NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

IC STUDY PROBLEMS

Mary Shaw (ed.)
August 1972

First Edition August 1971
Revised and Expanded August 1972

Carnegie-Mellon University

Department of Computer Science
Pittsburgh, Pa,

TABLE OF CONTENTS

INTRODUCTION

Background., . . . & v . 4 i 4t h e et s e e e e e aeee e
Use of the Problems in the IC. « v & 4 4 4 o o + « o« o « 2 « o o 23
A Note to the StUdentS. v v v v 4 & v 4 o o o & o o o o o o o« o o &

7

The Awards - - L] - L] [] - [] . - - L] L] L] - - L] Ll - - L] L] - - - - L] -
PRIZE PROBLEMS

Aygun, B.: The Mutation Problem. v« v v v « v 4 « « « » o 8
Berliner, H.: The Power of HeuristicS. . o« « v « o o « ¢ o « » 10
Berliner, H. and Lowerre, B.: Brute Force Has Its Limitations...13
Fajman, R.: A Mini-Compiler. . « o v v v o o o o « o o o o o o 217
Gerhart, S.: Hamming CodeS. « v « v 4 ¢ 4 v o« ¢ « o o « « o o + 25
Gillogly, J.: Maximizing the Payoff of o~B. + « « o o o« o o « . 28
Jones, A.: Markov Algorithms. v v ¢ v 4 4 + v o » « o . 31
Jones, A.: One Man's Program is Another Man's Data. . . . , . . 37
Krutar, R: Polynomial Manipulation with Fast Multiplication. . .44
Lundg,x: Lexical Analysis with Coroutines. & & « » . .48
Lunde,g: BLISSful Cooperation - Or Speed vs. Security.51
Richardson, L. and Young, R.: Area of a Regiom. + + . . 53
Robertson, G.: A Problem in Simple Languages. 58
Snyder, L.: Turing Machine Simulation Problem.63
Teitelbaum, T.: The Firing Squad Synchronization Problem. . . . 78

Teitelbaum, T.: Trees, Trees, Trees. . . + « « o« o o « o« o « . .80

OTHER PROBLEMS

Analysis of Algorithms- - - L] - - L L - L] - L] - L] . - - L] - - - .83
The Busy Beaver Problem, . « « & 2 « ¢ « ¢« o « « s = « o« » & « « 87

Simulation of a Small Computer. « « « « « s « « « s o s o a o « 91

INTRODUCTION

One of the goals of the immigration course is to present an
overview of the field of Computer Science, including introductions
to a variety of interesting problem areas. Another is to instill
in the entering student an appreciation that Computer Science includes
problems which can be studied in depth.

We have chosen a problem-oriented format to help satisfy both

of these goals, because:

1. in many cases it is easier to use a concrete example to
explain the focus of an area than to give general descriptions

and abstract proofs; and

2, one of the best ways to appreciate significant problems is

to try to solve some.

Background

In order to collect a group of worthwhile problems that can be
solved with a reasonable amount of effort, the Computer Science depart-
ment sponsored an IC problem competition in the Spring of 1970. All
the graduate students in the department were asked to submit problems
touching on major aspects of Computer Science together with complete
solutions of the problems. To stimulate interest, ten prizes of $100.00
were announced. A second contest was held in the spring of 1972. Five
prizes of $100.00 were awarded in the second contest.

The specifications for both contests were:

1. 1t should be possible for students in the IC (not just advanced

students) to do each problem within the time limit of two to

three work sessions,
A problem should be elegant and have an elegant solution.

A problem should touch on or illustrate some central concept of

Computer Science.

A problem should involve a non-trivial programming effort, which

should be an integral part of obtaining the solution.

A problem, or the associated programming, should provide insight

into the programming language used.

There should be problems utilizing all types of programming languages --

algebraic languages, list languages, pattern matching languages, etc.
Problems should be usable in future ICs as well as the next one.
To be useful, a submitted problem should consist of:

(a) A problem statement;

(b) A discussion of the conceptual rationale behind the
problem, including comments on how to teach the problem
in the IC, what sort of preparation is required, etc.;

{c) A worked solution.

-3 -

Use of the Problems in the IC

Each problem will be presented by its author or another interested
member of the department at a morning lecture. We have scheduled the
problems so that either a language appropriate for its solution will
already have been introduced in the IC or almost any language you know
will be adequate, There will be a chart in the teletype room on which
each student will indicate which problems he is working on. The chart
will provide for communication among the students working on a problem;
they may meet among themselves or with the person who presented the problem
to discuss difficulties, solutions, extensions, or other topics.

Completed problems should be submitted to the instructor for the
problem. Solutions should be completed within two weeks of the initial
presentation to keep them from dragging on forever and creating a massive
workload at the end of the IC, The instructor will comment to the student

on his solution and select the best of the solutions for possible publication.

A Note to the Students

We expect that you will be able to obtain complete solutions to five
of the twelve problems discussed during the IC and to do enough work on
the other two to understand the issues evoked by the problems. A complete

solution to a programming probiem congists of:

1. A statement of your approach to the problem and the technique
used to solve it (this isn't a term paper -- two or three

pages should do it unless you really get into the problem);
2. A rumning program, together with --

3. Sufficient documentation that someone else can understand your
code. This might consist of extensive comments in the program,
a separate piece of prose, and even, if you are so inclined,

a flow chart;

4. Runs with test cases showing that the program runs properly,

together with --

5. Some kind of written explanation justifying how the data you
have used shows that the program runs. (Again, this isn't a
term paper —- use common sense; rigorous proofs of programs

are not required.)

Solutions to nonprogramming problems will take a rather different form,
but should exhibit about the same lével of detail.
Try to complete your problems rather than letting them go on and

on or succumbing to the temptation to add just one more feature. ("90%

-5 -

coded and 70% debugged' is an absorbing state.) We hope to publish the
best of the solutions,

Pleage note that no grades will be given for this work, or for any
work in the IC or (at least for Computer Science graduate students) for
any course work done in the department. Your energies during the IC
should be directed toward learning new things, not rehashing old onmes.
Since assignments are informal and there are no grades, there is no
penalty for doing a less elegant solution for a new problem than you
could do on a familiar one.

Here are a few guidelines for selecting which problems to work on:

1. Try to solve problems in at least two programming languages that

you have not used before. If you already know two of the three

languages APL, ALGOL, and LISP, learn SNOBOL or BLISS and work on

one of Markov algorithms,'"One Man's Program ---," or "BLISSful

Cooperation."

2. If you have never programmed in machine language, be sure to do

the simulation of a small computer.

3. If you have written a compiler or a parser, pick something other

than the mini-compiler.

4. If you have never experimented with finite-state machines or
Markov algorithms, try to do either the firing squad problem or

the Markov algorithm problem, or both,

5. 1If you are already an expert programmer in a variety of languages,

work on the analysis of algorithm.

6. Some of the Learning Laboratories may refer you to specific
problems. If you are participating in such a lab, solve those

problems,

7. 1If you are in doubt about which problems are the best ones for

you to solve, talk to your advisor or to Mary Shaw.

-7 -

The Awards

The problems awarded prizes in the 1970 contest were:

Birol Aygun The Mutation Problem

Hans Berliner The Power of Heuristics

Susan Gerhart Hamming Codes

Anita Jones One Man's Program is Another Man's Data

Rudy Krutar Polynomial Manipulation with Fast Multiplication
und Lunde Lexical Analysis with Coroutines

Leroy Richardson Area of a Region
and Richard Young
George Robertson A Problem in Simple Languages

Larry Snyder Turing Machine Simulation
Tim Teitelbaum Firing Squad Synchronization Problem
Tim Teitelbaum Trees, Trees, Trees

The problems awarded prizes in the 1972 contest were:

Hans Berliner Brute Force Has its Limitations
and Bruce Lowerre
Roger Fajman A Mini-compiler
Jim Gillogly Maximizing the Payoff of «-P
Anita Jones Markov Algorithms
und Lunde BLISSful Cooperation - or Speed vs. Security
Mary Shaw

August, 1972

-8 -

THE MUTATION PROBLEM

Birol Aygun

Motivation

This problem originates in a class of genetics problems invelving
estimations of the probabilities of mutation processes. This highly
simplified and solvable version of this problem is also a very interesting
exercise in computing and has applications in some areas of artificial
intelligence, such as recognition of linear patterns.

The problem is also open-ended in the sense that most solutions will
not be practical for very large cases of the problem. Hence ingenuity is

required for drastic reductions in the computing time and space required.

1. Given a string M of m characters and a string N of n characters,

all chosen from a small alphabet of, say, 4 characters (A,B,C,D).

2. Two kinds of primitive mutation operations: deletion of a single

character and insertion of a single character in a string.

3, Fixed independent probabilities P and P_ for a single deletion

b I
and a single insertion respectively (i.e., PD(A) = PD(B) = PD(C) =

and similiarly for PI).
Find

1. An algorithm to determine a sequence of mutation operations on
the string N (for the normal string) to transform it into the
string M (for the mutant string) that has the highest probability

of happening under the stated assumptions in 3. above.

Remarks

Examples

-9 -

Clearly, the solution required ig not unique, i.e., there may
be more than one sequence of mutations that yield the same result
with the same maximum probability. Find an algorithm that deter-
mines the class of all solutions, each of which has the same

maximum probability,

The solution should be provable, i.e., that it has the maxlimum

probability, and, for part 2, that it has not missed any solutions.

Magnitude range: the strings M and N may be up to several
million characters in length. Check the practicality of your

solution for strings of that size.

and Hints

M=

N =

ABBCDDABCADCSB

BBDCAABC

Example strings above

1.

What does independence of deletions and insertions imply in

probability computation?

Consider M as being built by adding to a skeleton of N found in M,
where a skeleton is a sequence of subsequences of N with their
ordering preserved. What can you say about the size of such a

skeleton? How is it related to the maximal match between N and M?

- 10 -

THE POWER OF HEURISTICS

Hans Berliner

Background

The main purpose of this IC Problem is to show the power of
heruistics as a means of controlling processes. There are many processes
for which we do not know perfect controlling functions, but by having
them controlled by heuristic rules, we are able to obtain a high standard
of performance from the process. Examples of this type of activity
occur in the areas of Artificial Intelligence and Operating Systems.
For instance, in a time sharing system with virtual memory, the problem
of which page to kick out of main memory when a page fault occurs is resolved
by using heuristic rules. Usually, a rule is tried and evaluated according
to how much it improves the performance of the system. This 1s kept up
until the point of diminishing returns is reached. This problem is
intended to teach this method by setting up a situation in which heuristics,
represented by processes, can compete in the same environment. Then by
comparing the success of each of the processes on the same task, we can
determine the usefulness of each set of heuristic zules.

The environment in which the problem is set is Tic-Tac-Toe. We let
each heuristic process respresent a player in a Tic-Tac-Toe tournament,
and then pit processes with different degrees of "intelligence" against

one another. It is important to note that:

1. Tic-Tac-Toe can be played perfectly (so as never to lose and to
maximize winning chances) by merely resorting to a table-look-up
procedure, or to a complete tree search of all possibilities

which would, however, be rather time consuming.

- 11 -

2. However, the intent of this exercise is to teach how to
build heuristic models and to show that one heuristic proce-
dure can have an overwhelming dominance over another procedure
with less "intelligence," even though the first does not play

perfectly.

Other things which can be learned from doing this problem are:

1. How a thoughtful problem representation can save programming

effort and execution time.

2. How an appropriate experimental design can allow ready comparison

of the different effects being studied.

3. How to use a random number generator.

Since the total task requires a significant amount of work in the
design and implementation of the program, you may find it desirable to
work in teams of 2 to 4. You will use a set of heuristic rules to define
a player in a Tic-Tac-Toe tournament. When you have defined several
such players, write a program for simulating such players in a tournament.
Be sure that each player has an equal chance of starting the game against
every other player. Each of the players in your tournament should be
at a different skill level. The skill you impart to each of your players
should be a function of the move selection routines that each particular
player has access to. For instance, the worst player in the tournament
could be one that plays at random. Other players may use the strategy
of the center square if it is free, be able to defend against simple

opponent's threats, or be a compound of several such strategies. By

- 12 -

carefully choosing compound strategies, you can create a player
hierarchy where each player is better than the one below him. Before
you start, consider that after each move the supervisory program has
to check to see if anyone has won. Consider the effect of how the
Tic-Tac-Toe board 1s represented on how easy it is to perform checks
such as these. If it has been a long time since you have played Tic~
Tac-Toe, you may want to play a few games to re-acquaint yourself with
some useful strategies.

Have the program tabulate results. Then write a short oritique on
the relative skills of the various players in your tournament. Why do
you think the results came out the way they did? Can you rank the
efficiency of the heuristics you used? Is there a point of diminishing

returns?

