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1 . I n t r o d u c t i o n 

I n f o r m a t i o n i s o f t e n a g g r e g a t e d over s p a t i a l domains . The r e s u l t i s 

a s e t of domains w i t h s p e c i f i e d p r o p e r t i e s . Examples i n c l u d e a r c h i t e c t u r a l 

and e n g i n e e r i n g d e s i g n , where a domain may be a room or p h y s i c a l e n t i t y 

[ 2 ] , urban p l a n n i n g , where soc io-economic d a t a i s a g g r e g a t e d by census t r a c t s 

[ 4 ] , and c a r t o g r a p h y [ 1 ] . Most o f t e n , a s p a t i a l domain d e p i c t s a ( p o s s i b l y 

l a r g e ) p o i n t s e t . 

Many d i f f e r e n t d a t a s t r u c t u r e s have been used to d e p i c t s p a t i a l domains 

w i t h i n a computer [ 3 ] , [ 5 ] , [ 6 ] . Perhaps one of the s i m p l e s t i s the 

c l o s e d c u r v e . I n d e e d , fo r g r a p h i c a l output of domains on a p l o t t e r or 

ca thode r a y t u b e , the c l o s e d curve i s " n a t u r a l . " 

Fundamental o p e r a t i o n s on s p a t i a l domains a r e the s e t t h e o r e t i c o n e s , 

e . g . , the un ion , i n t e r s e c t i o n , and d i f f e r e n c e s . To d a t e , no e f f i c i e n t 

a l g o r i t h m s have been d e v i s e d for e x e c u t i n g a l l t h e s e o p e r a t i o n s on s p a t i a l 

domains when they a r e r e p r e s e n t e d a s c l o s e d c u r v e s . Some of the o p e r a t i o n s 

have been implemented for o ther d a t a s t r u c t u r e s , but they a r e c o m p u t a t i o n a l l y 

q u i t e e x p e n s i v e [ 1 ] , [ 6 ] . 

In t h i s p a p e r , we d e s c r i b e a s i n g l e a l g o r i t h m c a p a b l e of d e r i v i n g the 

un ion , i n t e r s e c t i o n , and d i f f e r e n c e s of two s p a t i a l domains , when they a r e 

r e p r e s e n t e d a s c l o s e d c u r v e s . The a l g o r i t h m i s g e n e r a l and can be a p p l i e d 

t o any two s e t s o f c l o s e d c u r v e s d e p i c t i n g s p a t i a l domains . M u l t i p l e 

o p e r a t i o n s a r e e a s i l y e x e c u t e d . The p r e s e n t a t i o n i s o r g a n i z e d a s f o l l o w s . 

We f i r s t i n t r o d u c e the n e c e s s a r y d e f i n i t i o n s and the p r o p e r t i e s of c l o s e d 

c u r v e s . The a l g o r i t h m i s f i r s t p r e s e n t e d i n f o r m a l l y i n s e c t i o n s 4 , 5 , and 

6 . I t i s then f o r m a l l y d e f i n e d i n s e c t i o n 7 . S e c t i o n s 8 and 9 g e n e r a l i z e the 

a l g o r i t h m . 
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2 . I N I T I A L D E F I N I T I O N S 

A TWO DIMENSIONAL S P A T I A L DOMAIN CAN B E REPRESENTED BY THE CLOSED CURVE 

WHICH D E L I N E A T E S I T . A P P L Y I N G D I S C R E T E A R I T H M E T I C , SUCH A CURVE CAN B E 

APPROXIMATED BY A POINT VECTOR (AN ORDERED S E T OF P O I N T S ) , WHICH W I L L ALSO 

B E CALLED A CURVE AND W I L L B E REPRESENTED AS C K = ( P Q , P ^ , . . . , P ^ , . . . , P ^ , P Q ) . 

A B O V E , K I S THE I N D E X OR THE I D E N T I F Y I N G LABEL OF THE C U R V E , I THE I N D E X 

K 

OF THE P O I N T S I N THE CURVE AND EACH P ^ = ( X ^ , Y ^ ) , WHERE X AND Y ARE 

STANDARD C A R T E S I A N C O O R D I N A T E S . 

PQ, THE POINT L I S T E D T W I C E , I S CALLED THE C L O S I N G POINT OF THE CURVE 

C . A CLOSED CURVE P A R T I T I O N S A PLANE INTO TWO D I S J O I N T DOMAINS, ONE 

B E I N G F I N I T E AND THE OTHER I N F I N I T E . E I T H E R ONE CAN B E DESIGNATED AS 

THE C U R V E ' S INNER S P A C E AND THE OTHER AS I T S OUTER S P A C E . A C U R V E F E INNER 

S P A C E I S P R E C I S E L Y THE DOMAIN THE CURVE D E L I N E A T E S AND R E P R E S E N T S . A 

P O INT VECTOR CAN B E TRACED I N TWO D I R E C T I O N S ; THE D I R E C T I O N WHERE THE INNER 

S P A C E I S TO THE RIGHT OF THE L I N E SHALL BE REFERRED TO AS THE P O S I T I V E ORDER, 

THE D I R E C T I O N WHERE THE INNER S P A C E I S TO THE LEFT SHALL BE CALLED THE 

NEGATIVE ORDER. ( S E E F I G U R E 2 . 1 . ) 

F I G U R E 2 . 1 ABOUT HERE F I G U R E 2 . 2 ABOUT HERE 

A S I N G L E CURVE I N THE P O S I T I V E D I R E C T I O N D E L I N E A T E S A S I N G L E CONTINUOUS 

DOMAIN. A DOMAIN MAY ALSO B E DISCONTINUOUS OR HAVE A R I N G - L I K E STRUCTURE 

OR SOME COMBINATION OF THESE TWO ( F I G U R E 2 . 2 > . DOMAINS CHARACTERIZED BY 

M U L T I P L E CURVES SHALL B E REFERRED TO AS D I S C O N T I N U O U S . DISCONTINUOUS CURVES 

SHALL C O N S T I T U T E AN ORDERED S E T OF C U R V E S , REFERRED TO AS THE DOMAIN'S CURVE 

S E T . 
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in general, we denote a domain as 

9 * * 9 9 • • 9 

where k is the index of the curves in the domain and h is the index or iden­

tifying label of the domain. When n=l, the above equivalence becomes D h = 

simply C". If n>l, the domain is discontinuous. For most of this paper 

we shall be concerned with continuous domains. The discontinuous case will 

be taken up in section 9. 

The points lying on a curve (and therefore belonging to neither the 

inner or outer space) will be called boundary points. These are of two 

kinds; corner points (to be abbreviated as p-points) and flat points (f-points). 

The p-points delineate the curve's segments and the f-points lie on the seg­

ments between and excluding the p-points. Initially, a curve is given as an 

ordered set of p-points, which is referred to as its point vector. Semantically, 

a curve does not change if we write one or more of its f-points as corner 

points and properly include them in its point vector. By properly we mean 

that each such point should be inserted between the p-points which delineate 

the line segment upon which it lies. The above constitutes an operation called 

an expansion. 

Two (or more) domains may be disjoint, conjoint» sub joint or coincident. 

They are disjoint if they have no common points; conjoint if some (and only 

some) of their points are common; subjoint if all the points of the one 

domain are also points of the other domain; coincident if the two domains 

have exactly the same points. When two disjoint domains have common boundary 

points, they are more specifically called distangent; similarly subjoint domains 

are called subtangent if they have common boundary points. Examples are 

given in Figure 2.3. 

and the domain is conti inuous. For continuous domains we may write 
h 

Figure 2.3 about here 



I N T H I S P A P E R , WE SHALL B E I N T E R E S T E D I N THREE O P E R A T I O N S ; THE UNION 

( U ) > THE I N T E R S E C T I O N ( PI ) AND THE D I F F E R E N C E ( - ) . THE UNION AND THE 

I N T E R S E C T I O N ARE S Y M M E T R I C , WHILE THE D I F F E R E N C E I S N O T . THAT I S I F C 1 

AND C 2 TWO CLOSED C U R V E S , THEN c\)C 2 = ( A J C 1 AND cVlC2 = C ^ O C 1 WHILE 

1 2 2 1 

C - C ^ C - C . T H E R E F O R E , GIVEN ANY P A I R OF DOMAINS, A TOTAL OF FOUR 

D I F F E R E N T OPERATIONS ARE A P P L I C A B L E . I N F I G U R E 2 . 4 WE SUMMARIZE T H E I R 

R E S U L T S . THE NOTATION DENOTES THAT C K I S TRACED I N THE NEGATIVE 

ORDER. 

F I G U R E 2 . 4 ABOUT HERE 

1 2 

AS CAN B E S E E N , WHEN THE TWO CURVES ( C AND C ) ARE D I S J O I N T , S U B -

J O I N T OR C O I N C I D E N T , THE D E R I V A T I O N OF T H E I R UNION I N T E R S E C T I O N AND D I F ­

F E R E N C E S I S STRAIGHTFORWARD. THE R E S U L T I N G DOMAIN I S EMPTY OR I S G I V E N 

B Y E I T H E R ONE OR BOTH OF THE CURVES D E L I N E A T I N G THE DOMAINS UNDER C O N S I D E R A T I O N , 

TRACED I N P O S I T I V E OR NEGATIVE ORDER. THE PROBLEM I S MORE COMPLICATED WHEN 

THE TWO DOMAINS ARE C O N J O I N T . THE R E S U L T I N G CURVES ARE GIVEN BY A PROPER 

M I X I N G OF THE P O I N T S I N THE I N I T I A L CURVES ( S E E F I G U R E 2 . 5 ) . 

