
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PARALLEL NEIGHBOR-SORT

(OR THE GLORY OF THE INDUCTION PRINCIPLE)

Nico Habermann
Carnegie-Mellon University

Pittsburgh, Pa.

August 1972

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distribution is unlimited.

ABSTRACT

Array A[1:N] (N ̂ 2) is to be sorted in ascending order using pro

cedure NS(i) which arranges the values of an adjacent pair A[i], A[i+1]

in the right order. It is shown that a parallel process P which can per

form at least N T 2 executions of procedure NS in parallel will sort array

A in p steps where p ^ N. The proof is based on the observation that the

distance of the position of a number in array A after p steps and its

final position is bounded by N - p.

1. INTRODUCTION

Elements of a given array A[1:N] (where N ^ 2) are to be sorted in

ascending order assuming that nothing is known about the initial order.

Suppose array A can only be rearranged by sorting adjacent pairs

(A[i], A[i+1]) with procedure NS declared as:

procedure NS(i); integer i;
if i < N do
if A[i] > A[i+1] do
begin integer w; w «- A[i]; A[i] «- A[i+1]; A[i+1] «- w end;

This requirement that only allows operations on neighboring pairs of

elements of array A restricts of course the range of sorting algorithms

considerably. But this restriction is plausible if parallel processes are

considered which are capable of carrying out many sort operations on elements

of A simultaneously.

The parallel processes considered here are supposed to be able to execute

in parallel at least N -r 2 instances of procedure NS. Such a process could

for instance order in one step all elements with odd index with regard to

their neighbor element with even index. This paper addresses itself to the

question of how many parallel steps would be needed to sort array A[1:N]

with procedure NS. The answer turns out to be that the number of parallel

steps required is less or equal to N. This seems plausible when thinking of

the smallest or largest number, but not so obvious when observing how an "in

between" number may wander about before arriving at its destination.

-2-

Example

parallel step p
11 7 8 4 2 1 0
7 11 4 8 1 2 1
7 4 11 1 8 2 2
4 7 1 11 2 8 3
4 1 7 2 11 8 4
1 4 2 7 8 11 5
1 2 4 7 8 11 6

The numbers 2 and 7 are starting off in the wrong direction, the numbers 4

and 8 begin heading in the right direction but pass their destination. But

it seems as if a number v cannot wander too far from its destination. The

example shows that any number v is at most two positions off from its destina

tion for p = N-2 and only one for p = N-l. The generalization of this ob

servation is: a number v is after p steps at most N-p positions away from

its destination.

The larger part of the sequel deals with the correctness proof of this

observation. The existence of the upperbound N for the number of steps p

needed to sort array A can easily be derived from it.

2. REPHRASING THE PROBLEM

The sorting of array A[1:N] (N ̂ 2) with arbitrary values can easily

be translated into a mapping of I -* I where I = U,2,...,Nj. The idea is

to replace each value v by the index of its destination which will be reached

after sorting. Thus, to sort array A means to exchange elements of A until

for all j 6 il,2,...,Nj A[j] = j.

A sequential process that sorts array A using procedure NS is described by

-3-

integer k,z;
for z «- N-l step -1 until 1 do

for k 1 step 1 until z do NS(i)

It is well known that this process would certainly not be the most efficient

one if the restriction of "rearranging neighbors only11 was removed. It re

quires l/2 N(N-l) sequential executions of procedure NS, whereas Quick Sort

procedures require in the order of l/2 N log2 N comparisons. On the other

hand, pairwise comparison is attractive if many of those can be performed in

parallel at no additional cost. But the sequential process described above

cannot be transformed easily into a parallel process because of its iterative

nature.

Instead, parallel processes that will be considered use two parallel

statements, named S ,, and S :
odd even

s
o d d

: parbegin NS(1); NS(3); NS(1 + (N-l) -f 2*2) parend
s

e v e n . Parbegin NS(2); NS(4); NS(N -r 2*2) parend

The result of executing a parallel statement should be unambiguously inter-

pretable without requiring knowledge of the order in which variables are

accessed. It would not make sense for instance to use two consecutive

indices as parameters to calls of procedure NS in a parallel statement, e.g.,

the result of

parbegin NS(i); NS(i+l); ... parend

cannot be interpreted uniquely. For instance,

(A[i], A[i+1], A[i+2]) =* (11, 7, 3)

could be mapped by this parallel statement into

-4-

(7, 3, 11) or (3, 7, 11) or even (7, 11, 7)11

Parallel statements S ., and S do not have such ambiguities, because each
odd. even 9

element A[i] is involved in not more than one instance of procedure NS.

