
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



PARALLEL NEIGHBOR-SORT 

(OR THE GLORY OF THE INDUCTION PRINCIPLE) 

Nico Habermann 
Carnegie-Mellon University 

Pittsburgh, Pa. 

August 1972 

This work was supported by the Advanced Research Projects Agency 
of the Office of the Secretary of Defense (F44620-70-C-0107) and 
is monitored by the Air Force Office of Scientific Research. 
This document has been approved for public release and sale; its 
distribution is unlimited. 



ABSTRACT 

Array A[1:N] (N ̂  2) is to be sorted in ascending order using pro

cedure NS(i) which arranges the values of an adjacent pair A[i], A[i+1] 

in the right order. It is shown that a parallel process P which can per

form at least N T 2 executions of procedure NS in parallel will sort array 

A in p steps where p ^ N. The proof is based on the observation that the 

distance of the position of a number in array A after p steps and its 

final position is bounded by N - p. 



1. INTRODUCTION 

Elements of a given array A[1:N] (where N ^ 2) are to be sorted in 

ascending order assuming that nothing is known about the initial order. 

Suppose array A can only be rearranged by sorting adjacent pairs 

(A[i], A[i+1]) with procedure NS declared as: 

procedure NS(i); integer i; 
if i < N do 
if A[i] > A[i+1] do 
begin integer w; w «- A[i]; A[i] «- A[i+1]; A[i+1] «- w end; 

This requirement that only allows operations on neighboring pairs of 

elements of array A restricts of course the range of sorting algorithms 

considerably. But this restriction is plausible if parallel processes are 

considered which are capable of carrying out many sort operations on elements 

of A simultaneously. 

The parallel processes considered here are supposed to be able to execute 

in parallel at least N -r 2 instances of procedure NS. Such a process could 

for instance order in one step all elements with odd index with regard to 

their neighbor element with even index. This paper addresses itself to the 

question of how many parallel steps would be needed to sort array A[1:N] 

with procedure NS. The answer turns out to be that the number of parallel 

steps required is less or equal to N. This seems plausible when thinking of 

the smallest or largest number, but not so obvious when observing how an "in 

between" number may wander about before arriving at its destination. 
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Example 

parallel step p 
11 7 8 4 2 1 0 
7 11 4 8 1 2 1 
7 4 11 1 8 2 2 
4 7 1 11 2 8 3 
4 1 7 2 11 8 4 
1 4 2 7 8 11 5 
1 2 4 7 8 11 6 

The numbers 2 and 7 are starting off in the wrong direction, the numbers 4 

and 8 begin heading in the right direction but pass their destination. But 

it seems as if a number v cannot wander too far from its destination. The 

example shows that any number v is at most two positions off from its destina

tion for p = N-2 and only one for p = N-l. The generalization of this ob

servation is: a number v is after p steps at most N-p positions away from 

its destination. 

The larger part of the sequel deals with the correctness proof of this 

observation. The existence of the upperbound N for the number of steps p 

needed to sort array A can easily be derived from it. 

2. REPHRASING THE PROBLEM 

The sorting of array A[1:N] (N ̂  2) with arbitrary values can easily 

be translated into a mapping of I -* I where I = U,2,...,Nj. The idea is 

to replace each value v by the index of its destination which will be reached 

after sorting. Thus, to sort array A means to exchange elements of A until 

for all j 6 il,2,...,Nj A[j] = j. 

A sequential process that sorts array A using procedure NS is described by 
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integer k,z; 
for z «- N-l step -1 until 1 do 

for k 1 step 1 until z do NS(i) 

It is well known that this process would certainly not be the most efficient 

one if the restriction of "rearranging neighbors only11 was removed. It re

quires l/2 N(N-l) sequential executions of procedure NS, whereas Quick Sort 

procedures require in the order of l/2 N log2 N comparisons. On the other 

hand, pairwise comparison is attractive if many of those can be performed in 

parallel at no additional cost. But the sequential process described above 

cannot be transformed easily into a parallel process because of its iterative 

nature. 