- 13 -

BRUTE FORCE HAS ITS LIMITATIONS

Hans Berliner and Bruce Lowerre

We are used to using computing power and taking for granted that
whatever tasks we give the computer will be accomplished in a reasonable
amount of time, For this reasoﬁ we seldom give much thought to the ef-
ficiency of the programs we write and even more importantly to the ef-
ficiency of the algorithms we use to produce our solutions. This is be-
cause almost all of the problems we encounter are basically small prob-
lems. Thus we use interpretive languages which run one or two orders of
magnitude slower than a compiled language would, but because we usually
deal with small problems it is hardly noticeable, Likewise certain ef-
ficiencies which can be applied to repetitive operations such as sorting
and matrix manipulations are seldom appreciated until one encounters a
large problem.

However, there are problems in which the effect of computing ef-
ficiency can be observed in very drastic fashion, These are problems in
which the computing time varies as a second order or higher function of
the problem size., Sorting, certain matrix operations, and heuristic
searches are in this class. In the latter type of problem, the effort
involved in the complete enumeration (generate and test) approach will
usually be a power function of the number of steps required in the solution.

The purpose of this problem is to allow the student to get a hands-on
appreciation of the effects on computing efficiency that can be brought
about by the efficiency of the algorithm that is used to do the computa-
tion. As a by product it teaches how to set up and conduct a tree search.

The problem is:

- 14 -

Create a "knight's tour" of the chess board

A knight's tour is defined to be a closed chain of knight moves
(a knight's move is two squares along one rectangular coordinate and one
square along the other) which touches every square on the chess board
once and only once, and after 64 moves returns to & square which is a
knight's move away from the starting square., For any square on the board,
there are from 2 to 8 legal moves initially with an average of 5.25.

64 46

This makes the size of the solution space 5.25 or approximately 10,

This estimate is high because as the tour progresses, the number of
choices from each square diminishes. A better estimate would be to

assume 4.25 moves per square since one cannot go back to the square from

40. This

estimate is still high. A conservative estimate would be about 1030.

which one just came. This gives an estimate of 4.2564 or 10

The number of solutions contained in this space is extremely difficult

to estimate, The final versibn of the authors' program produced about 600
solutions in about 2 minutes of CPU time, The first 30 moves of all these
solutions were identical! This suggests an extremely dense solution space.
If we assume that there are 600 solutions for any set of first 30 moves
which do not violate the constraints in the authors' program, then we can
estimate the total number of solutions to be 600*4.2530 or approximately
1020. This number is undoubtedly still high, but indicates that there

is no more than one solution for every 1020 points in the solution spacef
Therefore a progrem which generates 10,000 solution attempts per second,

running for 1000 seconds (17 minutes), would only have 1 chance in 1000

of generating a correct solution,

- 15 -

In order to investigate this problem we will need a move generator
which takes as input the name (coordinate) of a square, and generates
as output the legal squares to which a knight can move from there. Note
that it is not legal to move to a square which has been used earlier in
the solution, so that some provision will have to be made to keep track
of the used squares and have the legal move generator check this array
before pronouncing a move legal., We also must have a way of remembering
the sequencing of our current solution attempt since if we run into & dead
end, we will need to have a way of backing up to try a different move
at some previous decision point.

This can be done by creating a tree structure in your program, pos-
sibly in the form of a stack, which has the facility of remembering the
current try at any point in the chain, and the other alternatives at that
point which have not yet been tried. Then if the program reaches depth 64
“in the chain successfully, it will have a correct solution. If it reaches
an impasse (no further legal move possible) before this, then it must
backtrack to the previous level and try another legal move.

The above is the basic structure of a brute force program to solve the
"knight's tour" problem. Your first step should be to design and program
such a solutiom. You may work with one other person on this project.
Instrument your program so that it can output the current state of the
solution at any time. This will allow you to observe it in operation and
get some ideas about the adequacy of the algorithms that you will be try-
ing. One good idea is to have the program print out the state of the solu-
tion every time you extend the solution chain to a greater length than it

has ever been before.

- 16 -

When the program is running try it on the "knight's tour' problem
using the generate and test &lgorithm that you now have implemented,
Do not allow your program to run more than 5 minutes of CPU time. It
is extremely unlikely that you will have found a solution in this time (nor
in 10 or 100 times this amount of time), Look at your printout of the
current solution that the program is working on and see if you can get
any ideas for some simple rules that will keep the program from wasting

its time without keeping it away from any of the solutiomns,

- 17 -

A MINI-COMPILER

Roger Fajman

The problem is to write a program to translate simple arithmetic

expressions into machine code for a single-address computer.
The Algorithm:

The Algorithm is taken from a paper by Wirth and Weber (1). This
algorithm is designed to recognize a particular class of context-free
languages very quickly and simply. It has actually been used in practical
compilers (2). First, we must define a simple-precedence grammar.

A grammar is a quadruple of the form G=(T,N,P,S). T is the set of
terminal symbols of the language generated by G (i.e., the symbols which
make up the sentences of the language). N is the set of non-terminal
symbols of G. P is a set of productions which tell how to generate the
sentences of the language. For a context free language, the productions
have the form A = u, where A is a non-terminal symbol and u is a non-empty
string of terminals and non-terminals. S is the start symbol, from which
all sentences of the language are generated. The canonical parse of a
sentence is that parse in which the leftmost possible reduction is made
first. A grammar is unambiguous if and only if there is only one canonical
parse for each sentence generated by the grammar.

A parsing algorithm for a language generated by a grammar is a pro-
cedure for finding the canonical aprse, given a sentence of the language
as input. In accordance with the definition, a parsing algorithm must

first detect the leftmost substring of the sentence to which a reduction is

- 18 -

applicable. Then the reduction is performed and the same principle applied
to the new sentence. In order to detect the leftmost reducible substring,
Wirth and Weber's algorithm makes use of previously established non-com-
mutative relations between the symbols of the grammar:

(a). The relation = holds between all adjacent symbols

within a string which is directly reducible.

(b). The relation < holds between the symbol immediately

preceding a reducible string and the leftmost symbol
of that string.

(¢). The relation > holds between the rightmost symbol of a

reducible string and the symbol immediately following
that string.

A simple precedence grammar is defined by Wirth and Weber as a context-
free grammar in which at most one of the above relations holds between
each pair of symbols of the grammar. Most context-free grammars are not
simple precedence grammars, but it is usually possible to take a grammar
for a programming language and turn it into a simple precedence grammar
by appropriate manipulations, Wirth and Weber give an algorithm deter-
mining whether a grammar is a simple precedence grammar and for finding
the precedence relations from the grammar.

The process for detecting the leftmost reducible substring consists
of scanning the sentence from left to right until the first symbol pair
is found so that S(I)>S(I+1), then to retreat back to the last symbol
pair for which S(J-1)<8(J) holds, §(J)...S8(I) is then the sought sub-
string; it is replaced by the symbol resulting from the reduction. The
process is then repeated. It is not necessary to restart scanning at the

beginning of the sentence. Since all symbols S(K) for K less than J have

B’

- 19 <

not been altered, the search for the next > can start at the place of
the previous reduction,
In the following description of the algorithm in pseudo ALGOL the
original sentence is denoted by P(1)...P(N)., K is the index of the
last symbol scanned. For practical reasons, all scanned symbols are
copied and renamed S(1),..S(I). The reducible substring therefore will
always be 5(J)...S(I) for some J. Internal to the algorithm, there
exists a symbol L (end of file) initializing and terminating the process.
To any symbol of the grammar it has the relations l}S and S>L. We assume
P(0)=P(N+1)=],
S$(0):=P(0); I:=0; K:=1;
while P(K) notequal "|" do begin
I:=J:=I+1; S(I):=P(K); K:=K+1;
while S(I)>P(K) do begin
while S(J-1)=8(J) do J:=J-1
S(J) :=LEFTPART(S(J)...S8(I));
I.=7J;
end;
end;
The function denoted by LEFTPART(S(J)...S(I)) requires that the reducible
substring be identified in order to obtain the symbol resulting from the
reduction. If the parsed sentence is to be evaluated, then the interpreta-
tion rule corresponding to the syntactic rule U - S(J)...5(I) must be
identified and executed. Wirth and Weber prove the following theorem:
Theorem. The given parsing algorithm yields the canonical
form of the parse for any sentence of a precedence
language, if there exist no two syntactic rules

with the same right part. Furthermore, this canon-
ical parse is unique,.

- 20 -

EXAMPLE:

G=(T,N,P,S)
={(,),8}
N={H,5}

P: S-H)
H=(
H-H®@
H-HS

The language defined by G is a sequence of zero or more string elements
enclosed in parentheses, where an element is anothexr string or @ G is

a precedence grammar, The precedence relations are given by the matrix:

stH| @} (|)

Ytz >

As an illustration of the parsing algorithm, the sentence (@(@)) is parsed.

Stack Relation Input
i < (a(@)]
K > e(@)]
i = e(@)]
JEE > @)}]
K < (@)]
1H(> @}

| n =)]

| HHe® > Ml
| = Nl

| 1H) > NI
s >)L

In ol

LY > L

1s L

- 21 -

The Problem:
Consider the following grammar for arithmetic expressions:

G=(T,N,P,program)
T={variable,constant,+,~,*,/,(,),~}
N={program,expression,expression',sum,sum',term,term',factor}

P: programﬂLexpressioqL
expressionrexpression'
expression'—-sum
expression'-variablerexpression'
sum~sum'
sum'—term
sum'-++term
sum'—~-term
sum’~sum’+term
sum'—sum' -term
termterm’
term'~factor
term'—term'*factor
term'-~term'/factor
factor—variable
factor—constant
factor—+(expression)

G is a simple precedence grammar.

- 22 -

The precedence relations are given

by

e
e |x
X |p
P |T v Ic
D [r {e a o
r |e |s f |r In
o |8 |s t ja [+ s
g [s (1 s |t |e |[¢ |& |t
y |1 jo {s |u le |r |t |b |8
o jo |n |u |m |r m |o 1 n
L m (o Y m | {m |' |xr {e [t + |- |* /)
1 <k kK K kK kK kK kK < <
program
expression > =
expression’ > >
sum > >
sum' > = I= >
term > P >
term' > > |I> = |[= ~
factor > > > |> ~
variable > > > > > >
constant > > > 1= > >
- = < v K K K K K < K
+ = |< [K I
- = < K K K
* = <K K
/ = |< I
(=l € K K K K K K < <
) > > > > > >

Note that the blank entries in the table denote combi

never occur in leeal sentences.

nations that should

- 23 -

Now suppose that you have a computer with a single accumulator (AC) and

the following instruction set:

Instruction Meaning
LOAD X AC-X

STORE X X<AC

ADD X AC-ACHX
SUB X AC-AC-X
MUL X AC-AC*X
DIV X ACFAC/X
LOADI C Ac—C

ADDI C AC-ACHC
SUBI C AC-AC-C
MULI ¢ AC-AC*C
DIVI C AC-AC/C
NEG AC--AC

X is a storage location. C is a constant which is contained in the
instruction.

The problem, then, is to read in sentences in this language and out-
put the appropriate machine code to compute the value of the expression.
Variables are any one of the letters 4,...,Z., Constants are a single digit,
You may use temporary locations from the stack T1,T2,.... Do not worry

about generating "optimal" code,

Optional Work:
1. You may have noticed that the parsing algorithm does not provide for
input strings which are not syntactically correct. Modify the algorithm

to handle errors.
2, Try to generate better code,

3. Extend the instruction set of the computer so as to permit the generation

of faster and more compact code.

4. What would happen if the computer had more than one accumulator?

. 2% -

References:

1. Wirth, N, and Weber, H. EULER: A generalization of ALGOL and its
formal definition, CACM, 9, 1 (January 1966), 13-23,

2. McKeeman, W.,, et al, A Compiler Generator,

- 25 -

HAMMING CODES

Susan Gerhart

Error-detecting and -correcting codes are used to provide
communication over noisy channels in many applications of computers.

One of the best-known and most elegant coding schemes is that originated
by R.W. Hamming (see references),

Consider the transmission of n-bit messages., Hamming's method
encodes the n-bit message as a n + k - bit binary sequence, where the
extra k bits provide for error detection and correction in any of the
n + k positions of the sequence, A decoder then maps a transmitted
n + k - bit sequence into an n - bit message sequence and a k - bit

sequence indicating absence or position of error.