Let process P^^ be defined by

integer p;
for p = 1 step 1 until N do

if p - p 4- 2*2 then S else S ..
— even odd

and process P by r even J

integer p;
for p = 1 step 1 until N do

if p = p T 2*2 then S ,. else S
— r r odd even

Process P ,, starts with S ,,, process P starts with S • The main odd odd' r even even
theorem to prove is

Theorem 1, Process P or process P sort array A in ascending order odd even

(or: array A is sorted by p alternating execution of S ^ and S e v e n — no

matter which is first, and p ^ N) .
The proof is based on the following result:

Theorem 2. ABS(i^(p) - j) ^ N-p (1)

for all j g N,

where i_.(p) is the index of j in array A after p steps (i.e., p alternating

execution of S and S , no matter which one is taken first), odd even
The proof of theorem 1 follows immediately from (1):

ABS(ij(n) - j) = 0 for p = N and

for all j € |lf..»Nj, i.e., the index of j after N steps is j, or A[j] = j.

3. PROOF OF THEOREM 2

Theorem 2 puts an upper limit on how far a number j is out of balance

so to speak. This depends on

(*j(p) ::= how many numbers to the left of j are greater than j after p steps

Pj(p) how many numbers to the right of j are less than j after p steps.

(The subscript j will be omitted from now on where confusion is unlikely.)

The numbers £ j are together [i(p) - a(p)3 + P(p)> a n <* so

i(p) - j - *(p) - P(p) (2)

and initially

1(6) - j - crtO) -'0«» (3)

The goal is to prove that 0 £ cKp) £ N-p (4)

and 0 £ P(p) £ N-p (5)

The proof of theorem 2 follows then from (2), (4) and (5).

- (N-p) * -p(p) *cr(p)-p(p) - i(p)-j * cf(p) * N-p

Let B[1:N] (N 2> 2) be an array of which initially

B[k] = k for k»l, ...,m and 1 £ m £ N-l

B[k] = 0 for k=m+l,...,N

-6-

Array B consists of the sequence l,...,m followed by at least one 0.

Sodd ° r Seven a P P l i e d t o a r r a Y B transform no other pairs than (k,0)

into (0,k) for k 6 ••>!&}• Thus, the non-zero numbers will not overtake

each other and the zeros preserve also their relative order. The case

[P J J) is odd] or [P , m is even] is denoted by C ; the other case odd even J even
b y Codd-

The pair (B[m], B[m+1]) is compared in the first step iff ^ e v e n applies.

Lemma 1. The number m, initially in B[m], is in B[m+p] after p steps of

C or p+1 steps of C J J f for 0 £ p £ N-m. even r r odd r

Proof. The first step of C ^ has no effect on array B since no pair (1,0)

is considered. After the first step C ^ has reached the same state as the

initial state of C . Thus, whatever is achieved in p steps of C , is even r r even'
obtained in p+1 steps of C Consider C . The statement is true for r r odd even
p=0. Suppose it is true for p-Pg and p^ is a number such that 0 £ p Q £ N-m-1.

So, (B[m+pg], B[m+Pg+1]) - (m,0), since m is the rightmost non-zero number.

The pairs considered in the p*"*1 step of C are r r r even

(B[m-*p-l+2*v], B[m+p+2*v])

for all v such that 2 £ m+p+2*v £ N. Hence, one of the pairs considered in

step Pg+1 i s

(B[m + (pQ+l) - 1], B[m + (pQ+l)])

for v - 0 [for which value 2 £ m+pQ+l+2*v ^ N is true]. But this pair equals

(m,0) according to the supposition and it is subsequently transformed into

(0,m). Hence, the assumption that B[m+p Q] - m for p = p Q implies that

-7-

B[nri-pg+l] = m for p = PQ+1» Thus, the statement is true for all p such that

0 ^ p ^ N-m according to the induction principle.

There is obviously a duality in array B of zeros and non-zero numbers

and so, lemma 1 about the rightmost non-zero number carries over into a

statement about the leftmost 0:

Lemma 2. The leftmost 0, initially in B[mfl], is in B[m-p+l] after p steps

of C or p+1 steps of C ,, for 0 £ p £ m even r r odd r

Lemma 3. Number k 6 \19...,mj, initially in B[k], is in B[2*k+p-m] after

p steps of C or p+1 steps of C for m £ k + p £N. r r even r r odd v

Proof. As observed in the proof of lemma 1, C ^ required one step more to

achieve the same as C . Consider C . The statement is true for k^m
even even

(lemma 1). Suppose it is true for k = kg € {l,...,ml, i.e.,

B[2*k Q + p-m] = k Q for all p such that m £ kg-l+P * N.

