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1. INTRODUCTION 

Some of the recent work in computational complexity has dealt with 

the number of arithmetic operations needed to evaluate a polynomial or a 

polynomial and its first derivative [B072J, [MU71], [PA71]. Here we 

consider the evaluation of a polynomial and its first m derivatives and, 

in particular, the calculation of all the derivatives. 

Let P denote a polynomial of degree n. Define a normalized derivative 

as P^/i! • The normalized derivatives are commonly needed for applications 

(Section 7)• When we refer to derivatives in this paper we always mean 

normalized derivatives. We consider P itself to be the zeroth derivative P ^ 

All arithmetic operations are counted. A multiplication or division 

is denoted by M/D. Preconditioning is not permitted. 

Prior to the new results reported here, the best algorithm for computing 

all the derivatives was the iterated use of Horner's rule (synthetic 

division), which requires ̂ n(n+l) multiplications and the same number of 

additions. (The iterated Horner's rule is defined in Example II of Section 5) 

We give a new algorithm which computes all the derivatives of a 

polynomial in 3n-2 M/D. Unlike many algorithms which reduce the number of 

multiplications required to calculate some function, this algorithm is 

does not increase the number of additions. If n is odd, we give an 

algorithm (Example VI of Section 5) which computes all derivatives in 

3n-3 M/D. 

Both these algorithms belong to a family of algorithms for computing 

the first m derivatives. All the algorithms in the family require the 

same number of additions as the iterated Horner's rule for the first m 

derivatives. 
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Since n is the optimal number of multiplications for evaluating P 

alone, 3n-2 M/D is within a constant factor of optimality. Although 

we have no optimality results for derivatives, we can report related 

optimality results. We show that the calculation of either a^ 1, i=1,...,n 

or x S * ^ (x) /i!, 1=0,...,n in 2n-1 multiplications is optimal. 

We summarize the contents of the paper: in Section 2 we present the 

algorithm for computing all derivatives in 3n-2 M/D. A family of splitting 

algorithms for computing the first m derivatives and arithmetic operation 

counts for these algorithms are given in the next two sections. In Section 

5 we obtain three known algorithms, two new algorithms, and one algorithm 

very similar to a recently discovered technique as special cases. Optimality 

results are presented in Section 6. We close by giving 

applications of these algorithms. 

i 
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2. AN ALGORITHM FOR CALCULATING ALL DERIVATIVES IN A LINEAR NUMBER OF 

MULTIPLICATIONS 

In this section we exhibit an algorithm for computing a polynomial 

and all its derivatives at a point x in a number of M/D which is linear 

in the degree of the polynomial. Let 

n i 
P(x) = T. a x 

1=0 n " 1 

Algorithm 
-1 n-i-1 . n - -*£± = a i + ]x , 1=0,1 , . .. ,n-1 

TJ = a Qx n, j=0,l,...,n 

T i = TiZl + T l _ r J=0J,...,n.l, i=j+1,...,n 

This is a special case of a one-parameter family of algorithms presented 

in the next section. We show there that 

T n = p ( j >
!

( x ) x j, j = 0,1,...,n-1 

2 n 

Since x ,...,x may be obtained in n-1 multiplications while 

a^x11,..., a^ ̂ x may be obtained in n multiplications, the T^ may be 

obtained in 2n-l multiplications. We show in Section 6 that this is 

optimal. The derivatives P^(x)/j!, j=l ,... ,n-1 may then be obtained 

in n-1 divisions. Since P^(x)/n! = a Q, it need not be computed. Thus  

this algorithm yields all the normalized derivatives in 3n-2 M/D. 

Consider the matrix of T^ with i and j indicating row and column 

index. The derivatives may be calculated in increasing order by calculating 

the matrix by columns or in decreasing order by calculating the matrix by 

diagonals. These two variations have identical roundoff properties, since 

they produce the same chains of intermediate results. No rounding error 

analysis has yet been performed. 
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3. A FAMILY OF SPLITTING ALGORITHMS 

We study a family of algorithms for computing the first m derivatives 

of a polynomial. Assume, without loss of generality, that 

n+1 • p q 

Define 

s(j) » (n-j) mod q , j=*0,l,...,n 

Algorithm 

(3.1) T"1 = a
i + 1

x 8 ( i + 1 ) > i=0,l,...,n-l 

(3.2) = a 0 x s ( 0 ) , j=0,l,...,m 

(3.3) T* - ijlj + ^ i X3(M)-s(i-j-l) +l ^ i = s j + 1 _ . , n 

We show that this recurrence may be used to compute the derivatives. 

