
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PROGRAMMING SYSTEMS STUDY GUIDE

August, 1972

A. ISL Habermann

A. K. Jones

J. M. Newcomer

^ ' " c o n c e p t ! ' "l^LTZl "LI*' S , r U C t u r e s a n d Programming
studied more fruitfully if this studi l« „ p r ° S r a , m m ' n g s y s , e m s c a n b e

A Programming System transforms an underlying machine into one that
provides facilities to write and run programs in a more suitable environment.
Such an environment suppresses the "constant" aspects of programmming,
i.e., those aspects which do not vary from task to task; it allows the
programmer to concern himself only with those issues relevant to
programming his algorithm. Such systems and their uses are:

Assemblers & Compilers
Allow the use of symbolic notation more consistent with the
description of algorithms, and provide a mapping from this
notation into machine instructions.

Editors
Provide the capability for facile manipulation of symbolic
representation of text.

Loaders
Allow separate compilation and modification of programs which
may be combined only when (or as) needed.

Debugging facilities
Permit the programmer the use of symbolic notation when
investigating the state of a partially executed object program.
In this sense, debuggers provide an inverse mapping of the
compile function; the completeness of this mapping is usually
used as a measure of the power of such a facility.

Procedure libraries
Provide a common pool of often-used functions which can be
shared among many users.

Device management systems
Veil device characteristics irrelevant to most programs and
permit multiplexing of shared devices where applicable.

File systems
Allow programmers to share information by means of a uniform
and reliable facility for storing programs and data for later use.

Multiprogramming systems
Multiplex hardware resources—both processors and
peripherals—in order to gain multiaccess and the sharing of data
and equipment dynamically.

I. Data structures

There exist a number of information-containing structures which are
used both in implementations and in precise descriptions of programming
systems. Understanding the format of these structures, the implicit
relationships between elements within a single structure, and the algorithms
used to access and manipulate the structures is crucial to the understanding
of programming systems.

Algorithms and concepts which are pertinent to data structures
valuable for programming systems are further defined and discussed in the
cited reference pages.

A. Linear Structures [Kn68 234-45]

Stack—a linear list for which all insertions and deletions are made at
one end of the list.
Terms—Push, Pop, LIFO [Hop69 11], stack pointer [Kn68 240]

Queue—a linear list for which all insertions are made at one end of
the list; deletions and references are made at the other end.
Terms—Insert element, Delete element, FIFO

String—an ordered sequence of elements which may be altered before
or after any element. [Hop69 5]
Terms—Concatenate strings, Break strings apart, Pattern match

Representation of Structures
Table [Kn68 240-5]

Table lookup, Key [Hop69 16-19]
Hash table [Hop69 19-28, Weg68 113-20]

Linked list [Kn68 251-8]
Circularly linked list [Kn68 270-2]
Doubly linked list [Kn68 278-80]
Vector—array [Hop69 12-15]

Dope vector, lliffe vector

T r " ^ 2 t m *M T ° f • " ° d e s ! u c h t h a t a) o n e n o d e i s designated
root(T) b) the remaining nodes are partitioned into disjoint sets,
each set being a tree. [Kn68 305-13] '

Traversal algorithms [Kn68 315+]

Threaded lists and trees [Kn68 319-22]

Representation of trees [Kn68 322-7]

Plex [Hop69 9-10]

Garbage collection [Kn68 406-414]

Problems: Using these structures and their associated algorithms is
the best way of learning them. You should be conscious of
using a variety of structures and efficient algorithms for
accessing them in the several programming problems done in
other portions of this course. ' • •

Further problems from Knuth, Chapter 2 [Kn68]
p238, problems 1,2,3
p248, problems 2,8
p266, problem 7
p294, problem 1,2
p328, problems 2,4,5

II. Assemblers, Compilers, and Loaders

Assemblers, compilers, and loaders each abstract the
machine-dependent aspects of a program into a symbolic representation, and
postpone as long as possible the binding time of that representation, i.e.,
the point at which the symbol becomes fixed to a machine representation.
This abstraction is partially realized by the use of names. Assemblers use
names to represent machine operations, data locations, and data itself.
Compilers go further, and allow symbolic representation of computation
<A«-B+C) and control (for I <- 1 step 1 until N do...). Loaders allow one to
defer binding names to absolute machine addresses by allowing some names
to be bound relative to a base (relocatable address) and others to be left
unbound. The loader then has the responsibility of making relative
addresses absolute and locating (usually by library search) bindings for
unbound names.