It is true for p - m+l-k 0, because B[m - (m+l-kQ) + 1] = B[k Q] contains the

leftmost zero according to lemma 2 and so B[k Q-l] = k^-l. S u P P o s e i t : is true

for p - p Q and m £ k Q + p Q £ N, i.e., B[2*(k0-1) + p Q-m] = k Q-l. But it is

known that for this value of p

B[2*k Q + Pg-m] - k
0
 a n d s o

B[2*k Q - p Q-m] = 0.

In step p Q B[2*k Q + P 0 " M] Sot the value k Q, hence in step p Q+l the pair

(B[2*kQ + p Q-2-m], B[2*k Q + P ()-l-m]) is considered. It equals (kQ-l,0) and

is subsequently transformed into (0,k n-l). Thus,

-8-

B[2*(kQ-l) + (p0+l) - m] = k Q-l for p = p Q+l

Applying the induction principle twice shows that the statement is true.

Let H (p) denote the number of non-zeros left of any zero in array B

even after p steps of P^ d d or P

Lemma 4. I (p) £ N-P

Proof. Number k Q € {l,...,m} is moved from B[k Q] to B[N-m+kQ] in p = N-k Q

steps of C or p = N-kn+l steps of C according to lemma 3. This number even 0 r odd
k Q has passed all zeros of array B. But so have all numbers k for which

kg £ k £ m or N-p+1 £ k £ m. Thus, for given p the numbers that possibly did

not pass all zeros of array B is less than N-p+1 or A (p) £ N-p.

Let C[1:N] be an array with the same number of non-zero and zero elements

as array B[1:N]. The non-zero elements are the numbers l,...,m (1 £ m £ N-l)

from left to right. These numbers are not necessarily stored in consecutive

elements of array C. Thus, if ij(p) a n (* *J(P) denote the indices of number

j € [l,...,mj after p steps of P^ d d or ? e v e n in arrays B and C respectively,

i*(0) ^ ijCO)

for all j e {1,... ,m}.

Lemma 5. ij(p) £ ij (p) for all j € {l,...,m} and p 6 iO,...,N}

Proof. Let j = m. According to lemma 1

C (p) = i m (0) + P * i m (0) + P = i m (p) f o r P * N " i m (0)

(or p £ N-i (0) + 1 for C ..) and v r m odd
i (p) ^ i (p) - N for N-i (0) + 1 £ p £ N. m m m

-9-

Suppose the relation is true for j • k+1. The objective is to prove that

this implies that the relation is also true for j=k. For p=0 i k(°) ^

is true. Suppose it is true for p 8 3 p Q € {0,...N-1}. It could not happen

that, if i*(pQ) = i k(p),

B[i*(p Q) + 1] - 0' and C[i k(p) + 1] + 0

because it would mean that

WPO* > W + 1 = W + 1 = W V >
and this is in contradiction with the supposition that the relation is true

for all p £ {0,...,N} for j = k+1. It can easily be derived that the relation

is also true for p • Pg +* i n a ^ other cases (viz. either B[i k(p Q) + 1] ̂ 0 or

both B[i k(p Q) + 1] - C[ifc(p) + 1] = 0 or i
k (P 0

) < A P P ^ 1 1 * t h e i n "

duction principle twice shows that

i*(p) £ ij(p) for all j € 11,...,m} and p 6 [0,...,N]

Let A(p) denote the number of non-zeros in array C to the left of at

least one zero after p steps •

Lemma 6. A(p) < & (p) for all p € 10,...,N]

Proof. If there are not any non-zeros to the right of all zeros then

A(p) = A (p) = m. Let the numbers k+l,...,m be to the right of all zeros in

array B and the numbers j+l,...,m to the right of all zeros in array C. Then

B[n-m-+k] = 0, which is the rightmost zero in array B, C[N-m+j] = 0, which is

the rightmost zero in array C and A(p) = j and I (p) » k. Suppose k < j.

-10-

This implies that j has all zeros to its left in array B and so i.(p) - N-m+j.

But ij(p) < N-m+j in array C and so ij(p) > ij(p). But this relation is in

contradiction with lemma 5.

Let us now return to array A[1:N]. The objective was to show that

tfj(p) ̂ N-p for all j g llf.fNj. There are no numbers in array A greater

than N and so the relation is trivial for j * N: c^(p) - 0 £ N-p is true.

Consider a number j € [l,...,N-lj and the mapping T (A) -» C defined by

T j : integer i,m; m «- 0;
for i «- 1 step 1 until N do
if A[i] > j then begin m «- m+1; C[i] *- m end

else C[i] 0

The result of the mapping is that array C contains at least one number ^ 0

and at least one 0, The non-zero numbers are ordered in ascending order

from left to right, but not necessarily in contiguous locations.