The key is the following theorem. Let C(k,j) denote binomial coefficients, 

Theorem 

(3.4) i k«j 0 V" , J / oi-k' 

Proof In the triangle where they are defined, the T| are uniquely determined 

by the starting values (3.1), (3.2) and the recurrence relation (3.3). We 

need only verify that the T| given by (3.4) satisfy the starting conditions 

and the recurrence." 
The starting conditions are satisfied since 

T^ 1 - x s < 1 + 1 > J _ l C < k . - » » 1 . k * f c f l - x * W + 1 ) » t + 1 . •!•><* C(-l,-l)-l. C(k,-l)-0 

Tj - x'«>,l 1C( k. J). J^W< 0>^ 

i 
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The recurrence is satisfied since 

T j TJ-1 s(i-j) ' i 
k= 

-•< 1-»* , 1£ 1c( k.j>. 1, kx k- ] 

k=j 1 - 1 

s(i-j) -s(i-j-1)+1_,j =x , 

which completes the proof. 

Corollary 

T j = P ( j )(x) x j mod q 
n j! 

Proof 

Using the properties of s(j), the recurrence may be written as 

T-l = 0 s(i+l) . n i „ n T i * ai+i x » i-0,1,...,n-l 

= ^ x ^ 1 , j=0,l,...,m 

= T^J + T ^ , (i-j) mod q ̂  0 

Ti = ^-l + ^ - l ^ • m ° d q = °* lm°>"-*m* l-j+l.....n 

The following pseudo-Algol program implements the algorithm.. Assume 

still that n+1 = p q. Further let 

m =• r q + s 

where r and s are obtained by division of m by q. In the interest of 

clarity, an n+2 by m+2 element array is used to develop the derivatives. 
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It is clearly possible to rewrite the program to use only about n storage 

locations. 

begin 

[x is the point of evaluation (x^O) , a(i) are coefficients] 

[x(i) will be x 1, T(i,j) will be TJ] 

x(0) <-1 

x(l) <-x 
for i = 2,3, ..., q 

x(i) + x * x(i-l) 

[powers of x require q-1 multiplications] 

for i - 0,q, 2q, ..., (p~l)*q 

begin 

for k - 0, 1, •••, q-2 

T(i+k-l,-l) + a(i+k)*x(q-k-l) 

[inner loop requires q-1 multiplications each time] 

T(i+q-2,-l) «- a(i+q-l) 

[multiplication by coefficients requires total of p*(q-l) multiplications] 

end 

[entire initialization requires (p+1)(q-1) multiplications] 

for j • 0,1, .•., m 

begin 

T(j.j) + T(j-l,j-l) 
for i - j+1, j+2, n 

if (i-j) mod q » 0 then 
T(i,j) T(i-l,j-l) + T(i-l,j) * x(q) 

else 
T(i.j) + T(i-l,j-l) + T(i-l.j) 

end 
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[recurrence requires (nH-1) (n--j m) additions and (mfl) (p-r-l)-hj q-r(r+l) 

muX t ip1ic at ions] 

[T(n,j) is now x j m ° d q P(j)(x)/j!] 

for j = 0,q, 2q, (r-1)*q 

for k = 1,2,..., q-1 

T(n,j+k) <-T(n, j+k) /x(k) 

for j = 1,2,..., s 

T(n,r*q+j) *-T(n,r*q+j)/x(j) 

[m-r divisions used to obtain normalized derivatives] 

end 
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4. ARITHMETIC OPERATION COUNTS 

Recall that we wish to calculate the first m derivatives of a polynomial 

of degree n. As above, let 

n + 1 = p q , m = r q + s 

where r and s are obtained by division of m by q. It can be shown that 

the family of algorithms uses (m+l)(n-|-m) additions, independent of the 

parameter q. It uses the following number of M/D: 

(p+1)(q-1) multiplications for initialization, 

(m+l)(p-r-l) + j q r(r+1) multiplications for the recurrence, 

m - r divisions to calculate P ^ (x)/j ! 