Example: n = 4, k = 3
Let my W, Wy m, be the message to be transmitted as the sequence

X Xy X3 X X X, Xg. The following equations are used in the encoding:

xl = m1 &3m2 G)uz

X, = my E]Bm3 @ma @ is the exclusive -or

x3 - m1 or sum modulo 2
operator

x, = mz @mB EBrn4

Xg = m,

¥~ ™

X, = m,

Assume the received message is y1 y2 ¥y Y, Vs Y6 Y7-

The decoder computes k3 k2 k_1 where

kg™ 9, O35 &y @y,

- 26 -

ky =y, ®y; Oy, By,

=
|

1591 995 855 By,

If one and only one digit is transmitted incorrectly, say yj % xj,

then k3 k2 k1 will give the binary representation of j or will
be 0 if no errors occur, If multiple errors occur, then the correction
will take place but give an incorrect result.

Now, to generalize the process, consider a code which requires n
information bits per message., An additional k bits are required to point
to any of the n 4+ k bits of the encoding which might be in error. The
sufficient condition is

2k 2n+k+1

A general method for the assigmment of equations in the encoding is:

1. Use the positions numbered by powers of 2 for check bits.

2. Assign the bits of the original message in order to the remaining

positions,

To see how to form the equations for the check positions, group the

binary representations of the positions by occurrence of powers of 2:

! 1234567 bit positions

001 1
011 3 P X X X
101 5
111 7

{ p = check position
010 2 P x X x = included in equations
011 3
110 6
111 7
!
100 4 P XXX
101 5
110 6
111 7

- 27 -
Position 1 serves as a parity check for positions 1,3,5,7 of the en-~
coding (and positions 1,2,4 of the message). Similarly, for positions
2 apd 4,

Let M be the NTK-bit sequence to be transmitted. Let U be a matrix
where column i is the binary representation of i to K places. The sequence
is constructed to satisfy the matrix equation

M =20
where 0 is a vector of length K of all zeros.

Now, the received message may be represented as MHE, where E is an

error vector with 1's in every position where an error occurs. The
UQMHE) = (UM)+(UE) = 0+UE = D
If E is all zeros (no errors in transmission) then D=0 and if E has a 1 in

position i then E selects the binary representation of i from U,

Solution requirements

Construct a system of programs which enable the encoding of messages,
transmission of messages corrupted in one position, and decoding into the
original messages. Of course, transmission of error-free messages should
also be possible.

APL is recommended for the solution because it offers operators for
manipulation of number systems and arrays. The author's solution used
approximately 25 different APL operators in three one-line, loop-free
functions, along with a control program for testing. The absence of loops

was possible because the APL operators afforded the necessary control flow.

References

(1] R. W. Hamming, "Error Detecting and Error Correcting Codes," Bell
System Technical Journal, Vol. XXVI, April, 1950.

[2] Herman Hellerman, Digital Computer System Principles, McGraw-Hill,
p. 322,

(3] Ralph A. Amato, "Error Detecting and Correcting Methods," Computer
Design, June, 1964,

- 28 -

MAXIMIZING THE PAYOFF OF a-P

Jim Gillogly

Problem Statement

(1) Understand the «-B procedure used in game trees as described in

TR

"Experiments with Some Programs That Search Game Trees," by Slagle and

Dixon (available in the AI library).

e W

(2) Write a program in any suitable language to simulate searching a game
tree with fixed depth, fixed branching factor, and randomly assigned values

as a terminal evaluation function. (If you can get an analytic solutiom, 1

you win. But don't spend all your time trying.)

(a) The random evaluation function must produce values from a finite
range specified by the experimenter; the seed for the random

number generator must also be supplied by the experimenter.

{(b) The effort required to search the tree will be measured by the

number of bottom positions (NBP) in the simulated tree. You should

be able to cycle through the program for a specified number of
iterations and output the mean and standard deviation of the NBP

over that sample,

(¢) 1In order to debug your program you should be able to turn «-B on

or off and you should be able to print the tree if necessary. To b
help in debugging, start with a range of 1 (perfect ordering) and
compare your results with those predicted by Theorem 1 (Slagle

and Dixon).

- 29 -

(3) Use this model to determine the effects on NBP of selecting values from
sets of different size: choose a fixed depth and branching factor commen-
surate with the efficiency of your program and graph the values of the mean
and standard deviation of NBP as the range increases from 1 (perfect ordering)
to oo (the largest range for which you can detect no significant difference).
What is the difference between the NBP in the best and worst cases? Try for
statistical significance. (Notice that even the worst case is far better
than a minimax search without o-B.) If you have time, compare the results
you obtained in this experiment with the curves for different depths and

branching factors,

(4) Extend the program to allow a variable branching factor drawn from a
given distribution (e.g., binomial distribution with mean at the value used
in (3)). What effect does this have on the mean and variance for a case

comparable to the one you analyzed in (3)?

Conceptual Foundations

The purpose of this problem is to teach modeling and simulation
techniques in a (hopefully)interesting environment. The student must abstract
a situation and analyze the abstraction. The problem requires considerable
programming ability in some language. Because of the recursive nature of
the problem it is somewhat easier to write in a language which allows
recursion, but a reasonably straightforward program can also be written in

FORTRAN, Some slight knowledge of statistics would be helpful, though not

necessary.

- 30 -

You should be able to understand and apply the results of a scientific
paper. Since the Slagle and Dixon paper assumes no prior knowledge this
should not be a problem.

An attack on the problem should begin with an understanding of the
nature of game trees, minimax, and o-B. You should pay particular attention
to the difference between "deep" and "shallow'" cutoffs as indicated in Slagle
and Dixon.

The @-B procedure is only one example of an analytical advance which
cuts down search spaces. Nearly all AI problems use a horrendous search
through some kind of a graph, and those searches can be abstracted and
simulated in the same way as this problem. The direct analogue of o -B
in general graph traversing problems is the branch-and-bound procedure.

Besides the benefits accrued from doing a good simulation, the problem
itself has vast implications for game programmers. The moral of the problem
is that your terminal evaluation function should be as discrete as possible
within the constraints of information loss. If you use a continuum you may

have to evaluate more .than 400% more positions, with a much higher variance.

- 31 .

MARKOV ALGORITHMS

Anita Jones

Several different representations of machines for performing computation
have proved useful for research into the art (and artifice) of computation.

One representation, Markov algorithms, were introduced in Theory of Algorithma

written by the Russian A, A. Markov in 1954.1 A Markov algorithm is an ordered
set of productions (discussed later) to be applied to a valid input string by
observing the ordering of the productions in a plausible way.

Markov algorithms can compute any computable function (intuitive proof:
given that a Turing machine can compute any computable function, a Turing
machine description may be represented as a Markov algorithm in a straight-
forward fashion.) 1In fact Markov algorithms are gimpler to grasp and invent
than Turing machines because of their use of variables and context sensitivity,

This problem requires the comstruction of a Markov algorithm interpreter
which accepts an algorithm description and an input argument, applies the
algorithm to the argument and outputs the transformed input string. For ease
of use, the program should then query the user to determine if he wishes to
specify another input for the same machine, another machine description or to
quit. The interpreter should then be used on several algorithms, e.g., a
string duplicator, gcd computer, string reverser

WARNING: Social responsibility requires that the reader be
informed that after being introduced to Markov algorithms, some

computer science students exhibit an obsessive, almost addictive

interest in devising these 'delightful little algorithms.!
Addiction has been known to last for weeks.

- 32 -

For those willing to risk the consequences:

A Markov algorithm is an ordered set of rules called productions
designed to perform a transformation on any input string formed from
symbols in a known input alphabet.

A production is of the form o—P where o,B are strings of symbols.
Markov algorithms use the antecedent portion, o, to specify a pattern.

If the pattern is found in the (input) string being processed, it is
replaced by a string determined by the consequent portion of the production,
B. «,B may include any symbol.

To apply a production o—P to an input string S, two alphabets must

be known: the input alphabet and the variable alphabet. These alphabets
must be disjoint. o matches a substring in § if there is some assignment
of input alphabet symbols to the ﬁariables in o so that if the variables
are replaced by their assigned value (from the input alphabet), the resulting
string duplicates a substring in S. In this case P is then used to construct
the string resulting from replacing occurrences of variables in B by their
agssigned values. This resulting string is used to replace the matched
substfing in S.

What if an antecedent can be used to match two substrings in 5? Then
replace the leftmost substring in S,

Applying a Markov algorithm is done in steps: Each step applies the

productions sequentially, beginning with the first of the ordered set. When
a production is applied successfully and the string replacement is performed,
that step is complete. If mno production can be successfully applied in a

step, then either the algorithm or the input string is in error.

- 33 -

How does the algorithm's application terminate? A special symbol
'.' appearing as the first symbol in a consequent will not be part of the
replacement string created when the consequent is used, Instead it causes
termination of the algorithm's application.

Examples of Markov algorithms are given below.

Solving this problem introduces the student to

1. construction of a powerful but miniature interactive
interpreter driven by productions

2. the consequences of designing an interpreter which must
react to storage variations dependent upon the user input
algorithm

3. practice in writing and exercising productions as they will
appear in formal languages and language syntax descriptions

2
4, mnon sequential control structure,

SNOBOL and APL provide suitable environments for building this

interpreter,

This problem is brought to you by

Markov, A. A., Theory of Algorithms, Office of Technical Services,
U. S. Department of Commerce (translatiom), 1969.

and

Jones, A, K., this document,

2The author also believes that Markov algorithms are particularly appro-
priate for the analysis of algorithms: the order of trying productions
in each step introduces additional information to aid in the analysis,

for a later production is applied ONLY if all previous productions failed.

This problem could be extended to use Markov algorithms as the substrate
for introducing algorithm analysis.

- 34 - EXANMPLE 1

TYPE ODDEVE.MRK

00200 Y10- Internal Alphabet
C0300 X

00400 10 ——— Tnput Alphabet

60500 Yil1tYls

00600 Yi1t.03 e Productions
00700 Yitels

00800 rY;

«8 SNOBOL 41

WIARK3

HI! [I°'M MARK.

SPECIFY MACHINE DESCRIPTION FILE:
ODDEVE «MRK

STRING?

1111

#4s SUBSTITUTE Y FOR 1IN 1111

#11 SUBSTITUTE Y1 FOR Yill IN Y1ii1l
722t SUBSTITUTE O FOR Y11 IN Y11}
STRING: O

WHAT NEXT: MACH,STRaEND

STR

STRING:

111111

#43 SUBSTITUTE Y FOR 1IN 111111

#1: SUBSTITUTE Yl FOR Y111 IN Y111111
#1t SUBSTITUTE Y! FOR Y111 IN Y11i1
#23 SUBSTITUTE O FOR Y1l IN Y11l
STRING: O '

WHAT NEXT: MACH,STR,END

STR

fl‘RINGt

#4s SUBSTITUTE Y FOR 1IN 1
#3: SUBSTITUTE 1 FOR Y1 IN Y1
STRING: 1

WHAT NEXTs MACH,STR»END

END

*

Given a unary representation of a number, compute if it
is odd (and output '0') or even (and output '1').

- 35 - EXAMPLE 2

Duplicate a numeric string.

TYPE DUPMRK

00100

0800 aan

G300 SN Variable Alphabet
00400 1834567890 Input Alphabet
G900 83+8ASBG3

C0800 ANBS*SAND}

0700 ANBINS Productions
Q0300 Gres

00900 11

°8 SHOBOL 41l

HIARK3

HI! 1°M MARK.

9”1" MACHINE DRSCRIPTION PFILE:
OUP o MK
STRINGS

2
#3538 SUBSTITUTE G FOR IN 83

fls SUBSTITUTE 8A8BG FOR G2 IN 6233

fls SUBSTITUTR 3A3BG FOR G3 IN 2A2BG3

f28 SUBSTITUTE 3A3B FOR ASB3 IN SASBIAIBG
38 SUBSTITUTE 8 POR ASB IN 83A2BAIDG

Rs SUBSTITUTE 3 FOR A3B IN 23%A3B¢

#4s SUBSTITUTE FOR 6 IN 2323@

STRINGS 2323

WIAT NEXTs lﬁGﬂrStBolﬂD

STR

SIRING:

838

[-1
s
s
s
fls
2
s
2
””s
ns
223
33
<}]
a3
K0
M3

SIRINGS 33383338

SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUIE '
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE
SUBSTITUTE

@ FOR IN 3338
JA3BG FOR 63 IN G3338
3A3BG FOR 63 1IN 3A3BG338
3A3BG@ FOR G3 IN 3A3B3A3DG3E
8ABBG FOR G8 IN 3A3B3A3B3AIDBGS
3438 FOR A3B3 IN 3A3B3A3ID3AIBGAEHE
3A3B FOR A3B3 IN 33A3BA3BIA3IBEASEE
3A3B FOR A3B3 IN 33A3B3A3BA3IBBASBG
SA3B FOR AJBS IN 333A3BA3BAIBGASSE
8A3B FOR AJB8 IN 333A35A3BBAIBASBG
8438 FOR A3B3 IN 333A3BB8A3BA3BASBE
IN 3336A3BAIBA3BASEG
IN 33383A3BA3BABBG
B IN 333833A3BASDG
IN 3338333a880
FOR @ IN 333833386

FOR A3B
FOR 638
FOR A

roR 88

AT NEXTS MACH,STR.END

- 36 - EXAMPLE 3

TYPE REV.MRK Reverse a string.

