves the visualization of possible problem spaces that might
be searched for a solution. In the case of programming exercises,
the cost of searching the most easily intuited space of solutions
can often be estimated easily by the generator. Ensuring this
cost is too high forces a step of refinement on the student,
making him look for clues for augmenting the problem-space or, in
some cases, compelling him to restructure the program, for example
by providing for storage of computed values to reduce
computational cost or by substituting iteration for recursion.
When dealing with we I I-structured problems, a lower bound for the
complexity of the program needed to solve a given problem may be
estimated by identifying those features of the program which have
been rendered essential. A generator could use such estimates to
arrive at problems presenting desired levels of difficulty.

A second device that could be employed is the programming of
limited deduction about the problem situation. The problems
appearing in underlined script in Fig.13 provide good examples of
situations where the scheme of actions needed to perform the given

37

task is of controlled complexity (1). Each of these problems
involves an action or a set of actions that is to be performed in
order to achieve a desired change or to achieve a desired state in
the given situation. The task is meaningful only if the action
specified is relevant to the state change desired and if the
performance of this action presents a desired level of difficulty.
In order to take these requirements into account the problem
generator has to have information relating possible actions to
their effects. It also needs estimates of difficulty in carrying
out possible actions (i.e. 'applying operators*, to use the
wording in NeweJ I and Simon, 1972). The use of a table of
connections (ibid) is a possibi I i ty. Deducing the information by
following a suitable line of reasoning may be necessary in those
cases where a table of connections becomes unwieldy.

The problems under discussion deal only with a few possible
types of simple manipulations that can be performed on graphs,
i.e. addition or deletion of vertices and edges and the
repositioning of edges. Each type of manipulation is generally
capable of multiple application to a graph.

(1) The other problems shown in
here. They were produced by
discussed in Section 3 and share
problems being discussed in this

this figure are not discussed
generators having the structure
association networks with the
sect ion.

38

> DELETE LESS THAN 3 EDGES FROM THE GRAPH G TO INCREASE ITS RADIUS .
10 3^
> ASSIGN NUMBERS IN THE RANGE FROM 1 TO 18 TO THE EDGES OF THE GIVEN

GRAPH SUCH THAT THE NUMBER ASSIGNED TO AN EDGE IS COMMENSURATE WITH
THE TOTAL NUMBER OF THE EDGES ADJACENT TO IT. ENSURE THAT THE SUM OF
THE ASSIGNED NUMBERS IS A MAXIMUM.
> FIND BRIDGES WITH A LENGTH OF 4 IN THE GIVEN GRAPH.
> ADD LESS THAN 5 EDGES J_0 THE GRAPH G SUCH THAT H IS NO. LONGER A

PLANAR GRAPH.
> FIND IF THERE ARE CYCLES IN THE GRAPH G.
> ADD LESS THAN 3 NEW VERTICES WITH NECESSARY INCIDENT EDGES 10 IH£

GRAPH G SUCH THAT THE VERTICES V7 V2 V18 VB A M VI ARE, NO LONGER
THE CENTRAL VERTICES.
> FIND CYCLES IN THE GRAPH G.
> ASSIGN A COLOR NAME TO EACH EDGE SUCH THAT THE COLOR OF ANY EDGE
IS DIFFERENT FROM THE COLOR OF ALL ITS ADJACENT EDGES.
> ASSIGN NUMBERS, NOT NECESSARILY UNIQUE, IN THE RANGE FROM 1 TO 15

TO THE EDGES OF THE GRAPH G SUCH THAT THE NUMBER ASSIGNED TO AN EDGE
IS MULTIPLE THE NUMBER OF THE CYCLES IT IS A MEMBER OF.
> GENERATE BRIDGES WITH A LENGTH OF 4 FROM THE GRAPH G.
> FIND IF THE GIVEN GRAPH IS A BLOCK.
> REPOSITION 3 OR MORE EDGES IN. J_HE GRAPH £ SJJCH IHAI THE. ECCENTRICITY

QE V9 REMAINS UNCHANGED.

Fia.13 Graph Manipulation Problems

39

Some of the problems require that the graph be modified to attain
a given property by performing only a limited number of a
specified type of manipulation. Other problems require that a
given number of manipulations of a specified type be performed
without altering the graph in a specified way. Since these are
programming problems, the real task is to write a program which
performs the required manipulations on any graph given as its
input.