F I G U R E 2 . 5 ABOUT HERE 

T H I S PAPER F O C U S S E S P R I M A R I L Y ON THE LATTER C A S E . I T DEVELOPS AN ALGORITHM 

WHICH, BY PROPERLY M I X I N G THE BOUNDARY P O I N T S OF TWO CONJOINT DOMAINS, D E R I V E S 

THE CURVE S E T WHICH D E L I N E A T E S THE UNION, I N T E R S E C T I O N OR D I F F E R E N C E . S E C T I O N 

8 G E N E R A L I Z E S THE ALGORITHM TO INCLUDE THE C A S E S OF D I S J O I N T , S U B J O I N T AND 

COINCIDENT DOMAINS. 

3. CONJOINT DOMAINS 

THE MAIN C H A R A C T E R I S T I C OF THE CONJOINT DOMAINS, AS OPPOSED TO THE OTHER 
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C A S E S , I S THAT THE CURVES I N T E R S E C T . THE P O I N T S OF I N T E R S E C T I O N ARE 

COMMON TO BOTH C U R V E S . I N T E R S E C T I O N S ARE NOT THE ONLY C A S E OF COMMON 

P O I N T S ; THE CURVES MAY A L S O HAVE TANGENT P O I N T S WHICH ARE ALSO COMMON FOR 

BOTH C U R V E S . I N G E N E R A L , ANY TWO L I N E SEGMENTS MAY B E RELATED I N ANY ONE 

OF FOUR WAYS (SHOWN I N F I G U R E 3 . 1 ) . I N C A S E ( 1 ) THE TWO SEGMENTS HAVE NO 

COMMON P O I N T ; I N ( 2 ) THEY I N T E R S E C T AT A POINT WHICH I S AN F - P O I N T FOR BOTH 

S E G M E N T S ; I N ( 3 ) THE SEGMENTS TOUCH AT A COMMON P O I N T WHICH I S AN F - P O I N T 

FOR THE ONE AND A C - P O I N T FOR THE OTHER C U R V E ; I N ( 4 ) THE SEGMENTS TOUCH 

AT A P O I N T WHICH I S A C - P O I N T FOR BOTH C U R V E S . C A S E ( 1 ) I S REFERRED AS A 

N O N - I N T E R S E C T I N G P A I R , C A S E ( 2 ) AS AN I N T E R S E C T I N G P A I R AND C A S E S ( 3 AND 

( 4 ) AS TANGENT P A I R S . I N ( 3 ) WE HAVE A S I N G L E S I D E D TANGENCY WHILE I N 

( 4 ) THE FANGENCY I S DOUBLE S I D E D . 

F I G U R E 3 . 1 ABOUT HERE 

TANGENT P O I N T S MAY OR MAY NOT B E TREATED AS AN I N T E R S E C T I O N . FOR 

T H I S TO B E D E C I D E D , WE NEED TO HAVE INFORMATION ABOUT A L L THE SEGMENTS 

TO WHICH THE TANGENT POINT B E L O N G S . I N C A S E ( 3 ) , THREE L I N E SEGMENTS ARE 

I N V O L V E D , WHILE I N C A S E ( 4 ) , FOUR S E G M E N T S . WE LOOK INTO T H E S E MATTERS 

I N S E C T I O N 4 . 

WE C A L L A P A I R OF CURVES AND T H E I R CONJUNCTION REGULAR, I F ALL T H E I R 

COMMON P O I N T S ARE F - P O I N T S FOR BOTH C U R V E S . T H I S I S THE CASE WHEN ALL THE 

I N T E R S E C T I O N P O I N T S ARE F - P O I N T S FOR BOTH CURVES AND THE CURVES HAVE 

NO TANGENT P O I N T S . I F AT LEAST ONE OF T H E I R COMMON P O I N T S I S A CORNER 

POINT FOR AT L E A S T ONE OF THE C U R V E S , WE CALL THE CURVES AND T H E I R CON­

J U N C T I O N I R R E G U L A R . 
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The algorithm to be developed is based on the following properties 

of the conjoint regular curves: 

I. The intersection points, to be denoted by S^, are common 

in both curves. In addition, they are all part of the 

curve sets which delineate the union, the intersection 

and the differences. 

II. The non-intersecting corner points (P.) of two conjoint 
1 _k 

curves are distinguished into inner, to be denoted P^ 
k k k and outer, to be denoted P. . P. of a curve C is outer — —i i 

k 1 

with respect to another curve C if it lies in the outer 
k 1 

space delineated by C . It is inner otherwise. 

At each S point the border lines of two domains intersect. 

Then for each such border line an S point implies a 

crossing over the other domain's boundary line. Thus, if a 

point just before S is in the domain, a point right 

after it will be out of the domain. If we have two S points 

in a row, say and then the second negates the 

effect of the first. That is if a point right before 

is in a domain, a point between and is out of 

the domain and a point right after S 2 is again in the 

domain. Since only an S point crosses a border line, 

no such crossing can occur between two consecutive P 

points, which therefore can only be of the same kind. 

When two P points are separated by an odd number of 

S points, they can only be of a different kind. If 
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separated by an even number of S points they can only 

be of the same kind. 

III. The union of two conjoint curves consists of all the outer 

points (the P fs) of both curves and all their intersection 

points (the S's), properly ordered. 

IV. Their intersection consists of all the inner points (the 

7 f s ) of both curves and all their S points properly 

ordered. 

V. The difference of two conjoint curves consists of all the 

outer points of the substrahend curve, all the inner 

points of the substracter curve and all their S points. 

The above properties suggest the following steps for our algorithm: 

(1). derive the intersection points of the curves and expand their 

point vectors to include them properly inserted (discussed 

in section 4)• 

( 2 ) . characterize the expanded vectors derived as above by dis­

tinguishing its P points into P and P (discussed in 

section 5). 

(3). properly mix and thread the points in the characterized 

expansions to derive the union, the intersection or a 

difference (section 6). 

4. Expansions 

Given two conjoint curves C a and C^, we denote C a b the expan­

sion of C a with respect to C b. The expansion of C a with respect to 
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b a C is derived by properly inserting in C 's point vector the points 
a b ba at which C and C intersect. Similarly, C is the expansion of 

b a| a b C with respect to C \ For example, if C and C are as in Figure 

2.5, that is 

„a .a a a _a a „a x , b . b b h b b C = (P 0,P 1,P 2,P 3,P 4,P ( )) and C
D = ( P J . P 1 , P J , P J , P J ) , 

then C a b = ( P j , S 2 , S 1 , P J , S 3 , P J , S 4 , P ; , P J , 8 5 f S 6 P ; ) 

and C b a = (PQ,P b,S 4,S 3,S 1,S 5 >P b,S 6,S 2,P b,P b) . 

a b 

The conjunction of C and C is regular. 

To depict the points of intersection, it is necessary to sequentially 

take each and every line segment of the one curve C with each and every 
k 1 

line segment of the other curve C . Each such pair of line segments (one 

from each curve) is tested for an intersection by applyip? the function INS. 

which is defined as follows: 
INS ( P ? ,pf J P ^ . J P ^ , ) = (S,S) if the segments intersect 

x l X 2 X I X 2 

= ( 0 , 0 ) otherwise. 

The precise definition of INS is given in Appendix I. 

We have written the output of INS as a pair of points to indicate 

that each time a point of intersection is depicted, it is inserted in 

the point vectors of both curves. The depicted S point is inserted 

between the P points delineating the intersecting line segments. To 

assure that consecutive S points are properly ordered, each time an 

S point is depicted it breaks the segment to which it belongs into two 

portions and each is tested independently. For example, assume that 

( P 1 , P 2 ) is intersected at two points Sĵ  and S 2 and that S ] L is 



- 9 -

depicted first. Then ( P ^ , P 2 ) becomes ( P ^ , S ^ , P 2 > , and is interpreted and 

tested as two line segments; (P^ ,S^ ) and ( S ^ , P 2 > . ^ t* l e second time 

(P^ .P^) is intersected before S^ , then the tests for (P^ ,S^ ) will generate 

S 2 and the tests for (SJ^PJ.) will generate 0 . The result will be ( P - ^ S ^ 

S ] L , P 2 ) . In further tests ( P ^ S ^ S ^ . P j ) will be treated as three segments. 

To cover the irregular cases, the above operation is slightly 

expanded. When the curves intersect at corner points, rather than inserting 

a new S point, we change an existing P point into an S point. We 

proceed as follows. 

The segments to be checked are accompanied by their next segments 
a a b b 

also. That is if we want to check ( p ^ > p
2 ) a t l ( * (P^ ,P 2 > for intersection 

we take ( P a , P a , P a ) and ( P ^ P ^ P ^ ) . If ( P ^ . P * ) , ( P J . P ^ i s a inter sec ting 
pair, we do nothing and proceed with the pair to be checked next. If it is 

an intersecting pair, we insert the depicted S point in both segments 

before we proceed with the next test. If it is a tangent pair, we also need 
a b 

to consider P^ and P^ (either or both depending on whether it is a 

single or a double sided tangency). The different cases of tangent pairs 

are summarized in Figure 4 . 1 . 

Figure 4 . 1 about here 

In columns 1 and 2 (Fig. 4 . 1 ) we have double sided tangencies, and 

column 1 differs from 2 only by the direction of the segments. In columns 

3 and 4 the tangencies are single sided and differ as above. In the cases 

of row 1 , the tangent point is an intersection point. In 1 .1 and 1.2 no 
a b 

new S point is inserted, but the existing points P 2 and P 2 are changed 

into S points. We indicate this by adding a superscript s to the original 
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points. In 1.3 and 1.4 one new S point is inserted and one existing P 

point is changed into an S point. In the cases of rows 2, 3 and 4, the 

tangent points are not considered intersection points. Even though these 

points are boundary points for both domains, semantically they work as 

outer or inner and need to be characterized. Their character depends on 

the directions and relative positions of the segments involved and are 

as shown in Figure 4.1. As before, we write P for an outer and P 

for an inner P point. In cases 2.3, 2.4, 3.3 and 3.4 one new P point, 

properly characterized, is inserted in one of the curves. The inserting 

of a new point is denoted with a prime. In all other cases no new point 

is inserted, but existing P points are properly characterized. In 

cases 4.1 and 4.2 there is no direct way to characterize the tangent points 

In these cases and for both curves, we leave the tangent P points 

temporarily with no characterization; they will be characterized later 

by the second part of the algorithm. For the above checks we employ the 

function INT which is a generalized version of INS and its precise 

definition is given in Appendix I. 