0100 ABGD
¢0300 SV

G300 0123456789
C0400 B5+SB3
80500 BrGy
G600 ASUtVASS
60700 ASGIDGSS
gdEco SptDSs:
G0%00 1 17-V I
61000 AGRe3
01100 tAB3

& SHOBOL 4)

KANRIKI

KI1 1°'® Magx.

SPECIFY NACHINE DESCRIPTION FILES
B2V« KRK

STRING:

12

#38 SUBSTITUTE AB FOR IN 18

f1s SUDSTITUTE 1B FOR Bl IW ABlZ
$1% SUDSTITUTE 88 FOR B2 1IN AlDS
£33 SUBRSTITUTE G FOR D IN AlED

f3s SUISTITUTE 0Al1 FOR 418 IN AlSG
€38 SUBSTITUTE DGt FOR Al1G IN 8Al6
#3s SUDRSTITUTRZ D2 FOR 8D IN 2061
#35 SUBSTITUTE A FOR D IU D241

£38 SUBSTITUTE DGR FOR A2G 1IN A24l
#5638 SU3STITUIE A FOR D IN DG8i1

#1t SUBSTITUTE FOR A8 IN AG21
STRINGS 21 |

CIAT NEXT? MACH,STR»END

SR

STRINGS

359

#38 SUDBSTITUTE AB FOR [N 369

#is SUBSTITUTE 33 FOR B3 IN AB369
#is SUISTITUTE €3 FOR BS KN A3DEY
#is SUBSTITUTE S8 FOR B9 IN AJ8BY
633 SUSSTITUTE G FGR B IN A3G69B

3% SUDBSTITUTE 643 FOR A36 IN A369G
#33 SUDSTITUTE 9A3 FOR A39 IN 6A396
#3t SUBSTITUTE DG3 FOR A3G IN 69436
#33 SUBSTITUTE DY FOR 9D IN 69DAJ
#$3: SUBSTITUTE DG FGR 6D IN 6D9G)
£38 SUBSTITUTE A FOR D IN D69G3

#3s SUBSTITUTE 9A6 FOR A89 IN A6963
#as SUASTITUTE D36 FOR A6G IN 9A6EI
#5% SUDSTITUTE D9 FOR 9D IN 9DG63
#6¢ SUBSTITUTE A FOR D IN D9G6I
#4s SUBSTITUTE D@9 FOR A9G IN A9863
#5% SUBSTITUTE A FOR D 1IN DG963

#7s SUBSTITUTE FOR AG IN AG963
STRING: 9863 _

WAT NEXT: MACH,STR,END

P

- 37 -

ONE MAN'S PROGRAM IS ANOTHER MAN'S DATA

Anita Jones

This problem requires implementation of a line editor which will
allow insertion and deletion of lines of text, and replacement of
symbol strings at locations determined by context.

Implementation of the editor provides a basis for considering the
concepts and mechansims germane to string processing [1,2] (in contrast to

numerical processing):

1. The text to be edited appears as a sequence of symbols. Only
the fact that each symbol is distinguishable is important —-- the
information encoded in the sequence of symbols could be w

computed to a thousand places as well as program, prose, or poetry.

2. A cursor is moved through the text to find the location at which

an editing operation is to be performed.

3. A particular location within the text is determined by context —-
by the surrounding or preceding characters. (The "carriage

return,' 'line feed' and 'blank' characters become very visible!)

4., A pattern matching mechanism must be employed to search for

variable-sized strings of symbols.

A note of realism: The editor to be implemented is a simplified version

of the line editor in a conversational PL/I - based system called CPS

(Conversational Programming System).

- 38 -

Solution Notes

The editor is most easily implemented in a string processing
language like SNOBOL which provides pattern recognition facilities as
well as string manipulation. However, any language which permits easy
representation of variable length strings could be used (e.g., ALGOL

extended with strings).

The Problem

Design and program the algorithm MERGE to enable an editor to
accept two input files, TEXT and MODIFY, concurrently and to output an
edited file, NEWTEXT.

TEXT is a sequential stream of lines in which two lines are separated
by a line feed character. (Refer to such an instance as LF.) With each
line of TEXT is associated an implicit line number equal to the number
of LF's that precede the line in TEXT. Line j consists of those characters
following LF[j] up to and including LF[j+1].

NFWTEXT is of the same format as TEXT. It is created by editing the
TEXT file as directed by the contents of MODIFY.

MODIFY consists of a sequential stream of INSERT, DELETE and REPLACE

commands.

MERGE processes TEXT line by line with no backtracking although
multiple scans of a single TEXT line may be necessary in the case of
REPLACE. MERGE may thus be seen as moving a cursor through the stream
of TEXT lines, possibly altering a line as the cursor passes over it.

A1l lines to the output side of the cursor are written on NEWTEXT.
Lines to the input side of the cursor comprise the portion of the TEXT

file which may still be subject to alteration by MERGE.

- 39 -

MODIFY command formats:

INSERT <num> <delim> insertion string <delim> LF

where <num> is & non negative integer referring to the line
in TEXT associated with that number.

<delim> is defined as the first non-blank, non-LF, non-
numeric character following <num>. 1In a single command all

instances of <delim> are the same character.
INSERT causes MERGE to:
1. Scan TEXT from current cursor position until cursor has

passed over LF [<num>].

2, Insert the delimited insertion string followed by the
carriage return and line feed characters into the TEXT

string to the output side of the cursor.

DELETE <num> <numl> LF

where <numl> is null or has a value greater than or equal to
that of <num>, <num> and <numl> are separated by 1 or more

blanks,

DELETE causes MERGE to

1. Scan TEXT from current cursor position until the cursor has

passed over LF[<num>].

2., Delete all characters on the input side of the cursor up
to and including LF[<numl>+l], if <numl> was specified or

up to and including LF{<num>+1], if <numl> is null.

- 40 -

REPLACE <nunt> <delim>oﬁ <de1im‘>B1 <de1im>qb <delim>B2 <delim>....LF
A REPLACE command may be used to edit a2 single TEXT line. LF may

not appear in the REPLACE command except as the terminator of the command.

1. Scan TEXT from current cursor position until cursor has passed

over LF[<num>},

2. Let the first non-blank, non-numeric, non-LF character after

<num> be the delimiter.
3. Set J=1.

4. Scan the command string for the next two occurrences of <delim>
to determine the recognition string, ay and the replacement

string BJ.

5. 1If LF was encountered before the recognition string and replace-

ment strings were found, this command is completely processed.

6. Scanning the line, replace each occurrence of the current

recognition string with the corresponding replacement string.
7. J=J+1,
8. Go to step 4.

NB: The edited line is not yet moved to the output side of the

cursor, so that re-editing of the line may occur.

References

(1] D. J. Farber, R. E. Griswold, and I. P. Polonsky, "SNOBOL, A String
Manipulation Language," CACM, 11 (Jan, 1964), pp. 21-30.

[2] Madnick, Stuart E., "'String Processing Techniques,' CACM, 10 (July, 1967),
pp. 420-424,

- 41 -

Example: Given the following TEXT file:

procedure cal(y,n);
value y,n; integer y,n,;

begin
y := if (y/4)* 4 = y then 1 else 0;
comment 1900 < y < 2100 causes abort;

d:=n+ (if n > (59 + t) then 2 - t else 0);
m = ((d + 91) - (m* 3066) / 100;
d := (d + 91) - (m * 3055) / 100;
m:=m- 2;
if vy < 1900 v y =z 2100 then begin

m = 0;

d :=0

end

end calendar

and these commands in the MODIFY file:

REPLACE 0 /1/}endor/)}/m,d)/forfar/um/n,m/
REFLACE 1 #,stt,m,d;##, 5 #
INSERT 2Zcomment
acm algorithm 398--tableless dateé conversion
input ¥ the year
n day of the year
output m month of the year
d day of the month;%
REPLACE 3 ay :at :a
DELETE 4
INSERT 4 ! - comment the following statement 1s unnecessary
if it is known that 1900 < y < 2100;
t = if (y/400) * 400 = y v (y/100) * 100 # y then t else 03}
REPLACE 6@- (m* 3066) / 100@* 100) / 30558Q@8@a
DELETE 9 12

- 42 -

result in the NEWTEXT file.

procedure calendar(y,n,m,d);
value y,n; integer y,n,m,d,t;
comment
acm algorithm 398--tableless date conversion
input ¥ the year
n day of the year
cutput m month of the year
d day of the month;
begin
t := if (y/4)* 4 = y then 1 else 0;
comment the following statement is unnecessary
if it is known that 1900 < y < 2100;
:= if (y/400) * 400 = y v (y/100) * 100 # y then t else 0
n+ (if n> (59 + t) then 2 - t else 0);
((d + 91) * 100) / 3055;
(d + 91) - (m * 3055) / 100;
m - 2;
end calendar

'Yy

2l At

.
.
.
-
.

Notes
"REPLACE O...' uses multiple scans of line 0. The last 2 replacements

are possible only after the first has been accomplished,

'INSERT 2...' is inserting the appropriate 'carriage return' and
LF characters used in generating the format of the inserted prose, i.e.,

they are non-printing characters.
There are 2 commands used on line &,

'INSERT 4...' Note that the 2 'blanks' preceding the word 'comment'

serve to space the prose appropriately in the NEWTEXT file,

'"REPLACE 6...' replaces '8' by the null string.

- 43 .

Example 2:

Given the following input TEXT file:

The time has come the walrus said
To speak of many things
Of sailing ships and sealing wax
Of cabbages and kings

and these REPLACE commands in the MODIFY file:

REPLACE 2=0f sailing=SLT chips= ships=—seal=whirl=
REPLACE 2 *wax*tracks*
REPLACE 3 4cé4B4kérd

The output file NEWTEXT contains the following edited lines:

The time has come the walrus said
To speak of many things
SLT chips and whirling tracks
Of Babbages and rings

- 44 .

POLYNOMIAL MANIPULATION WITH FAST MULTIPLICATION

R. A, Krutar

Background

This problem is elegant in its simplicity, as is the solution,
It touches on the following central concepts of Computer Science:
representation of data structures, formula manipulation, and trade-offs
in time and space. It provides insight into the input language for
LISP. Solutions to the - problem will use list languages and pattern
matching languages. However, the programming effort is definitely
nontrivial=~the author's solution is a bit tricky, and the path to
any solution containg traps.
The Problem

Several programming languages have been designed as aids in
pérforming formula manipulation. Polynominal manipulation, a special
case of formula manipulation, particularly lends itself to the building
of efficient systems., The following descrption is taken from Knuth[l].

The problem is to implement a polynomial manipulation program
which can take advantage of a fast multiplication rule that reduces
the number of multiplications required to calculate (Ax + BY{Cx # D)
from the four of the obvious approach tothe three needed in:

ACx2 + (AC + (A - B)(D - C) + BD)x + BD
1st 1st 2nd 3rd 3rd

The trade-off is increased addition, subtraction, and shifting. Squaring

an n~th degree polynomial takes time proportional to:

log 3, 1.57

rather than n2 as obtained in the obvious method., Empiricaltests and

a priori estimates of execution time can be made.

- 45 -

Assume we split a polynomial into two parts: those terms withh
odd exponents and those with even exponents. We may factor x from
each of the odd terms and thereby represent the polynomials as Ax + B
where A and B have onty even terms and as such are polynomials in
x-squared, which can similarly be split. We must permit a constant
as a polynomial to limit an infinite regression., A polynomial is then
a binary tree with constants at all the leaves. We here use a point
as an infix operator in a linear representation of these trees.

The first three examples are from Knuth:

2 ~3x% 43k - 1= (1.3) . (-3.-1)

= 5x4 - 7x2 + 3x0

[
"

|
~)
]

r
+
W

b

0 *x + [5(x2)2 -7 (x2)1 + 3(X2)0]

0 *x+ [-7 (xz} + [5 (x4)1 + 3(x4)0]

"

and this is represented as:
0. (7. (5.3
6x5 - 4x3 + 2x = [6x4 - 4x2 +2]x+0

[-4 (x2)1 + [6 (xz)2 + 2 (xz)o}] x+ 0

and this is represented as:

(4 . (6 .2).0

This representation is only on paper. It must be encoded in terms of a
representation of a programming language, Fortunately, LISP uses the
Point as an infix operator to represent binary trees. However, the

point is eliminated whenever the right branch is a list or tree, e.g.,

- 46 -

1.0=(.0

0. (1.0=(1,0
(L.3). (=3.=1)=(1.3) =3.-1)
0. (-1/2 . (1/26 . 1))
(-1/6 . (1/120 . 1) . O

Il

(0 -.5 0.04166 . 1)

((-.16666 0,00833 . 1) . 0)

The functions needed for multiplication are: simplification
(0 . k = k when k is a constant), addition, subtraction, and multipli-
cation by x. An auxiliary function is also useful, Other interesting
functions you may wish to write are: differentiation by x, substitution
of a constant or polynomial for x, synthetic division, and translation to
and from other representations (the reading and printing finctions).

