
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

IC STUDY PROBLEMS

Mary Shaw (ed.)
August 1972

First Edition August 1971
Revised and Expanded August 1972

Carnegie-MeiIon University
Department of Computer Science

Pittsburgh, Pa.

TABLE OF CONTENTS

INTRODUCTION

Background 1
Use of the Problems in the IC 3
A Note to the Students 4
The Awards 7

PRIZE PROBLEMS

Aygun, B.: The Mutation Problem 8
Berliner, H.: The Power of Heuristics 10
Berliner, H. and Lowerre, B.: Brute Force Has Its Limitations.•.13
Fajman, R.: A Mini-Compiler 17
Gerhart, S.: Hamming Codes • 25
Gillogly, J.: Maximizing the Payoff of a - P 28
Jones, A.: Markov Algorithms 31
Jones, A.: One Man's Program is Another Man's Data 37
Krutar, R: Polynomial Manipulation with Fast Multiplication. . .44
Lunde,X: Lexical Analysis with Coroutines. • • • • • • • • • • .48
Lunde,^: BLISSful Cooperation - Or Speed vs. Security 51
Richardson, L. and Young, R.: Area of a Region 53
Robertson, G.: A Problem in Simple Languages 58
Snyder, L.: Turing Machine Simulation Problem 63
Teitelbaum, T.: The Firing Squad Synchronization Problem. . . . 78
Teitelbaum, T.: Trees, Trees, Trees 80

OTHER PROBLEMS

Analysis of Algorithms 83
The Busy Beaver Problem 87
Simulation of a Small Computer 91

V

Ü

INTRODUCTION

One of the goals of the immigration course is to present an

overview of the field of Computer Science, including introductions

to a variety of interesting problem areas. Another is to instill

in the entering student an appreciation that Computer Science includes

problems which can be studied in depth.

We have chosen a problem-oriented format to help satisfy both

of these goals, because:

1. in many cases it is easier to use a concrete example to

explain the focus of an area than to give general descriptions

and abstract proofs; and

2. one of the best ways to appreciate significant problems is

to try to solve some.

Background

In order to collect a group of worthwhile problems that can be

solved with a reasonable amount of effort, the Computer Science depart

ment sponsored an IC problem competition in the Spring of 1970. All

the graduate students in the department were asked to submit problems

touching on major aspects of Computer Science together with complete

solutions of the problems. To stimulate interest, ten prizes of $100.00

were announced. A second contest was held in the spring of 1972. Five

prizes of $100.00 were awarded in the second contest.

The specifications for both contests were:

1. It should be possible for students in the IC (not just advanced

students) to do each problem within the time limit of two to

- 2 -

three work sessions.

2. A problem should be elegant and have an elegant solution.

3. A problem should touch on or illustrate some central concept of

Computer Science.

4. A problem should involve a non-trivial programming effort, which

should be an integral part of obtaining the solution.

5. A problem, or the associated programming, should provide insight

into the programming language used.

6. There should be problems utilizing all types of programming languages

algebraic languages, list languages, pattern matching languages, etc.

7. Problems should be usable in future ICs as well as the next one.

8. To be useful, a submitted problem should consist of:

(a) A problem statement;

(b) A discussion of the conceptual rationale behind the

problem, including comments on how to teach the problem

in the IC, what sort of preparation is required, etc.;

(c) A worked solution.

if

- 3 -

Use of the Problems in the IC

Each problem will be presented by its author or another interested

member of the department at a morning lecture. We have scheduled the

problems so that either a language appropriate for its solution will

already have been introduced in the IC or almost any language you know

will be adequate. There will be a chart in the teletype room on which

each student will indicate which problems he is working on. The chart

will provide for communication among the students working on a problem;

they may meet among themselves or with the person who presented the problem

to discuss difficulties, solutions, extensions, or other topics.

Completed problems should be submitted to the instructor for the

problem. Solutions should be completed within two weeks of the initial

presentation to keep them from dragging on forever and creating a massive

workload at the end of the IC. The instructor will comment to the student

on his solution and select the best of the solutions for possible publication.

- 4 -

A Note to the Students

We expect that you will be able to obtain complete solutions to five

of the twelve problems discussed during the IC and to do enough work on

the other two to understand the issues evoked by the problems. A complete

solution to a programming problem consists of:

1. A statement of your approach to the problem and the technique

used to solve it (this isn ft a term paper — two or three

pages should do it unless you really get into the problem);

2. A running program, together with —

3. Sufficient documentation that someone else can understand your

code. This might consist of extensive comments in the program,

a separate piece of prose, and even, if you are so inclined,

a flow chart;

4. Runs with test cases showing that the program runs properly,

together with —

5. Some kind of written explanation justifying how the data you

have used shows that the program runs. (Again, this isn ft a

term paper — use common sense; rigorous proofs of programs

are not required.)

Solutions to nonprogramming problems will take a rather different form,

but should exhibit about the same level of detail.

Try to complete your problems rather than letting them go on and

on or succumbing to the temptation to add just one more feature. ("90%

- 5 -

coded and 70$ debugged11 is an absorbing state.) We hope to publish the

best of the solutions.

Please note that no grades will be given for this work, or for any

work in the IC or (at least for Computer Science graduate students) for

any course work done in the department. Your energies during the IC

should be directed toward learning new things, not rehashing old ones.

Since assignments are informal and there are no grades, there is no

penalty for doing a less elegant solution for a new problem than you

could do on a familiar one.

Here are a few guidelines for selecting which problems to work on:

1. Try to solve problems in at least two programming languages that

you have not used before. If you already know two of the three

languages APL, ALGOL, and LISP, learn SNOBOL or BLISS and work on

one of Markov algorithms,"One Man's Program or "BLISSful

Cooperation."

2. If you have never programmed in machine language, be sure to do

the simulation of a small computer.

3. If you have written a compiler or a parser, pick something other

than the mini-compiler.

4. If you have never experimented with finite-state machines or

Markov algorithms, try to do either the firing squad problem or

the Markov algorithm problem, or both.

5. If you are already an expert programmer in a variety of languages,

work on the analysis of algorithm.

- 6 -

6. Some of the Learning Laboratories may refer you to specific

problems. If you are participating in such a lab, solve those

problems.

7. If you are in doubt about which problems are the best ones for

you to solve, talk to your advisor or to Mary Shaw.

- 7 -

The Awards

The problems awarded prizes in the 1970 contest were:

Birol Aygun
Hans Berliner
Susan Gerhart
Anita Jones
Rudy Krutar
Xmund Lunde
Leroy Richardson

The Mutation Problem
The Power of Heuristics
Hamming Codes
One Man's Program is Another Man's Data
Polynomial Manipulation with Fast Multiplication
Lexical Analysis with Coroutines
Area of a Region

and Richard Young
George Robertson A Problem in Simple Languages
Larry Snyder Turing Machine Simulation
Tim Teitelbaum Firing Squad Synchronization Problem
Tim Teitelbaum Trees, Trees, Trees

The problems awarded prizes in the 1972 contest were:

Hans Berliner Brute Force Has its Limitations
and Bruce Lowerre

Roger Fajman A Mini-compiler
Jim Gillogly Maximizing the Payoff of
Anita Jones Markov Algorithms
Xmund Lunde BLISSful Cooperation - or Speed vs. Security

Mary Shaw
August, 1972

- 8 -

THE MUTATION PROBLEM

Birol Aygun

Motivation

This problem originates in a class of genetics problems involving

estimations of the probabilities of mutation processes. This highly

simplified and solvable version of this problem is also a very interesting

exercise in computing and has applications in some areas of artificial

intelligence, such as recognition of linear patterns.

The problem is also open-ended in the sense that most solutions will

not be practical for very large cases of the problem. Hence ingenuity is

required for drastic reductions in the computing time and space required.

1. Given a string M of m characters and a string N of n characters,

all chosen from a small alphabet of, say, 4 characters (A,B,C,D).

2. Two kinds of primitive mutation operations: deletion of a single

character and insertion of a single character in a string.

3. Fixed independent probabilities P D and P for a single deletion

and a single insertion respectively (i.e., P^CA) = = Pj)(c) = • • •

and similiarly for P^).

Find

1. An algorithm to determine a sequence of mutation operations on

the string N (for the normal string) to transform it into the

string M (for the mutant string) that has the highest probability

of happening under the stated assumptions in 3. above.

- 9 -

2. Clearly, the solution required is not unique, i.e., there may

be more than one sequence of mutations that yield the same result

with the same maximum probability. Find an algorithm that deter

mines the class of all solutions, each of which has the same

maximum probability.

Remarks

1. The solution should be provable, i.e., that it has the maximum

probability, and, for part 2, that it has not missed any solutions.

2. Magnitude range: the strings M and N may be up to several

million characters in length. Check the practicality of your

solution for strings of that size.

Examples and Hints

M ^ A B B C D D A B C A D C B

N = B B D C A A B C

Example strings above

1. What does independence of deletions and insertions imply in

probability computation?

2. Consider M as being built by adding to a skeleton of N found in M,

where a skeleton is a sequence of subsequences of N with their

ordering preserved. What can you say about the size of such a

skeleton? How is it related to the maximal match between N and M?

- 10 -

THE POWER OF HEURISTICS

Hans Berliner

Background

The main purpose of this IC Problem is to show the power of

heruistics as a means of controlling processes. There are many processes

for which we do not know perfect controlling functions, but by having

them controlled by heuristic rules, we are able to obtain a high standard

of performance from the process. Examples of this type of activity

occur in the areas of Artificial Intelligence and Operating Systems.

For instance, in a time sharing system with virtual memory, the problem

of which page to kick out of main memory when a page fault occurs is resolved

by using heuristic rules. Usually, a rule is tried and evaluated according

to how much it improves the performance of the system. This is kept up

until the point of diminishing returns is reached. This problem is

intended to teach this method by setting up a situation in which heuristics,

represented by processes, can compete in the same environment. Then by

comparing the success of each of the processes on the same task, we can

determine the usefulness of each set of heuristic rules.

The environment in which the problem is set is Tic-Tac-Toe. We let

each heuristic process respresent a player in a Tic-Tac-Toe tournament,

and then pit processes with different degrees of "intelligence" against

one another. It is important to note that:

1. Tic-Tac-Toe can be played perfectly (so as never to lose and to

maximize winning chances) by merely resorting to a table-look-up

procedure, or to a complete tree search of all possibilities

which would, however, be rather time consuming.

- 11 -

2. However, the intent of this exercise is to teach how to

build heuristic models and to show that one heuristic proce

dure can have an overwhelming dominance over another procedure

with less "intelligence," even though the first does not play

perfectly.

Other things which can be learned from doing this problem are:

1. How a thoughtful problem representation can save programming

effort and execution time.

2. How an appropriate experimental design can allow ready comparison

of the different effects being studied.

3. How to use a random number generator.

Since the total task requires a significant amount of work in the

design and implementation of the program, you may find it desirable to

work in teams of 2 to 4. You will use a set of heuristic rules to define

a player in a Tic-Tac-Toe tournament. When you have defined several

such players, write a program for simulating such players in a tournament.

Be sure that each player has an equal chance of starting the game against

every other player. Each of the players in your tournament should be

at a different skill level. The skill you impart to each of your players

should be a function of the move selection routines that each particular

player has access to. For instance, the worst player in the tournament

could be one that plays at random. Other players may use the strategy

of the center square if it is free, be able to defend against simple

opponent's threats, or be a compound of several such strategies. By

- 12 -

carefully choosing compound strategies, you can create a player

hierarchy where each player is better than the one below him. Before

you start, consider that after each move the supervisory program has

to check to see if anyone has won. Consider the effect of how the

Tic-Tac-Toe board is represented on how easy it is to perform checks

such as these. If it has been a long time since you have played Tic-

Tac-Toe, you may want to play a few games to re-acquaint yourself with

some useful strategies.

Have the program tabulate results. Then write a short critique on

the relative skills of the various players in your tournament. Why do

you think the results came out the way they did? Can you rank the

efficiency of the heuristics you used? Is there a point of diminishing

returns?

- 13 -

BRUTE FORCE HAS ITS LIMITATIONS

Hans Berliner and Bruce Lowerre

We are used to using computing power and taking for granted that

whatever tasks we give the computer will be accomplished in a reasonable

amount of time. For this reason we seldom give much thought to the ef

ficiency of the programs we write and even more importantly to the ef

ficiency of the algorithms we use to produce our solutions. This is be

cause almost all of the problems we encounter are basically small prob

lems. Thus we use interpretive languages which run one or two orders of

magnitude slower than a compiled language would, but because we usually

deal with small problems it is hardly noticeable. Likewise certain ef

ficiencies which can be applied to repetitive operations such as sorting

and matrix manipulations are seldom appreciated until one encounters a

large problem.