To summarize 

INT fPa P a P a P b P b P b ) UNI ̂ ^i+^^'YVl' j+2 ; 

= ( 0 , 0 ) if the pair of segments is non-intersecting, 

= (S,S) if the pair is intersecting, 

= (P S,P S) if tangent and case 1.1 or 1.2, 

= (S,PS) or (PS,S) if tangent and case 1.3 or 1.4, 

= (P,P) or (P,P) if tangent and case 2.1 or 3.1, 

= (P,P) if tangent and case 2.2 or 3.2, 
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= ( P ' , P ) or ( P , P ' ) or ( P ' , P ) or ( P , P ' ) i f c a s e 2 . 3 or 3 . 3 , 

= ( P * , P ) or ( P , P ' ) i f t angent and c a s e 2 . 4 o r 3 . 4 , 

= (P ,P) i f t angent and c a s e 4 . 1 or 4 . 2 . 
g 

The notation P is used above to indicate that the respective P point 

is changed into an S and a prime (P! or P 1) to indicate that the respective 

P point is a new insertion. 

As an example consider the irregular pair of conjoint curves shown 

in Figure 4 . 2 . They are 

C ° = ( P ^ P L ' P 2 ' P 3 ' P 4 ' P 5 ' P 6 ' P r P S > A N D C D " < P S * P ? ' P 5 « 4 P 4 » P 5 » P 0 ) -

Their expansions will be derived as 

C c d = (T>° S P° P° P C P d P C d P° d P c d T C S P C} and 

rd° _ /pd Q o p ^ p c p c p d p c <* p°d p°d p c d. 
- (P Q>S 2, S vr^JLi > p

2
 9 2 9 43 * 5 4 ' 6 5 ' - 7 ' (T 9 

When two p-points coincide, the notation denotes their dual definition, e.g.,p^d 

48 

Figure 4 . 2 about here  

5» Characterization of the Expansions 

An expansion is characterized when its P points are distinguished 

into P (outer) and P (inner) points. To characterize an expansion 

from a regular conjunction, it suffices to know the character of any one 

of its P points, by property II (section 3 ) . With such a point as a 

basis, the remaining P-points are sequentially traced and characterized. 

Each next P-point's character depends on the previous and the number of 

interfering S points. If none or an even number of S points interfere, 

the P point takes the character of its previous P point. It takes 

the reverse character otherwise (that is, if an odd number of S points 
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c a b - ( P a , s 2 , s 1 5 p a , s 3 , p a , s 4 , p a , p a , s 5 , s 6 , P a ) 

and C b ° = ( p J , P 5 , S 4 , S 3 , S 1 , S 5 , P b , S 6 , S 2 , P b , P ^ ) 

then the whole expans ions a r e c h a r a c t e r i z e d a s 

C = ( Z O , S 2 , S l , - l , S 3 , P 2 , S 4 , - 3 , ^ 4 , S 5 , S 6 , ^ 0 ^ 

and C b a ' = ( J ^ , P b , S 4 , S 3 , S 1 , S 5 , P 2 , S 6 , S 2 , P b , P ^ ) . 

a b f and C b a l 

The primes i n C i n d i c a t e t h a t the r e s p e c t i v e expans ions a r e 

c h a r a c t e r i z e d . The above r e s u l t s can be v e r i f i e d w i t h F i g u r e 2 . 5 . 

At t h i s p o i n t , we i n t r o d u c e the r e s t r i c t i o n t h a t the po in t v e c t o r s 

of the domains under c o n s i d e r a t i o n should be g iven i n a normal form. A 

p o i n t v e c t o r i s i n a normal form when i t s c l o s i n g po in t i s unique ( i t 

does not be long t o the o ther curve a l s o ) and i t i s c h a r a c t e r i z e d . I f i n 

a c e r t a i n problem a r e a i t i s not r e a l i s t i c or p r a c t i c a l t o assume t h a t the 

p o i n t v e c t o r s under c o n s i d e r a t i o n a r e i n normal forms , an a r b i t r a r y p o i n t 

v e c t o r can be normal ized by the n o r m a l i z e r . which i s a f a i r l y s imple 

mechanica l procedure and i s de f ined i n Appendix I I . The only c a s e where 

a p o i n t v e c t o r cannot be normal ized i s when i t r e f e r s t o a c o i n c i d e n t 

p a i r of domains . 

Given t h e i n i t i a l p o i n t v e c t o r s i n normal form, the d e r i v e d expans ions 

w i l l be i n normal form a l s o , and t h e r e f o r e they w i l l have t h e i r c l o s i n g 

p o i n t s c h a r a c t e r i z e d . Then f o r curves from r e g u l a r and i r r e g u l a r con­

j u n c t i o n s a l i k e , we can s t a r t a t the c l o s i n g po in t and s e q u e n t i a l l y 

ab ba 

i n t e r v e n e ) . For example , g iven the e x p a n s i o n s C and C a s d e r i v e d 

i n s e c t i o n 4 and wi th t h e i r c l o s i n g p o i n t s c h a r a c t e r i z e d , t h a t i s 
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characterize the remaining P points. What is different between the 

regular and the irregular case is that in the second, the expanded 

vector contains some more P points (in addition to its closing point) 

which are already characterized. These points are non-intersecting tangent 

points and have been characterized by the first part of the algorithm, 

when the expansions were derived. Consequently, as the sequential charac­

terization of the P points proceeds, it is possible to encounter a cast 

where two consecutive P points are not of the same character. This con­

tradicts property II and implies that some S point is missing. We call 

such pairs of consecutive P points non-conforming pairs, and when 

depicted, we change the second P point into an S. Given two conjoint 

curves, their normalized expansions can only have the same number of non­

conforming pairs. 
c d 

For example, assuming that the vectors for C and C (section 4, 

Figure 4.2) were given in normal forms, their expansions would have been 

r c d - (p° s p c P C P c p d P C D P C D p c d P c q P S 
- VEo»bi»*i»£2 ' 3 - 2 ^43* 54* 65* 7 , b2'-0 ; 

and C*< - (4 fi2.3v^{ .*\ . * 4 3 > P 5 4 > P 6 5 ' £ C 7 4> • 
There is at least one obvious non-conforming pair in each of the above 

expansions; ( P ^ , P 2 ) in C ° d and (P^ , ? 2 ) in C d c . They are changed 
— Q c c c 

into (P^ ,S 2) and (P ̂  ,S 2) respectively. As the characterization of the 

other p-points proceeds, one more non-conforming pair is depicted in 

each expansion. They are (p£ d ,P^) in C c d and (P^ d ,P^) in C d c . They 

are changed into (p£ d, s!j) and (p£ d,S^). The characterized expansions will 
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fP c S P c S c P c P d P c d P c d P 
K-0 , B 2 ' - 3 ' - 2 ' - 4 3 ' - 5 4 

and C dc
1 

( P Q > S 2 , S 1 , P 1 ' ^ 1 ' S 2 > P 2 , P 4 3 , P 

6 . The Threading Algorithm 

Given the expanded and characterized point vectors of two conjoint 

curves, by properly mixing and threading their points, we can derive the 

curve sets that delineate their union, intersection and differences. In 

each case, the guidelines for the proper selection and threading of the 

points are given by properties III, IV and V of section 3 . The same 

threading algorithm applies to all cases. What differs is the definition 

of the starting point B and the order by which the point vectors under 

consideration are written. 

For the union and the intersection both vectors are written in their 

original order. For the differences, the subtrahend vector is written 

in its positive order and the subtracter in negative order. For example, 

The starting point B is always an intersection ( S ) point and 

can be in either one of the two expansions. For the union, it is any S 

point followed by a P (outer) point or preceded by a P (inner) point. 

For the intersection, B is any S followed by a P or preceded by a 

P » For the differences, if B is in the subtrahend expansion, it is 

defined as for the union; if it is in the subtracter expansion as for the 

intersection. The definitions of B for the different cases are summarized 

in Figure 6 . 1 ( a ) . The B point is indicated by a circled S . Using 1 for 

( S P or P S ) and 0 for ( S P or P S ) , the different cases can be coded 

by the binary numbers as shown in Figure 6 . 1 ( b ) . This coding will.be used 

to instruct the system which operation is desired (sections 7 and 8 ) . 

to derive C -C is written in reverse order. 

Figure 6 . 1 about here 

http://will.be
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The S points in the expansions delineate strings of either P or 

P points. In addition, because the S points are common in both expan­

sions, they link a string of P points of the one expansion with a string 

of P points of the other. The form of linkage can be specified. By 

definition, if an S point has a P point on each side, these P points 

can only be of a different kind. Furthermore (and assuming that the two 

expansions have been written in the same order), if in one expansion an 

S point is followed by a P point (or/and preceded by a P point), the 

situation is reversed in the other expansion; that is, the same S point 

is followed by a P point (or/and preceded by a P point). Consequently, 

if we start at an S point in the one expansion and positively trace 

and thread all the P points on its right till we reach the next S 

point; then transfer to the identical S point of the other expansion 

and do the same, and keep on transferring from one expansion to the other 

and stop when we come back to the S point we started with, we pick P 

points of only one character. Which character depends upon the S point 

we started with. If it is a union B point, we pick all the P points, 

as required by property III; if it is an intersection B point, we pick 

all the P points, as required by property IV. 