Test data should either show the special capabilities of each function
or be so constructed that the correct result is obvious., In the example
below the tests of DX (differentiate by X) and SUBS (substitute for X)
generate correct values which are clearly related to the exponents of the

test data,

DX((1 1111.1))
DX ((1 1111, 1))

VALUE = ({((16 . 8) . 4) . 3) . 1)

SUBS(10 (1111 . 1))
SUBS (10 (1111 .1))

VALUE = 100010111

Hints
A constant polynomial has no odd terms and one even term. Primitives
which select the odd terms or the even terms or combine two polynomials

should take this fact into account.

- 47 -
Reference

[1] Rnuth, D.E,, "How Fast Can We Multiply?" The Art of Computer Programming;
Seminumerical Algorithms, Vol. 2, Sec, 4,3.3.

- 48 -

LEXICAL ANALYSIS WITH COROUTINES

Kmund Lunde

This problem, implementing coroutines in Algol, requires knowledge
of the finer points of the language, such as own variables and switches.
It also illustrates one of the tasks of the lexical scanner of a compiler:
to interpret the intricacies of a hardware representation. A programmer
with a fair knowledge of Algdl should be able to program this problem

in the allotted time., The concept of coroutines is explained below,

The Coroutine Concept

The coroutine concept is a generalization of the subroutine concept,
establishing a completely symmetric relationship between the two (or
more) routines, instead of the caller-callee relationship of subroutine
balls. That is: when one coroutine transfers control to (or activates)
another, a "reactivation point" is set in the former immediately after
the activation-statement, and the local data are preserved. When
control returns to this routine, execution resumes at the reactivation
point using the values of the local data that existed the last time
control passed out of this routine. The reactivation point isa generalization
of the return address in a subroutine call, but is associated with
the caller rather than the cailee. Hence, control can be transferred
into one coroutine from any other coroutine with which it cooperates and
not necessarily from the one inte which it passed the control last time.
Coroutines are an important tool in programming, especially in
systems programming and in simulation. Nevertheless, coroutine sequencing

has not found its way into many of the higher level languages currently

- 49 .

in use. Examples of languages with coroutines are Simula and Simula-67
(a simulation language built on Algol and its generalization), and Bliss
(a language for systems programming on the PDP-10, developed at (MU),

The purpose of this problem is to investigate how coroutine-
sequencing can be achieved to some extent for Algol procedures. The
caller-callee relationship remains to scme extent, but a reactivation
point may be maintained for each procedure, and local data may be

preserved,

The Problem

Many languages, like Algol-60, contain symbols which do not exist
on a standard keypunch, Hence, "hardware representations' of these
symbols are invented that use only the characters used in, say, Fortran.

In one language (Simula-67) part of this hardware representation could be:

SYMBOL NAME HARDWARE
colon ..
1= becomes «.= OR .=
P denotes se—- OR .-
H semicolon .
. dot . (between identifiers)
. point . (not between

identifiers)

An early part of the compiler has to replace this notation by a unique
and uniform internal representation,

Write two coroutines, "USER" and "GETSYM," to analyze the above
representation. The outputs from "GETSYM" should be integers uniquely

representing the above (and possibly other) symbols. Since we do not

- 50 -

want to write a compiler now, the "USER" may simply encode these as
strings (abbreviations of the names of the symbols) and print them
more than one to a line (say, 30 to a line if each string is of length
4).

The string of input-characters should be interpreted left to right
so that the largest possible legal combination of characters is used

before a symbol is output, i.e.,

..- is denotes (not point denotes, colon minus, or point point minus).
....= is colon becomes (not point colon becomes).

A...B is A colon point B (not A point point point B or A point colon B).

Example: Input and OQutput

. ..=AB..=CD..

50 51 99 51 99 50

where: 50 = colon
51 = becomes
99 = others (one 99 for the group)

You could also encode:
50 into COL
51 into BEC
99 into OTH (for more readable output)
Note:
students who feel they know all about Algol but want to learn Bliss,

may program the problem in Bliss, using the standard coroutine facilities.

Reference

[1] Kouth, D.E., Fundamental Algorithms, p. 190 ff., p. 226.

- 51 -

BLISSful COOPERATION -- OR SPEED VS, SECURITY
A FROBLEM INVOLVING COROUTINES AND GENERAL LANGUAGE ISSUES

o
Amund Lunde

problem Statement

The solution to this problem has 3 distinct parts, 2 experimental and
one theoretical. The experimental parts consist of coding in BLISS two
different algorithms for the same problem, using two different control-
structures. The theoretical part ig to compare the solutions and then
discuss how the comparison might be different if you had used a different
language. Obviously the experimental parts are independent of each other and
of the theoretical part. However, if you can present a good answer to the
theoretical part without doing the programming you will be wasting your time
doing that, and may be when going to any of the programming sections of the
IC. You should attempt all or parts of the problem depending on your
previous experience,

If you do not know what coroutines are, you should now read the section
'The coroutine concept' in the description of the problem 'LEXICAL ANALYSIS

WITH COROUTINES.'

Problem to be programmed:

To print all different subsets of M numbers from the set of the N first

natural numbers, 1 < M < N,

NOTE: By definition of sets each member occurs only once. Hence if N = 5,
M = 3, the sets [1 2 3] and [1 2 4] are subsets to be printed, but not the
sequences [1 1 2] or [1 5 5]. Also, of course, each subset should be printed

exactly once.

- 52 -

The problem may be attacked in at least 2 ways, by recursive routines
and by coroutines. In case you don't see a natural coroutine solution read
the hint. Program these two solutions in BLISS and compare their execution
speeds. If a coroutine facility were added to ALGOL, (like in SIMULA-67),
and the two programs translated into that language, how do you think the

relation between the execution times would change?
Hint: (Try before reading) .

There will be a chain of M+l (or maybe M+2) coroutines, the main-program
and M coroutine instances of the same routine, onme for each position of the
selection. Each has pointers to its predecessor and successor in the chain.
The main program will do the printing. Each time it needs a new selection it
will activate the coroutine for the last position in the selectionm. This will
increase its selected number by 1, check.if this is legal (i.e., nmot too large),
and then activate the main program or its predecessor depending on the result
of the test. Figure out on your own which variables you need in each co-
routine instance, and how they should be initialized. Maybe you will want an

extra coroutine at the end of the chain to tell you when you are through.

Historical note:

This coroutine solution to this problem was written in 1971 in SIMULA-67
by Mr. Dag Belsnes at the University of Oslo, Norway. At that time it was (and
maybe it still is) the winning entry for this problem in their continuously
ongoing 'Code it neater and faster in SIMULA' contest.

The current formulation and the BLISS versions are due to the present

author.

- 53 .
AREA OF A REGION

Leroy C. Richardson
Richard M. Young

Background

A region of two-dimensional space is divided into uniform square cells,
each of which is designated as being either "white" or "black." The black
cells form a connected mass, so that by stepping horizontally, vertically,
or diagonally it is possible to move ffom any black cell to any other,
passing only over black cells. Thus the black cells divide the set of white

cells into isolated regions; there are no separate "islands" of black cells,

But there may be more than one white region in the two-dimensional space.

We are interested in finding the area of a region of horizontally or
vertically connected white cells totally enclosed by a boundary of black

cells. For example, the area marked X:

.”Af 222 /,

N o X 1
A _F7 7
V57

Choose a representation, such as a two-dimensional array, in which the
basic operations available are to determine whether a cell is black or white,

and to move from a cell to any of its four neighbors. Assume that you are

given the location of a white cell in the region whose area is required.

1.)

- 54 -

Since the area of the white region is defined to be the
number of cells in it, the most straightforward way to compute
the area is simply to go ahead and count the cells. Write a
program to do this; it will have to visit each cell in the region

at least once.

Hints

A.) Be careful not to count white cells which do not inm fact
belong to the region whose area is wanted.

B.) This technique is quite straightforward and there are

many ways to write the program. Try to find a program which

is elegant and reflects the structure of the task. You may

want to write several different versions, to see how different
programming languages iend themselves most naturally to iterative

or recursive control structures.

2.)

- 55 -

For large, sensibly-shaped regions, visiting every cell in
the region is inefficient. By making use of some very simple
algebraic properties, we can determine the area simply from
knowledge of its boundary. There is no need to examine the cells
in the interior,

Can you write a program which computes the area by visiting

only white cells adjacent to the boundary?

Hints
A.) Using (x,y) coordinates to describe the white region, we can
regard the whole area as composed of a number of columns of vertically
connected cells. Suppose the y-coordinates of the top and bottom

cells in column i are YTOP, and YBOTi. Then we know that

i
area = Z (YTOPi - YBOTi + 1)

where the summation ranges over all the columns composing the region.

B.) The process of tracing around the boundary of a region is known

as 'edge-following" and is interesting in itself. To trace clockwise

around a region is analogous to walking around the whole of a room

while always keeping one's left hand touching the wall.

Try using this analogy if you have difficulty programming the
edge-follower. The secret is always to keep turning "as left as you can."
c.) Once again, try writing the code so that it corresponds elegantly
and clearly to the structure of the task, If you still have difficulty
with the edge-follower, it may actually help to draw an elegant flow-

chart first, and then encode it.

3.)

3.1

3.2)

- 56 -

One way to approach the task of finding the area is to think
of the initially given white cell as a "seed,” which is "grown'" to
cover all the white cells immediately adjacent to it, each of which
is then also grown outwards to cover all the white cells adjacent to
it, and so on until the whole region is filled up. The area then is
the total number of cells grown (including the original seed).

Suppose you have available a programming system which can
operate simultaneously (in a single operation) on the whole of an
array at once; i.e., in each cycle of computation the whole connected
mass of white cells already reached can be expanded outwards by one
cell in just one operation or statement in the programming language.
Can you devise a simple algorithm that takes advantage of these array
operations to find the area of the region?

We suggest using either of two approaches:

Program the algorithm in APL, which effectively provides

simultaneous operations on arrays.

Assume that you have available a computer capable of working with
arbitrarily long bit-strings as words. Assume a reasonable set of
oPefations for the machine: parallel logical operatioms, shifting,
counting the number of 1's in a word, etc.

Can you devise an appropriate representation of two-dimensional
regions as bit-strings, and write an area-finding algorithm that takes

advantage of the parallelism of such a machine?

- 57 -

Hints

A) How do you tell when the whole region has been covered?

What happens on subsequent cycles?

B.) "Growing'" a single cell is equivalent to shifting it one
cell up, down, left, and right (if the adjacent cells are also
white) and "superimposing" the five cells, Can you generalize

this to a whole connected mass of cells?

- 58 -

A PROBLEM IN SIMPLE LANGUAGES

George Robertson

Motivation

Before considering a complex language such as ALGOL, it is com-
venient to study a very simplified form of language which has only a
few simple syntax rules. The results of this study can then be extended
to a subset of the Algol language which can in turn form the basis
for constructing a translator for Algol-like languages,

A language consists of a set of basic symbols (usually finite)
called the alphabet and certain strings of these symbols. Its syntax
consists of rules for classifying and transforming these strings into
words, By a string we mean a finite sequence of symbols from the alphabet
which may be exhibited by writing the symbols in linear order from left
to right. We shall denote strings by Greek letters. If o and B are
strings, then "of" shall denote the string consisting of the symbols
of o followed in order by those of §. We can define a function L,
called the length, as follows:

Dl. If o is a string, then L(®) = number of symbols in & counting

repetitions,

In other words, the function L maps strings onto the set of non-negative

integers. Two strings will be considered the same if
1. They have the same length, and
2. They have identical symbols in the same positions.

One of the more useful languages for mathematical purposes is leading

operator, or prefix, "Polish" notation. The rules of word formation in

- 59 .

this case are very simple, The symbols in the alphabet are classified
as letters and connectives, and associated with each connective is a
unique positive integer, n, called the degree of the connective. The

two rules for word formation are:
Wl. A string consisting of a single letter is a word.

W2, 1If o is a connective of degree.n, and Bl, B2"'Bn are words

then aBl BZ"'Bn is a word.