The function of assemblers, compilers, and loaders is to map some
representation into another representation. For example, an assembler maps
operation names (e.g., "ADD") into their machine representation (e.g., 270
octal), a compiler maps arithmetic and control statements into appropriate
sequences of instructions, and a loader maps relative addresses into absolute
addresses.

Assemblers

An assembler is a mapping from a set of strings in one alphabet to a
set of strings in another alphabet [Mea67], i.e.,

A: alphabet* -> alphabet2*

Note: If X denotes the alphabet [a,b] then X* denotes the
set of all strings composed of the symbols in X, i.e.[the
null string, a, b, aa, ab, ba, bb, aaa, . . .]

As an example, opcode names are mapped from a mnemonic representation
("ADD", "MOVEM", "FSBR") to their machine code representation (octal 270,
202 , and 154 respectively for the PDP 10).

A more powerful use of assemblers is to map strings representing
symbolic data into its internal representation e.g., allowing the user to
specify "ABC™12*5 M and then mapping all occurrences of the string ABC
into the integer value 60. Names may be allowed to take on values of
data or instructions ("labels"), or to be declared unbound ("EXTERNAL"), and
thus free ourselves from the requirement of needing to know the absolute
position of the information in advance.

data names -> numbers representing absolute, relative, or unbound
addresses.

For further discussion of assemblers, see [Weg68 107-124].

Problem: A typical problem in one-pass asemblers is when a reference
to a label is made, but the label has not been seen. We cannot pass over
the source code twice (once to locate labels, once to generate code), so the
address to be used for the label is unknown. Your mission, should you
decide to accept, is to devise a scheme for resolving the forward reference
problem:

GOTO A

A:

You may assume for simplicity that instructions are laid down in memory
directly where they will be executed, and these instructions will all be
available (i.e., you can look at any instruction once it is laid down; only the
source may not be re-examined). You may want to implement such a
scheme in Algol or APL, using some notation like ">A" meaning "GO TO A"

6

and ":A" defining A. Any other symbols may be assumed to be random
instructions and only fill space. An array or vector may be used to
represent memory.

7

Compilers

A compiler is a mapping from one language into another much in the
manner of an assembler. However, in the case of a compiler the source
language (Ls) and the target language (Lt) are not necessarily as closely
related as in an assembler.

C: Ls -» Lt

One of the first operations a compiler performs is the mapping of
names into a more easily manipulated information structure. This is done by
constructing a symbol table. A good discussion of tables and their mapping
functions may be found in Hopgood [Hop69 16:28] and Wegner
[Weg68 113-20] . Basically one provides a mapping function which maps
names into integers. These integers may represent memory addresses, table
indices, or similar information, but for a given name the mapping must be
unique [note this does not eliminate hash coding, since the hash algorithm
provides a unique mapping by finding an available "slot"]. One also
provides an inverse mapping (usually much simpler) by which the attributes
of the name may be obtained, including the original sequence of characters
which constituted it.

In addition to the attribute which is the character string representing
the name, we may also include in the symbol table type information (such
as integer, real, etc.), scope information (local, global, own, etc. and block
levels) and whatever relevant attributes may be required by the compiler
for the specific language. This function is referred to as lexical analysis
and the part of the compiler which performs it is the lexical analyzer. In
addition to mapping names into integers, all delimiters, operators, and
reserved words are mapped into some internal representation.

Example:
Lex: A -* 128

B -* 417
C -> 212

A compiler also maps infix expressions into some internal
representation, typically (but not necessarily) trees. If you are interested,
algorithms for accomplishing this may be found in Wegner [Weg68 237-44]
ami Hopgood [Hop67 45:64]. More advanced discussions may be found in
Rosen [Gra67, SB67,CS67]. Thus an expression such as

A + B * C

is transformed into the tree

8

A

B C

However, since the names have already been mapped into integers (as
in the previous example) the tree is actually stored as:

We should also note that the operators V and V have been
mapped into some internal representation; however, that is not relevant to
this example and hence the external representation is used for convenience.