The problems are interesting because performance of the task
under the given constraints becomes a critical matter, requiring
considerable analysis of the problem situation and careful
planning of the solution. A special difficulty is that the
solution should be applicable to an indefinitely large set of
graphs any of which may be given as input to the program that is
to be written. These features, and the presence of a body of
theory on graphs, make these problems good exercises in
non-numerical programming.

The generator which produced the examples in Fig.13 performs
limited deduction to arrive at the relation between the five
allowed manipulations on graphs to a dozen or so state changes
that could occur in the graphs as a result. In the case of the
problems in Fig. 13, the deduction is based on the heuristic use of
knowledge about gross changes that occur in the graph as a result
of simple manipulations. Two gross indicators are the change in
the number of paths between an arbitrary pair of points as a
result of a manipulation and the change in distance between an
arbitrary pair of points. Table 1 relates manipulations to their
effects in terms of these gross indicators. Table 2 relates these
indicators to several state changes that can be produced in
graphs. In these tables, an entry of a * 1* shows a tendency for

40

the cause to increase the quantity it is related to; and an entry
of a shows the opposite tendency; and an entry of '0*
indicates that a predictable link is not present.

Operation Change in Change in
Path Length Number si Pgths

Delete Vertices with edges +1 -1
Delete Edges +1 -1

-1 +1
0 +1
0 0

Add Edges
Add Vertices and edges
Reposi tion Edges

Table 1 Operators and Their Effect on graph Parameters

41

State
Descr iotors

Increase in
Path Length

Increase in Nwber
01 Path?

Rad i us +1
Diameter +1
Eccentricity +1
Connectivity 0
Number of

Components 0
PIanar i ty 0
PossibiIi ty of

HamiI tonian Paths 0
Identity of

Center 0
Distance Between
Two Nodes +1
PossibiIi ty of

Eulerian Paths 0

-1
-1
-1
+1

-1
-1

+1

8

-1

0

Table 2 State Changes and. Associated Variations i n

Graph Parameters

42

To generate the examples referred to, .the generator chooses a
permitted manipulation and identifies a relevant state change by
using the tables. Further, it computes from these tables the
direction of state change and introduces a suitable constraint
which ensures that the task being constructed is not too easy.

• Extensions can easily be made to the generator employing the
line of reasoning described above. Consider, for instance, the
problems which require that a particular state change be realized
without altering a specified feature of the given graph. A simple
computation involving Table 2 enables the generator to produce
pairs of state changes requiring opposite directions of change in
the two parameters involved. A reference to Table 1 identifies a
relevant manipulation on the graph. These two steps enable the
generator to create a problem by requiring that the specified
manipulation be repeatedly performed to obtain a given state
change ensuring that the other state change does not occur.

43

k_ CPVER gTORI^S

Large classes of problems can be viewed as having an abstract
structure. In these problems, the specific objects functions or
relations that appear are not of much significance, and are
generally substituted by formal variables early in the
problem-solving process. The same abstract-structure obtained
from many problems which differ only trivially describe the
essence of the problem situation. School text-books on
mathematical subjects employ the well-known technique of taking
interesting problem-structures and fleshing them out with
sufficient surface detail to generate exercises. It is
conceivable that problems generated by this technique, apart from
providing variety , also focus attention on the skills necessary
to. abstract the basic structure of given problems (1). The
process of creating a coherent surface structure is worth a brief
discussion, even though we have not yet implemented a program to
i Ilustrate i t.

At the lowest level of sophistication would be schemes which
operate with a fixed number of abstract problem-structures and a
fixed number of surface structures. Using some indexing scheme, a
compatible pair of structures would be selected and the formal
varibles in the abstract structure would be replaced by the
corresponding terms of the surface structure. At the other end of
the spectrum would be an understanding system which has strategies
for finding or creating real-world situations corresponding to any
given abstract problem-structure.

(1) Hayes and Simon (1973) are studying subjects' behavior when
presented with differently structured external cover stories for
the same abstract problem structure (tower of hanoi).