However, there are problems in which the effect of computing ef

ficiency can be observed in very drastic fashion. These are problems in

which the computing time varies as a second order or higher function of

the problem size. Sorting, certain matrix operations, and heuristic

searches are in this class. In the latter type of problem, the effort

involved in the complete enumeration (generate and test) approach will

usually be a power function of the number of steps required in the solution.

The purpose of this problem is to allow the student to get a hands-on

appreciation of the effects on computing efficiency that can be brought

about by the efficiency of the algorithm that is used to do the computa

tion. As a by product it teaches how to set up and conduct a tree search.

The problem is:

- 14 -

Create a "knight's tour" of the chess board

A knight's tour is defined to be a closed chain of knight moves

(a knight's move is two squares along one rectangular coordinate and one

square along the other) which touches every square on the chess board

once and only once, and after 64 moves returns to a square which is a

knight's move away from the starting square. For any square on the board,

there are from 2 to 8 legal moves initially with an average of 5.25.
64 46 This makes the size of the solution space 5.25 or approximately 10

This estimate is high because as the tour progresses, the number of

choices from each square diminishes. A better estimate would be to

assume 4.25 moves per square since one cannot go back to the square from

which one just came. This gives an estimate of 4.25^ or 1 0 ^ . This
30

estimate is still high. A conservative estimate would be about 10

The number of solutions contained in this space is extremely difficult

to estimate. The final version of the authors' program produced about 600

solutions in about 2 minutes of CPU time. The first 30 moves of all these

solutions were identical! This suggests an extremely dense solution space.

If we assume that there are 600 solutions for any set of first 30 moves

which do not violate the constraints in the authors' program, then we can
30

estimate the total number of solutions to be 600*4.25 or approximately
o n

10 . This number is undoubtedly still high, but indicates that there
20

is no more than one solution for every 10 points in the solution space.

Therefore a program which generates 10,000 solution attempts per second,

running for 1000 seconds (17 minutes) , wou?.d only have 1 chance in 1000

of generating a correct solution.

- 15 -

In order to investigate this problem we will need a move generator

which takes as input the name (coordinate) of a square, and generates

as output the legal squares to which a knight can move from there. Note

that it is not legal to move to a square which has been used earlier in

the solution, so that some provision will have to be made to keep track

of the used squares and have the legal move generator check this array

before pronouncing a move legal. We also must have a way of remembering

the sequencing of our current solution attempt since if we run into a dead

end, we will need to have a way of backing up to try a different move

at some previous decision point.

This can be done by creating a tree structure in your program, pos

sibly in the form of a stack, which has the facility of remembering the

current try at any point in the chain, and the other alternatives at that

point which have not yet been tried. Then if the program reaches depth 64

in the chain successfully, it will have a correct solution. If it reaches

an impasse (no further legal move possible) before this, then it must

backtrack to the previous level and try another legal move.

The above is the basic structure of a brute force program to solve the

"knight's tour" problem. Your first step should be to design and program

such a solution. You may work with one other person on this project.

Instrument your program so that it can output the current state of the

solution at any time. This will allow you to observe it in operation and

get some ideas about the adequacy of the algorithms that you will be try

ing. One good idea is to have the program print out the state of the solu

tion every time you extend the solution chain to a greater length than it

has ever been before.

- 16 -

When the program is running try it on the "knight's tour" problem

using the generate and test algorithm that you now have implemented.

Do not allow your program to run more than 5 minutes of CPU time. It

is extremely unlikely that you will have found a solution in this time (

in 10 or 100 times this amount of time). Look at your printout of the

current solution that the program is working on and see if you can get

any ideas for some simple rules that will keep the program from wasting

its time without keeping it away from any of the solutions.

- 17 -

A MINI-COMPILER

Roger Fajman

The problem is to write a program to translate simple arithmetic

expressions into machine code for a single-address computer.

The Algorithm:

The Algorithm is taken from a paper by Wirth and Weber (1). This

algorithm is designed to recognize a particular class of context-free

languages very quickly and simply. It has actually been used in practical

compilers (2). First, we must define a simple-precedence grammar.

A grammar is a quadruple of the form GF*(T,N9?9S). T is the set of

terminal symbols of the language generated by G (i.e., the symbols which

make up the sentences of the language). N is the set of non-terminal

symbols of G. P is a set of productions which tell how to generate the

sentences of the language. For a context free language, the productions

have the form A -» u, where A is a non-terminal symbol and u is a non-empty

string of terminals and non-terminals. S is the start symbol, from which

all sentences of the language are generated. The canonical parse of a

sentence is that parse in which the leftmost possible reduction is made

first. A grammar is unambiguous if and only if there is only one canonical

parse for each sentence generated by the grammar.

A parsing algorithm for a language generated by a grammar is a pro

cedure for finding the canonical aprse, given a sentence of the language

as input. In accordance with the definition, a parsing algorithm must

first detect the leftmost substring of the sentence to which a reduction is

- 18 -

applicable. Then the reduction is performed and the same principle applied

to the new sentence. In order to detect the leftmost reducible substring,

Wirth and Weber's algorithm makes use of previously established non-com

mutative relations between the symbols of the grammar:

(a). The relation = holds between all adjacent symbols
within a string which is directly reducible.

(b). The relation < holds between the symbol immediately
preceding a reducible string and the leftmost symbol
of that string.

(c). The relation > holds between the rightmost symbol of a
reducible string and the symbol immediately following
that string.

A simple precedence grammar is defined by Wirth and Weber as a context-

free grammar in which at most one of the above relations holds between

each pair of symbols of the grammar. Most context-free grammars are not

simple precedence grammars, but it is usually possible to take a grammar

for a programming language and turn it into a simple precedence grammar

by appropriate manipulations. Wirth and Weber give an algorithm deter

mining whether a grammar is a simple precedence grammar and for finding

the precedence relations from the grammar.

The process for detecting the leftmost reducible substring consists

of scanning the sentence from left to right until the first symbol pair

is found so that S(I)>S(I+1), then to retreat back to the last symbol

pair for which S(J-1)<S(J) holds. S(J)...S(I) is then the sought sub

string; it is replaced by the symbol resulting from the reduction. The

process is then repeated. It is not necessary to restart scanning at the

beginning of the sentence. Since all symbols S(K) for K less than J have

- 19 -

not been altered, the search for the next > can start at the place of

the previous reduction.

In the following description of the algorithm in pseudo ALGOL the

original sentence is denoted by P(1)...P(N). K is the index of the

last symbol scanned. For practical reasons, all scanned symbols are

copied and renamed S(1)...S(I). The reducible substring therefore will

always be S(J)...S(I) for some J. Internal to the algorithm, there

exists a symbol]_ (e n d of file) initializing and terminating the process.

To any symbol of the grammar it has the relations]>S and S>]_. We assume

P(0)-P(W)-[.

S(0):=P(0); I:-0; K:=0;
while P(K) notequal da b£gia

I.-J.—I+l; S(I):-P(K); K:=K+1;
HhUfi.S(I)>P(K) d£ begin

while S(J-1)-S(J) da J:=J-1
S(J):=LEFTPART(S(J)...S(I));
I:-J;
end;

-§Ild;

The function denoted by LEFTPART(S(J)...S(I)) requires that the reducible

substring be identified in order to obtain the symbol resulting from the

reduction. If the parsed sentence is to be evaluated, then the interpreta

tion rule corresponding to the syntactic rule U -* S(J)...S(I) must be

identified and executed. Wirth and Weber prove the following theorem:

Theorem. The given parsing algorithm yields the canonical
form of the parse for any sentence of a precedence
language, if there exist no two syntactic rules
with the same right part. Furthermore, this canon
ical parse is unique.

- 20 -

EXAMPLE:

G = (T , N , P , S)

N = { H , S }

P : S - H)

H - (

H-*H<a
H-»HS

The language defined by G is a sequence of zero or more string elements

enclosed in parentheses, where an element is another string or @. G is

a precedence grammar. The precedence relations are given by the matrix:

s H @ ()
s > > > > >

H

II < II < II

@ > > > > >

(> > > > >

) > > > > >

As an illustration of the parsing algorithm, the sentence (@(@)) is parsed.

Stack Relation Input

1 < (®(@))1
1< >
1H II

> (@))1
< (@))1

1H(>
J_HH

II »»1
J_HH@ > »1
] H H

II »1
JHH) > >1
] H S >)1
1H

II ,)1
1H) > 1
is 1

- 21 -

The Problem:

Consider the following grammar for arithmetic expressions

G=(T,N,P,program)

T= {variable,constant,+,-,*,/,(,) ,<-}

N3{program,expression,expression1,sum,sum1,term,term1,factor}

P: program-*J_expressionJ_
expres s ionr*expr e s s ion1

expr es s ion1 -*sum
expres sion1 -*variab le<-expres sion1

sum-^sum'
sum'-^term
sum'-M-term
sum1-*-term
sum1 -»sum1 +t erm
sumt-+suml -term
ternr^term1

term '-*f actor
t erm1-*t erm1 * f ac tor
term1-*term!/factor
factor-variable
factor-+constant
factor-»(expression)

- 22 -

G is a simple precedence grammar. The precedence relations are given by

(

:
!

1

>

r

I
C
a.
n

e
X
P
r
e
s
s
i
o
n

e
X
P
r
e
s
s
i
o
n
1

s
u
m

s
u
m
«

t
e
r
m

t
e
r
m t

f
a
c
t
o
r

V <
a (
r 1
i
a
b

e

z

D
a

s
t
a
n
t < / ()

1 < < < < < < < < < < <

program

expression

expression1 >

sum >

sum1 = >

term > > >

term1 > > s >

factor > > > > >

variable > > > > >

constant > > > > >

«- = < < < < < < < < < <

+ = < < < < <

< < < < <

= < < <

/ - < < <

c = < < < < < < < < < < <

) > > > > >

Note that the blank entries in the table denote combinations that should
n e v e r occur i n leeral s e n t e n c e s .

- 23 -

Now suppose that you have a computer with a single accumulator (AC) and

the following instruction set:

Instruction Meaning

LOAD X AO-X
STORE X X«-AC
ADD X AO-AC+X
SUB X AO-AC-X
MUL X AO-AC*X
DIV X AOAC/X
LOAD I C AO-C
ADD I C AO-AC+C
SUBI c AO-AC-C
MULI c AO-AC*C
DIVI c AO-Ac/c
NEG AO—AC

X is a storage location. C is a constant which is contained in the

instruction.

The problem, then, is to read in sentences in this language and out

put the appropriate machine code to compute the value of the expression.

Variables are any one of the letters A,...,Z. Constants are a single digit.

You may use temporary locations from the stack T1,T2,. # #. Do not worry

about generating "optimal" code.

Optional Work:

1. You may have noticed that the parsing algorithm does not provide for

input strings which are not syntactically correct. Modify the algorithm

to handle errors.

2. Try to generate better code.

3. Extend the instruction set of the computer so as to permit the generation

of faster and more compact code.

4. What would happen if the computer had more than one accumulator?

- 24 -

References:

1. Wirth, N. and Weber, H. EULER: A generalization of ALGOL and its
formal definition. CACM, 9, 1 (January 1966), 13-23.

2. McKeeman, W., et al. A Compiler Generator.

- 25 -

HAMMING CODES

Susan Gerhart

Error-detecting and -correcting codes are used to provide

communication over noisy channels in many applications of computers.

One of the best-known and most elegant coding schemes is that originated

by R.W. Hamming (see references).

Consider the transmission of n-bit messages. Hamming!s method

encodes the n-bit message as a n + k - bit binary sequence, where the

extra k bits provide for error detection and correction in any of the

n + k positions of the sequence. A decoder then maps a transmitted

n + k - bit sequence into an n - bit message sequence and a k - bit

sequence indicating absence or position of error.

Example: n - 4, k - 3

Let m^ m^ m^ m^ be the message to be transmitted as the sequence

x^ x 2 x 3 x^ x,. Xg x^. The following equations are used in the encoding:

X l = m l 2 m 4
x 2 3 m l ® m 3 ® m 4 ® *"s t* i e exclusive -c

x 3 = m i
x, = m_ & m, 4 2 3 4
x 5 = m 2

or sum modulo 2
operator

x = m 6 3

Assume the received message is y^ y^ y^ y^ y^ y^ ŷ <

The decoder computes k^ k^ where

k 3 = y 4 e y 5 e y 6 © y ?

- 26 -

k 2 - y 2 e y 3 © y 6 e y ?

kl = y l ® y 3 8 y 5 9 y 7

If one and only one digit is transmitted incorrectly, say y ^ x^,

then will give the binary representation of j or will

be 0 if no errors occur. If multiple errors occur, then the correction

will take place but give an incorrect result.

Now, to generalize the process, consider a code which requires n

information bits per message. An additional k bits are required to point

to any of the n + k bits of the encoding which might be in error. The

sufficient condition is

2 k £ n + k + 1

A general method for the assignment of equations in the encoding is:

1. Use the positions numbered by powers of 2 for check bits.

2. Assign the bits of the original message in order to the remaining

positions.