Next, the internal representations of the names are mapped onto
machine addresses. The means of doing this depends on the machine, the
language, the attributes of the name, etc. For a static storage organization,
where all names have fixed locations, [e.g., FORTRAN], where one machine
word holds the information associated with a name, and where each name is
a scalar rather than an array, then we may assume we need as many
locations as we have names. If we start at some arbitrary point we can
assign ascending addresses for each name, e.g., the first name at location
1000, the second at 1001, etc.

In addition to the types of addresses produced by assemblers
(relative, absolute, and unbound), compilers may also produce addresses
which are relative to a dynamic base, e.g., a stack pointer. This type of
address is used when accessing local-type names in block-structured
languages such as PL/1, ALGOL or BLISS. The implementation technique ,
known as "display", is described in detail in [Ka67] and [RR64].

Given bindings for names, we may now proceed with code generation.
In generating code the tree is traversed in some order which depends on
the code generating and optimization algorithm. For trees representing
simple expressions we may use endorder traversal [Kn68 316], evaluating
each subtree and then applying the root operation. The first transformation
of the tree (for a single-accumulator machine) would produce:

/ A I \
128

417 212

\

9

New tree: Code:
LOAD B
MULT C

acc

The second transformation discovers that the accumulator contains a
partial result and thus adds only one more line of code:

Other methods of code generation are discussed by Graham [Gra67]
and Hopgood [Hop69].

The following problems are given for the interested reader to pursue:

1) Transform the following expressions into their tree representations:
a) A + B * C / D
b) X + Y - Z - A
c) A • (B + C) / D
d) A + (B * C) - D
e) (X + Y) * (A - B)
f) A + (B * (C / D))

2) Note that by traversing the tree in endorder order we can obtain a
linear representation of the expression. This form is known as
postfix. Reverse Polish, or Polish string form (the latter names after
the Polish logician Jan Lukasiewicz). Expressions are normally written
in infix notation, where binary operators are placed between their
operands and unary operators precede their operands. Ambiguities
(such as A+B*C) are resolved by precedence rules or parentheses. In
prefix noation binary operators precede their operands, and in postfix
notation binary operators follow their operands. In addition to being
a parentheses-free notation (since it is unambiguous), in postfix
representation the operands and operators appear precisely in the
form required if a stack is used for evaluation. The rules for postfix
form are simple:

1) If x is a simple operand, then it is an expression.

2) If x and y are expressions, and * is a binary operator, then xy#
is an expression.

3) If x is an expression, and t is a unary operator, then xZ is an
expression.

New tree: Code:
LOAD B
MULT C
ADD A

acc

10

4) All expressions may be derived by application of rules 1-3.

a) By traversing the trees derived in problem 1, obtain the postfix
representation of the expressions.

b) By the use of the stack primitives PUSH and POP [Kn68 237-38], show
how a stack may be used to evaluate a postfix expression.

c) Devise an algorithm for converting infix expressions to postfix
expressions [RR64 149ff]. If you have time and/or interest, implement
this algorithm in your favorite language.

d) Devise an algorithm for evaluating postfix expressions. If you have
time and/or interest, implement this algorithm (you may implement it
as part of problem c if you did that, or by itself). For operands you
may allow single integers which take on their own value, e.g., 13+4*
would yield 16.

3) A simple hashing function can be described as follows: take the binary
integer representation of the string to be hashed (in the PDP-10' each
character is 7 bits wide), and multiply it by a "hash constant".
Choose a subfield of the resulting product as the index into the table.
For example, assume all identifiers are three characters long (21 bits
on the PDP-10). From the 42-bit product choose a subfield n bits
wide. This now gives an index into a table of size 2**n.

The choice of the hashing constant is very critical in this
scheme. We would like to hash the identifiers into as many unique
values as possible to prevent clustering, i.e., where several different
identifiers hash to the same value. If we choose a subfield of the
product, say bits 14-20 (numbering the rightmost bit 0), then a hash
constant of 1 (binary) will give us a hash which depends exclusively
on the first character, so that CAT, COW, CON, and CLA all hash to
the same value. Similarly, using hash constants of 10000000 or
100000000000000 will give hash values depending on the middle or
final letters respectively.