For the differences we do not want to pick P points of one kind. 

Instead, we want to pick the P points from the subtrahend expansion and 

the P points from the subtracter. If we reverse the order of the sub­

tracter expansion, then if an S point is followed by a P point in 

the one expansion, so it is in the other also, and vice versa. Con­

sequently, by starting at the appropriate S point and tracing the 

expansions as before, we end up with a proper mixture of P and P points 
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as is required for the differences. 

To summarize, the threading algorithm operates as follows: 

1. write the expansions properly and as required in each case; 

2. identify the starting point B, its definition depending on 

the case; 

3. start at B, thread it, move to the right threading all P 

points up to the next S point. Delete it and jump to the 

identical S point (call it S 1) of the other expansion; 

4. start at S 1 , thread this and all the P points to the right, 

up to the next S point. If this is not the same with B, 

delete it, jump to S f and repeat step 4. If S=B, thread it 

and go to step 5; 

5. one curve of the curve set has been derived. Identify the 

next B, if one exists, and go to step 3. If no more S 

points are left in the expansion, STOP. 
a b 

In Figure 6 #2, we show the derivation of C U C • We derived 

c a u c b = k s ^ p ^ s ^ s p ^ p ^ p ^ 

In a similar fashion we derive 

c a n c b = i(s3,pj,s4,s3),(s5,s6,s2>s1,s5)}, 

C a - C b = i(S 1,P a,S 3,S 4,P3,P a,S 5,S 1),(S 6,P a,S 2,S 6)l and 

c b - c a = i(s 1,s 2,p b,p b,p b,s 4,p a,s 3,s 1),(s 5,p b,s 6,s 5)}. 

Figure 6.2 about here 

For the derivation of the differences of irregular junctions we shall 

add one more step to the threading algorithm. The curve sets derived for 
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the differences may contain a curve, some portion of which is tracing 

back and forth the same sequence of line segments and delineates no area. 

This case occurs when two curves have tangent line segments. For example, 
c d 

in Figure 6 . 3 , we show the derivation of C - C . We derive 

C C - C d = ifSC P C P d P c d P ° d P c d S C P c d P c d P c d P d S°} (S P C S S )\ 
L U B 2 ' 3 5 2 ^ 4 3 ' 5 4 ' 6 5 ' 7 ' 6 5 J 5 4 ' 4 3 ' 2 ' 2 ; , ^ 2 * 0 * 1 J 2 ; 5 # 

Notice that only one portion of the first curve delineates an area. This 
c c c 

is (S^P^P^S,^). T b e r e m a i n i n S traces back and forth the segments 
d cd cd cd c 

(P 2 , * > 4 3 , ^ 5 4 , * > 6 5 , ^ 7 ^ * ^° c o r r e c t s u c h situations, the curve sets derived 

for the differences are examined and the segments that delineate no area 

are eliminated. Applying this step, the above curve set becomes 
c° - c d = i(s^,p^,pd,s^),(s2,pj,s1,s2)}. 

Figure 6 . 3 about here 

7 . The Bead Machine 

The derivation of the union, intersection or a difference of two 

conjoint domains can be precisely defined in terms of the mechanism 

shown in Figure 7.1. We shall be calling it the Bead Machine and referring 

to it as M b. The name reflects the analogy that the points of the curves 

under consideration are written on beads. This emphasizes the fact that 

their bulk is significant and when they are pushed into some location, the 

point (bead) already there is not lost but is pushed further up or down. 

The beads are of different colors; the P beads are red, the S beads 

are grey, the P beads are white and the P beads are black. Thus, 

a bead depicts three variables, two that define the x and y coordinates 

of a point and one defining a color. 

Figure 7 . 1 about here 
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M b consists of a central processing unit (CU), and Rl and R2 

which are two ring-like double-ended stacks, holding the point vectors (beads) 

of the domains under consideration. RO^ and RO^ are two registers in 

CU. HI and H2 are two linear stacks used for garbage disposal, and 

W is again a linear stack functioning as an output buffer. 

The indices of Rl, R2, Hi, H2 and W are ^ = 1 , . . . , ^ , 

i 2 =1,. • • ,n 2, j^=l,..*,m^, j 2=l,. #.,m 2 and k=l,« #.,v respectively. 

The upper limits n^, n^, m^, and v are variables and depend on the 

specific pair of domains under consideration. Therefore Rl, R2, HI, 

H2 and W are of variable lengths and expandable. That is the CU 

has the capability of increasing and decreasing the values of the upper 

limits and consequently of adding and subtracting cells from Rl, R2, HI, 

H2 and W. 

As we did with the algorithm, we shall divide M b into three parts 
bl b2 b3 bl to be referred as M , M and M . M expands the initial point 

vectors. It starts with the vectors stored in Rl and R2 and ends 
b2 

with their expansions stored in the same stacks. M characterizes the 
expansions. It is given the expansions, as derived by stored in 

Rl and R2 and stores the characterized expansions in the same stacks. 
b3 

M is given the characterized expansions (stored in Rl and R2) and 
threads the curve set for the union, the intersection or one of the 

I 

differences. It stores the results in W. Which curve it derives de­

pends on the instructions given to it. After it derives the curve set 

for one of the operations, it can proceed with the derivation of another, 
b3 

if the characterized expansions are re-entered in Rl and R2 and M 

is given further instructions. 
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When the initial vectors or their characterized expansions are entered 

in Rl and R2, their closing points are required to occupy locations Rl^ 

Rl and R2,, R2 . In addition to RO. and R0 o, Rl ,Rl,, Rl n, R2 , R2., n^ I n 2 I n^ I Z n 2 1 

R2 2 , and the whole 17 are directly accessible by CU. 

Formally, a Bead Machine M b is a system (L,K,T,G,Q, 6 ) , where L is 

the hardware shown in Figure 7.1, K a set of computations, T a set of 

transfers, G a set of colorings, 0 a set of states and $ a mapping of 

Q*L into Q*K*G*T. 

Specifically: 

K = {k1: (R0-, R0 9) «- INT (Rl , Rl , R L , R2^ , R2. , R2 0)} l Z n^ i Z n 2 I Z 

T = it 1: RU <- Rl 1 + 1 (i^l,..., n x (mod n ^ ) 

2 

t : R2 ± * - R 2 i + 1 (i 2 = l,...,n2(mod n 2)) 

3 

t : n x = ^ + 1; R ^ + L *- Rl ± (±l = 1,... ̂  - 1) ; Rl ] [ *- RC^ 

4 
t : n 0 = n 0 + 1; R2^ 4- R0 0 

2 t 5: HI «- Rl- ; Rl- *- R0- ; m = m- + 1 m^ 1 1 1 1 1 
t 6: H 2 m R2 1; *• R0 2; m 2 = m 2 + 1 

t 7: k = k+1; W f c Rl^ ; n x = n x - 1; t 1 

o 2 t : k = k+1; W f c «- R 2 n ; n 2 = n 2 - 1; t 
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9 
t : HI «- R \ ; m l = m l + 1 5 n l - n l " i; t 1 

H2 «~ R 2 n 2
5 m 2 = m 2 + 1 > n

2
 = n 2 • l; t 2 

t 1 1 : k=0; nij = 1; m 2 =1 

g = k ! 
j 1 G = |c : Rl x £ P 2 c — , C : R 2 1 «- P , 

3 c : 4 c , C : R2 X «- P , 

c 5: Rl± £ S , C 6: R2 1 £ S | 

Q = k°,q 1 (i=l,. ..,),qf! 

In G, the symbol £ indicates that the bead in the left hand side location 

is colored as the right hand side indicates, where P is black, P is 

white and S is grey. 

The mappings constitute M b | s program, so to speak. 6(a) = (b) means 

given (a), where (a) a state and a set of relations over the content of CU's 

registers, do (b), where (b) is a change of state and (possibly empty) set 

of computations, coloring and/or transfers. For the relations of the registers 

we use three types of equivalence symbols and their negations; =(and ^) re­

fers to the coordinates of the points; =(and ^) refers to the colors; and 

^(and ^) refers to both the colors and the coordinates. We shall separately 

list and shortly discuss the mappings of the three parts of M (that is of 

M b l , M b 2 and M b 3 ) . The index in the parentheses (far right) indicates how 

they can be put together. 
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For M the mapping 6 is as follows: 

6 (q°, U 2 = R2.}) = ( q 3 ^ 1 ) 

5 <q°, {(Rl =- R2 ? P) V (Rl - R2. # P) v 

(Rl. ~ R2 f P) V (Rl * R2. # P)l> - (<l°,t2) (2) 

6 <q°, {R2 M * R2 - 1 ) - (q 1,^) 
°2 1 

(3) 

6 <q\ iR0 1 = R0 2 = 0l) = (q°,t2) (4) 

6 (q 1 . |R0 1 * Rl^) = (q 2,t 3) (5) 

6 Cq1. JR0 1 = Rl^) = (q 2,t 5) (6) 

6 (q 2, { R O 2 * R 2 1 b = (q°,t\t 2) (7) 

6 iR0 2 = R2 1l) = (q°,t 6,t 2,t 2) (8) 

6 <q 3, {Rl f Rl 1 ) = (q°,t2) 
1 

(9) 

6 JR1 - Rl. s p}) = ( q 4 ^ 1 ^ 1 ^ 
1 

(10) 

6 (q 3, JRl - Rl. s P b = (q 5,t l,t U) 
1 

(11) 

When M u ± starts, the point vectors of the domains under consideration 

are in normal forms and already stored in Rl and R2, with their closing 

points in Rl-, Rl and R2 , R2 respectively. The initial state of 
1 "̂ 2 

M^ 1 is q° and its final states are and q~*# At q°, M^ 1 applies 

k 1 which computes the points of intersection (when they exist) or 

characterizes the tangent points (map, 3 ) # The results are stored in 



- 2 2 -

6 ( Q \ - R L 1 A R 2 ^ P } ) = (q6TL,T2) ( 1 2 ) 