To see how to form the equations for the check positions, group the

binary representations of the positions by occurrence of powers of 2:

1 2 3 4 5 6 7 bit positions

p x x x

p = check position
P x x x x = included in equations

p x x x

I

0 0 1 1
0 1 1 3
1 0 1 5
1 1 1 7

4
0 1 0 2
0 1 1 3
1 1 0 6
1 1 1 7
i
1 0 0 4
1 0 1 5
1 1 0 6

- 27 -

Position 1 serves as a parity check for positions 1,3,5,7 of the en

coding (and positions 1,2,4 of the message). Similarly, for positions

2 and 4.

Let M be the NTK-bit sequence to be transmitted. Let U be a matrix

where column i is the binary representation of i to K places. The sequence

is constructed to satisfy the matrix equation

UM = 0

where 0 is a vector of length K of all zeros.

Now, the received message may be represented as MfE, where E is an

error vector with l's in every position where an error occurs. The

U(M+E) = (UM)+(UE) = 0+UE = D

If E is all zeros (no errors in transmission) then D=0 and if E has a 1 in

position i then E selects the binary representation of i from U.

Solution requirements

Construct a system of programs which enable the encoding of messages,

transmission of messages corrupted in one position, and decoding into the

original messages. Of course, transmission of error-free messages should

also be possible.

APL is recommended for the solution because it offers operators for

manipulation of number systems and arrays. The author's solution used

approximately 25 different APL operators in three one-line, loop-free

functions, along with a control program for testing. The absence of loops

was possible because the APL operators afforded the necessary control flow.

References

[1] R. W. Hamming, "Error Detecting and Error Correcting Codes," Bell
System Technical Journal, Vol. XXVI, April, 1950.

[2] Herman Hellerman, Digital Computer System Principles, McGraw-Hill,
p. 322.

[3] Ralph A. Amato, "Error Detecting and Correcting Methods," Computer
Design, June, 1964.

- 28 -

Problem Statement

(1) Understand the a - P procedure used in game trees as described in

"Experiments with Some Programs That Search Game Trees,11 by Slagle and

Dixon (available in the AI library).

(2) Write a program in any suitable language to simulate searching a game

tree with fixed depth, fixed branching factor, and randomly assigned values

as a terminal evaluation function. (If you can get an analytic solution,

you win. But don't spend all your time trying.)

(a) The random evaluation function must produce values from a finite

range specified by the experimenter; the seed for the random

number generator must also be supplied by the experimenter.

(b) The effort required to search the tree will be measured by the

number of bottom positions (NBP) in the simulated tree. You should

be able to cycle through the program for a specified number of

iterations and output the mean and standard deviation of the NBP

over that sample.

(c) In order to debug your program you should be able to turn a-P on

or off and you should be able to print the tree if necessary. To

help in debugging, start with a range of 1 (perfect ordering) and

compare your results with those predicted by Theorem 1 (Slagle

and Dixon).

MAXIMIZING THE PAYOFF OF a-0

Jim Gillogly

- 29 -

(3) Use this model to determine the effects on NBP of selecting values from

sets of different size: choose a fixed depth and branching factor commen

surate with the efficiency of your program and graph the values of the mean

and standard deviation of NBP as the range increases from 1 (perfect ordering)

to oo (the largest range for which you can detect no significant difference)•

What is the difference between the NBP in the best and worst cases? Try for

statistical significance. (Notice that even the worst case is far better

than a minimax search without a - P .) If you have time, compare the results

you obtained in this experiment with the curves for different depths and

branching factors.

(4) Extend the program to allow a variable branching factor drawn from a

given distribution (e.g., binomial distribution with mean at the value used

in (3)). What effect does this have on the mean and variance for a case

comparable to the one you analyzed in (3)?

Conceptual Foundations

The purpose of this problem is to teach modeling and simulation

techniques in a (hopefully) interesting environment. The student must abstract

a situation and analyze the abstraction. The problem requires considerable

programming ability in some language. Because of the recursive nature of

the problem it is somewhat easier to write in a language which allows

recursion, but a reasonably straightforward program can also be written in

FORTRAN. Some slight knowledge of statistics would be helpful, though not

necessary.

- 30 -

You should be able to understand and apply the results of a scientific

paper. Since the Slagle and Dixon paper assumes no prior knowledge this

should not be a problem.

An attack on the problem should begin with an understanding of the

nature of game trees, minimax, and a - P . You should pay particular attention

to the difference between "deep" and "shallow" cutoffs as indicated in Slagle

and Dixon.

The a-P procedure is only one example of an analytical advance which

cuts down search spaces. Nearly all AI problems use a horrendous search

through some kind of a graph, and those searches can be abstracted and

simulated in the same way as this problem. The direct analogue of a -P

in general graph traversing problems is the branch-and-bound procedure.

Besides the benefits accrued from doing a good simulation, the problem

itself has vast implications for game programmers. The moral of the problem

is that your terminal evaluation function should be as discrete as possible

within the constraints of information loss. If you use a continuum you may

have to evaluate more than 400$ more positions, with a much higher variance.

- 31 -

MARKOV ALGORITHMS

Anita Jones

Several different representations of machines for performing computation

have proved useful for research into the art (and artifice) of computation.

One representation, Markov algorithms, were introduced in Theory of Algorithms

written by the Russian A. A. Markov in 1954.* A Markov algorithm is an ordered

set of productions (discussed later) to be applied to a valid input string by

observing the ordering of the productions in a plausible way.

Markov algorithms can compute any computable function (intuitive proof:

given that a Turing machine can compute any computable function, a Turing

machine description may be represented as a Markov algorithm in a straight

forward fashion.) In fact Markov algorithms are simpler to grasp and invent

than Turing machines because of their use of variables and context sensitivity.

This problem requires the construction of a Markov algorithm interpreter

which accepts an algorithm description and an input argument, applies the

algorithm to the argument and outputs the transformed input string. For ease

of use, the program should then query the user to determine if he wishes to

specify another input for the same machine, another machine description or to

quit. The interpreter should then be used on several algorithms, e.g., a

string duplicator, gcd computer, string reverser

WARNING: Social responsibility requires that the reader be
informed that after being introduced to Markov algorithms, some
computer science students exhibit an obsessive, almost addictive
interest in devising these 'delightful little algorithms.1

Addiction has been known to last for weeks.

- 32 -

For those willing to risk the consequences:

A Markov algorithm is an ordered set of rules called productions

designed to perform a transformation on any input string formed from

symbols in a known input alphabet.

A production is of the form a-»{3 where a,|3 are strings of symbols.

Markov algorithms use the antecedent portion, a, to specify a pattern.

If the pattern is found in the (input) string being processed, it is

replaced by a string determined by the consequent portion of the production,

P. Qf,|3 may include any symbol.

To apply a production cy->(3 to an input string S, two alphabets must

be known: the input alphabet and the variable alphabet. These alphabets

must be disjoint, a matches a substring in S if there is some assignment

of input alphabet symbols to the variables in a so that if the variables

are replaced by their assigned value (from the input alphabet), the resulting

string duplicates a substring in S. In this case f3 is then used to construct

the string resulting from replacing occurrences of variables in P by their

assigned values. This resulting string is used to replace the matched

substring in S.
What if an antecedent can be used to match two substrings in S? Then

replace the leftmost substring in S.

Applying a Markov algorithm is done in steps: Each step applies the

productions sequentially, beginning with the first of the ordered set. When

a production is applied successfully and the string replacement is performed,

that step is complete. If no production can be successfully applied in a

step, then either the algorithm or the input string is in error.

- 33 -

How does the algorithm1s application terminate? A special symbol
1. 1 appearing as the first symbol in a consequent will not be part of the

replacement string created when the consequent is used. Instead it causes

termination of the algorithm's application.

Examples of Markov algorithms are given below.

Solving this problem introduces the student to

1. construction of a powerful but miniature interactive
interpreter driven by productions

2. the consequences of designing an interpreter which must
react to storage variations dependent upon the user input
algorithm

3. practice in writing and exercising productions as they will
appear in formal languages and language syntax descriptions

2
4. non sequential control structure.

SNOBOL and APL provide suitable environments for building this

interpreter.

This problem is brought to you by

Markov, A. A., Theory of Algorithms. Office of Technical Services,
U. S. Department of Commerce (translation), 1969.

and

Jones, A. K., this document.

The author also believes that Markov algorithms are particularly appro
priate for the analysis of algorithms: the order of trying productions
in each step introduces additional information to aid in the analysis,
for a later production is applied ONLY if all previous productions failed.
This problem could be extended to use Markov algorithms as the substrate
for introducing algorithm analysis.

- 34 - EXAMPLE 1
TYPE ODDEVE.MRK
00200 Y10 Internal Alphabet
00300 X
00400 10 Input Alphabet
00500 YllItYliN
00600 Yllt.O; A Productions
00700 Ylt.i; <
00800 tYJ J

•R SNQBOL 41
4&ARK3
HI! I'M MARK.
SPECIFY MACHINE DESCRIPTION FILES
ODDEVE.MHK
STRING!
IUI
#4s SUBSTITUTE Y FOR IN U l i
fit SUBSTITUTE Yl FOR Ylll IN Yllll
#2: SUBSTITUTE 0 FOR Yll IN Yll
STRING: 0
WHAT NEXT: MACH*STR,END
STR
STRING:
111111
#4: SUBSTITUTE Y FOR IN 111111
#1: SUBSTITUTE Yl FOR Ylll IN Yll I U I
fit SUBSTITUTE Yl FOR Ylll IN Yllll
¿8: SUBSTITUTE 0 FOR Yll IN Yll
STRING! 0
WHAT NEXT: MACH»STR*END
STR
STRING: 1
f4: SUBSTITUTE Y FOR IN 1
#31 SUBSTITUTE 1 FOR Yl IN Yl
STRING: 1
W A T NEXT: MACH,STR, END
END
*

Given a unary representation of a number, compute if it
is odd (and output '0') or even (and output 'I').

- 35 - EXAMPLE 2

Duplicate a numeric string.
TYPS DUP*MRK 00100 03800 GAB 00300 SN 00400 1834967890— 00900 6S«SASB8J A. C0600 ANBStSANBJ) 00700 AMBIMI > 00800 0».J) 00900 t6* ^

Variable Alphabet
Input Alphabet

•Productions

m
fit

«lt
#2t #31

•a SMOBOL 41
«MARK3
Mil I'M MARX*
SPECIFY MACHINS DESCRIPTION PILE!
OIP*MEK
STBIMOI S3

SUBSTITUTE 6 POR IN 83
SUBSTITUTS 8A8BQ POR 88 IN 683
SUBSTITUTS 3A3B6 POS 63 IN 8A8B03
SUBSTITUTS 3A8B POS A8B3 IN 8A8B3A3B6
SUBSTITUTS 8 POS A8B IN 83A8BA3B6

#31 SUBSTITUTS 3 POR A3B IN 838A3B6
«4t SUBSTITUTS POR 6 IN 83836
STRINGI 8383
ViAT NSXTl NACH»STR»END
STR
STRINGI
3338
«St SUBSTITUTS 6 POR IM 3338
«Ii SUBSTITUTS 3A3B6 POR 63 IN 63338
#11 SUBSTITUTS 3A3BG POR 63 IN 3A386338
«1t SUBSTITUTS 3A3B6 POS 63 IN 3A3B3A3B638
Üt SUBSTITUTS 8A8B6 POR 68 IN 3A3B3A3B3A3B66
«dt SUBSTITUTS 3A3B POR A3B3 IN 3A3B3A3B3A3B8A6B8
^ SUBSTITUTS 3A38 POR A3B3 IN 33A3BA3B3A3B8A8B0

SUBSTITUTS 3A3B POR A3B3 IN 33A3B3A3BA388A8B6
SUBSTITUTS 8A3B POR A3B8 IN 333A3BA3BA3B8A8B6

«3t SUBSTITUTS 6A3B POR A3B8 IN 333A3BA3B8A3BA8B6
#31 SUBSTITUTS 8A3B POR A3B8 IN 333A3B8A3BA3BA8BG
«3t SUBSTITUTS 3 POR A3B IN 3338A3BA3BA3BA8B6
#31 SUBSTITUTS 3 POR A3B IN 33383A3BA3BA8BQ
«3t SUBSTITUTS 3 POR A3B IN 333833A3BA8B8
«3t SUBSTITUTS 8 POR A8B IN 3338333A8B6
#41 SUBSTITUTS POR 8 IN 333833386
STRINGI 33383338
WAT MSXTt MACH»STR«END
BID