44

Possible compromises between what is desirable emu Mnat is
implementable include systems which exploit strong links between a
large body of theory of a class of structures and a related area
of Veal-world* problems with adequate diversity. Consider, for
instance, problems involving transport and communication networks.
It is obvious that many graph manipulation problems can be
paraphrased as problems in this area. Implementing a system which
can perform such a paraphrasing inteIMgent Iy involves several
problems. Such a system could use a set of associations linking
entities in the abstract theory with corresponding entities in the
application area. A partial mapping may be possible, and it will
indicate, to some extent, those aspects of the theory that are
relevant to the application area. For example, the concept of a
weighted graph is specially relevant to the application area being
considered here because it provides for the possibility of taking
into account physical lengths of the edges.

Unless such information on relevance is used to shape the
abstract problem being created, only a very small fraction of
generated structures can be paraphrased as natural-looking
application area problems. However, the complexity of detail that
has to be attended to appears formidable. This is best
illustrated with examples. In the area of transport and
communication networks, some of the information that should be
available to the generator, directly or indirectly, is:

Road networks which are non-planar have to be
constructed with the use of underpasses and
overpasses which are expensive in relation to the
cost of roads. This is not the case with
air-routes and telecommunication circuits.

The presence of cut-vert ices and sma I I cut-sets is
related to the problems of reliability of the
network.

45

Paths passing through every edge (Eulerian paths)
are relevant to bus routes (edges being streets),
while they are not of significance in the case of
telephone networks.

It is possible to think of railroad stations as
fuelling or non-fuelling stations (say for
generating problems involving dominant sets of
vertices in a graph). This is generally not true
in the case of airports, all of which can provide
f ue I.

These examples illustrate the wealth of knowledge that a
human designer brings to bear on the task of creating cover
stories. Programming a generator to design cover stories
therefore has to face the problems of representing the basis for
such knowledge and of utilizing it.

4B

Z*. CONCLUSIONS

Uhile simple generative schemes do, in some cases, produce
surprisingly coherent questions, it is clear that the creation of
a good problem is in general a design task which involves
considerable knowledge of the task area. Detailed representations
of relevant knowledge of the task area are as important in problem
generators as they are in the case of any program which performs a
cognitively significant task. These representations structure the
task area in terms of objects and processes, assign attributes to
these entities and provide static links as well as computational
routines to implement functional and relational mappings.

Given such a representation of knowledge, the questions that
arise about a problem generator concern its structure and the
strategies that it incorporates. Are generators arbitrary
programs which have to be conceived ad-hoc, or is there a common
set of principles they can be based upon?

He have developed the view that generators perform a design
task, assembling a complex object - the problem - while operating
within a variety of constraints. A top-down generative
control-structure appears attractive. The second suggestion was
that this generative mechanism be freed from the burden of
syntactic considerations it carries in the case of grammar-1 ike
mechanisms. The data-structures it operates with could be
deep-structures of sentences, providing a rich representational
scheme easily extended by borrowing from natural language. A
sentence synthesizer which creates readable descriptions of
generated problems was described.

47

Problem generators for specific areas have to be developed by
inventing appropriate representations for knowledge about problems
in that area. Some sets of problems have a prototype and a
process of what might be called semantic generalization results in
a set of problems which are similar to the original and yet
provide significant diversity. Some sets of problems can be
created by performing limited deduction about operators and state
changes they cause in the relevant problem space. These
strategies have been discussed and illustrated with examples
produced by programs based on them.

Another strategy, which is based on the design of cover
stories for good abstract problems has been introduced. Problems
of controlling the generative process by using explicit
specifications and the problems of using information available
regarding the student's familiarity with a set of concepts have
also been briefly dealt with.

Acknowledgement: One of the authors (S.R.) wishes to acknowledge
the award of a Homi Bhabha Fellowship which provided partial
support for this research, he also wishes to thank Dr. Mathai
Joseph for helpful comments and suggestions on problem generation
in the early stages of the work reported.

48

APPENDIX Ai PROGRAMMING DETAILS

1. Languages Used

All the generators mentioned in the preceding pages were
programmed in the list processing implementation language Lft(F)
(Newell, et al, Jan, 1971). The main implication of the use of
L*(F) is that one adopts a specific approach to system-building
(Newell, et al, Sept. 71). This approach leads^ to the
construction of large systems in a layered fashion, adding
facility after facility (e.g.,: an association mechanism based on
the use of hash-coding techniques for accessing association lists;
the semantic parser discussed in Section 3.3) in a number of
steps, later layers using the tools provided by the earlier ones
and building on them. The other implication of the use of (Lft(F-)
is that the total access provided to the language processor's
machinery encourages the user to adopt this machinnery when needed
rather than building a language processor on his own.