A short programming problem: using Algol, write a program
which does the following: N

1) Reads a string and converts it to an integer.

2) Multiplies the integer by some hash constant (you should leave
this variable so you can experiment with it).

3) Places the string in a symbol table, using a simple "if this slot
is full, use the next" strategy. Be sure to allow duplicate
strings to use the same slot. The table is considered circular,
with the first cell following the last.

11

4)

4) Keeps track of the number of tries required to find a vacant
slot in the table.

Extensions:
1) Study the effects of various hash constants on the performance.

2) Study the effects of other strategies to find vacant slots
(quadratic search, etc.).

3) Decide which hash constant is best for a) a table Mess than 502
full; b) a table more than 507. but less than 757. full; c) a table
more than 75% full.

4) Decide which search strategy is best for the same conditions as
in 3, above.

Advanced readings in compiler techniques include discussions of
displays [RR64, Ka67, Wu71b]; syntax analysis [SB67, CS67, Con63,
Gra67, FI63]; for hash coding [Weg68 113-20, Bell70, Day70, BK70}

12

Loaders

A loader is a program which takes the output of an assembler or
compiler and places it in the machine memory ready for execution. Not all
compilers require loaders; systems such as WATFOR and WATFIV generate
code directly in memory where it is executed.

A loader may be simple or complex. A simple loader may just read
in a paper tape containing addresses and data, and place the data where
the addresses specify. Such a loader may not require more than a dozen
or so instructions. A sophisticated loader accepts files containing programs
with relative (relocatable) addresses (relocatable programs), and performs
such operations as binding relocatable addresses to absolute addresses and
binding unbound names to addresses (which may be themselves relocatable).
Such a loader can accept a collection of programs and load them to form a
single program; in addition, other collections of programs may be given as
"libraries". These sets of programs are searched to locate bindings for
unbound names, such as subroutine names.

Programs known as linkage editors have most of the capabilities of
loaders, as well as editing capabilities which allow such operations as
changing the names of programs, subroutines, entry points, etc. However,
rather than producing a program in memory ready to execute a linkage
editor produces another relocatable program file. This technique may be
used to collect subprograms together in a single subprogram, thus reducing
the overhead in loading such a collection.

Because of the lack of adequate descriptions of loaders, the authors
have felt it advisable to include a short discussion here.

The most basic function of a loader is to transform relocatable
addresses into absolute addresses. When the loader begins loading a
collection, it initializes a variable containing the relocation offset to some
initial value. This may be the first free location after the monitor (in a
real-memory operating system) or zero (in a virtual memory system). While
reading the program file, this value is added to each relocatable address to
form an absolute address. When a program is completely loaded, the offset
is incremented by the length of the program and then the next program is
loaded in a similar manner. x

In addition, the loader must bind the unbound addresses to absolute
addresses. In. order to accomplish this, two lists are maintained by the
loader: those names still unbound, and those names which have been bound.
When an unbound name is encountered in loading a program, the bound
names list is examined. If the name appears on this list, it is given the
value to which it has been bound; if it does not appear, it is added to the
list of unbound names. The list of unbound names also enables the loader
to locate all locations which must contain the address to which each name is
bound. This is done very simply: for a single location, the unbound name
list contains the address of that location. For more than one location, the

13

unbound name list contains the address of one of the locations; this location
in turn contains the address of the next location, and so on. If an unbound
name already exists in the list, then the tail of its list is set to point to
the head of the current list, and the new list is pointed to by the table.

A name is bound to an address when a program containing that name
is loaded. The name may be either absolute or relocatable; in the latter
case the relocation offset must be added to its associated value. When a
name is bound, it is added to the list of bound names (and it must not
duplicate one already there with a different value). The list of unbound
names is then searched to resolve occurences of this name, if- any exist.

Upon completion of loading the programs specified by the user, the
unbound names list should be empty. If it is not, the loader will search the
libraries specified in an attempt to find bindings. If a program which
contains one of the unbound names is located, the loading process begins
again. Note that the new program loaded may itself contain unbound names,
and further searches may be required to resolve these.

After the libraries have been searched, if any unbound names remain
an error message is usually given and some standard action taken.