#31 #31 #21

- 36 - EXAMPLE 3

TYPS RBV*HRK
CD i 00 ABGD
coaoo sv
00300 0123456789
09400 estsai
00500 DïQJ
00600 ASVtVASI
СЭ700 AS6*D6SJ
00600 SOtDSI
0Э900 Dì AÍ
02000 AG».l
OilOO tABJ
•Л SHOBOL 41
4ОДВКЭ
KI i Х*И МАШ*
SPECIST MACHINS DESCHIPTION PILE!
STRINGI
12
131 SUBSTITUTS AB FOB IN 18
#ii SUBSTITUTS IB FOR BI IN ABIS
f i t SUBSTITUTS C3 FOB B8 IH A1B8
#88 SUBSTITUTS в FOB В IM ASSB
Ol SUBSTITUTS 0A1 FOB AIO III AIÛG
ftS SUBSTITUTS 061 FOB AIO IH SAIO
#38 SUBSTITUTS Dâ FOB 80 IN 8061
#68 SUBSTITUTS A FOR 0 ICI 0861
m SUBSTITUTS oea FOB АЗ6 IH A2GI
#68 SUBSTITUTS A FOB О IN D681
#71 SUBSTITUTS FOB AG IN A681
STRI HQ 8 81
CÎAT NEXT I NACH*STB*BHD
S?R
STRINSI
339
#38 SUBSTITUTS AB FOR IH 369
#11 SUBSTITUTS SB FOR B3 IH A3369
l t SUBSTITUTS 63 FOR B6 IH АЗВ69
Ì I SUBSTITUTS 9B FOR В9 IH А36В9
#38 SUBSTITUTS 6 FOR В IH A369В
#38 SUBSTITUTS 6АЗ FOR A36 IH A3696
#38 SUBSTITUTS 9АЭ FOR АЭ9 IH 6A396
#48 SUBSTITUTS D63 FOR A36 IH 69АЭ6
#38 SUBSTITUTS 09 FOR 90 IH 69063
#38 SUBSTITUTS 06 FOR 60 IH 60963
#68 SUBSTITUTS A FOR 0 IH 06963
#38 SUBSTITUTS 9A6 FOR A69 IH A6963
#48 SUBSTITUTS 066 FOR A66 IH 9A663
#S8 SUBSTITUTS 09 FOR 90 IH 90663
#68 SUBSTITUTE A FOR О IH 09663
#48 SUBSTITUTS 069 FOR A96 IN A9663
#68 SUBSTITUTS A FOR 0 IH 06963
#71 SUBSTITUTS FOR AG IH A6963
STRINGI 963
WAT NEXT8 MACH,STft*EMO
BIO
*

Reverse a string.

- 37 -

ONE MAN'S PROGRAM IS ANOTHER MAN'S DATA

Anita Jones

This problem requires implementation of a line editor which will

allow insertion and deletion of lines of text, and replacement of

symbol strings at locations determined by context.

Implementation of the editor provides a basis for considering the

concepts and mechansims germane to string processing [1,2] (in contrast to

numerical processing):

1. The text to be edited appears as a sequence of symbols. Only

the fact that each symbol is distinguishable is important — the

information encoded in the sequence of symbols could be TT

computed to a thousand places as well as program, prose, or poetry.

2. A cursor is moved through the text to find the location at which

an editing operation is to be performed.

3. A particular location within the text is determined by context —

by the surrounding or preceding characters. (The 'carriage

return,' 'line feed' and 'blank' characters become very visible!)

4. A pattern matching mechanism must be employed to search for

variable-sized strings of symbols.

A note of realism: The editor to be implemented is a simplified version

of the line editor in a conversational PL/I - based system called CPS

(Conversational Progranmiing System) .

- 38 -

Solution Notes

The editor is most easily implemented in a string processing

language like SNOBOL which provides pattern recognition facilities as

well as string manipulation. However, any language which permits easy

representation of variable length strings could be used (e.g., ALGOL

extended with strings).

The Problem

Design and program the algorithm MERGE to enable an editor to

accept two input files, TEXT and MODIFY, concurrently and to output an

edited file, NEWTEXT.

TEXT is a sequential stream of lines in which two lines are separated

by a line feed character. (Refer to such an instance as LF.) With each

line of TEXT is associated an implicit line number equal to the number

of LF's that precede the line in TEXT. Line j consists of those characters

following LF[j] up to and including LF[j+l].

NEWTEXT is of the same format as TEXT. It is created by editing the

TEXT file as directed by the contents of MODIFY.
MODIFY consists of a sequential stream of INSERT, DELETE and REPLACE

commands.

MERGE processes TEXT line by line with no backtracking although

multiple scans of a single TEXT line may be necessary in the case of

REPLACE. MERGE may thus be seen as moving a cursor through the stream

of TEXT lines, possibly altering a line as the cursor passes over it.

All lines to the output side of the cursor are written on NEWTEXT.

Lines to the input side of the cursor comprise the portion of the TEXT

file which may still be subject to alteration by MERGE.

- 39 -

MODIFY command formats:

INSERT <num> <delira> insertion string <delira> LF

where <num> is a non negative integer referring to the line

in TEXT associated with that number.

<delint> is defined as the first non-blank, non-LF, non-

numeric character following <num>. In a single command all

instances of <delim> are the same character.

INSERT causes MERGE to:

1. Scan TEXT from current cursor position until cursor has

passed over LF [<num>].

2. Insert the delimited insertion string followed by the

carriage return and line feed characters into the TEXT

string to the output side of the cursor.

DELETE <num> <numl> LF

where <numl> is null or has a value greater than or equal to

that of <num>. <num> and <numl> are separated by 1 or more

blanks. ,

DELETE causes MERGE to

1. Scan TEXT from current cursor position until the cursor has

passed over LF[<num>].

2. Delete all characters on the input side of the cursor up

to and including LF[<numl>+l], if <numl> was specified or

up to and including LF[<num>fl], if <numl> is null.

- 40 -

REPLACE <num> <delim>cv1 <delirn>P1 <delim>a2 <delim>g2 <delim>.. . .LF

A REPLACE command may be used to edit a single TEXT line. LF may

not appear in the REPLACE command except as the terminator of the command.

1. Scan TEXT from current cursor position until cursor has passed

over LF [<num>]•

2. Let the first non-blank, non-numeric, non-LF character after

<num> be the delimiter.

3. Set J=l.

4. Scan the command string for the next two occurrences of <delim>

to determine the recognition string, Oj and the replacement

string 0 .

5. If LF was encountered before the recognition string and replace

ment strings were found, this command is completely processed.

6. Scanning the line, replace each occurrence of the current

recognition string with the corresponding replacement string.

7. J=J+1.

8. Go to step 4.

NB: The edited line is not yet moved to the output side of the

cursor, so that re-editing of the line may occur.

References

[1] D. J. Farber, R. E. Griswold, and I. P. Polonsky, "SNOBOL, A String
Manipulation Language,11 CACM, 11 (Jan, 1964), pp. 21-30.

[2] Madnick, Stuart E., "String Processing Techniques,11 CACM, 10 (July, 1967),
pp. 420-424.

- 41 -

Example: Given the following TEXT file:

procedure cal(y,n);
value y,n; integer y,n,;

begin
y := if (y/4)* 4 = y then 1 else 0;
comment 1900 < y < 2100 causes abort;
d := n + (if n > (59 + t) then 2 - t else 0);
m := ((d + 91) - (m* 3066) / 100;
d := (d + 91) - (m * 3055) / 100;
m := m - 2;
if y < 1900 v y > 2100 then begin

m := 0;
d := 0

end
end calendar

and these commands in the MODIFY file:

REPLACE 0 /l/lendor/)/m,d)/or/ar/nm/n,m/
REPLACE 1 #,;#,m,d;#;#,t;#
INSERT 2%comment

acm algorithm 398—tableless date conversion
input y the year

n day of the year
output m monçh of the year

d day of the month;%
REPLACE 3 ay :at :a
DELETE 4
INSERT 4 Î comment the following statement is unnecessary

if it is known that 1900 < y < 2100;
t := if (y/400) * 400 - y v (y/100) * 100 * y then t else 0;!,

REPLACE 6@- (m* 3066) / 100@* 100) / 30558@8@@
DELETE 9 12

- 42 -

result in the NEWTEXT file;

procedure calendar(y,n,m,d);
value y,n; integer y,n,m,d,t;

comment
acm algorithm 398—tableless date conversion
input y the year

n day of the year
output m month of the year

d day of the month;
begin

t := if (y/4)* 4 = y then 1 else 0;
comment the following statement is unnecessary

if it is known that 1900 < y < 2100;
t := if (y/400) * 400 = y v (y/100) * 100 * y then t else 0;
d := n + (if n > (59 + t) then 2 - t else 0);
m := ((d + 91) * 100) / 3055;
d := (d + 91) - (m * 3055) / 100;
m := m - 2;

end calendar

Notes

'REPLACE 0...1 uses multiple scans of line 0. The last 2 replacements

are possible only after the first has been accomplished.

'INSERT 2...' is inserting the appropriate 'carriage return' and

LF characters used in generating the format of the inserted prose, i*e.,

they are non-printing characters.

There are 2 commands used on line 4.

'INSERT 4...' Note that the 2 'blanks' preceding the word 'comment'

serve to space the prose appropriately in the NEWTEXT file.

'REPLACE 6...' replaces '8' by the null string.

- 43 -

Example 2;

Given the following input TEXT file:

The time has come the walrus said
To speak of many things

Of sailing ships and sealing wax
Of cabbages and kings

and these REPLACE commands in the MODIFY file:

REPLACE 2=Of sailing=SLT chips= ships==seal=whirl=
REPLACE 2 *wax*tracks*
REPLACE 3 4c4B4k4r4

The output file NEWTEXT contains the following edited lines

The time has come the walrus said
To speak of many things

SLT chips and whirling tracks
Of Babbages and rings

- 44 -

POLYNOMIAL MANIPULATION WITH FAST MULTIPLICATION

R. A 0 Krutar

Background

This problem is elegant in its simplicity, as is the solution.

It touches on the following central concepts of Computer Science:

representation of data structures, formula manipulation, and trade-offs

in time and space. It provides insight into the input language for

LISP* Solutions to the.;problem will use list languages and pattern

matching languages. However, the programming effort is definitely

nontrivial--the author1s solution is a bit tricky, and the path to

any solution contains traps•

The Problem

Several programming languages have been designed as aids in

performing formula manipulation. Polynominal manipulation, a special

case of formula manipulation, particularly lends itself to the building

of efficient systems. The following descrption is taken from Knuth^].

The problem is to implement a polynomial manipulation program

which can take advantage of a fast multiplication rule that reduces

the number of multiplications required to calculate (Ax + B) (Cx + D)

from the four of the obvious approach to the three needed in:

ACx 2 + (AC + (A - B) (D - C) + BD)x + BD
1st 1st 2nd 3rd 3rd

The trade-off is increased addition, subtraction, and shifting. Squaring

an n-th degree polynomial takes time proportional to:

log 3 . 1.57
n = n

rather than n as obtained in the obvious method. Empirical tests and

a priori estimates of execution time can be made.

- 45 -

This representation is only on paper. It must be encoded in terms of

representation of a programming language. Fortunately, LISP uses the

point as an infix operator to represent binary trees. However, the

point is eliminated whenever the right branch is a list or tree, e.g.

Assume we split a polynomial into two parts: those terms witifc

odd exponents and those with even exponents. We may factor x from

each of the odd terms and thereby represent the polynomials as Ax + B

where A and B have only even terms and as such a re polynomials in

x-squared, which can similarly be split. We must permit a constant

as a polynomial to limit an infinite regression. A polynomial is then

a binary tree with constants at all the leaves. We here use a point

as an infix operator in a linear representation of these trees.

The first three examples are from Knuth:

x = 1 . 0

x 2 = 0 . (1 . 0)

x 3 - 3x 2 + 3x - 1 = (1 . 3) o (-3 . -1)

5x 4 - 7x 2 + 3 = 5x 4 - 7x 2 + 3x°
2 2 2 1 2 0 = 0 * x + [5(x) - 7 (x Z r + 3(x)]

= 0 * x + [-7 (x2,> + [5 (x 4) 1 + 3(x 4)°]

and this is represented as:

0 . (-7. (5 . 3))

6x 5 - 4x 3 + 2x = [6x4 - 4x 2 + 2] x + 0
2 1 2 2 2 0 = [-4 (xV + [6 (xV + 2 (xV]] x + 0

and this is represented as:

(-4 . (6 . 2)) . 0

- 46 -

1 • 0 = (1 . 0)

0 o (1 • 0) = (0 1 . 0)

(1 . 3) . (-3 . -1) = ((1 . 3) -3 . -1)

0 . (-1/2 . (1/24 o 1)) = (0 -.5 0.04166 . 1)

(-1/6 . (1/120 . 1) . 0 = ((-.16666 0.00833 . 1) . 0)

The functions needed for multiplication are: simplification

(0 o k = k when k is a constant), addition, subtraction, and multipli

cation by x. An auxiliary function is also useful. Other interesting

functions you may wish to write are: differentiation by x, substitution

of a constant or polynomial for x, synthetic division, and translation to

and from other representations (the reading and printing finctions).