Let f^ n(q) denote the total number of M/D required to calculate the first 

m derivatives of a polynomial of degree n if the splitting q is used. Then 

(4.1) f m n(q) = n-1 + q + m(ttfl) - (n*2)r + j q r(x+1) 
q 

The algorithm can be slightly improved in two cases. If all n 

derivatives are required, P ^ (x) /n! = â  and it is not necessary to compute 
a-1 P ( n )rx) 

it from x H T 1-^- > so one division is saved. If q = n + 1 , it is not 
n! 

necessary to compute x , so one multiplication is saved. These special 
cases are not reflected in the function f (q) . — m,n 

Given m and n, the best choice of q can be determined by minimizing 

f (q) subject to the constraint that q be an integer. Analysis of best m,n 
splittings as a function of m and n will be reported in a future paper. 
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5. SPECIAL CASES 

3-Y choosing particular values of m and q, we specialize the algorithm 

and operation count formula of the last two sections. The first three 

algorithms are known and are included for comparison. The fourth algorithm 

is very similar to an algorithm discovered by Munro [MQ71]. The last two 

algorithms are new. 

I. m » 0, q - 1 

TT 1 - a ± + 1 , 1=0,1,•.•,n-l 

T° = a 

Ti * Till + Ti-1 *' 1 = 1 '•" , n 

P(x) = T° n 
This is Horner's rule and requires n additions and n multiplications. 

1 1• m « n, q • 1 
T" 1 = a ± + 1 , i=0,l,...,n-l 

TJ = a Q , j=0,l,...,n 

Ti = Ti-1 + Ti-l X • J-0.1....tn-lf i-j+l,...,n 

? ( j ! ( x ) - , j=0,l,...,n 

This is the iterated Horner's rule and requires n (n+1) additions and 

1 n (n+1) multiplications. 

III. m • 0, q - n + 1 

T i - a
i + 1

x > i-0,1,.•.,n-l 

n 
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T? » T'^ + T0

±_± , i-1 n 

P(x) - T° 
This is the "naive" way of evaluating a polynomial by calculating all 

the monomial terms first. The general specification of the algorithm 

requires n additions and 2n multiplications; however, in this case 

x^ • x n +^ is never used, so 2n-l multiplications suffice. 

IV. m = 1, q • i/rt+T = a 

T^ 1 = a 1 + 1 x s ( 1 + 1 ) , i - 0,1 n-1 

- a 0 x a _ 1 , J-0,1 

i - ̂ i + ^f*™-™-**1 . j-0.1. 

p ( 3 )(»> = X"J TJ 1-0 1 

The recurrence may also be written as 
T i ' ^-l + ^-l » m ° d ° * ° 

TJ = T|~* + T ^ - j X 0 , (i-j) mod a - 0 

This is a new algorithm for computing P(x) and P*(x). It requires 2n-l 

additions and n-1 + 2 /n+1 M/D. 

For simplicity of exposition, we have assumed that n+1 is the square 

of an integer. If this is not the case, q may be taken as approximately 

vn+T. 

The calculation of P(x) and P'(x) by the iterated Horner's rule 

requires 2n-l additions and 2n-l multiplications. Munro [MU71] gives 

an algorithm for computing P and P' which he asserts requires 2n + 2v£ 

additions and n + 2^ multiplications. Our algorithm uses about the 
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same number of multiplications but fewer additions. Our algorithm is 

very similar to Munro's, but we have not performed a detailed analysis 

of the differences. 

V. m £ n , q = n + l 

n—1 -1 . - , , 
Ti " a i + 1x , i-O,!,...^-! 

n ^ » a Qx" , j«0,l,.• • ,m . 