Problem: Study the forward reference problem under Assemblers.
Given that we cannot randomly access the code produced (since it has been
written on an output file) show what additions would have to be made to
the assembler and/or output to allow a loader to fix the forward references
at load time. Show what additional operations the loader must perform. If
you want, implement this scheme as an extension of the asembler problem
(i.e., you cannot access an array element lower than the current index of
your memory array).

14

III. Modularity

Modularity is the isolation of functionally separate aspects of a
system. It contributes to the understanding of complex systems, to the ease
of construction of large systems and to the ease of modifying existing
systems.

As an example, consider the compiler mapping discussed previously:

C: Ls -> Lt

We can break the compiler down into several components: the lexical
analyzer, the syntax analyzer, and the code generator.

The function of the lexical analyzer is to scan the input text
searching for delimiters, collecting names and storing them in the symbol
table, and mapping all names, delimiters, reserved words, operators, etc.
into some internal representation which can be processed efficiently by the
syntax analyzer. The output of a lexical analyzer consists (usually) of a
string of items called lexemes, which form another language, so we have:

Lex: Ls -» Lx

The syntax analyzer accepts the lexeme string, and after verifying
that the stream is structured according to certain specific rules (there are
many ways of doing this: [Hop69 45:64, Gra67, SB67, CS67]) produces
another internal representation of the source program. This may be Polish
strings, trees, a new lexeme string, or any combination of the previous.

Syn: Lx -> Li

Up to this point the representation may be independent of the
machine on which the program is to run (although this is not usually so).
The internal representation is now passed to the code generator, which
produces the actual machine repesentation:

Code: Li -> Lt *

As in this example, a program which performs a complex task may be
separated into several algorithms, each dependent on the existence of a
subset of the others and a well specified communication mechanism for
receiving input and exporting output, but not dependent upon what might be
termed the idiosyncracies of the implementations of other modules.

Each module can be constructed and except for these stated
dependencies may be shown to be correct without further regard for how
other modules perform their functions.

15

Modularity appears in many forms. A subroutine or procedure having
a well defined means for receiving input and returning output may be
modular. If so, it can be replaced by a new implementation observing the
same assumptions about communication of input and output, without
necessitating any change in the calling program. [Kn68 182-9]

Modularity is not inconsistent with extensive feedback or cooperation
between modules. Consider coroutines. Unlike subroutines which provide a
hierarical relationship with the caller above the called, coroutines are
symmetric—each routine may call any of the others. Only a single routine
is active at a time and when it is called, a coroutine continues from the
point at which it last called another of the coroutines [Kn68 190-6,
Weg68 324-28] . The first documented description of coroutines appeared in
[Con63]. Coroutines have been the rather elegant organizing principle in
two recent projects here: [Kru71] [Wu71a]

A third implementation of modularity is the process. A process
embodies an instance of execution of a program. Processes may be
independent or may cooperate with one another through use of an
interprocess communication facility. Since each process executes at an
independent rate, parallel processes are a natural vehicle for implementing
complementary functions which are not necessarily performed in sequential
order [Br69 18-20,27-35}

Further references may be found in [C0S71 M5.6, C0S71 M8.1]

Problem: Consider two tasks, production and consumption.

Producer code Consumer code
A: secure a buffer C: consume document

produce document release buffer
mark document for con

sumption
go to A go to C

Assume a pool of k (>1> buffers. Write a pseudocode program to relate
production and consumption as subroutines, coroutines and as parallel
processes. Do not concern yourself with the problems of 'producing a
document* or 'consuming a document.' \

-i-drfU..W , l.^Vi

16

IV. Concurrent Sequential Processes

Permitting more than one process to • execute concurrently in one
computer system may introduce interaction between the processes—either by
explicit wish of the programmer or implicitly through sharing of the
computer system resources. [C0S71 Module 3 (C0S71 is a plan for an
undergraduate course on operating systems principles. It contains both
prose description of important concepts and pointers into an extensive and
up to date bibliography. The whole document should be assumed to be an
extension of this study guide and should be read. Where interest or lack
of background require it, refer to some of the references Gited in C0S71
keeping in mind that this is to be a survey of the area of operating
systems with an emphasis on terminology and the major concepts involved,
not an in depth study of techniques to solve particular problems.)]