Test data should either show the special capabilities of each function

or be so constructed that the correct result is obvious. In the example

below the tests of DX (differentiate by X) and SUBS (substitute for X)

generate correct values which are clearly related to the exponents of the

test data.

DX((1 1 1 1 1 . 1))

DX ((1 1 1 1 1 . 1))

VALUE = ((((16 . 8) o 4) . 2) . 1)

SUBS(10 (1 1 1 1 « 1))

SUBS (10 (1 1 1 1 . 1))

VALUE = 100010111

Hints

A constant polynomial has no odd terms and one even term* Primitives

which select the odd terms or the even terms or combine two polynomials

should take this fact into account.

- 47 -

Reference

Knuth, D.E., "How Fast Can We Multiply?" The Art of Computer ProgramnWnp.
Seminumerical AlgorithmsT Vol. 2, Sec. 4.3.3. "

- 48 -

LEXICAL ANALYSIS WITH COROUTINES
o
Amund Lunde

This problem, implementing coroutines in Algol, requires knowledge

of the finer points of the language, such as own variables and switches.

It also illustrates one of the tasks of the lexical scanner of a compiler:

to interpret the intricacies of a hardware representation. A programmer

with a fair knowledge of Algol should be able to program this problem

in the allotted time. The concept of coroutines is explained below.

The Coroutine Concept

The coroutine concept is a generalization of the subroutine concept,

establishing a completely symmetric relationship between the two (or

more) routines, instead of the caller-callee relationship of subroutine

calls. That is: when one coroutine transfers control to (or activates)

another, a "reactivation point11 is set in the former immediately after

the activation-statement, and the local data are preserved. When

control returns to this routine, execution resumes at the reactivation

point using the values of the local data that existed the last time

control passed out of this routine. The reactivation point is a generalization

of the return address in a subroutine call, but is associated with

the caller rather than the callee. Hence, control can be transferred

into one coroutine from any other coroutine with which it cooperates and

not necessarily from the one into which it passed the control last time.

Coroutines are an important tool in programming, especially in

systems programming and in simulation. Nevertheless, coroutine sequencing

has not found its way into many of the higher level languages currently

- 49 -

in use. Examples of languages with coroutines are Simula and Simula-67

(a simulation language built on Algol and its generalization), and Bliss

(a language for systems programming on the PDP-10, developed at GMU).

The purpose of this problem is to investigate how coroutine-

sequencing can be achieved to some extent for Algol procedures. The

caller-callee relationship remains to some extent, but a reactivation

point may be maintained for each procedure, and local data may be

preserved.

The Problem

Many languages, like Algol-60, contain symbols which do not exist

on a standard keypunch. Hence, "hardware representations11 of these

symbols are invented that use only the characters used in, say, Fortran.

In one language (Simula-67) part of this hardware representation could be:

SYMBOL NAME

colon

becomes

denotes

semicolon

dot

point

HARDWARE

.= OR .=

.- OR .•

(between identifiers)

(not between
identifiers)

An early part of the compiler has to replace this notation by a unique

and uniform internal representation.

Write two coroutines, "USER11 and "GETSYM," to analyze the above

representation. The outputs from "GETSYM" should be integers uniquely

representing the above (and possibly other) symbols. Since we do not

- 50 -

want to write a compiler now, the "USER" may simply encode these as

strings (abbreviations of the names of the symbols) and print them

more than one to a line (say, 30 to a line if each string is of length

4) .

The string of input-characters should be interpreted left to right

so that the largest possible legal combination of characters is used

before a symbol is output, i.e.,

..-is denotes (not point denotes, colon minus, or point point minus).

....= is colon becomes (not point colon becomes).

A...B is A colon point B (not A point point point B or A point colon B)

Example: Input and Output

. . . = A B . . - C D . .

50 51 99 51 99 50

where: 50 = colon

51 = becomes

99 = others (one 99 for the group)

You could also encode:

50 into COL

51 into BEC

99 into OTH (for more readable output)

Note:

Students who feel they know all about Algol but want to learn Bliss,

may program the problem in Bliss, using the standard coroutine facilities,

Reference
[1] Knuth, D.E., Fundamental Algorithms, p. 190 ff., p. 226.

- 51 -

BLISSful COOPERATION — OR SPEED VS. SECURITY
A PROBLEM INVOLVING COROUTINES AND GENERAL LANGUAGE ISSUES

o
Amund Lunde

problem Statement

The solution to this problem has 3 distinct parts, 2 experimental and

one theoretical. The experimental parts consist of coding in BLISS two

different algorithms for the same problem, using two different control-

structures. The theoretical part is to compare the solutions and then

discuss how the comparison might be different if you had used a different

language. Obviously the experimental parts are independent of each other and

of the theoretical part. However, if you can present a good answer to the

theoretical part without doing the programming you will be wasting your time

doing that, and may be when going to any of the programming sections of the

IC. You should attempt all or parts of the problem depending on your

previous experience.

If you do not know what coroutines are, you should now read the section

'The coroutine concept' in the description of the problem 'LEXICAL ANALYSIS

WITH COROUTINES.1

Problem to be programmed:

To print all different subsets of M numbers from the set of the N first

natural numbers, 1 < M < N.

NOTE: By definition of sets each member occurs only once. Hence if N = 5,

M = 3, the sets [1 2 3] and [1 2 4] are subsets to be printed, but not the

sequences [1 1 2] or [15 5]. Also, of course, each subset should be printed

exactly once.

- 52 -

The problem may be attacked in at least 2 ways, by recursive routines

and by coroutines. In case you don't see a natural coroutine solution read

the hint. Program these two solutions in BLISS and compare their execution

speeds. If a coroutine facility were added to ALGOL, (like in SIMULA-67),

and the two programs translated into that language, how do you think the

relation between the execution times would change?

Hint: (Try before reading).

There will be a chain of Mfl (or maybe M4-2) coroutines, the main-program

and M coroutine instances of the same routine, one for each position of the

selection. Each has pointers to its predecessor and successor in the chain.

The main program will do the printing. Each time it needs a new selection it

will activate the coroutine for the last position in the selection. This will

increase its selected number by 1, check if this is legal (i.e., not too large),

and then activate the main program or its predecessor depending on the result

of the test. Figure out on your own which variables you need in each co

routine instance, and how they should be initialized. Maybe you will want an

extra coroutine at the end of the chain to tell you when you are through.

Historicalnote:

This coroutine solution to this problem was written in 1971 in SIMULA-67

by Mr. Dag Belsnes at the University of Oslo, Norway. At that time it was (and

maybe it still is) the winning entry for this problem in their continuously

ongoing 'Code it neater and faster in SIMULA1 contest.

The current formulation and the BLISS versions are due to the present

author.

- 53 -

AREA OF A REGION

Leroy C. Richardson
Richard M. Young

Background

A region of two-dimensional space is divided into uniform square cells,

each of which is designated as being either "white11 or "black." The black

cells form a connected mass, so that by stepping horizontally, vertically,

or diagonally it is possible to move from any black cell to any other,

passing only over black cells. Thus the black cells divide the set of white

cells into isolated regions; there are no separate "islands" of black cells.

But there may be more than one white region in the two-dimensional space.

We are interested in finding the area of a region of horizontally or

vertically connected white cells totally enclosed by a boundary of black

cells. For example, the area marked X:

Choose a representation, such as a two-dimensional array, in which the

basic operations available are to determine whether a cell is black or white,

and to move from a cell to any of its four neighbors. Assume that you are

given the location of a white cell in the region whose area is required.

- 54 -

Since the area of the white region is defined to be the

number of cells in it, the most straightforward way to compute

the area is simply to go ahead and count the cells. Write a

program to do this; it will have to visit each cell in the region

at least once.

Hints

A.) Be careful not to count white cells which do not in fact

belong to the region whose area is wanted.

B.) This technique is quite straightforward and there are

many ways to write the program. Try to find a program which

is elegant and reflects the structure of the task. You may

want to write several different versions, to see how different

programming languages lend themselves most naturally to iterative

or recursive control structures.

- 55 -

For large, sensibly-shaped regions, visiting every cell in

the region is inefficient. By making use of some very simple

algebraic properties, we can determine the area simply from

knowledge of its boundary. There is no need to examine the cells

in the interior.

Can you write a program which computes the area by visiting

only white cells adjacent to the boundary?

Hints

A.) Using (x,y) coordinates to describe the white region, we can

regard the whole area as composed of a number of columns of vertically

connected cells. Suppose the y-coordinates of the top and bottom

cells in column i are YTOP. and YBOT.. Then we know that
1 1

area = ^jT (YTOP,, - YBOT^ 4- 1)

where the summation ranges over all the columns composing the region.

B.) The process of tracing around the boundary of a region is known

as "edge-following11 and is interesting in itself. To trace clockwise

around a region is analogous to walking around the whole of a room

while always keeping one fs left hand touching the wall.

Try using this analogy if you have difficulty programming the

edge-follower. The secret is always to keep turning "as left as you can

C.) Once again, try writing the code so that it corresponds elegantly

and clearly to the structure of the task. If you still have difficulty

with the edge-follower, it may actually help to draw an elegant flow

chart first, and then encode it.

- 56 -

3.) One way to approach the task of finding the area is to think

of the initially given white cell as a "seed/1 which is "grown" to

cover all the white cells immediately adjacent to it, each of which

is then also grown outwards to cover all the white cells adjacent to

ifcs and so on until the whole region is filled up. The area then is

the total number of cells grown (including the original seed).

Suppose you have available a programming system which can

operate simultaneously (in a single operation) on the whole of an

array at once; i.e., in each cycle of computation the whole connected

mass of white cells already reached can be expanded outwards by one

cell in just one operation or statement in the programming language.

Can you devise a simple algorithm that takes advantage of these array

operations to find the area of the region?

We suggest using either of two approaches:

3.1) Program the algorithm in APL, which effectively provides

simultaneous operations on arrays.

3.2) Assume that you have available a computer capable of working with

arbitrarily long bit-strings as words. Assume a reasonable set of

operations for the machine: parallel logical operations, shifting,

counting the number of l fs in a word, etc.

Can you devise an appropriate representation of two-dimensional

regions as bit-strings, and write an area-finding algorithm that take

advantage of the parallelism of such a machine?

- 57 -

Hints

A.) How do you tell when the whole region has been covered?

What happens on subsequent cycles?

B.) "Growing11 a single cell is equivalent to shifting it one

cell up, down, left, and right (if the adjacent cells are also

white) and "superimposing" the five cells. Can you generalize

this to a whole connected mass of cells?

- 58 -

A PROBLEM IN SIMPLE LANGUAGES

George Robertson

Motivation

Before considering a complex language such as ALGOL, it is con

venient to study a very simplified form of language which has only a

few simple syntax rules. The results of this study can then be extended

to a subset of the Algol language which can in turn form the basis

for constructing a translator for Algol-like languages.

A language consists of a set of basic symbols (usually finite)

called the alphabet and certain strings of these symbols. Its syntax

consists of rules for classifying and transforming these strings into

words. By a string we mean a finite sequence of symbols from the alphabet

which may be exhibited by writing the symbols in linear order from left

to right. We shall denote strings by Greek letters. If a and |3 are

strings, then "c$ l f shall denote the string consisting of the symbols

of a followed in order by those of P. We can define a function L,

called the length, as follows:

Dl. If a is a string, then L(ot) = number of symbols in a counting

repetitions.

In other words, the function L maps strings onto the set of non-negative

integers. Two strings will be considered the same if

1. They have the same length, and

2. They have identical symbols in the same positions.

One of the more useful languages for mathematical purposes is leading

operator, or prefix, '.'Polish" notation. The rules of word formation in

- 59 -

this case are very simple. The symbols in the alphabet are classified

as letters and connectives, and associated with each connective is a

unique positive integer, n, called the degree of the connective. The

two rules for word formation are:

Wl. A string consisting of a single letter is a word.

W2. If a is a connective of degree, n, and (3^, $2"*^n a r e w o r (* s

then a#- [3 0 . . . P is a word. 1 z n

The use of a leading connective structure eliminates the necessity

of parentheses, either explicit or implied by operator heirarchy.