Ti " ^-l + ^-l 9 J-O.lf-tfflt l-J+l,...,n 

P^(x) -i 1 
j i = x JT^ , j=0,l,...,m 

This algorithm requires (m+1) (n-ln) additions. The predicted number of 

M/D is f (n+1) « 2n+ra, but x n + 1 is never used, so 2n+m-l M/D will suffice, m,n 
Further, if m * n, P^/n! • a Q so we can obtain all n derivatives in 

2n (n+1) additions and 3n-2 M/D. This special case was presented in 

Section 2. 
VI. Let n be odd, m » n, q • 1 (n+1) 

This algorithm calculates all derivatives in jn (n+1) additions and 
3n-3 M/D. 
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6. OPTIMALITY 

We shall prove that the calculation of the x^P^^(x)/j!,, j=0,...,n 

in 2n-1 multiplications, as done by the algorithm of Section 2, optimizes 

the number of multiplications. Before proving this result we summarize 

what is known on optimality with respect to additions, multi­

plications, and total arithmetic operations. 

If m = 0, Horner's rule (Example I of Section 5) optimizes both 

additions and multiplications. Furthermore, Borodin [B071 ] has shown it 

is the only algorithm which optimizes additions and multiplications. 

If m = 1 , the new algorithm given in Example IV of Section 5 requires 

n-1 + 2Vn+1 M/D. Munro's algorithm requires about the same number of M/D. 

These are best algorithms known for P and P f. 

If m = n, the new algorithms given in Examples V and VI, which 

require 3n-2 M/D and 3n-3 M/D (for n odd) , respectively, are the best 

algorithms known. 

All the splittings require (mfl) (rt-j m) additions. For m = 0, this 

reduces to n additions which is known to be optimal. For m = 1, this 

reduces to 2n-l additions which Kirkpatrick [KI71] has shown to be optimal. 
If m = 0, 2n arithmetic operations are optimal. If m • n, 

Borodin [BO72a] has shown that a polynomial and all its derivatives 
3 

can be evaluated in 0(n log n) arithmetic operations. Our algorithms 
1 2 

do this calculation in x n + 0(n) arithmetic operations. Since 
2 3 3 

n < n log n for n < about 10 , Borodin's result pertains only asymptoti­
cally. The optimal number of arithmetic operations for both n small and 
n large is open. 



-12 a-

We now consider the optimality of the evaluation of x JP k j ; (x)/j ! , 

j=0,1 ,Vk.,n, with respect to multiplication. First we shall require a 

result which is interesting in its own right. We use the notation d(V) 

to denote the degree of the polynomial V. 

Theorem 

Given a number x and n arbitrary numbers a^, ..., a^, the computation 

of a1x, a^x11 using multiplications and additions requires at least 

WIT US2A8Y 
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2n-l multiplications. Furthermore, if only 2n-l multiplications are used, 

it is impossible to evaluate a^x, ^x 1 1, Q(x) , for any polynomial 

Q3d(Q)>n. 

Proof 

The proof is by induction on n. The theorem is certainly true for 

n - 1. 

Assume the theorem has been proven for n • L. Let aT (x) denote the 

set a^x,..., a^x^. We shall first show that 2L+1 multiplications are 

required to evaluate a^+^(x). By the inductive hypothesis 2L-1 

multiplications are not enough. We now show that 2L multiplications are 

not enough. The most general form involving which can be built 

without multiplications involving a
L + ^ is ̂ L+l + u^ x^ w ^ e r e K * s a n 

integer and U(x) is a polynomial which is independent of Let 

(6.1) T(x) = ^i aL+l + U l ( x ) ] fc&hhl + U 2 ( x ) ] 

be the first multiplication in the chain of operations leading to 

a ^ 1 . Then 

(6.2) T(x) - C + a L + 1Z(x) + W(x) 

where 
C = K ^ a J ^ > Z(x) » K ^ x ) +K 2U 1(x) , W(x) » U1(x)U2(x) 

If 3(Z)^L+1, then by the inductive assumption, the evaluation of 

a L(x), Z(x), T(x) requires 2L+1 multiplications. If 3(Z) < L+l, then 

the evaluation of <*L(x) , T(x) requires 2L multiplications and another 

multiplication is required to evaluate aL+2. x L +^* H e n c e w e have shown 

that the evaluation of a
L +^( x) requires at least 2L+1 multiplications. 
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Suppose now that exactly 2L+1 multiplications are used. The induction 

is complete if we show it is then impossible to evaluate a
L-|-i^x^> Q(x)> 

for any polynomial Q3 3(Q) > L+l. We use the notation (6.1), (6.2). 