Two processes sequentially executing steps in their respective
programs are concurrent if at some instant both are beyond the initial step
but have not yet completed execution. [Dij65] [DvH66]

Associated with each process is an environment—all those variables
the process may potentially reference in its next operation. If several
processes share a common variable or data cell, care must be taken to
insure that the effect of one reference to the cell does not invalidate a
simultaneous reference to the same cell by another process. When two
processes require access to the same data with the possibility that it would
be modified during the access, the code used by each comprises a critical
section. Two processes may not simultaneously be in the same critical
section. This is the problem of mutual exclusion and requires that
operations on a datum which intrinsically take some duration of time, be
primitive or uninterrupted by another operation upon the same datum.
[Cos M3.2]

Another form of synchronization is required when one process
depends on another asynchronous process having completed some function.
No assumptions may be made about the rate at which a process executes.
It may therefore be necessary to delay one process pending notification
that another has completed the required action. The various forms of
synchronization are described in the COSINE report [C0S71 M3] and by
Dijkstra [Dij68bJ *

With synchronization is introduced the possibility of deadlock: a
process is waiting for an event which will never occur—e.g. two processes,
each waiting for the other to provide some information (circular wait)
[Hab69]. Deadlocks occur not because of programming errors in single
programs, rather because of combinations of mistakes in an attempt to cause
processes to cooperate.

Processes may require a communication facility in addition to the
synchronization facility so that the one or more sender processes may
deposit messages in a structure called a mailbox or a message buffer. The

17

one or more receiver processes may remove and read these messages.
Synchronization is required to provide cooperative use of the mailbox
(altering the state variables of the mailbox) and to prevent an overflow of
messages or an underflow (the attempt by a receiver to remove a message
from the empty mailbox.) [Br69 21-6] [S069]

To implement a problem solution using concurrent cooperatng
processes, two requirements must be met:

1) create a modular implementation of an algorithm for each process
2) specify precisely the interactions between processes

We have introduced synchronization and interprocess communication to
provide the well defined interactions between processes.

Besides providing a clear conceptual way of specifying complex
asynchronous algorithms, parallel processes are a convenient concept for
building multiprogramming operating systems—which permit efficient utilization
of hardware through concurrent use of peripheral devices and processors.
[Br69 18-20,27-35]

Problems:

1) Those included in Module 3 of C0S71.

2) Assume that the instructions 'set a variable', 'inspect a variable'
and 'exchange the values of two variables' are indivisible
operations, i.e., they can be considered as "timeless". Two
solutions for a problem are described below. One contains a
fundamental sin against reliable and correct system design.

The problem was to program two asynchronous processes, A
and B, which should operate in a specific part of their program on
a common data base, but the execution of these specific parts
should never overlap in real time. The given solutions are:

1. A: a :« 1;
if b then

begin while PR-BB do a:«0;
goto

end
execute specific part A;
PR :» BB;
a 0;

2. A: a :« 0;
exchange (a,L0CK)

if a * 1 then
begin while PR-BB go;

goto A ,
ends

execute specific part A;
PR : - BB;

exchange (a,L0CK);

goto A;
goto A

The initial value of LOCK - 1.

18

The program for B is obtained in both solutions by systematic
changes of A, a, AA into B, b, BB. The question is to find out
which of the two solutions is the bad one and to explain why.

19

V. Operating Systems

The purpose of an operating system is to map one machine into
another.

0: Mr -» Mv

The real machine (Mr) consists of physical components and information
structures (core, disks, cards; disk records, tape records, etc.) while the
machine the user sees (Mv) deals in logical components and information
structures (virtual memory, files, records, etc.). It is possible by such
mappings to provide the user with a machine possessing more capabilities
than the actual physical machine, for example, as a timesharing system
provides a multiplicity of virtual machines which do not interfere with each
other, or a paging system allows a user to maintain an address space larger
than the amount of core storage that actually exists on the machine.

One of the prime means that an operating system has of accomplishing
this mapping is by allowing postponement of the time that certain bindings
are made. The actual binding time is dependent upon what is being bound:
logical devices may be bound to physical devices at the time they are
requested by the program, or they may be bound well in advance, such as
before the program is permitted to execute at all. An address in the
user's program may not be bound to a physical address until the instruction
fetch cycle begins. On the other hand, file names can be bound to a set
of physical records on some medium (drum, disk, tape) and retain that
binding as long as the file exists [C0S71 M5]. A user program may
request that a file be printed on the line printer, and may receive
confirmation of printing, although the printing is physically done long after
termination of the user program.