As an example, let us consider Algol-like simple arithmetic expressions

defined by the following syntax:

<letter> ::= A| B| C| D| E| F| G| H| l| j|K| L|M| N| O| P| Q| R| S | T | U| V|W| X | Y| Z

<adding operator> : : = +| -

Multiplying operator> : := *|/

<primary> : := <letter>| (<simple arithmetic expression)

<term> : := <primary>|<term> Multiplying operator> <primary>

<simple arithmetic expression> : :=* <term>|

<simple arithmetic expression> <adding operator> <tenri>

Then, the alphabet of the simple "Polish" notation becomes:

1. A,B...,Z as letters

2. +,-,*,/ as connectives of degree 2

Examples of simple arithmetic expressions in both the Algol-like and

the Polish notations are:

- 60 -

Algol-like notation "Polish" notation

A. (A + B) * C/D / * + A B C D
B . A * (B + C / D) * A + B / C D
c . a * b + c / d + * A B / C D
D. A * (B + C) / D / * A + B C D

We are now in a position to define a simple language.

D2. A l a n g u a g e i s simple if its alphabet consists only of

letters and connectives, and if Wl and W2 are the rules of

word formation x n ^ .

We can define a function p, called the rank, which has as its

domain all strings in^^and its range will be the set of integers. The

definition is as follows:

D3. 1. If a is a letter, then p (cr) = -1.

2. If a is a connective of degree n, then p (a) = n-1.

3. If cr is the null string, then p (a) = 0.

4. If a = o l a 2 and L (a x) = 1, then p (a) = p ^) + p (a 2 > .

Thus if a is "a a ...a,", and "a." is a letter or connective for
I Z. K. 1

each i, then
k

p (cr) = P(a x) + p(a 2) + . . . + p(a k) = p C a ^ ^) .

and we see that the rank operation p is additive.

A question that we would now like to answer is: If we are given an

arbitrary string <j in language then can we determine if a is a word in

by a purely mechanistic approach? In other words, does an algorithm

- 61 -

exist for determining whether a string a i n ^ i s a word in^^f? The answer

to the question is in the affirmative and is based on an important

theorem due to Rosenbloom. [1]

D 4 . If a is a string i n ^ , and a - a - ^ 2 y T H E N ° 1 I S A H E A D °^ A

and * s a t a i l of a.

Rosenbloom1s theorem can be stated as follows:

Tl. Ifj£*is a simple language, and a is a string in ¿2?, then a is

a word in^^fif and only if

1. p(a) = - 1 , and

2 . If is any head of a, and cr^ ̂ a, then p (c r ^) ^ 0»

The proof of Rosenbloom's theorem can be found in his book along

with some suggested exercises.

The Problem

Write a LISP function called WORD which will determine whether or

not a string a is a legal word in Polish prefix notation. The argument

to the function should be a list representing the string a, and the

value of the function should be either T or NIL.

Examples:

WORD ((+ * A B / C D)) should return the value T.

WORD ((A * B + c / d)) should return the value NIL (Rule 2) .

WORD ((+ * A / B C D)) returns T.

WORD ((+ * / A - B C)) returns NIL (Rule 1) .

- 62 -

Hints

Once you have convinced yourself that Polish prefix notation is a

simple language in the sense of definition D2, then the problem reduces

to a problem of implementing the algorithm described in Rosenbloom's

theorem. You will find that the key to the implementation involves

substituting the ranks of symbols in the input list for the symbols

themselves. Hence, a table look-up procedure of some kind is needed.

A careful examination of the LISP interpreter (both EVAL and APPLY)

will reveal that a useful table look-up procedure does exist in LISP.

Reference

[1] Rosenbloom, Paul, The Elements of Mathematical Logic, Dover,
pp. 152-157.

- 63 -

TURING MACHINE SIMULATION PROBLEM

Larry Snyder

Motivation

Even before the invention of modern computers, A. M. Turing [4]

described a theoretical model of a computing machine. Although very

simple in structure, the Turing machine (under a plausible set of

assumptions) has been proven to possess some very remarkable properties.

For example, a Turing machine can compute any function that can possibly

be computed. There are well defined functions which no Turing machine

(and hence no computer) can compute the solution to. Given a Turing

machine program for certain functions, there is a Turing machine program

for the same function which will run faster [1]. These and other results

will be discussed later. Our interest here is to develop a thorough under

standing of the workings of this simple machine and to develop a program

which may be used later in the Immigration Course when non-computability is

studied using the Busy Beaver Problem [2]. In addition there are several

programming techniques which this problem is intended to emphasize, namely,

the building of a programming model on which experiments are to be run,

gaining expertise in some conversational programming language and experience

with data structures and storage allocation.

The Problem

Choose a conversational programming language and write a program to

simulate a Turing machine. (For those who arenft familiar with Turing

machines, a good description is found in Minsky [3], reprinted at the end

of this problem description.) The program should be highly interactive and

allow you to specify machines and tapes conveniently and to monitor their

behavior. Keep in mind that you will be running experiments with your

program later during the Immigration Course. Your program should allow:

- 64 -

1.) Specification of the tape alphabet, the Turing machine itself

and the initial tape configuration.

2.) Specification of experiment parameters:

A.) Initial state and read head position.

B.) Maximum number of state transitions, and maximum amount of

Usage. (This is because many Turing machines never halt and

you want to prevent infinite cycling.)

3.) Tracing facilities to allow monitoring of state transitions

while the Turing machine is running.

4.) Printing of all relevant information, e.g., the tape, states,

read head position, etc.

Sample Problems

It might be helpful to prepare several Turing machines to be used

while debugging your simulator. Here are several suggestions:

1.) Addition of two integers represented in:

A.) Unary marks (e.g., the integer i is represented with

with i+1 marks). This problem is trivial.

B.) Binary. This is more challenging. Think of various

tape formats to simplify the problem.

C.) Decimal. This is quite complex.

2.) Checking for well formed parenthesis sequences, i.e., a machine

to accept sequences like ()(()) and reject ((). A solution is

in Minsky, but try it yourself before looking.

,3.) Accepting a unary sequence if it has 2* marks, for any non-

negative i. This one is easy.

4.) A machine which prints its own description in quintuples.

This problem is reasonably difficult.

- 65 -

Things to Watch for

One of the important decisions you must make is how to represent the

"infinite" tape. Obviously, your representation will be finite, but be

sure it is flexible enough. Here are two possible representations (you may

think of others):

1.) I 0 \ -1 |lt -2 1 2 1 -3 [. . . J Ù
<r- TAPE -»

The tape vector is a vector of length n. TAPE[1] is the 0 cell, all odd

numbered elements are positive cells, all even numbered elements are negative

cells, such that:

CELL[i] ={TAPE[2i + 1] if i>Q

/TAPE[1] if i=0

\jrAPE[2i] if i<0

This model is easily extended if additional tape is needed.

1 2 3 4 s n-2 n-1 n
2.) I »1 1 | 2 | 3 | . . . | i | . . . | " - 3 | W

TAPE

The tape is a vector of length n. The non-negative cells begin at TAPE[1]

and go to some limit s<n. the negative cells begin at TAPE[n] and are

stored backwards to the limit s, such that:

(TAPE[i + 1] for i>0
CELL[i] = 1

(jAPE[n + 1] for i<0

There are at least two other representations you might consider using.

- 66 -

Another thing to keep in mind is that after a tape or a machine

has been specified, it should also be easy to correct any errors in the

initial specification. Experiments are usually wrong the first time

they are stated.

Finally, one comment about the use of a conversational language.

Contrary to popular belief, it is difficult and time consuming to

compose a program at the terminal. This is especially true if you are

not very familiar with the language. Your time will be most productive

if you have your program entirely composed BEFORE you sit down at the

terminal.

Remember, this program should be as convenient as possible for

you to use.

References

[1] Blum, Manuel, flA Machine Independent Theory of the Complexity of
Recursive Functions," JACM, Vol. 14, No. 2, pp. 322-336.

[2] Lin, Shen and Tibor Rado, "Computer Studies of Turing Machine
Problems," JACM, Vol. 12, No* 2, ;pp # 196-213.

[3] Minsky, Marvin, Computation: Finite and Infinite Machines,
Prentice-Hall, Englewood Cliffs, 1967, pp. 117-119.

[4] Turing, Alan M o , "On Computable Numbers, with an Application
to the Entscheidungsproblem," Proc London Math. £>oc«,
1936, Sec. 2-42, pp. 230-265.

- 67 -

AMT

THIS PROGRAM SIMULATES A TURING MACHINE WITH A TWO-WAY TAPE.
FACILITIES ARE PROVIDED FOR DEFINING MACHINES, RUNNING EXPER
IMENTS AND DEBUGGING EXPERIMENTS. THE FOLLOWING COMMANDS ARE
USED TO CONTROL THE SIMULATION:

S'.XXXX INDICATES THAT A SPECIFICATION OF XXXX IS TO BE MADE
PiXXXX INDICATES THAT THE VALUE OF XXXX IS BEING REQUESTED
N:YYYY INDICATES A NEW YYYY IS TO BE SPECIFIED
GO STARTS THE TURING MACHINE
END TERMINATES THIS PROGRAM
? PRINTS THIS DESCRIPTION AGAIN
Pi IS USED FOR COMMENTS

THE FOLLOWING ARE VALID ENTRIES FOR XXXX ABOVE:
ALPHABET SPECIFIES THE TAPE ALPHABET
QUINTUPLES SPECIFIES THE STATE QUINTUPLES
TAPE SPECIFIES THE TAPE CONFIGURATION
STATE SPECIFIES THE STATE OF THE MACHINE
CELL SPECIFIES THE HEAD POSITION ON THE TAPE
TRACE SPECIFIES THE OPTION TO TRACE STATE TRANS.
TRANSITION LIMIT MAXIMUM ALLOWABLE STATE TRANSITIONS WITHOUT

INTERVENTION
STORAGE SPECIFIES THE MAXIMUM NUMBER OF TAPE CELLS

THE FOLLOWING ARE VALID ENTRIES FOR YYYY ABOVE:
MACHINE INDICATES A NEW MACHINE IS TO BE SPECIFIED
EXPERIMENT INDICATES A NEW EXPERIMENT IS TO BE SPECIFIED

WHEN AN EXPERIMENT HAS BEEN SPECIFIED, GO STARTS IT GOING.

- 68 -

A LET'S DEFINE A TURING MACHINE TO COMPUTE
A EXCLUSIVE-OB OF TWO ¡31NARY STRINGS. OUR
A TAPE WILL HAVE THE FOLLOWING FORMAT:
A <BIN STRING 1> x <BIN STRING 2> + <RESULT>
A WITH WE AND o'tf AS MARKERS FOR PROCESSED
A PORTIONS OF STRINGS
O

N-.MACHINE
THE ALPHABET CURRENTLY CONTAINS'. B
PLEASE ENTER TAPE ALPHABET: SINGLE CHARACTERS SEPERATED BY COMMAS
0,1.0,0,-»-,*
ENTER STATE QUINTUPLES: STATE, READ, NEW STATE, WRITE, MOVE
SEPERATED BY COMMAS, SO THAT THE FOLLOWING DOMAINS APPLY-.
STATE, NEW STATE ARE POSITIVE INTEGERS, 0 FOR HALT
READ, WRITE e BOlLJo-»-*
MOVE e L,R,-

ENTER DONE TO TERMINATE STATE ASSIGNMENT
I
1,1,2 , U , R I l,o,3,D,i?
I
2 ,0,2 ,0,if
I
2 ,1,2 ,1 ,R

I
2,*,4,*,i?
I
3,0,3,0,i? I
3,1 ,3,1 ,2? I
3,*,5 ,*,R

I
H,0,H,0,R

I
4,0,6,0,
I
4,1, 7,o,i?
I
5,0,5,0,/?
I
5,0,7,O,Ä
I
5,1,6,0,Ä
I
6 , 0 ,6 , 0 ,R

I
6,1,6,1,if
I
I 6 , B , 8 ,1 , R

- 69 -

7.0,7,0,Ä
I
7,l,7,l,i?
I
I
7,ß,8.0.L
I
8,0,8,0,L
I
8,1 ,8,1 , L I
8,o,8,o,L
I
8,->-,8,->-,£
I
8,*,8,*,L I
8,D.1,D,Ä I
DÜNE
O
A ' WE MAY NOW SPECIFY AN EXPERIMENT
O

N-.EXPERIMENT
SPECIFY INITIAL TAPE INPUT (BEGINNING ON CELL [0])
1101*1000-*
SPECIFY CELL ON WHICH READ HEAD SHOULD BE POSITIONED

0
SPECIFY FIRST STATE
• :

1

SPECIFY TRACE: 0 NO TRACE, 1 TRACE

1

SPECIFY MAXIMUM STATE TRANSITIONS

5
O

A 0£, WE ARE READY TO GO
o
GO
112ÜÄ
2121J?
2020/?
2121Ä
2*H*tf
TRANSITION LIMIT REACHED
O

ft 6>W? TURING MACHINE HAS RUN FOR FIVE TRANSITIONS AND
ft STOPPED TO ALLOW US TO LOOK AT SOME OF THE VALUES.