The use of a leading connective structure eliminates the necessity
of parentheses, either explicit or implied by operator heirarchy,
As an example, let us consider Algol-like simple arithmetic expressions

defined by the feollowing syntax:

<letter> ::= A|B|C|D|E|F|6|u[1|J|K|L|m|N|o|B|Q|R|S|T|u|v|W|X|¥|2
<adding operator> ::= +]-

<multiplying operator> ::= *|/

<primary> ::= <letter>|(<simple arithmetic expressiom>)

<term> ::= <primary>|<term> <multiplying operator> <primary>
<simple arithmetic expression> ::= <term>

<simple arithmetic expression> <adding operator> <term>
Then, the alphabet of the simple "Polish' notation becomes:
1. A,B...,Z as letters
2, +,-,*,/ as connectives of degree 2

Examples of simple arithmetic expressions in both the Algol-like and

the Polish notations are:

- 60 -

Algol-like notation "Polish" notation
A. (A+B) *c/D /*+ABCD
B. A* (B+C/ D) *A+B/CD
c. A*B+¢C/D +*AB/CD
D. A*(B+¢C) /D / *A+BCD

We are now in a position to define a simple language,

D2. A 1anguagede is simple if its alphabet consists only of
letters and connectives, and if Wl and W2 are the rules of

word formation inégf.

We can define a function p, called the rank, which has as its
domain all strings inDZ?ﬁnd its range will be the set of integers. The

definition is as follows:
D3, 1. If o is a letter, then p(g) = -l.
2. If g is a connective of degree n, then p(o) = n-l.
3, If o is the null string, then p(s) = 0.

4. If g =00 and L(ol) = 1, then p(o) = p(cl) + p(oz)-

2

Thus if o is "alaz...a ", and "ai“ is a letter or connective for

each i, then
k

p(0) = p(ap) + p(ay) + ... +p(8y) = 151 pa).

and we see that the rank operation p is additive,
A question that we would now like to answer is: If we are given an

arbitrary string o in language ;ﬁ, then can we determine if o is a word in

clifby a purely mechanistic approach? 1In other words, does an algorithm

- bl -

exist for determining whether a string ¢ in;Zfis a word in;Zf? The answer
to the question is in the affirmative and is based on an important

theorem due tec Rosenbloom, [1]

D4, 1If g is a string inazf, and g = 09,5 then o1 is a head of ¢

and o, is a tail of o.

Rosenbloom's theorem can be stated as follows:

TL. Ifoz&is a simple language, and g is a string inazf: then o is

a word inaZfif and only if
1. p(o) = -1, and
2, 1If 9, is any head of ¢, and o1 + g, then p(ol) =20,

The proof of Rosenbloom's theorem can be found in his book along

with some suggested exercises.

The Problem

Write a LISP function called WORD which will determine whether or
not a string o is a legal word in Polish prefix notation. The argument
to the function should be a list representing the string o, and the

value of the function should be either T or NIL.

Examples:
WORD ((+ * A B / C D)) should return the value T.
WORD ((A* B+ C /D)) should return the value NIL (Rule 2).
WORD ((+* A/ B CD)) returns T.

WORD ((+* / A - B C)) returns NIL (Rule 1).

- 62 -

Hints

Once you have convinced yourself that Polish prefix notation is a
simple language in the sense of definition D2, then the problem reduces
to a problem of implementing the algorithm described in Rosenbloom's
theorem. You will find that the key to the implementation involves
substituting the ranks of symbols in the input list for the symbols
themselves. Hence, a table look-up procedure of some kind is needed.
A careful examination of the LISP interpreter (both EVAL and APPLY)

will reveal that a useful table look-up procedure does exist in LISP.

Reference

[1] Rosenbloom, Paul, The Elements of Mathematical Logic, Dover, 1950,
pp. 152-157.

- 63 -

TURING MACHINE SIMULATION PROBLEM

Larry Snyder

Motivation

Even before the invention of modern computers, A. M. Turing [4]
described a theoretical model of a computing machine. Although very
simple in structure, the Turing machine (under a plausible set of
assumptions) has been proven to possess some very remarkable properties.
For example, a Turing machine can compute any function that can possibly
be computed. There are well defined functions which no Turing machine
(and hence no computer) can compute the solution to, Given a Turing
machine program for certain functions, there is a Turing machine program
for the same function which will run faster [1]. These and other results
will be discussed later. Our interest here is to develop a thorough under-
standing of the workings of this simple machine and to develop a program
which may be used later in the Immigration Course when non-computability is
studied using the Busy Beaver Problem {2]. In addition there are several
programming techniques which this problem is intended to emphasize, namely,
the building of a programming model on which experiments are to be run,
gaining expertise iq some conversational programming language and experience

with data structures and storage allocation.
The Problem

Choose a conversational programming language and write a program to
simulate a Turing machine. (For those who aren't familiar with Turing
machines, a good description is found in Minsky [3], reprinted at the end
of this problem description.) The program should be highly interactive and
allow you to specify machines and tapes conveniently and to monitor their
behavior. Keep in mind that you will be running experiments with your

program later during the Immigration Course. Your program should allow:

1.)

2.)

3.

4.)

- 64 -

Specification of the tape alphabet, the Turing machine itself
and the initial tape configuration.
Specification of experiment parameters:
A.,) Initial state and read head position.
B.) Maximum number of state transitions, and maximum amount of
Usage. (This is because many Turing machines never halt and
you want to prevent infinite cycling.)
Tracing facilities to allow monitoring of state transitions
while the Turing machine is running.
Printing of all relevant information, e.g., the tape, states,

read head position, etc.

Sample Problems

It might be helpful to prepare several Turing machines to be used

while debugging your simulator. Here are several suggestions:

1.

2.)

30

4.)

Addition of two integers represented in:

A.) Unary marks (e.g., the integer i is represented with
with i+l marks). This problem is trivial.

B8.) Binary. This is more challenging. Think of various
tape formats to simplify the problem.

C.) Decimal. This is quite complex.

Checking for well formed parenthesis sequences, i.e., a machine

to accept sequences like () (()) and reject (). A solution is

in Minsky, but try it yourself before looking.

) i
Accepting a unary sequence if it has 2 marks, for any non-
negative i. This one is easy.

A machine which prints its own description in quintuples,

This problem is reasonably difficult.

- b5 -

Things to Watch for

One of the important decisioms you must make is how to represent the
"infinite" tape. Obviously, your representation will be finite, but be
sure it is flexible enough. Here are two possible representations (you may
think of others):

1.) r:ll-%[i[-gl ;[-g] ﬁ

TAPE -

The tape vector is a vector of length n. TAPE[1l] is the 0 cell, all odd

numbered elements are positive cells, all even numbered elements are negative

cells, such that:

§TAPE[1] if 1=0
CELL[4] =CAPE[21 + 1] if i>0

TAPE[2i] if i<0

This model is easily extended if additional tape is needed,

1 2 3 4 s n=2_ n-1 o
2) fojvje2y3f...x] <.] 3[-2]-1]

« TAPE -

The tape is a vector of length n., The non-negative cells begin at TAPE[1]
and go to some limit s<n. 'The negative cells begin at TAPE[n] and are
stored backwards to the limit s, such that:

TAPE[i + 1] f£for i>0

CELL[i] =
TAPE[n + 1] for i<0

There are at least two other representations you might consider using.

- 66 -

Another thing to keep in mind is that after a tape or a machine
has been specified, it should also be easy to correct any errors in the
initial specification, Experiments are usually wrong the first time
they are stated,

Finally, one comment about the use of a conversational language.
Contrary to popular belief, it is difficult and time consuming te
compose a program at the terminal. This is especially true if you are
not very familiar with the language. Your time will be most productive
if you have your program entirely composed BEFORE you sit dOWn‘at the
terminal.

Remember, this program should be as convenient as possible for

you to use.,
References
[1] Blum, Manuel, "A Machine Independent Theory of the Complexity of

Recursive Functions," JACM, Vol. 14, No. 2, pp. 322-336,

[2] Lin, Shen and Tibor Rado, 'Computer Studies of Turing Machine
Problems," JACM, Vol. 12, No. 2,.pp. 196-213.

[3] Minsky, Marvin, Computation:; Finite and Infinite Machines,
Prentice-Hall, Englewood Cliffs, 1967, pp. 117-119.

[4]1 Turing, Alan M., "On Computable Numbers, with an Application
to the Entscheidungsproblem," Proc. London Math, Soc.,
1936, Sec. 242, pp. 230-265,

- 67 -

AMT

I 8 S e S et St s W i v = M S o . AR Ay . e et o S 1 i S S

THIS PROGRAM SIMULATES A TURING MACHINE WITH A TWO~WAY TAPE.
FACILITIES ARE PROVIDED FOR DEFINING MACHINES, RUNKNING EXPER-
IHMENDS AWD DEBUGGING EXPERIMENTS. THE FOLLOWING COMMANDS ARE
USED TO CONTROL THE SIMULATION:
S5:XXXX INDICATES THAT A SPECIFICATION OF XXXX IS TO BE MADE
PiXXXX INDICATES THAT THE VALUE OF XXiX IS BEING REQUESTED
NiYYYY INDICATES A WEW YYYY IS TO BE SPECIFIED

G0 STARIS THE TURING MACHIRNE
ERD TERMINATES THIS PROGRAM
? PRINTS THIS DESCRIPTION AGAIN
A IS USED FOR COMMERTS
THE FOLLOWING ARE VALID ENTRIES FOR XXXX ABOVE:
ALPHABET SPECIFIES THE TAPE ALPHABET
QUINTUPLES SPECIFIES THE STATE QUINTUPLES
TAPE SPECIFIES THE TAPE CONFIGURATION
STATE SPECIFIES THE STATE OF THE MACHINE
CELL SPECIFIES THE HEAD POSITION ON THE TAPE
TRACE SPECIFIES THE OPTION TQ TRACE STATE TRANS,
TRANSITION LIMIT MAXIMUM ALLOWABLE STATE TRANSITIONS WITHOUT
INTERVENTION
STORAGE SPECIFIES THE MAXIMUYM NUMBER OF TAPE CELLS
THE FOLLOWING ARE VALID ENTRIES FOR YYYY ABOVE:
MACHIRNE INDICATES A NEW MACHINE IS TO BE SPECIFIED
EXPERIMENT INDICATES A NEW EXPERIMENT IS T0O BE SPECIFIED

WHEN AN EXPERIMENT HHAS BEEWN SPECIFIED, GO STARTS IT GOING.

T Rl T kS s et it S e S e v . e S S e S A . o S i L e

- 68 -

]

p LEP'S DEFINE A TJIRING MACHINE TO COMPUTE

A EXCLUSIVE-OR OF FW0 JILJARY UPRIVGS., OUR

A TAPY WILL HAVE TiHy FOLLOWING FORMAT:

8 <Bly STRING 1> # <BIN STRING 2> -+ <RESULT>
A WITH ('S AWl 0's AY MARKERS FUR PROCESSED
A PORTIONS OF STRIFGS

©

NeddCdInk

THE ALPHABEYT CURRENITLY CONTAINS: B

PLEASE EiWTER TAPE ALFPHABET: SINGLE CHARACITERS SEPERATED BY COMHMAS
0,1,0,0,+,=

ENTER STATE QUINTUPLES: STATE, READ, &ifNV STAYE, WRITE, MOVE
SEPERATED BY COMMAS, SO THAT Pig FOLLOWING DOHAINS APPLY:
STATE, NEW STATE ARE POSITIVE INTEGERS, O FOR HALT

READ, WAITE e Bolilo>= '

HOVE € L,R,-

cssas LNTER DONE TO TERMINATE STATE ASSIGRIUENT

i

1,1 w2 o lis B

|

1,0,3,00,8

|

2,0,2,0,08

|

2,1,2,1,8

- 69 -

7,0,7,0,

g,+.7.+.R

g.B,B.O.L

L.O.S.O.L

é.l.B,l.L

é,+.8,+.L

é,:,e,:,L

é.B.l.D,R

IIDONE

;' Wg IHAY NOW SPECIFY AN EXPERIMENT

o

W:EXPERTHERT

SPECIFY INITIAL TAPE INPUT (BEGINNING ON CELL [0])
110121000+

%?ECIFI CELL ON WHICH READ HEAD SHOULD BE POSITIONED

0
SPECIFY FIRST STATE
[z

1

SPECIFY TRACE: 0 WO TRACE, 1 TRACE
[J: :

1
SPECIFY MAXIMUM STATE TRANSITIONS
[1:

5

A UL, WE ARE READY 70 GO

-]