6 (A J R L J =» R L X A R 2 1 = P })= (qV.T2) ( 1 3 ) 

6 I R L 1 = P | ) = ( Q 4 ^ 1 ^ 1 ) ( 1 4 ) 

6 { R L 1 S S V R L T S P | ) = (q 5,c 5,th ( 1 5 ) 

6 - ( Q 4 ^ 1 ) ( 1 6 ) 

6 ( Q 5 , J R 1 2 - RLJ_ A R 2 1 3 P } ) = (qV,!:2) ( 1 7 ) 

6 ( Q 5 , { R L 2 - RLJ_ A R2 ]_ 3 P } ) = ( Q 7
T L F T

2 ) ( 1 8 ) 

6 ( Q \ { R L J 3 P J ) = ( Q 5 ^ 3 ^ 1 ) ( 1 9 ) 

6 ( Q 5 , | R L 1 s S V R L X s ? } ) = ( Q 4 ^ 5 ^ 1 ) ( 2 0 ) 

6 ( Q 5 ) = (Q , T ) ( 2 1 ) 

6 ( Q 6 , { R 2 2 - ^ J ) = ( Q 1 0
T

2 ) ( 2 2 ) 

B L 1 2 
RO^ AND RO^ AND M GOES TO S T A T E S Q AND Q WHICH CHECK AND 

PROPERLY I N S E R T S THEM I N R L AND R 2 (MAP. 4 - 8 ) . THEN I T RETURNS TO 

Q° WHICH PROCEEDS WITH THE NEXT P A I R OF S E G M E N T S . BEFORE DOING S O , 

I T CHECKS I F THE SEGMENTS UNDER C O N S I D E R A T I O N HAVE A COMMON S P O I N T , I N 

WHICH C A S E I T S K I P S T H I S P A I R AND TAKES THE NEXT (MAP. 2 ) . MAPPING 1 

3 

CHECKS I F R 2 HAS COMPLETED A C Y C L E , I N WHICH C A S E I T GOES TO S T A T E Q 

AND MOVES THE BEADS I N RL DOWN BY ONE P O S I T I O N (MAP. 9 ) , U N L E S S RL 

HAS ALSO COMPLETED A C Y C L E . I N THE LATTER C A S E THE P R O C E S S I S COMPLETED 
B L 4 

AND M GOES TO E I T H E R ONE OF I T S F I N A L S T A T E S . I T GOES TO Q I F THE 

C L O S I N G POINT I N R L ^ I S P ( M A P . 1 0 ) OR I T GOES TO Q~* I F I T I S P 

( M A P . 1 1 ) . 

B 2 
FOR M THE MAPPING O I S AS FOLLOWS: 
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6 (q 7, {otherwise}) = (q 9,t 2) ( 2 9 ) 

b2 

M characterises the points in each of the curves. It consists 

of two sections; the first (map. 12-21) characterizes the points in Rl 

and the second (map. 22-29) in R2. The final state of M b 2 is q 1 0 . 
(The missing mappings30-34 are described in section 8.) 

b3 
For M , the mapping o is as follows: 

5 ( q 1 0 , U ) = « instruction>, q 1 1,t 9,t 1 0,t 1 1) 

6 (q 1 1, {R 0 ] L = R0 2 = 0 J ) = (q f) 

6 (q 1 1, iRl n - R l 1 i r R 2 n - R 2 1 j ) = (q 1 0) 
1 2 > 

$ (q , I ( R O - = 0 A Rl = S A Rl = p) V (R0- = 1 A Rl = 
n^ i — l 

S A R ^ = P ) } ) = (q 1 3,t 7,t 1 2) 

6 (q 1 1, { ( R O , = O A Rl s p A Rl- H S ) V (RO, = 1 A Rl s 
1 1 1 

P A R1 L = S ) } ) = (q 1 3,t 9,t 7,t 1 2) 

6 (q 1 1, {(RO = 0 A Rl = P A Rl = P ) V ( R O . = 1 A Rl = 
1 1 1 

P A R1 L = P ) } ) = ( q U , t 9 ) 

( 3 5 ^ 

( 3 6 ) 

( 3 7 ) 

( 3 8 ) 

( 3 9 ) 

( 4 0 ) 

6 (q 6, J R 2 1 = P I ) - (q 6,c 2,t 2) ( 2 3 > 

6 (q 6, I R 2 X = S V R 2 L = p|) = (q 7,c 6,t 2) ( 2 4 ) 

6 (q 6, {otherwise}) = (q 6,t 2) ( 2 5 ) 

6 (q 7, { R 2 2 =- R 2 X } ) - (q 1 0) ( 2 6 ) 

6 (q 7, J R 2 1 = P I ) = (q 7,c\t 2)' ( 2 7 ) 

6 (q 7, I R 2 L = S V R 2 T = P } ) = (q 6,c 6,t 2) ( 2 8 ) 
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6 ( Q 1 3 , J R L 3 si) = ( Q 1 4 ) 

1 

6 ( Q 1 4 , J R L ~ W J) - ( Q U , T 7 ) 

6 ( Q 1 4 , { R L n f W G A R L N - R2nh = ( Q 1 5 , T 7 , T 1 0 ) 

6 ( Q 1 5 , { R 2 N * Si) = ( Q 1 5 , T 8 ) 

N 2 

6 ( Q 1 5 , { R 2 N s s!) - ( Q 1 2 ) 
N 2 

6 ( Q 1 1 , i(RO- = 0 A R 2 - S A R 2 . = P) V ( R 0 O = 1 A R 2 s S 
N 2 v — l N 2 

A R 2 L • ? ) ) ) . = ( Q L 5 , T 8 , T 1 2 ) 

6 ( Q 1 1 , i (R0 O = 0 A R 2 = P A R 2 = S) V (ROO - 1 A R 2 = P 
2 N 2 1 2 N 2 ~ 

AR^S)}) - ( Q

1 5 , T 1 0 , T 8 , T 1 2 ) 

6 " ( Q 1 1 , { ( R O _ = 0 A R 2 2 = P A R 2 . = P) V ( R 0 O - 1 A R 2 S P 
^ N 1 Z N 2 — 

A R 2 1 = P))) = ( Q N , T 1 0 ) 

6 ( Q 1 1 , { O T H E R W I S E } ) = ( Q * \ T * , T 2 ) 

6 ( Q 1 2 , . { R 2 -W gl) = ( Q N , T 8 ) 

6 ( Q 1 2 , { R 2 N tWo A R 2 N f R L } ) = ( Q 1 2 , t l ) 
N 2 G 2 1 

6 ( Q 1 2 , { R 2 N t-W A R 2 N - R L } ) = ( Q 1 3 , T 8 , T 9 ) 

2 2 1 

6 ( Q 1 3 , { R L ? S } ) = ( Q 1 3 , T 7 ) 

U L 
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B 3 
AND 1 0 FOR THE D I F F E R E N C E S . S E E F I G U R E 6 . 1 . M THEN GOES TO S T A T E 

Q 1 1 . AT Q 1 1 , I T P I C K S AN A P P R O P R I A T E STARTING POINT B AS D E F I N E D BY 

1 3 1 5 
T H E I N S T R U C T I O N S AND GOES TO S T A T E Q OR Q , DEPENDING ON WHETHER 

1 3 1 5 
B I S I N RL OR I N R 2 (MAP. 3 8 - 4 2 ) . AT S T A T E S Q AND Q I T 

THREADS ALL THE P ( P OR P ) P O I N T S UP TO THE NEXT S . AT EACH S I T 

1 4 1 2 
GOES TO Q OR Q TO CHECK I F S B (MAP. 4 8 - 5 0 AND 4 3 - 4 5 ) . FOR T H I 

CHECK I T COMPARES THE NEWLY ENCOUNTERED S WITH THE CONTENT OF W , 

1 3 

WHERE B I S S T O R E D . I F THE CHECK I S N E G A T I V E , I T GOES TO S T A T E Q 

OR Q 1 5 AND PROCEEDS UP TO THE NEXT S . I F THE T E S T I S P O S I T I V E , I T HA 

COMPLETED THE THREADING OF ONE CURVE OF THE CURVE S E T AND GOES TO S T A T E 

Q 1 1 READY TO SEARCH FOR THE NEXT C U R V E . I F RL AND R 2 ARE EMPTY 

(MAP. 3 7 ) » THE WHOLE CURVE S E T HAS BEEN D E R I V E D , AND I T GOES TO Q 1 ^ 

FOR FURTHER I N S T R U C T I O N S . I F NO MORE I N S T R U C T I O N S ARE G I V E N AND R 0 ^ = 
B F 

R 0 2 = 0 , THE J O B I S DONE AND M GOES TO I T S F I N A L S T A T E Q ( M A P . 3 6 ) 

WE HAVE MADE THE ASSUMPTION THAT THE POINT VECTORS OF THE DOMAINS 

UNDER C O N S I D E R A T I O N , WHEN I N I T I A L L Y ENTERED INTO RL AND R 2 , ARE I N 

NORMAL FORMS. AS ALREADY POINTED OUT, I N SOME PROBLEM A R E A S , SUCH AN 

ASSUMPTION I S NOT R E A L I S T I C OR P R A C T I C A L . I N THESE C A S E S , THE POINT 

VECTORS CAN B E NORMALIZED BY THE U S E OF THE NORMALIZER M*^, WHICH I S 

D E S C R I B E D I N A P P E N D I X I I . A L S O , I N A P P E N D I X I , WE G I V E THE P R E C I S E 

D E F I N I T I O N OF THE FUNCTION I N T WHICH C O N S T I T U T E S K * AND WHICH I S 

E X T E N S I V E L Y U T I L I Z E D BY M b l # F I N A L L Y , THE CURVE SEGMENTS FOR THE 

THE I N I T I A L S T A T E OF M B 3 I S Q 1 0 . AT Q 1 0 , I N S T R U C T I O N S WITH 

R E S P E C T TO WHICH CURVE S E T I S D E S I R E D SHOULD B E G I V E N (MAP. 3 5 ) . THE 

I N S T R U C T I O N S ARE STORED I N RO.^ AND R 0 2 , I N BINARY FORM. THE INSTRUC­

TIONS ARE OF THE FORM 0 0 FOR THE UNION , 1 1 FOR THE I N T E R S E C T I O N 0 1 

3 3 
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differences of irregular curves with tangent segments, as derived by M u 

may contain portions which trace back and forth a sequence of segments 
bl b2 b3 and delineate no area. M or M or M can be expanded to provide 

for the direct elimination of such cases. Alternatively, an a posteriori 

test applied to the difference curves only may eliminate the redundant 

points. For conciseness, we omit this editing operation and our develop­

ment assumes the latter method of eliminating the redundant points. 