Another function which operating systems perform, device management,
is the mapping of physical information structures on the real machine onto
logical information structures on the virtual machine. Thus a user may talk
about •"files'' and "records'* without needing to be aware of the physcial
representation of such structures. Indeed, information may exist on several
physically unlike media such as drum, disk, tape, or cards, and yet appear
precisely the same to the user.

An operating system provides for efficient use of the base machine
Mr by managing the available resources to optimize their usage. For
example, a multiprogramming system optimizes processor usage by allowing
some processes to proceed when others cannot and by encouraging activity
to proceed in parallel on peripheral devices [C0S71 M7]

In a similar manner other preemptible resources may be shared among
several processes: core storage, channel usage, etc. In addition to allowing
more effective use of these resources, there is the possibility of a deadlock
condition ensuing [Dij68b, Hab69, Cos71 M3.6].

: .idtir-*:

20

An important distinction must be made between a mechanism which is
an algorithm to perform an operation, and a policy —an algorithm which
decides if or how to apply such mechanisms. Thus we have a mechanism
which gives a processor resource to a process in order to let the process
execute and a scheduling policy to decide which of the competing processes
should receive the processor next. We have P and V operations and a
policy which dictates the selection of the next process to pass a semaphore.

In general the designer of a system fixes the mechanisms but permits
policy variation (such as parameterizing a scheduler). An even more flexible
design would allow changing the entire modular policy, not merely the policy
parameters.

Problems: We have tried to name and roughly describe some of the
major concepts and concerns of operating systems. Reading some overviews
of specific systems may knit together some of these ideas. [Dij68a] and
[Br70] rank among the "clearer" of such overviews.

Memory management problem—Read [Wil68 35-47] and these references
from the C0S71 bibliography: Denning(21) [highly recommended], Randell(70),
Belady(4). Be able to define: segment, page frame, demand paging,
relocation, working set, thrashing, swapping, virtual memory, placement policy,
migration.

Memory protection issues—Read [Wil68 49-59].

21

B I B L I O G R A P H Y

[Bell70] Bell, J. R. "The Quadratic Quotient Method: A Hash Code
Eliminating Secondary Clustering -, CACM 13,2 (Feb 70),

[BK70] Bell, J. R. & C. H. Kaman, The Linear Quotient Hash CodeM,
CACM 13, 11 (Nov 70).

[Br69] Brinch-Hansen, P. RC4000 Software Multiprogramming System.
A/S Regnecentralen, April 1969.

[Br70] Brinch-Hansen, P. T h e Nucleus of a Multiprogramming System*1.
CACM 13 (April 70) 238. System

[Con 63] Conway, M. E. "Design of a Separable Transition-diagram
Compiler", CACM 6, 7 (Jul 63) pp 396-408

[COS71] COSINE Committee "An Undergraduate Course on Operating
Systems Principles". Commission on Education of the National
Academy of Engineering. June 71.

[CS67] Cheatam, T. E. & K. Sattley, "Syntax Directed Compiling" in
Programming Systems and Languages. Saul Rosen ed.

[Day70] Day, A. C. "Full Table Quadratic Searching for Scatter Storage",
CACM 13,8 (Aug 70).

[Den67] Dennis, J. B. Segmentation and the Design of Multiprogrammed
Computer Systems in Programming Systems and Languages. Saul
Rosen, ed.

[DvH66] Dennis, J. B., and van Horn, E. C. Programming Semantics for
Multiprogrammed Computations. CACM 9,3 (Mar 66).

[Dij65] Dijkstra, E. W. "Solution of a Problem in Concurrent Programming
Control". CACM 8,9 (Sept 65), 569.

[Dij67] Dijkstra, E. W. "Recursive Programming" in Programming Systems
and Languages. Saul Rosen ed. x

[Dij68a] Dijkstra, E. W. T h e Structure of THE Multiprogramming System".
CACM 11,5 (May 68) 341-6.