2. Pr imi t ive operations

The basic operations of random choice, weighted choice, value
assignment, creation of associations and accessing of associations
are specified by the use of the operators t , # , « - , < « , ? and S

, the last one being the statement terminator used in conjunction
with the operators «- and <= . These six operators as well as the
comma are assigned necessary 'character actions' and 'syntax
actions' (Newell, et al, Jan. 1971) as per the conventions of
L*(F), ensuring the proper parsing and interpretation of
expressions of the following form embedded within regular L>v(F)
programs.

49

[AI A2 A3 A4]

[AI A2 A3 A4] t

[AI 3 A2 5 A3] t

[Rl R2 R33 t X

A <- B S S

ATT. OBJ <« B •

ATT. OBJ ?

ATT. — ?

Comment fields follow the
semi-co Ions.
Create the specified data-list
(of type list on Lft(F)).
Choose an item randomly from
the given list.
Choose by a weighted random
process. Heights are prefixed
with the number sign.
Choose one of the routines in
the list and execute it, obtaining
a value. Expressions of the above
forms can be used in the place of
the variable B in the following
statements.
Replace the contents of list A
by the contents of list B. used
mainly to assign values to variables.
Associates a value, B, with the
given attribute of the given object.
Obtains the value of the given
attribute of the given object.
Obtains the value of the given
attribute of the object on top
of the Lrt(F) working stack.

The brief description above does not cover all primitives
used in the system. However, a brief mention should be made of
variants of the choice operator t. One has a memory cell for its
most recent choice and avoids repeating it. Another variant
refers to information associatively linked to its data-list by
other parts of the program before making a selection. This latter

50

variant is useful in programming generators which are
controllable.

3. Creat ion of Data-Structures

A structure synthesizing routine .C is used extensively by
the problem generators. The execution of a statement of the form

([TYP, ASUB1 VSUB1, ASUB2, VSUB2, ASUB3 VSUB33 .C)
creates a list representing a token, or instance, of an entity of
the type TYP. Associat i vely linked to this list are the
attributes ASUB1, ASUB2 and ASUB3 which are assigned to values
VSUB1, VSUB2 and VSUB3 respectively. If any attribute value pair
ASUBI VSUBI is followed by the separator .e instead of the comma,
VSUBI is executed (it is presumed to be a routine) and the value
obtained is assigned to the attribute ASUBI. SIMILARLY IF TYP is
followed by .E, the type is obtained by executing the routine TYP,
the type is obtained by executing the routine TYP. Examples of
the usage follow:

([LIST, LINK-TYPE SYMMETRICAL, UNIQUE TRUEI .C)
creates a structure to represent 'THE SYMMETRICAL LIST*.

([ARRAY, DIMENSION 2, NUMBER 3] .C)
creates a structure to represent 'THREE TUO DIMENSIONAL ARRAYS'.

There are special separators which are used in the place of
the comma following the type to specify in a compact manner the
values of the attributes UNIQUE and NUMBER. These separators are
not used in the illustrations in this Appendix in order to keep
the illustrations simple.

The main reason for the utility of the routine .C in the
programming of top-down generators is that it can be used
resursively. A specification list on which .C operates may

51

indicate that the value of ASUBI should be computed by the routine
VSUBI. Frequently. VSUBI itself is defined in terms of a
construction to be performed by .C, creating a sub-structure which
is linked to the main structure by the ASUBI ~ VSUBI bond. The
following example illustrates such usage. The routine TP
specifies the construction of members of a set of simple
sentence-structures.

TP: ([TP1 .E OBJ, TP2 .E LOCATIVE TP3 .El .C)
TP1: ([FIND DELETE PRINT] t
TP2: ([NUMBER. QUANT ALL, UNIQUE TRUE, NUMBER 0,

ADJC TP21 .E] .C)
TP21:([0DD EVEN POSITIVE NEGATIVE PRIME t)

Assignment of '0' to NUMBER is interpreted to mean that
NUMBER>1. The routine TP3, not defined here, accesses a fragment
of sentence-structure assumed to have been created before the
execution of the statements in the example. The accessed fragment
represents an object such as 'THE LIST L l \ 'THE GIVEN LIST', 'THE
ARRAY L(20)' or THE ARRAY L(30, 30)'. TP3 synthesizes a
sentence-fragment to refer to the object or its sub-objects. The
new fragments are translatable as 'THE FIRST ROW OF THE ARRAY',
'THE ARRAY L \ 'ALL THE SUBLISTS OF L' or 'THE LAST COLUMN OF L'.