8. M u for Disjoint and Sub joint Domains 

M , as defined in section 7, is not quite general. It does not 

work if two domains are not conjoint. To generalize M b , the mappings 
b2 

21 and 26 will be changed and five new mappings will be added to M , 

as follows: 

& (q°, 

6 (q ?, 

* (q8> 

5 (q 8, 

6 (q 8, 

6 (q 9, 

6 (q 9, 

R 2 2 

R2, 

R2 

R2 

Rl «- Rl 
n l 

Rl =t Rl 

Rl t Rl 
n l 

Rl Rl 
n. 

Rl t Rl 
n l 

I ) = ( q V . t 2 ) 

}) - ( q 8 , t V ) 

1 ) - (q2°) 

A R1 L ? s|) = (q 8,^) 

A Rl 1 = S}) = (q 9,tS 

b - (q 1 0) 

1 ) - (q'.t1) 

.b2 10 Now, by mapping 21 and 26, M does riot go directly to q , but to q . 

At q 8 (map. 30-32), it checks if an S point has been depicted. If not, 

it goes to q 2 0 . If yes, it goes to q 9 where it resets Rl and then 

(21) 

(26) 

(30) 

(31) 

(32) 

(33) 

(34) 

8 
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t 2 2 ; Wk+i 2<- R2i2^2 = - V : k = k + n 2 

23 
fc : "fcku+l-i, *~ R li = (ii = n >...,1) ; k = k+n-1 1 1 1 

^ W
k + n 2 + l - i ^ R 2 i 2 d 2 = n 2,...,D : k = k + n 2 } 

I 20 21 22 f t 

Q = iq ,q »q »q t 

and the mapping 6 

c , 2 0 % * ^ 21 11. 6 (q , ) = (< instruction > q ,t ) 

6 ( q
2 1

} |R0 1 = R0 2 = 0 } ) = (q f) 

21 

( 5 5 ) 

( 5 6 ) 

6(q ,|(R0 1 = 0 A Rl x = P) V ( R O l - 1 A R0 2 - 1 A Rl s p)}) = 

(  2 2 r 2^ 
<q ,t ) ( 5 ? ) 

goes to q 1^ (map. 33-34). If an S point is found, the domains are 

conjoint and q ^ is the initial state of M ^ , which is as before. 

If an S point is not found, the curves do not intersect and, given that 

they are not coincident, they are disjoint, if the closing points of both 

are P (outer), or subjoint, if at least one of the closing points is P 
b2 20 

(inner). In such cases M goes to q which is the initial state of 

M b \ the new part we shall add to M b. Our assumption that the two domains 

are not coincident is based on our earlier assumption that the point vectors 

were given in normal forms. For coincident pairs of domains no normal forms 

are derivable. If a normalizer is used before the main parts of M b, it 
depicts the coincident pairs, as discussed in Appendix II. 

b4 

M = (H,K,T,G,Q,0) where H as before, K and G are empty. 

21 
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( 5 8 ) 

( 5 9 ) 

6 (q 2 2, i(R0 2 - 1 A R 2 1 s P) V (R0 2 = 0 A R2^ - P)]) - (q ) (61) 

6 (q 2 2, JR0 2 = 1 A R 0 1 = 0 A R 2 1 = p}) = (q 2°,t 2 4) (62) 

b4 

The transfers of M simply move the content of Rl or R2 into 

W, as they are or in reverse order. At q 2^, M b 4 as M^^, accepts instruc­

tions with respect to which curve set is desired. Each instruction is coded 

and stored in RO^ and RC^ as before. Then depending on the content of 
b4 

R0^, R(>2 and the colors of the closing points, M proceeds according 

to the table in Figure 2.4. When no further instructions are given and 
b4 f RO^ = R0 2 = 0, M is done and goes to its final state q . 

9« Discontinuous Domains 

Our discussion to this point referred to domains delineated by single 

curves. In this section we outline how the algorithm may be applied to 

discontinuous domains, that is, domains delineated by more than one curve. 

The presentation is informal. 

The Bead Machine operates upon two curves at a time. It is applicable 

to pairs of discontinuous domains if their curves are properly paired. Then 

M b goes through multiple cycles, each time operating on a single pair. In 

general each and all curves of the one domain should be paired and operated 

6 (q 2 1, l ( R 0 1 = 1 A Rlj = P) V ( R 0 1 - 0 A R l x = P)|) = (q 2 2) 

6 (q 2 1, { R 0 1 = 1 A R 0 2 = 0 A R 1 X H ?}) = (q 2 2,t 2 3) 

6 (q 2 2, { ( R 0 2 = 0 A R 2 X = P ) V ( R 0 2 = 1 A RO^ = 1 A R 2 ^ - P ) } ) = 

(q 2°,t 2 2) (60) 
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upon with each and all curves of the other domain. The pairing sequence 

should be in accordance with the hierarchical structure of the domains. 

A domain's hierarchical structure can be represented by properly 

relating the curves of the domain with union and/or intersection operators. 
1 3 For example, the domains D (Figure 9 . 1 (a)) and D (Figure 9 . 2 (a)} 

can be written as 

D 1 - ( C U n C 1 2 ) U (C 1 3 n C 1 4 ) and D 3 = ( C 3 1 0 ( C 3 2 U C 3 3)) U C 3 4 U C C 3 \ 

The above are referred as relational expressions and are used to denote 

the hierarchical order of domains. 

Figure 9 . 1 about here Figure 9 . 2 about here 

2 
Notice that the relational expressions of domains D (Figure 9 . 1 (b)) 

4 2 2 1 4 4 5 and D (Figure 9 . 2 (b)) are D = C and D = C . Since the inner space 
2 2 2 3 2 4 

delineated by the curves C , C and C are subjoint to the inner space 
2 1 2 delineated by C , the latter suffices for the representation of D . Similar 

4 5 4 4 1 4 2 4 3 4 4 C suffices for the representation of D since C , C , C and C 

are redundant. In such cases we say that a domain's curve set is inconsistent. 

When there is no redundancy among the curves delineating a domain, the curve 
1 2 

set is consistent; for example, D and D above. A domain1s curve set 
should be consistent; if not it should be simplified as we did for D and 

4 

D above. Procedures can be defined which, by distinguishing and depicting 

the levels at which a domain's curves lie, can check their consistency and 

derive their relational expressions. They will not be discussed in this 

paper. 
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To derive the union, intersection or difference of two discontinuous 

domains, we first derive the order of their curve sets and their relational 

expressions. In doing this we also check for their consistency. We then 

join their expressions with the appropriate operator ( U , 0 or -) and apply a 

sequence of transformations, permissible by the set theoretic laws. Our 

task is to properly mix the curves of the domains and separate the unions from 

the intersections. If we are deriving the union of two discontinuous domains, 

then we are looking for an expression of the form (C 3 i U C B * * ) 0 ( C a i U C ^ ) 

a i b * 

where C and C form different domains. If the intersection, for 

an expression of the form ( C A I FL C ^ U C C * 1 ' H ) . For the differences 

we apply the set theoretic definition of the difference (A-B = AflB) and 

execute them as intersections. 
Figure 9.3 about here 

For example, assume we are given the domains shown in Figure 9.3. 

That is 

D * - { c a l , c a 2 } - (C a l N C a 2 ) and D b - { C
b l,C b 2,C b 3} - ((C b l 0 C B 2 ) U C M ) 

where 
AL , _ A L AL _ A L _ A L _ AL A2 _ . A2 A2 A2 A2 

C " ( £ 0 » P I ' P
2 » P 3 > P - 0 ' ~ ( - 0 ' 1 ' 2 ' 0 ) 

B L _ B L B L B L B L B L B L B 2 M B 2 B 2 B 2 B 2 

B 3 _ . B 3 B 3 B 3 B 3 . 
C - ( £ 0 » P I I » P 2 » - 0 ; * 

Then D a U D b = (C a l 0 C 3 2 ) U ((C b l 0 C
B 2 ) U C b 3 ) = 

( c a l U c b l U c b 3 ) N ( c a 2 U c b l U c b 3> N ( C
A L U c b 2 U c b 3 ) N ( c a 2 U c b 2 U c b 3 ) 



- 31 -

D
a n D

b = ( c a l n c a 2 ) n ( (c b l n c b 2 ) u c b 3 ) = 

- ( c a l n c a 2 n c b l n c b 2 ) u c c a l n c a 2 n c b 3 >, 

D a - D b = D a n i b = <c a l n c a 2 > n ( ( c b lu c b 2 } n ^ b 3 = 

= ( c a l n c a 2 n c b ln c b 3 ) u ( c a l n c a 2 n c b 2n c b 3 > , 

D
b . D

a = D
b . i a = ( ( c b l o c b 2> u c b 3> n (c a lu c a 2 > = 

( c a l n c b l n c b 2> u ( c a 2 u c b l n c b 2 ) u ( c a l n c b 3> u 

( c a 2 n c b 3 >. 