- 70 -

A MAY PRINT THE CURRENT VALUE OF THE TAPE.
O

Pi TAPE
10 TAPE CELLS WERE USED
[0][J1 01*100 0-*
O

A THE CO] INDICATES THAT THE PORTION OF THE 'INFINITE' TAPE
A WHICH HAS BEEN PRINTED BEGINS WITH THE CELL 0 .
O

Pi CELL
CURRENT HEAD POSITION ISi 5
O

Pi STATE
CURRENT STATE IS: 4
O

A NOT MUCH HAS HAPPENED, LET'S CONTINUE
O

GO
HI 7OR
7 070rf
7070tf
7070J?
7+7->tf
TRANSITION LIMIT REACHED
O

A THIS IS TOO TEDIOUS, LETS CHANGE SOME PARAMETERS
O

S i TRANSITIONS
SPECIFY MAXIMUM STATE TRANSITIONS
D:

100
o

Si TRACE
SPECIFY TRACE: 0 NO TRACE, 1 TRACE
D:

0
o

GO
MACHINE HALTED
O

Pi TAPE
12 TAPE CELLS WERE USED
C o]Unoi*oooo+oi
o

ft OOPS. WE GOOFED SOMEWHERE1.
A WHERE IS THE READ HEAD?
O

P-.CELL
CURRENT HEAD POSITION IS: 12
O

A LET'S PRINT OUT THE MACHINE
O

P:QUINTUPLES
STATE TRANSITION MATRICES

1 .0 3 • 2?
1 1 2 • 2?

2 0 2 0 R
2 1 2 1 i?
2 * 4 * i?

3 0 3 0 R
3 1 3 1 R
3 * 5 * 2 ?

4 0 6 O R
4 1 7 O R
4 O 4 O R

5 0 7 O R
5 1 6 O R
5 O 5 O R

6 B 8 1 2?
6 0 6 0 R
6 1 6 1 R
6 -* 6 •* 2?

7 £ 8 0 L
7 0 7 0 2?
7 1 7 12?
7 •+ 7 + R

8 0 8 0 L
3 1 8 1 L
8 • 1 • R
8 o 8 O L
Q •* Q •*• L
8 * 8 * L

A IT DIDìi'T KNOW WHAT WAS WRONG, WE WOULD PROBABLY RERUN
A THE EXPERIMENT WITH THE TRACE ON. HOWEVER, I HAVE REASON
A 2*0 BELIEVE THAT THE ERROR IS IN THE FIRST QUINTUPLE OF STATE
O

S: QUINTUPLES
ENTER STATE QUINTUPLES: STATE, READ, NEW STATE, WRITE, .MOVE
SEPERATED BY COMMAS, SO THAT THE FOLLOWING DOMAINS APPLY:
STATE, NEW STATE ARE POSITIVE INTEGERS, 0 FOR HALT
READ, WRITE e BOlLJO-**
MOVE e L,R,-'

ENTER DONE TO TERMINATE STATE ASSIGNMENT I
&,B,8,1,L
I

DONE
o

A LET'S SEE IF THAT FIXES IT.

- 72 -

n WE'LL MANUALLY MOVE THE READ HEAD LEFT ONE CELL AND START
ft THE MACHINE IN STATE 8 (THE SKIP LEFT LOOP)
O

P:CELL
CURRENT HEAD POSITION IS: 12
O

SiCELL
SPECIFY CELL ON WHICH READ HEAD SHOULD BE POSITIONED
• :

11
O

P: STATE
CURRENT STATE IS: 0
O

S-.STATE
SPECIFY FIRST STATE
• :

8
O

ft WE SHOULD BE READY TO CONTINUE
O

FO
WHAT?
o
ft SORRY ABOUT THAT
o
GO
MACHINE HALTED
O

P-.TAPE
14 TAPE CELLS WERE USED
L 0] ••••*oooo-*01 01
O

P:CELL
CURRENT HEAD POSITION IS: 4
O

ft THAT'S THE END OF THE EXPERIMENT
ft THANX FOR TURING WITH US'.
O

END

- 73 -

TURING
MACHINES

6 . 0 I N T R O D U C T I O N

A Turing machine is a finite-state machine associated with an external
storage or memory medium. This medium has the form of a sequence of
squares, marked off on a linear tape. The machine is coupled to the tape
through a head, which is situated, at each moment, on some square of the
tape (Fig. 6.0-1). The head has three functions, all of which arc exercised
in each operation cycle of the finite-state machine. These functions are:
reading the square of the tape being "scanned," writing on the scanned
square, and moving the machine to an adjacent square (which becomes the
scanned square in the next operation cycle).

Fig. 6.0-1

It will be recalled from section 2.2 that a finite-state machine is char
acterized by an alphabet (s0,..., sm) of input symbols, an alphabet
(ro,..., rH) of output symbols, a set (q0,...,?,) of internal states, and a
pair of functions

<?(/ + 1) - G(2(0,5(0)
R(i + 1) - F(Q(t),S(t))

117

- 74 -

118 TURING MACHINES SEC. 6.0

which describe the relation between input, internal state, and subsequent
behavior.

In order to attach the external tape, it is convenient to modify this
description a little. The input symbols (s0,..., sm) will remain the same,
and it will be precisely these that may be inscribed on the tape, one symbol
per square. The input to the machine A/, at the time /, will be just that
symbol printed in the square the machine is scanning at that moment. The
resulting change in state will then be determined, as before, by the func
tion G. The output of the machine M has now the dual function of (1) writ
ing on the scanned square (perhaps changing the symbol already there)
and (2) moving the tape one way or the other.

Thus R, the response ,J ias . /w components. One component of the
response is simply a symbol, from the same set (s 0 , • . .» s m \ to be printed
on the scanned square; the second component is one or the other of two
symbols 'O1 (meaning "Move left") and T ("Move right"), which have the
corresponding effect on the machine's position. Accordingly, it is con
venient to think of the Turing machine as described by three functions -

Gd + 1) - G(Q{t)9S(t))
R(t + 1) - F{Q{t)9S{t))
D(t + 1) - D(Q{l)9S(t)\

where the new function tells which way the machine will move.
In each operation cycle the machine starts in some state qiy reads the

symbol Sj written on the square under the head, prints there the new sym
bol F(qiy Sj), moves left or right according to D(qi$ Sj), and then enters
the new state G (qh Sj).

When a symbol is printed on the tape, the symbol previously there is
erased. Of course, one can preserve it by printing the same symbol that
was read, i.e., if F(qh Sj) happens to be Sj. Because the machine can
move either way along the tape, it is possible for it to return to a pre
viously printed location to recover the information inscribed there. As we
will see, this makes it possible to use the tape for the storage of arbitrarily
large amounts of useful information. We will give examples shortly.

The tape is regarded as infinite in both directions. But we will make
the restriction that when the machine is started the tape must be blank,
except for some finite number of squares. With this restriction one can
think of the tape as really finite at any particular time but with the provi
sion, whenever the machine comes to an end of the finite portion, some
one will attr.ch another square.

Formal mathematical descriptions of Turing machines may be found
in Turing [1936], Post [1943], Kleene [1952], Davis [1958]. There are un
important technical differences in these formulations. For our purposes
it will usually be sufficient to use pictorial state diagrams. Our immediate

- 75 -

SEC. 6.0 TURING MACHINES 119

purpose is to show how Turing machines, with their unlimited tape
memory, can perform computations beyond the capacity of finite-state
machines; it is usually easier to understand the examples in terms of
diagrams than in terms of tables of functions. While it is fresh in our
minds, however, let us note that the finite-state parts of our machines can
be described nicely by sets of quintuples of the form

(old state, symbol scanned, new state, symbol written, direction of motion)

i.e.,

Sj> G{ Sj), F(qi$ Sj), D(qt, sj))

or

j q0, Sy, du)

i.e., as quintuples in which the third, fourth, and fifth symbols are de
termined by the first and second through the three functions G, F, and D
mentioned a b o v e /

Thus a certain Turing machine (section 6.1.1 below) would be
described by the following six quintuples:

U o , 0, q0, 0, R) (<?,, 0, <7., 0, R)
(<7o, 1. qu 0, R) (qu 1, q0, 0, R)

or just

(q0, B, H A L T , 0, -) (q u % H A L T , 1, -)

(0, 0, 0, 0, 1) (1, 0, 1, 0, 1)
(0, 1, 1, 0, i) (1, 1, 0, 0, 1)
(0, B, H, 0, -) (1, B, H, 1, -)

where we have reserved the symbol 4 / T (o r ' H A L T ') to designate a halting
state

One more remark. When we dealt with finite-state machines and the
things they could do, we had to regard the input data as coming from
some environment, so that the description of a computation was usually
not contained completely in the description of the machine and its initial
state. With a Turing machine tape we have now a closed system, for the
tape serves as environment for the finite-state machine part. Hence we can
specify a "compulation" completely by giving (1) the initial state of the
machine and (2a) the contents of the tape. Of course we have also to say
(2b) which square of the tape the scanning head sees at the start. We will
usually assume the machine starts in state q0.

*The state denoted by q,j is defined to be that one of the ?,*s given by the function
G{qi,sj) and similarly for j / y and fordy.

- 76 -

1 2 0 TURING MACHINES SEC. 6.1.1

6.1 SOME EXAMPLES OF TURING MACHINES

The remainder of this chapter shows some of the things Turing
machines can do to the information placed on their tapes, and contrasts
these processes with those obtainable from finite-state machines. (For the
comparison, one may think of a finite-state machine as a specially re
stricted kind of Turing machine which can move in only one direction.)

6 . 1 . 1 A par i ty counter

We will set up a machine whose output is 1 or 0 depending on whether
the number of l's in a string of l's and 0's is odd or even. The input string
is represented on the Turing machine's tape in the form

where we have printed the sequence in question followed by a B. The
machine starts (in state q0) at the beginning of the sequence; the B is to
tell the machine where the sequence ends. The machine needs two states,
one for odd and one for even parity, and it changes state whenever it
encounters a 1. The associated finite-state machine is represented by.
Table 6.1-1.

Table 6.1-1. QUINTUPLES FOR p a r i t y c o u n t e r

SJ lij </// SJ lij

0 0 0 0 1 1 0 1 0 1
0 1 1 0 1 i " I 0 0 1 0 . B // 0 - 1 B H 1 -

If we trace the operation of the machine we find that it goes through
the configurations at the top of p. 121.

The machine ends up at the former site of the terminal B which it has
replaced by the-answer. The input sequence has been erased.

PROBLEM. Change the quintuples so that the sequence is not erased.

In this simple example the machine always moves to the right. In such
a case there is no possibility of recording information on the tape and
returning to it at a later time. Hence one could not expect it to do any
thing that could not also be done by an unaided finite-state machine (with
sequential input) and we know already, from section 2.2, that this is true
for this computation.

- 77 -

THE FIRING SQUAD SYNCHRONIZATION PROBLEM

Tim Teitelbaum

This is a problem within a problem, which combines a small piece

of the theory of finite state machines with the practice of interactive

programming and system building.

First of all, we have the firing squad problem itself as devised
[3]

by Myhill and described in Moore :

Consider a finite (but arbitrarily long) one-dimensional array of

finite-state machines all of which are alike except the ones at each

end. The machines are called soldiers, and one of the end machines

is called a General, The machines are synchronous, and the state of

each machine at time t + 1 depends on the states of itself and of its

two neighbors at time t. The problem is to specify the states and

transitions of the soldiers in such a way that the General can cause

them to go into one particular terminal state (i*e., they fire their

guns) all at exactly the same time. At the beginning state (i.e., t = 0),

all the soldiers are assumed to be in a single state, the quiescent

state. When the General undergoes the transition into the state

labeled wfire when ready," he does not take any initiative afterwards,

and the rest is up to the soldiers. The signal can propagate down the line

no faster than one soldier per unit of time, and their problem is how

to get all coordinated and in rhythm. The tricky part of the problem

is that the same kind of soldier with a fixed number K of states is required

to be able to do this, regardless of the length n of the firing squad.

In particular, the soldier with K states should work correctly, even

when n is much larger then K o Roughly speaking, none of the soldiers

is permitted to count as high as n.

- 78 -

Two of the soldiers, the General and the soldier farthest from the

General, are allowed to be slightly different from the other soldiers in

being able to act without having soldiers on both sides of them, but their

structure must also be independent of n.

A convenient way of indicating a solution of this problem is to use

a piece of graph paper, with the horizontal coordinate representing the

spatial position, and the vertical coordinate representing time. Within

the (i,j) square of the graph paper a symbol may be written, indicating

the state of the ith soldier at time j. Visual examination of the pattern

of propagation of these symbols can indicate what kinds of signaling

must take place between the soldiers.

ic * *

Since the solution of this problem involves considerable busy-work,

it will be convenient for you to have the aid of a computer program.

What this program does constitutes the second part of this problem and is

entirely up to you. It could only verify your candidate solutions or, at

the opposite extreme, it might (try to) generate the entire solution

for you.