Instead, parallel processes that will be considered use two parallel 

statements, named S ,, and S : 
odd even 

s
o d d

: parbegin NS(1); NS(3); NS(1 + (N-l) -f 2*2) parend 
s

e v e n . Parbegin NS(2); NS(4); NS(N -r 2*2) parend 

The result of executing a parallel statement should be unambiguously inter-

pretable without requiring knowledge of the order in which variables are 

accessed. It would not make sense for instance to use two consecutive 

indices as parameters to calls of procedure NS in a parallel statement, e.g., 

the result of 

parbegin NS(i); NS(i+l); ... parend 

cannot be interpreted uniquely. For instance, 

(A[i], A[i+1], A[i+2]) =* (11, 7, 3) 

could be mapped by this parallel statement into 
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(7, 3, 11) or (3, 7, 11) or even (7, 11, 7)11 

Parallel statements S ., and S do not have such ambiguities, because each 
odd. even 9 

element A[i] is involved in not more than one instance of procedure NS. 

Let process P^^ be defined by 

integer p; 
for p = 1 step 1 until N do 

if p - p 4- 2*2 then S else S .. 
— even odd 

and process P by r even J 

integer p; 
for p = 1 step 1 until N do 

if p = p T 2*2 then S ,. else S 
— r r odd even 

Process P ,, starts with S ,,, process P starts with S • The main odd odd' r even even 
theorem to prove is 

Theorem 1, Process P or process P sort array A in ascending order odd even 

(or: array A is sorted by p alternating execution of S ^ and S e v e n — no 

matter which is first, and p ^ N ) . 
The proof is based on the following result: 

Theorem 2. ABS(i^(p) - j) ^ N-p (1) 

for all j g N, 

where i_.(p) is the index of j in array A after p steps (i.e., p alternating 

execution of S and S , no matter which one is taken first), odd even 
The proof of theorem 1 follows immediately from (1): 



ABS(ij(n) - j) = 0 for p = N and 

for all j € |lf..»Nj, i.e., the index of j after N steps is j, or A[j] = j. 

3. PROOF OF THEOREM 2 

Theorem 2 puts an upper limit on how far a number j is out of balance 

so to speak. This depends on 

(*j(p) ::= how many numbers to the left of j are greater than j after p steps 

Pj(p) how many numbers to the right of j are less than j after p steps. 

(The subscript j will be omitted from now on where confusion is unlikely.) 

The numbers £ j are together [i(p) - a(p)3 + P(p)> a n <* so 

i(p) - j - *(p) - P(p) (2) 

and initially 

1(6) - j - crtO) -'0«» (3) 

The goal is to prove that 0 £ cKp) £ N-p (4) 

and 0 £ P(p) £ N-p (5) 

The proof of theorem 2 follows then from (2), (4) and (5). 

- (N-p) * -p(p) *cr(p)-p(p) - i(p)-j * cf(p) * N-p 

Let B[1:N] (N 2> 2) be an array of which initially 

B[k] = k for k»l, ...,m and 1 £ m £ N-l 

B[k] = 0 for k=m+l,...,N 
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Array B consists of the sequence l,...,m followed by at least one 0. 

Sodd ° r Seven a P P l i e d t o a r r a Y B transform no other pairs than (k,0) 

into (0,k) for k 6 ••>!&}• Thus, the non-zero numbers will not overtake 

each other and the zeros preserve also their relative order. The case 

[ P J J ) is odd] or [P , m is even] is denoted by C ; the other case odd even J even 
b y Codd-

The pair (B[m], B[m+1]) is compared in the first step iff ^ e v e n applies. 

Lemma 1. The number m, initially in B[m], is in B[m+p] after p steps of 

C or p+1 steps of C J J f for 0 £ p £ N-m. even r r odd r 

Proof. The first step of C ^ has no effect on array B since no pair (1,0) 

is considered. After the first step C ^ has reached the same state as the 

initial state of C . Thus, whatever is achieved in p steps of C , is even r r even' 
obtained in p+1 steps of C Consider C . The statement is true for r r odd even 
p=0. Suppose it is true for p-Pg and p^ is a number such that 0 £ p Q £ N-m-1. 

So, (B[m+pg], B[m+Pg+1]) - (m,0), since m is the rightmost non-zero number. 