Go

1120k

2121R

20208

2121R

22427

TRANSITION LIMIT REACHED

o

A UUR TURING MACHINE HAS RUN FOR FIVE TRANSITIONS AND
A STOPPED PO ALLOW US 70 LOOK AT SOME OF THE VALUES ,

HAS
WE

- 70 -

A MAY PRINT THE CURRENT VALUE OF THE TAPE.
P PALE

10 LAPE CBLLS WERE USED

fF0J0101=1000~+

A THe L0] INDICATES THAT THE PORTION OF THE ‘INFINITE' TAPE
r WHICH HAS BEEN PRINTED BEGINS WIIH THE CELL 0 ,

o

PiCELL

CURRENT HEAD POSITIOHN IS: §
o

P:STATE

CURRENT OTATE IS: U4

L]

a NOT MUCH HAS HAPPLNED, LET'S CONTINUE
-]
GO
41 70R
7070k
70708
TOT0R
T+T+H
FRANSITION LIMIT REACHED
]
a THIS IS 700 TeDPIoUs, LETS CHANGE SOME PARAMETERS
Q
SiPRANSTITIONS
SPECIFY AAXIMUN STATE TRANSITIONS
{i:
100
-]
S1THACE
SPECIFY TRACK: 0 WO [fRACE, 1 TRACE
[i:
0
[-]
GO
MACHINE EALI'ED
[+]
PiTAPE
12 TAPE CELLS WERE USED
ColU{Jot=0000+01

o

A QOPS, WE GOOFED SOMEWHERE!
A WHERE IS THE READ HEAD?
PiCELL

CURRENT HEAD POSIDION I5: 12

-]

A LET'S PRINT OUT THE MACHIWE
1+

Py QUINTUPLES
STATE TRANSITION MATRICES

- 71 -

NN R [
% - O o
ENR D
iV Co o
N X

w
(Y
QoW ow
jY
=Vl = VIia V]

=
oo
Fao
O C
t=s[i=v Iy

U noon

= o
[e RN
OO0
=i vile v

oo m
+y»row
Lot I o2 I
¥y o
= vilts vill= Vv

S RN PR N
P o
~] o~ 1 O
+y P oo
eVl ol o

o oo o
4y OoCCH O
oo m P oM
4y OCSro
[T o T b VI o

IF WE DIDN'T KNOW WHAT WAS WHONG, WE {OULD PROBABLY RERUN
THE EXPERIMENT WITE THE TRACE Oi. HOWEVYER, I HAVE REASOWN
TO BELIEVE THAT THE ERROR IS IN Fhe FIZ3T QUINTUFLE OF STATE 6,

D DD o

o

S:QUINTUPLES

BNTER STATE QUINTUPLES: STATE, READ, HEW STATE, WRITE, MOVE
SEPERATED BY COMMAS, SO THAT THE FOLLOWING DOMAINS APPLY:
STATE, WEW STATE ARE POSITIVE INTEGERS, 0 POR HALT

READ, WRITE e Boiljow=

HOVE € L,R,-

e osso EHPER DONE TO TERMINATE STATE ASSIGNMENT

!

?.5.8.1.5

DUWE

o

A LET'S SEE IF THAT FIXES IT.

- 72 -

R WE'LL MANUALLY MOVE THE READ HEAD LEFT ONE CELL AND START
A THE MACHINE Il STAPE 8 (THE SKIP LEFT LOOP)

o

P:CELL

CURRENT HEAD POSITION IJ: 12

1+

St CELL
SPECIFY CELL ON WHICH READ HEAD S5 HOULD BE POSITIONED
[Js
11
Q
PiSPATE
CURRENT STATE I5: ©
o
S1S5TATE
SPECIFY FIRST STATE
(e
8
o
A ME SHOULD BE READY TQ CONTINUE
o
Fo
WHAT?
o
A SORRY ABOUT THAT
o
GO
MACHINE HALTED
[-]
P:TAPE
14 TAPE CELLS WERE USED
(o]C0=0000+0101
o
PiCELL
CURRERT HPAD POSITION IS: 4
-]
A THAT'S THE END OF THE EXPERIMEWT
a THANX FOR TURIWG WITH US!

-

END

- 73 -

é TURING
MACHINES

6.0 INTRODUCTION

A Turing machine is a finite-state machine associated with an external
storage or memory medium. This medium has the form of a sequence of
squares, marked off on a linear tape. The machine is coupled to the tape
through a head, which is situated, at each moment, on some square of the
tape (Fig. 6.0-1). The head has thres {unctions, all of which arc exercised
in each operation cycle of the finite-state machine.” These functions are:
reading the square of the tape being ‘‘scanned,” writing on the scanned
square, and moving the machine to an adjacent square {(which becomes the
scanned square in the next operation cycle).

. It will be recalled from section 2.2 that a finite-state machine is char-
acterized by an alphabet (5o,..., 5.) of input symbols, an aiphabet
(ro,..., r,) of output symbols, a set (g, ..., ¢,) of internal states, and a
pair of functions)

@t + 1) = G(Q(,. S())
R(t + 1) = F(Q), 5(1))
17

- 74 -

118 TURING MACHINES SEC. 6.0

which describe the relation between input, internal state, and subsequent
behavior.

In order to attach the external tape, it is convenient to modil’y this
description a little, The input symbols (5o, ..., 5,) will remain the same,
and it will be precisely these that may be inscribed on the tape, one symbol
per square. The input to the machine M, at the time ¢, will be just that
symbol printed in the square the machine is scanning at that moment. The
resulting change in state will then be determined, as before, by the func-
tion G. The output of the machine M has now the dual function of (1) writ-
ing on the scanned square (perhaps changing the symbol already there)
and (2) moving the tape one way or the other.

Thus R, the response,_has fwe components. One component of the
response is simply a symbol, from the same sct (sg,..., 5a), to be printed
on the scanned square; the second component is one or the other of two
symbols ‘0’ (meaning “*Move left”") and * 1’ (**Move right™), which have the
corresponding effect on the machine’s position. Accordingly, it is con-
venient to think of the Turing machine as described by three functions. -.

Q(t + 1) = G(QU), S(1)
R(t + 1) = F(Q(), S(1))
D(1 + 1) = D(Q, 5())

where the new function ‘D’ tells which way the machine will move.

In each operation cycle the machine starts in some state g;, reads ‘the
symbol s; written on the square under the head, prints there the new sym-
bol F(q;, 5;), moves left or right according to D{q,, s;}. and then enters
the new state G(g., 5;). E

When a symbol is printed on the tape, the symbol previously there is
erased. Of course, one can preserve it by printing the same symbol that
was read, i.e., if F(q;, s;) happens to be 5;,. Because the machine can
move either way along the tape, it is possible for it to return to a pre-
viously printed location to recover the information inscribed there. As we
will see, this makes it possible lo use the tape for the storage of arbitrarily
large amounts of uscful information. We will give examples shortly.

The tape is regarded as infinite in both dircctions. But we will make
the restriction that when the machine is started the tape must be blank,
except for some finite number of squares. With this restriction one can
think of the tape as really finite at any particular time but with the provi-
sion, whenever the machine comes to an end of the finite portion, some-
one will attech another square.

Formal mathematical descriptions of Turing machines may be found
in Turing [1936), Post [1943], Kleenc {1952], Davis [1958]. There are un-
important technical differences in these formulations. For our purposcs
it will usually be sufficient to use pictorial state diagrams. Our immediate

- 15 =

scC. 6.0 TURING MACHINES 119

purpose is to show how Turing machines, with their unlimited tape
memory, can perform computations beyond the capacity of finite-state
machines; it is usually easier to understand the examples in terms of
diagrams than in lerms of tables of functions. While it is fresh in our
minds, however, let us note that the finite-state parts of our machines can
be described nicely by sets of guintuples of the form

{old state, symbol scanned, new state, symbol written, direction of motion)
ie.,
(qi 55 G(.q;, 5;), F(qi, 5;), D(q., 5,))
or
(90 55 940 54, dyy)

1.e., as quintuples in which the third, fourth, and fifth symbols are de-
termined by the first and second through the three functions G, F,and D
mentioned above.!

Thus a certain Turing machine (section 6.1.1 below) would be
described by the following six guintuples:

(G’o. 0, qo, 0| R) (qh 01_ Qs 0! R)
(Qo. Io G Oa R) (qls Ia) 90, 0- R)
{go, B, HaLT, 0, -) (gq\, ‘B, #HaLt, 1, -)

or just
o 0, 0, 0, D (I, 0, 1, 0, D
o, 1 1, 0, 1) (L, 1, 0, 0, 1)
(0, 'B! H| Ov ') (ll 'B’ Hv lc ')

where we have reserved the symbol *H'{or ‘HALT’) to designate a halting
state,

One more remark. When we dealt with finite-state machines and the
things they could do, we had to regard the input data as coming from
some environment, so that the description of a computation was usually
not contained completely in the description of the machine and its initjal
state. With a Turing machine tape we have now a closed system, for the
tape scrves as environment for the finite-state machine part. Hence we can
specify a “computation”™ completely by giving (1) the initial state of the
machine and (2a) the contents of the tape. Of course we have also to say
(2b) which square of the tape the scanning head sees at the start. We will
usually assume the machine starts in state qa.

MThe state denoted by g,; is defined to be that one of the ¢,’s piven by the function
G(qy. 5;) and similarly for 5, and for dij. .

- 76 -

120 TURING MACHINES ‘) SEC. 6.1.1
6.1 SOME EXAMPLES OF TURING MACHINES

The remainder of this chapter shows some of the things Turing-
machines can do 10 the information placed on their tapes, and contrasts
these processes with those obtainable from finite-state machines. (For the
comparison, one may think of a finite-state machine as a specially re-
stricted kind of Turing machine which can move in only one direction.)

6.1.1 A parity counter

© We will set up a machine whose output is 1 or O depending on whether
the number of 1’s in a string of 1’s and 0’s is odd or even. The input string
is represented on the Turing machine’s tape in the form

ffolols {i o Tijoln118]o; Zolola
'

where we have printed the sequence in question followed by a B. The
machine starts {in state go) at the beginning of the sequence; the B is to-
tell the machine where the sequence ends. The machine needs two states,
one for odd and one for even parity, and it changes state whenever it
encounters a 1. The associated finite-state machine is represented by
‘Table 6.1-1. - ~ : o

Table 6.1-1. QUINTUPLES FOR PARITY COUNTER ’

qi sy | 9y Sy -diy qi S5 | gy sy dy
0 0 0 0 1 1 0 1 0 1
0 1 i 0 1 B | Q 0 1
0.8} o - I N A

do t_h

If we trace the operation of the machine we find that it goes through
the configurations at the top of p. 121,

The machine cnds up at the former site of the terminal B which. it has
replaced by the answer. The input sequence has been erased.

PROBLEM. Change the quintuples so that the sequence is not erased.

In this simple exaraple the machine always moves to the right. In such
a case there is no possibilily of recording information on the tape and
returning to it at a later time, Hence one could not expect it to do any-
thing that could not also be done by an unaided finite-state machine (with
sequential input) and we know already, from scction 2.2, that this is true
for this computation,

- 77 =

THE FIRING SQUAD SYNCHRONIZATION FROBLEM

Tim Teitelbaum

This is & problem within a problem, which combines a small piece
of the theory of finite state machines with the practice of interactive
programming and system building.

First of all, we have the firing squad problem itself as devised
by Myhill and described in Moore[3]:

Consider a finite (but arbitrarily long) one-dimensional array of
finite-state machines all of which are alike except the ones at each
end, The machines are called soldiers, and one of the end machines
is called a Gemeral. The machines are synchronous, and the state of
each machine at time t + 1 depends on the states of itself and of its
two neighbors at time t. The problem is to specify the states and
transitions of the soldiers in such a way that the General can cause
them to go into one particular terminal state (i.e., they fire their
guns) all at exactly the same time. At the beginning state (i.e., t = 0),
all the soldiers are assumed to be in a single state, the quiescent
state. When the General undergoes the transition into the state
labeled "fire when ready,® he does not take any initiative afterwards,
and the rest is up to the soldiers, The signal can propagate down the line
no faster than one soldier per unit of time, and their problem is how
to get all coordinated and in rhythm., The tricky part of the problem
is that the same kind of soldier with a fixed number K of states is required
to be able to do this, regardless of the length n of the firing squad.

In particular, the soldier with K states should work correctly, even
when n is much larger then K. Roughly speaking, none of the soldiers

is permitted to count as high as n.

-~ 78 -

Two of the soldiers, the General and the soldier farthest from the
General, are allowed to be slightly different from the other soldiers in
being able to act without having soldiers on both sides of them, but their
gtructure must also be independent of n.

A convenient way of indicating a solution of this problem iz to use
a piece of graph paper, with the horizontal coordinate representing the
spatial position, and the vertical coordinate representing time. Within
the (i,j) square of the graph paper a symbol may be written, indicating
the state of the ith soldier at time j. Visual examination of the pattern
of propagation of these symbols can indicate what kinds of signaling
must take place between the soldiers.

* k%

Since the solution of this problem involves considerable busy-work,
it will be convenient for you to have the aid of a computer program.

What this program does constitutes the second part of this problem and is
entirely up to you. It could only verify your candidate solutiomns or, at
the opposite extreme, it might (try to) generate the entire solution

for you.