Such a program, if written in an interactive programming language,

could be used to develop the solution strategy incrementally. Thus, you

could first concentrate on developing a conversational system for programming

debugging, and editing the soldiers1 rules; then you can use your system

to work on the firing squad problem per se.

Consider the task of optimizing your own total time. What is the

trade-off between time spent incorporating features in your computer

program versus effort expended directly on the design of the soldiers program

If, after all due effort, you haven't made any progress, you may

wish to toss in the towel and refer to the solution strategy description

- 79 -

given in MinskyL**J. (But do yourself a favor and donft give up until

desperate.)

If, on the other hand, you have found a solution, you may wish to

consider finding solutions which optimize the time or number of states

required. An eight-state minimum time solution (2n-2) may be found in

the CMU thesis by Balzer^-L

References

[1] Balzer, R. M., "Studies Concerning Minimal Time Solutions to the
Firing Squad Synchronization Problem,11 CMU Computer Science
Department Ph.D. thesis, 1966.

[2] Minsky, M., Computation, Finite and Infinite Machines., Prentice Hall,
p. 282.

[3] Moore, E. F., Sequential Machines, Selected Papers, Addison-Wesley,
1964, pp. 213-214.

- 80 -

TREES, TREES, TREES

Tim Teitelbaum

Question* Could you help m e — I f m a little confused?

Answer* Sure, what's your problem?

What kind of data objects are manipulated by LISP programs?

A* Trees.

Oh, I get it. Something like:

Abraham

I shmael

Jacob ' Esau

A. Not exactly. More like: (A (B C) (D E)) .

I don't get it. Why is that a tree?

A. Because you can think of it as being:

But only the terminal nodes of your tree have data on them.

A. ToughJ Those are the rules.

So a LISP tree really looks like that?

A. No. It really looks like:

t-
9-

C NIL NIL

- 81 -

OK, Forget it.

As you can see, there is no one data type which is a tree. There are,

in fact, many species of trees, each with its own sub-species and mutations.

The subject of tree structures (and related objects like lists) is confusing

but very important. The purpose of the following problem is twofold:

1) It is a means of helping you understand and differentiate

between various tree structures.

2) It is a small (though non-trivial) exercise in the LISP programming

language.

Problem

Consider the list L of father-son pairs:

L = ((Isaac Esau) (Abraham Ishmael) (Abraham Zimram)
(Noah Ham) (Isaac Jacob) (Abraham Isaac)).

This list corresponds in a fairly obvious way to a forest of two trees —

the one given above and the other, a separate family tree:

> Noah

, i Ham

However, since the information is distributed throughout the list, L is a

fairly useless representation. This is especially true if we wish to perform

operations like:

Extract the decendants of x

Extract the linage of x

Form a list of all first cousins.

- 82 -

suming these are the types of operations desired, your problem is:

1) To specify a suitable format for representing in LISP a forest

of family trees (ie., trees with data at all nodes).

2) To program in LISP a function tree(x) to transform a list of

father-son pairs (like L above) to the format specified in part 1)

above. Note that L is not sorted in any particular order it's

harder this way. (It would be very educational to code tree(x)

twice: once in "pure LISP" and once using the full power of LISP

1.5, eg., the prog feature, property lists, rplaca, rplacd, etc.)

- 83 -

ANALYSIS OF ALGORITHMS

Background

This description of the mathematical analysis of algorithms is taken

from KnuthW.

The general field of algorithmic analysis is an interesting

and potentially important area of mathematics and computer science

that is undergoing rapid development. The central goal in such

studies is to make quantitative assessments of the "goodness11 of

various algorithms. Two general kinds of problems are usually treated:

Type A. Analysis of a particular algorithm. We investigate

important characteristics of some algorithm, usually a frequency

analysis (how many times each part of the algorithm is likely to be

executed), or a storage analysis (how much memory it is likely to need).

For example, it is possible to predict the execution time of various

algorithms for sorting numbers into order.

Type B. Analysis of a class of algorithms. We investigate the

entire family of algorithms for solving a particular problem, and

attempt to identify one that is "best possible". Or we place bounds on

the computational complexity of the algorithms in the class. For

example, it is possible to estimate the minimum number S(n) of

comparisons necessary to sort n numbers by repeated comparison.

Type A analyses have been used since the earliest days of computer

programming; each program in Goldstine and von Neumann1 s classic
[21

memoir L J on ffPlanning and Coding Problems for an Electronic Computing

Instrument" is accompanied by a careful estimate of the "durations" of

each step and of the total program duration. Such analyses make it

possible to compare different algorithms for the same problem.

-84 -

Type B analyses were not undertaken until somewhat later, although

certain of the problems had been studied for many years as parts of

"recreational mathematics". Hugo Steinhaus analyzed the sorting function
["31

S(n), in connection with a weighing problem1 J; and the question of

computing x 1 1 with fewest multiplications was first raised by Arnold

Scholz in 1937L • Perhaps the first true study of computational

complexity was the 1956 thesis of H. B. DemutlJ-5-!, who defined three

simple classes of automata and studied how rapidly such automata are

able to sort n numbers, using any conceivable algorithm.

It may seem that Type B analyses are far superior to Type A, since

they handle infinitely many algorithms at once; instead of analyzing

each algorithm that is invented, it is obviously better to prove once

and for all that a particular algorithm is the "best possible". But

this is only true to a limited extent, since Type B analyses are

extremely technology-dependent; very slight changes in the definition
of "best possible" can significantly affect which algorithm is best.

31

For example, x cannot be calculated in fewer than 9 multiplications,

but it can be done with only 6 arithmetic operations if division is

allowed.

These are the most important points about algorithmic analysis:

1) Analysis of algorithms is an interesting activity which

contributes to our fundamental understanding of computer

science. In this case, mathematics is being applied to computer

problems, instead of applying computers to mathematical problems.

2) Analysis of algorithms relies heavily on techniques of discrete

mathematics, such as the manipulation of harmonic numbers, the

solution of difference equations, and combinatorial enumeration

- 85 -

theory. Most of these topics are not presently being

taught in colleges and universities, but they should form

a part of many computer scientists1 education.

3) Analysis of algorithms is beginning to take shape as a

coherent discipline. Instead of using a different trick for

each problem, there are some reasonably systematic techniques

which are applied repeatedly. (Numerous examples of these

unifying principles may be found by consulting the entries

under "Analysis of algorithms11 in the index to ^-L)

Furthermore, the analysis of one algorithm often applies to

other algorithms.

4) Many fascinating problems in this area are still waiting to

be solved.

Problem

Choose three or four algorithms for a single task (such as sorting or

searching a table) and compare their efficiencies for various assumptions

about the data. (Type A analysis.)

OR

Attempt a Type B analysis. The precise specification of the class of

algorithms and the measure of efficiency are extremely important.

- 86 -

References

[1] Knuth, Donald E., Mathematical Analysis of Algorithms, Computer Science
Department, Stanford University. STAN-CS-71-206.

[2] Goldstine, Herman H. and John von Neumann, l!Planning and Coding Problems
for an Electronic Computing Instrument,11 in John von Neumann's
Collected Works, A. H. Taub, ed., 5 (Pergamon Press, 1963), 80-235.

[3] Steinhaus, Hugo, Mathematical Snapshots, (Oxford University Press, 1950),
38-39.

[4] Scholz, Arnold, "Aufgabe 253," Jahresbericht der deutschen Mathematiker-
Vereinigung, class II, 47 (1937), 41-42.

[5] Demuth, Howard B., Electronic Data Sorting (Ph.D. thesis, Stanford
University, 1956), 92pp.

[6] Knuth, Donald E., The Art of Computer Programming (Addison-Wesley
Publishing Corporation: Volume 1, 1968; volume 2, 1969; volume 3,
1972).

- 87 -

BUSY BEAVER PROBLEM

Background

This writeup of the Busy Beaver Problem is taken from Korfhage^"'.

Turing machines are constructed to perform specific tasks

such as addition or multiplication. Part of the construction is

the tacit assumption of a standard format for the input string.

Thus one is naturally led to question the performance of the

machine on a non-standard input string. This is the baiting

problem: given a Turing machine and an arbitrary tape, to deter

mine whether or not the machine would eventually halt using the

given tape as input. This and the related Busy Beaver problem have

been shown to be unsolvable by any Turing machine (or algorithm).

That is, it is not possible to design an algorithm which will

solve this problem. The essential word here is "eventually,11

It is easy to determine whether or not a given machine using a

given tape will halt within 1,479,641 or any other given number

of steps: just try to run the machine for 1,479,642 steps. But

with "eventually,11 we have no limit on the possible number of

steps which may occur.

There are only a finite number of Turing machines of a given

size (that is, number of states and symbols). For example, if we

allow n states (not counting the halt state), two moves, and two

symbols (0 and 1), then each block in the table describing a

machine may be filled in 4(n + 1) ways (the extra one is for the

halt state). Since there are 2n blocks in the table, if we require

- 88 -

that each block be filled there are exactly N = (4(n + 1))*""

n-state two-symbol Turing machines. The Busy Beaver problem

(of class (n,2)) is to determine which of these machines will,

when started with a blank tape, halt with the highest possible

number of l fs on its tape. This is thus a specialized halting

problem, which has been shown by Rado [2] to be unsolvable.

Nevertheless, some work has been done on this with interesting

results [3]. It is known that for two-symbol machines, the

highest possible number of l fs obtainable with a halting machine of

1 state is 1, 2 states—4, and 3 states--6. Table 1 shows one of

the 3-state machines which will halt with six l fs. Four other

such machines exist.

Table 1

A machine solving the three-state Busy Beaver problem

0 l

lRq 0

q l iLq 2
lRq 3

q2 iRq 0
lLq x

For Turing machines having more than three states or operating

on more than two symbols, the maximum possible score is not known.

Nor has anyone solved the related problem of determining the

maximum number of moves or shifts which is possible in a machine

which halts. The known results are given in Table 2, where S(n)

denotes the maximum possible score, and SH(n) denotes the maximum

possible number of shifts.

- 89 -

To indicate the magnitudes which must be considered in this

problem, let us look at the 100-state machines. There are 163,216^'

of these, some of which will halt when started with a blank tape,

and some of which will not, It is known that one of these will
1 015000

halt with (((71)1)1)1 or approximately 1 0 1 0 l's on the tape.

Thus the maximum number of ones attainable is at least that large,

and probably considerably larger. Yet if we use ten billion years

as an estimate of the age of the universe and assume that one

billion l's can be printed per second (somewhat faster than current
26

digital computers), only approximately 3.15 X 10 of these l's

could have been printed since the universe began.
Table 2

The known results in the Busy Beaver problem*

n = 1 2 3 4 5 6 7 8

Two-symbol machines
E(n) = 1 = 4 = 6 £ 1 3 £ 1 7 £ 3 5 £ 22,961 £ 3(7.3 9 2 - l)/2
SH(n) = 21 £ 107

Three-symbol machines
S(n) £ 12
SH(n) £ 57

* These results were communicated to the author in February 1966 by

C.Y. Lee of Bell Telephone Laboratories, and are due to Lee, Tibor,

Shen Lin, Patrick Fischer, Milton Green, and David Jefferson.

Problem

The problem is to find S(n) and SH(n) for as many two-symbol machines

as you can. Use the Turing machine simulator you built for an earlier

- 90 -

References

[1] Korfhage, Robert R., Logic and Algorithms, Wiley, 1966.

[2] Rado, Tibor, "On Non-Computable Functions, 1 1 Bell System Technical
Journal, 41 (1962), pp. 877-884.

[3] Lin, Shen and Rado, Tibor, "Computer Studies of Turing Machine
Problems," JACM, 12 (1965), pp. 196-212.

problem, or borrow one from a friend, or get the simulator written by

the author of the earlier problem.

- 91 -

SIMULATION OF A SMALL COMPUTER

Motivation

It is important for every Computer Scientist to understand the

issues associated with machine language programming. You should write

a few programs in assembly language at some point, but by the end of

the IC you should at least understand what a machine language is and

how instructions are interpreted by the hardware. This knowledge will

be presumed by core courses in hardware, programming languages, and

operating systems.

This problem requires you to write a simulator for a small computer.

This is not an artificial task; simulators are often written for mini

computers in order to construct software before the machine is actually

available and to debug software using the facilities available only in

the larger machine.

The Problem

1. Obtain a description of the DEC PDP-8 from the instructor for

this problem.

2. Write a program which simulates the behavior of the PDP-8.

If you need to make simplifying assumptions, be sure to justify

them carefully.

3. Include facilities for obtaining simulated timings--the amount

of time a program would take to execute if it were really

being run on a PDP-8. See if you can make the simulator efficient

enough to attain a 50:1 simulation ratio.

- 92 -

4. Write three or four small programs (and debug them) to test

the simulator.