The pairs considered in the p*"*1 step of C are r r r even 

(B[m-*p-l+2*v], B[m+p+2*v]) 

for all v such that 2 £ m+p+2*v £ N. Hence, one of the pairs considered in 

step Pg+1 i s 

(B[m + (pQ+l) - 1], B[m + (pQ+l)]) 

for v - 0 [for which value 2 £ m+pQ+l+2*v ^ N is true]. But this pair equals 

(m,0) according to the supposition and it is subsequently transformed into 

(0,m). Hence, the assumption that B[m+p Q] - m for p = p Q implies that 
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B[nri-pg+l] = m for p = PQ+1» Thus, the statement is true for all p such that 

0 ^ p ^ N-m according to the induction principle. 

There is obviously a duality in array B of zeros and non-zero numbers 

and so, lemma 1 about the rightmost non-zero number carries over into a 

statement about the leftmost 0: 

Lemma 2. The leftmost 0, initially in B[mfl], is in B[m-p+l] after p steps 

of C or p+1 steps of C ,, for 0 £ p £ m even r r odd r 

Lemma 3. Number k 6 \19...,mj, initially in B[k], is in B[2*k+p-m] after 

p steps of C or p+1 steps of C for m £ k + p £N. r r even r r odd v 

Proof. As observed in the proof of lemma 1, C ^ required one step more to 

achieve the same as C . Consider C . The statement is true for k^m 
even even 

(lemma 1). Suppose it is true for k = kg € {l,...,ml, i.e., 

B[2*k Q + p-m] = k Q for all p such that m £ kg-l+P * N. 

It is true for p - m+l-k 0, because B[m - (m+l-kQ) + 1] = B[k Q] contains the 

leftmost zero according to lemma 2 and so B[k Q-l] = k^-l. S u P P o s e i t : is true 

for p - p Q and m £ k Q + p Q £ N, i.e., B[2*(k0-1) + p Q-m] = k Q-l. But it is 

known that for this value of p 

B[2*k Q + Pg-m] - k
0
 a n d s o 

B[2*k Q - p Q-m] = 0. 

In step p Q B[2*k Q + P 0 " M ] Sot the value k Q, hence in step p Q+l the pair 

(B[2*kQ + p Q-2-m], B[2*k Q + P ( )-l-m]) is considered. It equals (kQ-l,0) and 

is subsequently transformed into (0,k n-l). Thus, 
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B[2*(kQ-l) + (p0+l) - m] = k Q-l for p = p Q+l 

Applying the induction principle twice shows that the statement is true. 

Let H (p) denote the number of non-zeros left of any zero in array B 

even after p steps of P^ d d or P 

Lemma 4. I (p) £ N-P 

Proof. Number k Q € {l,...,m} is moved from B[k Q] to B[N-m+kQ] in p = N-k Q 

steps of C or p = N-kn+l steps of C according to lemma 3. This number even 0 r odd 
k Q has passed all zeros of array B. But so have all numbers k for which 

kg £ k £ m or N-p+1 £ k £ m. Thus, for given p the numbers that possibly did 

not pass all zeros of array B is less than N-p+1 or A (p) £ N-p. 

Let C[1:N] be an array with the same number of non-zero and zero elements 

as array B[1:N]. The non-zero elements are the numbers l,...,m (1 £ m £ N-l) 

from left to right. These numbers are not necessarily stored in consecutive 

elements of array C. Thus, if ij(p) a n (* *J(P) denote the indices of number 

j € [l,...,mj after p steps of P^ d d or ? e v e n in arrays B and C respectively, 

i*(0) ^ ijCO) 

for all j e {1,... ,m}. 

Lemma 5. ij(p) £ ij (p) for all j € {l,...,m} and p 6 iO,...,N} 

Proof. Let j = m. According to lemma 1 

C ( p ) = i m ( 0 ) + P * i m ( 0 ) + P = i m ( p ) f o r P * N " i m ( 0 ) 

(or p £ N-i (0) + 1 for C ..) and v r m odd 
i (p) ^ i (p) - N for N-i (0) + 1 £ p £ N. m m m 
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Suppose the relation is true for j • k+1. The objective is to prove that 

this implies that the relation is also true for j=k. For p=0 i k(°) ^ 

is true. Suppose it is true for p 8 3 p Q € {0,...N-1}. It could not happen 

that, if i*(pQ) = i k(p), 

B[i*(p Q) + 1] - 0' and C[i k(p) + 1] + 0 

because it would mean that 

WPO* > W + 1 = W + 1 = W V > 
and this is in contradiction with the supposition that the relation is true 

for all p £ {0,...,N} for j = k+1. It can easily be derived that the relation 

is also true for p • Pg +* i n a ^ other cases (viz. either B[i k(p Q) + 1] ̂  0 or 

both B[i k(p Q) + 1] - C[ifc(p) + 1] = 0 or i
k ( P 0

) < A P P ^ 1 1 * t h e i n " 

duction principle twice shows that 

i*(p) £ ij(p) for all j € 11,...,m} and p 6 [0,...,N] 