Such a program, if written in an interactive programming language,
could be used to develop the solution strategy incrementally. Thus, you
could first concentrate on developing a conversational system for programming,
debugging, and editing the soldiers' rules; then you can use your system
to work on the firing squad problem per se.

Consider the task of optimizing your own total time, What is the
trade-~off between time spent incorporating features in your computer
program versus effort expended directly on the design of the soldiers program?

I1f, after all due effort, you haven't made any progress, you may

wish to toss in the towel and refer to the solution strategy description

- 79 -

given in Minsky[zj. (But do yourself a favor and don't give up until
desperate.)

If, on the other hand, you have found a solution, you may wish to
consider finding solutions which optimize the time or number of states
required. An eight-state minimum time solution (2n-2) may be found in

the CMU thesis by Balzer[lj.

References

[1] Balzer, R. M., "Studies Concerning Minimal Time Solutions to the
Firing Squad Synchronization Problem,' CMU Computer Science
Department Ph.D. thesis, 1966.

[2] Minsky, M., Computation, Finite and Infinite Machines, Prentice Hall,
p. 282,

[3] Moore, E. F., Sequential Machines, Selected Papers, Addison-Wesley,
1964, pp. 213-214.

- 80 -

TREES, TREES, TREES

Tim Teitelbaum

Question. GCould you help me--I'm a little confused?

Answer. Sure, what's your problem?

Q. What kind of data objects are manipulated by LISP programs?
A, Trees.

Q. Oh, I get it. Something like:

Abraham

Ishmael

Jacob Esau

V>

Not exactly. More like: (A @BC (DE)) .

1 don't get it. Why is that a tree?

> e

. Because you can think of it as being:

Q. But only the terminal nodes of your tree have data on them.

A, Tough! Those are the rules.
Q. So a LISP tree really looks like that?

A. No. It really looks like:

FAl-j—»lLI % >
B

- 81 -
Q. OK, Forget it.

As you can see, there is no one data type which is a tree. There are,
in fact, many species of trees, each with its own sub~species and mutations.,
The subject of tree structures (and related objects like lists) is confusing
but very important. The purpose of the following problem is twofold:

1) It is a means of helping you understand and differentiate

between various tree structures.

2) It is a small (though non-trivial) exercise in the LISP programming

language.

Problem

Consider the list L of father-son pairs:

L = ((Isaac Esau) (Abraham Ishmael) (Abraham Zimram)
(Noah Ham) (Isaac Jacob) (Abraham Isaac)).
This list corresponds in a fairly obvious way to a forest of two trees -

the one given above and the other, a separate family tree:

Noah

Ham

However, since the information is distributed throughout the list, L is a
fairly useless representation, This is especially true if we wish to perform

operations like:

Extract the decendants of x
Extract the linage of x

Form a list of all first cousins.

- 82 -

Assuming these are the types of operations desired, your problem is:

1)

2)

To specify a suitable format for representing in LISP a forest

of family trees (ie., trees with data at all nodes).

To program in LISP a function tree(x) to transform a list of
father-son pairs (like L above) to the format specified in part 1)
above. Note that L is not sorted in any particular order -- it's
harder this way. (It would be very educational to code tree(x)
twice: once in "pure LISP" and once using the full power of LISP

1.5, eg., the prog feature, property lists, rplaca, rplacd, etc.)

- 83 -

ANALYSIS OF ALGORITHMS

Background

This description of the mathematical analysis of algorithms is taken

from Knuthtl].

The general field of algorithmic analysis is an interesting
and potentially important area of mathematics and computer science
that is undergoing rapid development. The central goal in such
studies is to make quantitative assessments of the "goodness' of
various algorithms. Two general kinds of problems are usually treated:

Type A. Analysis of a particular algorithm., We investigate

important characteristics of some algorithm, usually a frequency
analysis (how many times each part of the algorithm is likely to be

executed), or a storage analysis (how much memory it is likely to need).

For example, it is possible to predict the execution time of various
algorithms for sorting numbers into order.

Type B. Analysis of a class of algorithms. We investigate the

entire family of algorithms for solving a particular problem, and
attempt to identify one that is "best possible™. Or we place bounds on

the computational complexity of the algorithms in the class. For

example, it is possible to estimate the minimum number S(n) of
comparisons necessary to sort n numbers by repeated comparison,

Type A analyses have been used since the earliest days of computer
programming; each program in Goldstine and von Neumann's classic
memoir[z] on "Planning and Coding Problems for an Electronic Computing
Instrument' is accompanied by a careful estimate of the "durations" of
each step and of the total program duration. Such analyses make it

possible to compare different algorithms for the same problem.

84 -

Type B analyses were not undertaken until somewhat later, although
certain of the problems had been studied for many years as parts of
"recreational mathematics". Hugo Steinhaus analyzed the sorting function
S(n), in connection with a weighing problem[3j; and the question of
computing x" with fewest multiplications was first raised by Arnold
Scholz in 1937[h]- Perhaps the first true study of computational
complexity was the 1956 thesis of H. B. DemuthES], who defined three
simple classes of automata and studied how rapidly such automata are
able to sort n numbers, using any conceivable algorithm.

It may seem that Type B analyses are far superior to Type A, since
they handle infinitely many algorithms at once; instead of analyzing
each algorithm that is invented, it is obviously better to prove once
and for all that a particular algorithm is the ''best possible'. But
this is only true to a limited extent, since Type B analyses are
extremely technology-dependent; very slight changes in the definition
of "best possible" can significantly affect which algorithm is best.

For example, x31 cannot be calculated in fewer than 9 multiplications,
but it can be done with only 6 arithmetic operations if division is
allowed.

These are the most important points about algorithmic analysis:

1) Analysis of algorithms is an interesting activity which
contributes to our fundamental understanding of computer
science. 1In this case, mathematics is being applied to computer
problems, instead of applying computers to mathematical problems.

2) Analysis of algorithms relies heavily on techriques of discrete
mathematics, such as the manipulation of harmonic numbers, the

solution of difference equations, and combinatorial enumeration

3)

4)

Problem

- 85 -

theory. Most of these topics are not presently being

taught in colleges and universities, but they should form

a part of many computer scientists' education.

Analysis of algorithms is beginning to take shape as a
coherent discipline. Instead of using a different trick for
each problem, there are some reasonably systematic technigues
which are applied repeatedly. (Numerous examples of these
unifying principles may be found by consulting the entries
under 'Analysis of algorithms'" in the index to [6].)
Furthermore, the analysis of one algorithm often applies to
other algorithms.

Many fascinating problems in this area are still waiting to

be solved.

Choose three or four algorithms for a single task (such as sorting or

searching a table) and compare their efficiencies for various assumptions

about the data. (Type A analysis.)

OR

Attempt a Type B analysis. The precise specification of the class of

algorithms and the measure of efficiency are extremely important.

- 86 -

References

(1]
[2]

[3]
[4]
(5]
(6]

Knuth, Donald E., Mathematical Analysis of Algorithms, Computer Science
Department, Stanford University. S5TAN-C5- 71-206.

Goldstine, Herman H. and John von Neumann, '"Planning and Coding Problems
for an Electronic Computing Instrument,' in John von Neumann!s
Collected Works, A. H. Taub, ed., 5 (Pergamon Press, 1963), 80-235.

Steinhaus, Hugo, Mathematical Snapshots, (Oxford University Press, 1930},
38-39,

Scholz, Arnold, "Aufgabe 253," Jahresbericht der deutschen Mathematiker-
Vereinigung, class 11, 47 (1937}, 41-42,

Demuth, Howard B., Electronic Data Sorting (Ph.D. thesis, Stanford
University, 1956), 92 pp.

Knuth, Donald E., The Art of Computer Programming (Addison-Wesley
Publishing Corporation: Volume 1, 1968; volume 2, 1969; volume 3,
1972).

- 87 -

BUSY BEAVER PROBLEM

Background

This writeup of the Busy Beaver Problem is taken from Korfhagetl].

Turing machines are constructed to perform specific tasks
such as addition or multiplication. Part of the construction is
the tacit assumption of a standard format for the input string.
Thus one is naturally led to question the performance of the
machine on a non-standard input string. This is the balting
problem: given a Turing machine and an arbitrary tape, to deter-
mine whether or not the machine would eventually halt using the
given tape as input. This and the related Busy Beaver problem have
been shown to be unsolvable by any Turing machine (or algorithm).
That is, it is not possible to design an algorithm which will
solve this problem. The essential word here is "eventually."

It is easy to determine whether or not a given machine using a
given tape will halt within 1,479,641 or any other given number
of steps: just try to run the machine for 1,479,642 steps. But
with "eventually," we have no limit on the possible number of
steps which may occur,

There are only a finite number of Turing machines of a given
size {that is, number of states and symbols), For example, if we
allow n states (not counting the halt state), two moves, and two
symbols (0 and 1), then each block in the table describing a
machine may be filled in 4(n + 1) ways (the extra one is for the

halt state). Since there are 2n blocks in the table, if we require

- 88 -

that each block be filled there are exactly N = (4{(n + 1))2n
n-state two-symbol Turing machines., The Busy Beaver problem

(of class (n,2)) is to determine which of these machines will,
when started with a blank tape, halt with the highest possible
number of 1's on its tape. This is thus a specialized halting
problem, which has been shown by Rado [2] to be unsolvable,
Nevertheless, some work has been done on this with interesting
results [3]. It is known that for two-symbol machines, the
highest possible number of 1l's obtainable with 2 halting machine of
1 state is 1, 2 states--4, and 3 states--6. Table 1 shows one of
the 3-state machines which will halt with six l's. Four other

such machines exist.

Table 1

A machine solving the three-state Busy Beaver problem

0 1
9 qu1 qu0
93 1Lq2 qu3
4, 1Rq0 qu1

For Turing machines having more than three states or operating
on more than two symbols, the maximum possible score is not known.
Nor has anyone solved the related problem of determining the
maximum number of moves or shifts which is possible in a machine
which halts. The_known results are given in Table 2, where Z(n)
denotes the maximum possible score, and SH(n) denotes the maximum

possible number of shifts.

- 89 -

To indicate the magnitudes which must be considered in this
problem, let us look at the l00-state machines. There are 163,216100
of these, some of which will halt when started with a blank tape,
and some of which will not, It is known that one of these will

15000
10
halt with (((7:):):): or approximately 1010

1's on the tape.
Thus the maximum number of ones attainable is at least that large,
and probably considerably larger. Yet if we use ten billion years
as an estimate of the age of the universe and assume that one
billion 1's can be printed per second (somewhat faster than current
digital computers), only approximately 3.15 X 1026 of these l's

could have been printed since the universe began.

Table 2

The known results in the Busy Beaver problem*

Two-symbol machines
Z(n) =1 =4
SH{n)

6 =13 =17 =235 222,961 23(7.3% - 1)/2
21 = 107

1]

Three~symbol machines
z(n) z 12
SH(n) - 257

* These results were communicated to the author in February 1966 by
C.Y. Lee of Bell Telephone Laboratories, and are due to Lee, Tibor,

Shen Lin, Patrick Fischer, Milton Green, and David Jefferson.

Problem
The problem is to find Z(n) and SH(n) for as many two-symbol machines

as you can. Use the Turing machine simulator you built for an earlier

- 90 -

problem, or borrow one from a friend, or get the simulator written by

the author of the earlier problem.

References

[1] Korfhage, Robert R., Logic and Algorithms, Wiley, 1966.

[2] Rado, Tibor, "On Non-Computable Functions," Bell System Technical
Journal, 41 (1962), pp. 877-884,

[3] Lin, Shen and Rado, Tibor, 'Computer Studies of Turing Machine
Problems," JACM, 12 (1965), pp. 196-212,

- 9] -
SIMULATION OF A SMALL COMPUTER

Motivation

It is important for every Computer Scientist to understand the
issues associated with machine language programming. You should write
& few programs in assembly language at some point, but by the end of
the IC you should at least understand what a machine language is and
how instructions are interpreted by the hardware. This knowledge will
be presumed by core courses in hardware, programming languages, and
operating systems.

This problem requires you to write a simulator for a small computer.,
This 18 not an artificial task; simulators are often written for mini-
computers in order to construct software before the machine is actually
available and to debug software using the facilities available only in

the larger machine,

The Problem
1. Obtain a description of the DEC PDP-8 from the instructor for

this problem,

2. Write a program which simulates the behavior of the PDP-8.
If you need to make simplifying assumptions, be sure to justify

them carefully,

3. Include facilities for obtaining simulated timings--the amount
of time a program would take to execute if it were really
being run on a PDP-8. See if you can make the simulator efficient

enough to attain a 50:1 simulation ratio.

- 92 -

4. Write three or four small programs (and debug them) to test

the simulator.