Lemma 7. Tj.S(A) - S.T^(A) for all j 6 [l,...,N-ll, i.e., the index relation

between numbers ^ j in array A and zeros in array C is invariant for parallel

steps S .. and S
r odd even

Proof. Take a number j € {1,...,N-H and let (k ^ k ^ be a number pair in

array A that is considered in S or S ... J even odd
If k x > j and k 2 > j then

T..S(k l fk 9) = T (k.,k) J 1 2 J 1 2 I (i,i+l)
or

and S.TjC^,^) = S(i,i+1) = (i,i+l).

If k x ^ j and k 2^ j, the result is both ways (0,0).

-11-

If > j and k 2 ^ j then

T j - S C k ^) = T j C ^ , ^) = (0,i)

and S.TjCk^k^ = S(i,0) = (0,i)

If k £ j and k 2 > j, the result is both ways (0,i).

The statement can be generalized to include an arbitrary sequence of steps

S J J and S odd even

Lemma 8. c^(p) ^ JL(p) for all j 6 {l,...,N-lj and p € {0f...,N}

Proof. Let Vj(p) - lk|k > j and i^p) < ij(p)}.

a.(p) - number of elements of V.(p).
J 3

T j (k € V j (p)) = k ' > ° a n d i k , (p) = i k (p) < i j (p) a n d

Tj(j) - 0 in C[i^.(p)] according to lemma 7.

Hence, cKp) = number of non-zeros left of C[i^.(p)] - 0, whereas £(p) = number

of non-zeros left of the rightmost 0. Thus, <y(p) £ A(p).

The crucial relation

a.(p) * N-p (4)

for all j € U,...,N} and p € {0,...,N'j can now be derived from

a N(p) = 0 for j - N and all p 6 1.0,...,N}

and for all j 6 [1,...,N-1] and all p g 10,...,N]

ij(p) * N-p (lemma 4)

V P) * V P) (lemma 6)
ffj(p) ̂ JJj(p) (lemma 8)

-12-

For the proof of the main theorem, that array A[1:N] can be sorted in N

parallel steps, we also needed the relation

Pj (P) * N-p

It is obvious that the proof that this relation is true can be constructed

by systematic changes of left, right and less than, greater than in the lemmas.

The check is left to the reader. It is surprising that a theorem which seemed

quite obvious required such an elaborate proof.

ACKNOWLEDGEMENTS

I am grateful to Anita Jones, Larry Snyder, and Tim Teitelbaum for

discussing the solution with me. It was a pleasure to observe how E. W.

Dijkstra constructed variations and alternatives of the algorithms P Q (J <J

and p
e v e n - I a**1 also grateful to R. Floyd who pointed out to me that an

algorithm to sort the reverse sequence, N, N-l,..., 1, also sorts any other

permutation of these numbers. This theorem is essentially used where arrays

B and C are discussed (p. 8) and proved for algorithms P ^ a n d p
e v e n *-n

the form of lemmas 5 and 6.

Security Classification

DOCUMENT CONTROL DATA R & D
(Security classificmtion of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. O R I G I N A T I N G A C T I V I T Y (Corporate author)

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
1. O R I G I N A T I N G A C T I V I T Y (Corporate author)

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

2b. G R O U P

3. R E P O R T T I T L E

PARALLEL NEIGHBOR-SORT (OR THE GLORY OF THE INDUCTION PRINCIPLE)

4. D E S C R I P T I V E N O T E S (Type of report and Inclusive dates)

Scientific Final
3- A U T H O R (S) (First name, middle initial, last name)

Nico Habermann

6. R E P O R T D A T E

August 1972
7a. T O T A L N O . O F P A G E S 7b. N O . O F R E F S

15
8«. C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

9769
«• 61102F
* 681304

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S) 8«. C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

9769
«• 61102F
* 681304

9b. O T H E R R E P O R T N O (S) (Any other numbers that may be assigned
this report)

10. D I S T R I B U T I O N S T A T E M E N T

Approved for public release; distribution unlimited.

11. S U P P L E M E N T A R Y N O T E S

TECH OTHER
12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Rsch (NM)
1400 Wilson Blvd.
Arlington, Va. 22209

13. A B S T R A C T

Array A[1:N] (N ̂ 2) is to be sorted in ascending order using pro

cedure NS(i) which arranges the values of an adjacent pair A[i], A[i+1]

in the right order. It is shown that a parallel process P which can per

form at least N «f 2 executions of procedure NS in parallel will sort array

A in p steps where p ^ N. The proof is based on the observation that the

distance of the position of a number in array A after p steps and its

final position is bounded by N - p.

DD ,F
N°oRvM473

Security Classification