The sentence synthesizer, briefly described in Appendix B,
synthesizes readable sentences from the sentence-structures of the
kind produced by the routine TP, to generate sentences such as the
following:

FIND ALL THE PRIME NUMBERS IN THE LAST COLUMN OF THE ARRAY L.
DELETE ALL THE EVEN NUMBERS IN THE FIRST SUBLIST OF L.
PRINT ALL THE POSITIVE NUMBERS IN THE ARRAY L.

52

APPENDIX Bi ItJE SENTENCE SYNTHESIZER

The sentence synthesizer deals with associative structures
representing the content of potentiaI sentences or parts thereof.
Fig.7 showed an example of such a structure. By convention, the
sentence structure as given to the synthesizer starts with the
list-structure representing an occurrence of a predicate term.
Linked to this list-structure by labelled, directed associations
are sub-structures representing entities that stand in various
deep-case relations to the predicate. Each sub-structure
similarly consists of a list-structure representing the occurrence
of a word-sense with associations leading off to related entities.
It is also the convention to bind each occurrence of a word-sense
with relevant markers such as those for tense, number and gender
using attribute-value associations.

The implementation of the synthesizer is based on the
principle that for each category of semantic entity in the
sentence structure there should be a synthesis routine which has
operational knowledge of that category of entity. At the highest
level, the synthesizer finds out the category of entity it has to
deal with and triggers off the associated synthesis routine.
Recursive calls by one synthesis routine to others are necessary
because parts of the sentence structure are composed of smaller
sub-structures.

The routine dealing with predicates looks for associations to
sub-structures of the following types: subject; voice marker;
tense marker; object, in case of transitive verbs; indirect
objects; locatives; adverbial of purpose; and other adverbial
phrases. The routine dealing with objects attends to any need for

53

jterminers, quantifiers, adjectives, number markers, and several
jpes of adjectives and adjectival phrases.

54

REFERENCES

1. Carbonell, J. R., "AI in CAI: An Artificial-Intelligence Approach
to Computer-Assisted Instruct ion," IEEE Transactions on Man-Machine
Systems, MMS-11 (4), 190-282, (Dec, 1970)

2. Hayes, J. R. and H. A. Simon, "Understanding Uritten Problem
Instructions," Complex Information Processing Uorking Paper 236,
Department of Psychology, Carnegie-Mellon University, (May, 1973)

3. Koffman, E.B., "A Generative CAI Tutor for Computer Science
Concepts," Proceedings of the Spring Joint Computer Conference,
1972.

4. Koffman, E.B., "Individualizing Instruction in a Generative CAI
Tutor Communications of the ACM, 15 (B), pp. 472-473, (1972).

5. Newell, A., D. McCracken, G. Robertson, and L. DeBenedetti,
"L>v(F)," Department of Computer Science, Carnegie-melIon University,
(Jan., 1971)

6. Newell, A., P. Freeman, D. McCracken, and G. Robertson, "The
Kernel Approach to Building Software Systems," Computer Science
Research Review, 1978-71, Department of Computer Science,
Carnegie-Mellon University, (Sept., 1971)

7. Newell, A. and H.A.Simon, Human Problem Solving, Prentice Hall,
Englewood CIiffs, N.J., (1972)

8. Simmons, R. and J. Slocum, Generating Engl i sh Di scourse from
Semantic Networks, Communications of the ACM, 15 (18), pp. 891-905
(1972).

55

Uhr, L., "Teaching Machine Programs that Generate Problems as a
Function of Interaction with Students," Proceedings of the 24th ACM
National Conference, (New York, N.Y.), pp. 125-134, 1969.

Uttal, U. R., T.Pasich, M.Rogers and R.Hieronymus, Generative
Computer-Assisted Instruction in Analytic Geometry, Entelek,
Newburyport, Mass. (1970) 11. Uexler, J. D., "Information Networks
in Generative Computer-Assisted Instruction," IEEE Transactions on
Man-Machine Systems, MMS-11 (4), 181-190, (Dec, 1970)