The above expressions can be readily executed on the Bead Machine to 

derive the curve sets they represent. We execute the operations within the 

parentheses from left to right. Each pair of parentheses derives a curve 

of the curve set. 

In defining the difference operations, we have relied on the fact that 

A-B = AflB where B is the complement of B. Our notation for the ordering 

of curves is the same, that is, the negatively ordered curve C is the com­

plement of C (positively ordered). This provides the basis for an al­

ternative derivation of the difference operations from that found in section 6. 

10. CONCLUSION 

Figure (10.1) illustrates how the same pair of curves can be equally 

well approximated with a regular (10.1 (b)) and an irregular (10.1 (c)) 

pair of point vectors. 

Figure 10.1 about here 

The derivation of the union, intersection and the differences is much 

simpler for a regular conjunction than for irregular ones. Figure 10.1 

suggests that an irregular pair might easily be transformed into a regular, 
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Operations: Transfers: 

(nj-l+PHiyl+e) (t^-l+BMi^-l+B) 

(n1-l+P)+(n2-l+B) 

M b 3 o(n 1+n 2+2b) 

where ot denotes the number of disjoint curves derived from the expansions and 

denotes the number of S points added during the expansion. 

Operations increase geometrically with n.̂  and n,,. 

by slightly incrementing the x and y values of the c-points which 

cause the pairfs irregularity. Since we expect the algorithm to be applied 

in problem areas involving multiple operations, the small transformation 

could easily accumulate a non-negligible error. Thus, we have chosen to 

develop it general enough to resolve regular as well as irregular con­

junctions. 

The algorithm is efficient. Only the expansions of the curves require 

computation. The characterization of points and their threading require 

only transfers and testing. In the analysis of efficiency, transfers of 

single variables can be ignored; only transfers involving all points of 
1 2 

one of the curves needs to be considered, e.g., transfers t and t . 

More specifically, the operations required for normalized curves are: 
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APPENDIX I: 

A. Function INS 

In general, two non-parallel lines, each defined by a pair of points, 

intersect at 

( y r y 2 } ( V x i } " < v y 2 > < v * i > 

* , 1 l w 2 2 2 2 N 

y = ( y r y 2 ) ( x i y 2 " x 2 y i ) 
, 2 2 W 1 1 1 L 

(x 2
rx2)( y i 

1 1. . 1 l w 2 2, y 2) - ( x
1-x 2)(y 1-y 2) 

These functions are used throughout and shall be called INO. For our 

purposes 

P*<- INO (pJ,P2,P^,P2) where P* = (x*,y*) or P* = 0 (if the lines are 
parallel). 

Function INS is as follows: 

INS (pJ,P2,P^,P2) = P* = (x*,y*) if P* * 9 and 

1 * 1 1 * l x , 1 * 1 1 * lv (x 1>x > x 2 or x 1 < x < x 2 ) and (y 1>y > y 2 or y 1 < y < y 2 ) and 

2 * 2 2 * 2 2 * 2 2 * 2 (x x>x > x 2 or x 1 < x < x 2 ) and (y L>y > y 2 or y ^ y < y 2 ) ; 

P = 0 otherwise. 

B. Function INT 

For the definition of INT we shall use function INO again, and 

also the functions KPR and ORS which will be defined first. 
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( I ) K P R ( P ^ P ^ P J , ? 2 , ? 2 ^ ) = ( K , ^ , ^ ) WHERE K P R CHECKS WHAT 

K I N D OF A P A I R ( P J J P ^ A N D ^ P I » P 2 ^ A R E A N D 

K * * 1 , = T 2 < - 0 I F I T I S A N O N - I N T E R S E C T I N G P A I R ; 

K * - 2 , T 1 = T 2 * - 0 I F I T I S AN I N T E R S E C T I N G P A I R ; 

K « - 3 , I F I T I S A TANGENT P A I R AND 

T ^ « - 1 , T 2 « - 0 I F ONE S I D E D TANGENCY AND P * THE TANGENT P O I N T , 

2 
T ^ « - 0 , T 2 « - 1 I F ONE S I D E D TANGENCY AND P 2 THE TANGENT P O I N T , AND 

1 2 

T ^ « - 1 , T 2 « - 1 I F TWO S I D E D TANGENCY AND P 2 AND P 2 THE TANGENT P O I N T S . 

K P R ' S COMPUTATIONS ARE AS FOLLOWS: 

P V L N O ( P ^ , P 2 , P 2 , P 2 ) . 

WHERE I F P * = 0 , THEN K«-l AND T = T 2 « - 0 

I F P * = ( X * , Y * ) AND P * = P * AND P % P 2 , THEN K « - 3 , T ^ L , T 2 « - 0 

I F P * - < X * , Y * ) AND P * - P 2 AND P * V P J , THEN K « - 3 , T ^ O , T 2 < - 1 

I F P * = ( X * , Y ' F ) AND P * = P * = P 2 THEN K < - 3 , 1 , T 2 « - 1 ; 

I F ( X * > X * > X 2 OR < X * < X 2 ) AND ( Y * > Y * > Y 2 OR Y J < Y * < Y 

AND ( X 2 > X * > X 2 OR X 2 < X * < X 2 ) AND ( Y 2 > Y * > Y 2 OR Y 2 < Y * < y 

AND P * 4 P 2 , P * 4 P 2 , THEN K ^ . T F T . £ « - 0 ; 

E L S E K = 1 , T X = T 2 = 0 . 

( I I ) ORS ( P 0 F P 1 » P 2 » P 3 - » P 4 ) = ( C L ' C 2 ) W H E R E 0 R S O R D E R S T H E 8 E 8 « » E N T 8 

L 1 = ( P ^ ) , L 2 = ( P 0 , P 2 ) , L 3 = ( P Q , P 3 ) AND L 4 = ( P Q , P 4 ) AND THEN 

D E P I C T S THE COLORS ( C ^ C ^ OF P Q . c± I S THE COLOR OF P Q I N 

( P 1 , P Q , P 2 ) AND C 2 THE COLOR OF P Q I N ( P 3 , P 0 > P 4 ) . EACH C CAN B E 
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• I 4 - (yi • y 0
) 1
 (xi • x

0
) ; v ( y

3 - y
0
)
 1
 ( x

3 - V 
1 3 1 3 1 3 and L < L if ( s 1 < s 3 and g =g =1 or 3) or ( s 1 > s 3 and g =g =2 or 4); 

1 3 1 3 1 3 L > L if ( s i > s 3 a n d § = S = 1 o r 3) or ( s
1
< s

3
 a n d 8 = 8 = 2 o r 4 ) ; 

1 3 1 3 L « L if s ^ = s 3 a n c* § = g =1 3 2, 3 or 4. 

The signs and w mean proceeds> follows and coincides respectively, 
1 3 3 1 

and L > L = L < L . For example, the segments in Figure 1.2 will be 
2 3 1 4 2 3 1 4 ordered as L <L -< L < L since g =1, g =g =3, g =4 and s,j<s^. 

Figure I.l about here Figure 1.2 about here 

2 3 1 4 

We shall simplify the notation L -<L <L < L by eliminating the 

L fs and writing their subscript indicators only. T/e shall also request 

that L"*" (now simply 1) is listed first and also last; the latter to 

S or P or P or P. 

To order the segments, ORS first figures out the cycle quadrant 

at which each segment lies. The center of the cycle is at P^ and 

g, the index of its quadrants is as in Figure I.l. Then 

gJ+- 1 if X < X . A y < y # ; g*+-2 if X > X . A y <y.; 

g J«"3 if X > X . A y > y # ; g J <- 4 if X < X . A y >y.. 
6 o — j Jo  J2 0 2 o-Ji 

The segments are ordered according to the numeric values of their g fs, 

where 4 is followed by 1. For equal g's, the segments are ordered 
1 3 

according to their slopes. That is if, say, g = g , then 
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indicate the ordering1s circularity. Then L 2 •< L 3 < L 1 < L 4 will be written 

as 1 < 4 < 2 < 3 < 1 , Then 

c 1=c 2«-S if 1 < 3 < 2 < 4 < 1 or l < 4 < 2 < 3 - < 1 ; 

c ^ P and c 2 ^ - P if 1 < 3 < 4 < 2 < 1 or 1 < 3 < 4 « 2 < 1 or 1 » 3 < 4 < 2 < 1 ; 

c 1 « - P and c 2 « - P if K 2 - < 4 < 3 < 1 or l<2<4<3* 1 or H 2 W 4 < 3 ^ 1 ; 

C j«c 2 « - P if K 2 - < 3 - < 4 - < l or 1 - < 2 - < 3 < 4 W 1 or 1 < 2 * 3 < 4 < 1 

c x = c 2 « - P if 1 < 4 < 3 < 2 < 1 or 1 < 4 < 3 W 2<l or 1 « 4 < 3 < 2 < 1 

c L = c 2 < - P if 1 « 3 < 2 W 4 < 1 or 1 * 4 ^ 2 * 3 < 1 . 

As before, S is the color for an intersection point, P the color of 

an inner P and P the color for an outer P . 