[Dij68b] Dijkstra, E. W. "Co-operating Sequential Processes", in
Programming Languages. F. Genuys, ed,

[FI63] Floyd, R. W. "Syntactic Analysis & Operator Precedence", JACM
10,3 (Jul 63).

22

[Gra67]

[Hab69]

[Hop69]

[Ka67]

[Kn68]

[Kru71]

[Mea67]

[RR64]

[SB67]

[S069]

[Weg68]

[WII68]

[Wu71a]

[Wu71b]

Graham, R. M. "Bounded Context Translation" in Programming
Systems and Languages, Saul Rosen ed.

Habermann, A. N. "Prevention of System Deadlocks". CACM 12
(July 69).

Hopgood, F. R. A. Compiling Techniques

Kanner, K, P Kosinski, & C. L. Robinson, "The Structure of Yet
Another Algol Compiler" in Programming Systems and Languages,
Saul Rosen ed.

Knuth, D. The Art of Computer Programming Volume 1

Krutar, R. Conversational System Programming. Ph. D. thesis,
C-MU 1971 (to be published)

Mealy, G. H. "A Generalized Assembly System" in Programming
Systems and Languages. Saul Rosen ed.

Randell, B. & L. J. Russell, Algol-60 Implementation

Samelson, K. & F. L. Bauer, "Sequential Formula Translation" in
Programming Systems and Languages, Saul Rosen ed.

Spier, M. J. & E. I. Organick, "The MULTICS Interprocess
Communication Facility", Proceedings of the Second Symposium on
Operating Systems Principles Oct. 1969.

Wegner, P. Programming Languages, Information Structures, and
Machine Organization. 1968

Wilkes, M.
1968.

Time-Sharing Computer Systems Am. Elsevier

"A Software Laboratory" (preliminary

Wulf, W. A., et. al. BLISS Reference Manual. C-MU, April 1971

Wulf, W. A., et. al
report) C-MU, 1971

23

I N D E X

Address, relative 4, 8, 12, 13
Address, relocatable 4, 8, 12, 13
Array 2
Assemblers 1, 4, 5

Bibliography 2 1 , 22
Binding time 19
Bindings 8, 19

Circular list 2
Clustering 10
Code generation 8, 9, 14
Code generator 14
Compilers 1, 4, 7
Concurrent processes 16
Coroutines 15
Critical section 16

Data structures 2
Deadlock 16, 19
Debugging facilities I I
Device management 1, 19
Display 8, 11
Dope vector 2
Doubly-linked list 2

Editors 1
Expressions, infix 9
Expressions, postfix 9
Expressions, prefix 9
Expressions, tree representation of 7

File systems 1, 19
Files 19
Forward references 5, 13

Garbage collection 3

Hash coding 2, 7, 11
Hash constant 10

lliffe vector 2
Infix expressions 7, 9

Lexemes 14
Lexical analyzer 7, 14

24

Library, procedure 1, 12, 13
Library, program 1, 12, 13
Linear structures 2
Linkage editor 12
Linked list 2
List 2
List, circular
List, doubly-linked

2 List, circular
List, doubly-linked 2
List, linked 2
Loaders 1, 4, 12, 13
Lukasiewicz, Jan 9

Machine, virtual 19
Mailbox 16
Modularity 14, 15
Multiprogramming systems 1, 17
Mutual exclusion 16

Offset 12
Offset, relocation 12
Operating systems 19

P 20
Plex 3
Polish string 9, 14
Postfix expressions '• 9
Prefix expressions 9
Primitive 16
Procedure library 1, 12, 13
Processes 15, 16
Processes, concurrent 16
Program library 12, 13

Queue 2

Relative address 4, 8, 12, 13
Relocatable address 4, 8, 12, 13
Relocation offset 12
Reverse Polish 9

Semaphore 20
Sequential processes 16
Stack 2, 9
Stack pointer 8
String 2
Subroutine library 12
Symbol table 7
Synchronization 16
Syntax analyzer 11, 14

25

Table 2
Threaded lists and trees 2
Traversing trees 2, 8
Tree 2, 7, 8, 9, 14
Tree representation of expressions 7
Tree, traversing 8

Unbound names 5, 12

V 20
Vector 2
Vector, dope 2
Vector, lliffe 2
Virtual machine 19