We consider three cases depending on 8(Z). 

Case 1. 3(2) > L+l. Then the evaluation of <*L(x), Z(x), T(x) requires 

2L+1 multiplications. T(x) has a term in a^ + 1x y, y > L+l. To extract 

aL+^xL+^" from T(x) requires another polynomial depending on a ^ j ^ w h ^ c ^ 

is impossible. 

Case 2. 8(Z) = L+l. Then the evaluation of crL(x), Z(x), T(x) requires 

2L+1 multiplications. If S(W) = L+l, no polynomial of degree greater than 

L+l has been produced. If 9(W) = y > L+l, another polynomial of degree y 

must be available and this is impossible. 

Case 3. 8(Z) » y < L+l. Then the evaluation of ^(x), T(x), requires 

2L multiplications. We may write 

T(x) = ^ 4 . ^ + V(x) + W(x) 

where 8(V) < y. If 8(W) ̂  L+l it is impossible to evaluate a polynomial 

of degree greater than L+l and extract aL^ x^ +^" w ith just one more multip­

lication. If 8(W) > L+l it is impossible to produce aL+^xL+"'" and extract 

it with just one more multiplication. 

Thus with 2L+1 multiplications it is impossible to evaluate 
al Xl **** aL+l x L +^ • *^x^ a n y P°ly n o mi al Q9 3(Q) > L+l. This completes 
the proof and the theorem. 

Theorem 

The evaluation of x^P^(x)/j!, j-0,1, ...,n, requires at least  

2n-l multiplications. 
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Proof 
By the previous theorem, the calculation of â x11"-*, j=0,1 ,... ,n-l 

requires 2n-1 multiplications. The x JP ^ (x) /j ! can be expressed in terms 

of the a^x11"^ as a triangular linear system with integer coefficients, 

with unity multiplying the a^xn"J. This system can be solved for the 

a^x11"^ as linear combinations of the x ^ P ^ (x)/j ! with integer 

coefficients. If the x^P^^(x)/jr could be calculated with less than 

2n-1 multiplications, then so could "the ajX n"^ which contradicts the 

previous theorem and completes the proof. 



-16-

7. APPLICATIONS 

Polynomial derivatives often occur in applications of Taylor series, 

which, of course, involve normalized derivatives. 

As an example we consider the problem of shifting the zeros of a 
n i 

polynomial, given its coefficients. Let P(t) - I a t have zeros 
i-0 

A-,. • . , X • Then 
i n / , V 

n P ( i )(x) i Q(t) = P(t+x) = Z * . t
 W t 1 

i-0 1 1 

has zeros A--x,..., X -x. 
1 n 

Shifting of zeros is a key ingredient in what is called Horner's 

method for solving polynomial equations. Horner's name is attached to 

three algorithms: nested evaluation of polynomials, calculation of all 

derivatives by the iterated "Horner's rule", and a method for solving 

polynomial equations. Ironically, he was anticipated in each of these 

by other workers (Traub [TR66, pp. 298-299]). 

Horner's method for solving polynomial equations is a digit-at-a-time 

technique for calculating polynomial zeros. Although Horner's method is no 

longer competitive with modern zero finding algorithms, zero shifting is 

still a useful technique. Stewart [ST71] has performed an analysis of the 

effect of rounding errors in the iterated Horner's rule and concludes that 

zeros near the shift are not unduly perturbed. No rounding error analysis 

has yet been performed on the new algorithms of this paper. 
Finally we observe that sometimes it is the x^p^^(x) /j | rather than 

the derivatives which are needed. Let 
v. = x i P ( i ) (x) . 

i! 
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Many one-point iterations (Traub [TR64, Chapter 5]) can be written in terms 

of the v . v-Thus Newton iteration is 

« = x (1 - ^0. 

and the third order iteration of Euler type is 
2 

* " x ^ \?-\J vi 
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