We can now define INC as follows 

INT ( p J , P 2 , P 3 , P 2 , P 2 , P 2 ) = ( P , c v c 2) where 

P < - 0 , C ] L = c 2 < - 0 if K P R ( p J , P 2 , P 3 , P 2 , P 2 , P 2 ) = ( 1 , 0 , 0 ) 

P < - P * = (x*,y*), C l = c 2 < - S if K P R ( p J , P 2 , P 3 , P 2 , P 2 , P 2 ) = ( 2 , 0 , 0 ) 

P < - P 2 , ( C ] L,c 2 ) < - 0 R S ( P ^ , p J , P ^ , P 2 , P 2 ) if K P R ( p J , p J , P ^ , P 2 , P 2 , P 2 ) = ( 3 , 1 , 0 ) 

P < " P
2 , ( C l , c 2 ) « - O R S ( P 2 , P J , P 2 , P 2 , P 2 ) if K P R ( p J , P ^ , P ^ , P 2 , P 2 , P 2 ) = ( 3 , 0 , 1 ) 

P * - P 2 , ( C l , c 2 ) < - 0 R S ( P 2 , P J , P 3 , P 2 P 2 ) if K P R ( p J , P 2 , P 3 , P 2 , P 2 , P 2 ) = ( 3 , 1 , 1 ) 

Notice that when we outlined INT (Section 4 ) we used a slightly different 

notation for the function's outcome. The two notations are equivalent. For example, 
g o 1 2 

( P ^ P ) is equivalent with ( P , ^ , ^ ) where P = P 2 = P 2 and Cj=c 2=S. 
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0 1 
R 0 « - P O N ( R 1 ,R2 ,R2, 

2 n i V 1 

, 0 2 

k : R0.«-MDP (Rl ,Rl ) 

03 
k : R O ^ N I N ( R 0 1 , R l 1 , R 0 2 , R 2 n , R 2 1 > R 2 2 ) 

*2 

, 0 4 , 
k : R 0 « - C P Y (Rl )} 

2 n x 

T - i t 1 , t 2 , t 3 , t 9 , t 1 1 AS BEFORE AND 

t 0 1 : R 0 2 ^ R 2 1 ; R2 j, +-R2± + 1 ( ± 2 = 1 , . • . , N 2 - L ) ; N 2 = N 2 - L 

t 0 2 : R l ^ ( I ^ L^.-jtij ^ C M O D n 1 ) ) | 

G = I C ^ , C** AS B E F O R E } 

and 6 the f o l l o w i n g m a p p i n g : 

c , 0 0 ( u , 0 1 1 2 . 0 1 , 
6 (q A I ) = (q ,t ,t ,k ) 

6 ( q
0 1 , { R 0 2 = 1}) = ( q 0 2 , ^ ) 

6 ( q 0 1 , J R 0 2 = 0 A R 2 n ^ R 2 1 L ) - ( q 0 1 , t 2 , k 0 1 ) 

6 ( q 0 1 , i R 0 2 = 0 A R 2 ^ = R 2 1 1 ) = ( q ° 5 , k ° 4 , t 3 . t 1 ) 

(1) 

2 • " ' • ) - ' - vq ,«- ^ ^ 2 ) 

(3) 

(4) 

A P P E N D I X I I : 

T h e N o r m a l i z e r M b 0 

T h e n o r m a l i z e r M b 0 is the s y s t e m (L,K,T,G,Q,6) w h e r e L as b e f o r e , 
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6 C Q
0 2 , | R I - R I,») - < , 0 3 , t W ) ( 5 ) 

6 ( Q
0 2 , | R 2 N - R 2 , | ) - (q 0 1,t 2,k 0 1) ( 6 ) 

2 

6 ( Q
0 2 , { R 2 4 R 2 , } ) = q 0 2,t 2) ( 7 ) 

6 ( q° 3, {Rl -Rl.}) = (q° f f) * ( 8 ) 
"l i 

6 ( Q
0 3 , { M - R 2 1 } ) = (q° 4,t 2,k 0 1) ( 9 ) 

6 ( Q
0 3 , { R 2 « R 2 1j) = (q° 3,t 2) ( 1 0 ) 

, , 0 4 ( „ „ , K , 0 3 9 . 1 . 0 2 3 . 

& (q , I R 0 2 = lj) = (q ,t ,t ,k ,t ) ( 1 1 ) 

6 (q° 4, I R 0 2 = 0 A R 2 N 4 R 2 ^ ) = (q°\t 2,k 0 1) ( 1 2 ) 

6 (q° 4, L R 0 2 = 0 A R 2 N ^ = R 2 1 L ) = ( q 0 5 ^ 0 4 ^ 3 , ! 1 ) ( 1 3 ) 

6 ( q
0 5, {Rl ^ R ^ I ) = (q^.t 1) ( 1 4 ) 

6 ( q
0 5, {Rl - Rljl) = ( q

0 6 , t 9 ) ( 1 5 ) 

6 ( q ° \ {Rl ,» Rl^) = ( q 0 6 ^ 1 ) ( 1 6 ) 

6 ( q
0 6 , {Rl - Rl ^ ) = (q° 7,t 0 1,k 0 3) ( 1 7 ) 

6 (q 0 7, { R 2 ^ R 0 2 1 ) = (q° 7,t 2,k° 3) ( 1 8 ) 

6 (q 0 7, { R 2 X = R 0 2 A R 0 L = 0 1 ) = (q 0 f,c 3,t° 2,c 3,t 1) ( 1 9 ) 

6 ( Q
0 7 , { R 2 1 = R 0 2 A R 0 1 = l b - ( q ^ . c 1 ^ 0 2 ^ 1 ^ 1 ) ( 2 0 ) 

The function PON ( P ° , P * , P 2 ) checks if the point P ° lies on the 

segment ( P J . * ^ * I T S V A L U E I S 1 F ° R Y 6 S ' ^ ° F < > R N ° * M ° R 6 P R E C I S E L Y 
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PON ( P ^ p J . P * ) = 1 if y° = (A 1x° + C 1 ) / ( - B h and (xj<x°<x 2 or x j > x ° > x 2 ) 

and (y L<y < y £ or y x > y >y 2> 

= 0 otherwise. 

A ^ - B V C ^ O is the equation of (PJ.P*) and (x°,y°) = P ° , (x*,yj) = P J 

and (x 2,y 2) = P 2 . 

The function MDP ( P ^ , P 2 > calculates the midpoint of the segment 

( P 1 , P 2 ) . That is 

MDP ( P 1 } P 9 ) = P M = (x ,y• J where x = (x + x )/2 and y = (y + y )/2. 
1 Z m m m m 1 Z m 1 Z 

The function NIN ( R J P J . P ^ P J . P ^ P ^ ) checks if the segment (P^P*) 

intersects the line defined by (P^P*) at a point before pj. If yes 

and R=l, or no and R=0, the output is 0. If no and R=l, or yes and 
2 2 R=0, the output is 1. P^ is needed in case is a tangent point. 

The function CPY (P) simply copies P. That is CPY (P) = P. 

bO 

M normalizes the point vector in Rl. Its first part (map. 2-4) 

checks if the given closing point is unique (if it is not a point of the 

other curve also). If it is not, it picks the next point in the Rl 

vector (map. 2 ) , resets R2 (map. 6 , 7 ) and proceeds to check if this point 

is unique. It repeats the process till it depicts some unique point in 
Rl. If Rl completes a cycle and no unique point is found (map. 5), 

03 

goes to state q and starts creating points by taking the midpoints of 

the segments in Rl. It creates one point per segment and applies 

tests as before (map. 12, 13), till some of the created points are found 

unique. will not find a unique point if the curves are coincident. 

In such a case it goes to q 0 f f , the final state for failure and exits. 
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w i l l a l s o f a i l t o d e p i c t a unique p o i n t i n few extreme c a s e s l i k e 

the one shown i n F i g u r e I I . 1 . S u r e l y i t s d e f i n i t i o n can be made s t r i c t e r 

by p i k c i n g more p o i n t s on each segment . I t was thought unneces sa ry s i n c e 

such c a s e s a r e very u n l i k e l y t o o c c u r . 

F i g u r e I I . 1 about here 

Whenever a unique p o i n t i s d e p i c t e d , goes t o s t a t e q^~* and 

then q^^ where i t r e s e t s t h e v e c t o r s i n Rl and R2, so t h a t t h e i r 

c l o s i n g p o i n t s occupy l o c a t i o n s Rl , R l - , R2 and R2 (map, 14-17) 
n^ «L ^2 

and goes t o s t a t e q ^ . At q^^, i t checks how many segments o f R2 a r e 

i n t e r s e c t e d by the l i n e d e f i n e d by the c l o s i n g p o i n t s i n Rl and R2 

(now s t o r e d i n R 0 2 ) a t a p o i n t b e f o r e the c l o s i n g p o i n t of R l . I f i t i s 

an odd number (when R O ^ l ) , the c l o s i n g p o i n t i n Rl i s an inner p o i n t ; 

i t i s o u t e r i f the number of i n t e r s e c t i o n s i s even (when R0^=0) (map. 18-20 

The f i n a l s t a t e f o r s u c c e s s i s q ^ . 
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F I G U R E 2 . 2 

coincident D I S J O I N T CONJOINT 
F I G U R E 2 . ? 

S U B J O I N T SUBTANGENT 

D I S J O I N T 
S U B J O I 

C * I N C 1 

IT 

C 1 I N C Z 

1 

1 COINCIDENT 

R — R 

C O N J O I N T 

{ D , C 2 } I C 1 * O R C C 2 } F U ( C I , C 2 ) I 

• { * } OR F T F F F N ( C I , C " ) J 

C 1 - C Z 
{ C I } { D . S 2 } 

W F ~ ( D F C 2 ) J 

C 1 - C ? J C 2 F 
{ C 2 , ^ F L C ^ C 1 ) J 

LI C B 

F I G U R E 2 . S 
C * - C B 

K . A 

\ / V 

/ 

V 

C B - C * 
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one two t h r e e f o u r 

1 

P * 8 = P * 8 

P B 

P L ^ N P 3 

P ^ 1 

P 5 « , P ? 8 

I P B / P * ^ P , P. . 

. P 3 
pHv' : :-1 

P B 

P * 
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