Let A(p) denote the number of non-zeros in array C to the left of at 

least one zero after p steps • 

Lemma 6. A(p) < & (p) for all p € 10,...,N] 

Proof. If there are not any non-zeros to the right of all zeros then 

A(p) = A (p) = m. Let the numbers k+l,...,m be to the right of all zeros in 

array B and the numbers j+l,...,m to the right of all zeros in array C. Then 

B[n-m-+k] = 0, which is the rightmost zero in array B, C[N-m+j] = 0, which is 

the rightmost zero in array C and A(p) = j and I (p) » k. Suppose k < j. 
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This implies that j has all zeros to its left in array B and so i.(p) - N-m+j. 

But ij(p) < N-m+j in array C and so ij(p) > ij(p). But this relation is in 

contradiction with lemma 5. 

Let us now return to array A[1:N]. The objective was to show that 

tfj(p) ̂  N-p for all j g llf.fNj. There are no numbers in array A greater 

than N and so the relation is trivial for j * N: c^(p) - 0 £ N-p is true. 

Consider a number j € [l,...,N-lj and the mapping T (A) -» C defined by 

T j : integer i,m; m «- 0; 
for i «- 1 step 1 until N do 
if A[i] > j then begin m «- m+1; C[i] *- m end  

else C[i] 0 

The result of the mapping is that array C contains at least one number ^ 0 

and at least one 0, The non-zero numbers are ordered in ascending order 

from left to right, but not necessarily in contiguous locations. 

Lemma 7. Tj.S(A) - S.T^(A) for all j 6 [l,...,N-ll, i.e., the index relation 

between numbers ^ j in array A and zeros in array C is invariant for parallel 

steps S .. and S 
r odd even 

Proof. Take a number j € {1,...,N-H and let ( k ^ k ^ be a number pair in 

array A that is considered in S or S ... J even odd 
If k x > j and k 2 > j then 

T..S(k l fk 9) = T (k.,k ) J 1 2 J 1 2 I (i,i+l) 
or 

and S.TjC^,^) = S(i,i+1) = (i,i+l). 

If k x ^ j and k 2^ j, the result is both ways (0,0). 
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If > j and k 2 ^ j then 

T j - S C k ^ ) = T j C ^ , ^ ) = (0,i) 

and S.TjCk^k^ = S(i,0) = (0,i) 

If k £ j and k 2 > j, the result is both ways (0,i). 

The statement can be generalized to include an arbitrary sequence of steps 

S J J and S odd even 

Lemma 8. c^(p) ^ JL(p) for all j 6 {l,...,N-lj and p € {0f...,N} 

Proof. Let Vj(p) - lk|k > j and i^p) < ij(p)}. 

a.(p) - number of elements of V.(p). 
J 3 

T j ( k € V j ( p ) ) = k ' > ° a n d i k , ( p ) = i k ( p ) < i j ( p ) a n d 

Tj(j) - 0 in C[i^.(p)] according to lemma 7. 

Hence, cKp) = number of non-zeros left of C[i^.(p)] - 0, whereas £(p) = number 

of non-zeros left of the rightmost 0. Thus, <y(p) £ A(p). 

The crucial relation 

a.(p) * N-p (4) 

for all j € U,...,N} and p € {0,...,N'j can now be derived from 

a N(p) = 0 for j - N and all p 6 1.0,...,N} 

and for all j 6 [1,...,N-1] and all p g 10,...,N] 

ij(p) * N-p (lemma 4) 

V P ) * V P ) (lemma 6) 
ffj(p) ̂  JJj(p) (lemma 8) 
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For the proof of the main theorem, that array A[1:N] can be sorted in N 

parallel steps, we also needed the relation 

Pj (P) * N-p 

It is obvious that the proof that this relation is true can be constructed 

by systematic changes of left, right and less than, greater than in the lemmas. 

The check is left to the reader. It is surprising that a theorem which seemed 

quite obvious required such an elaborate proof. 
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