
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU Common Lisp User's Manual

Robert A. MacLachlan, Editor
July 1992

CMU-CS-92-161

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Supersedes Technical Reports CMU-CS-87-156 and CMU-CS-91-108.

Abstract

CMU Common Lisp is an implementation of that Common Lisp is currently supported on MlPS-processor
DECstations, Sparc-based workstations from Sun and the IBM RT PC, and other ports are planned. All
architectures are supported under Mach, a Berkeley Unix 4.3 binary compatible operating system. The Sparc is
also supported under SunOS. The largest single part of this document describes the Python compiler and the
programming styles and techniques that the compiler encourages. The rest of the document describes extensions
and the implementation dependent choices made in developing this implementation of Common Lisp. We have
added several extensions, including a source level debugger, an interface to Unix system calls, a foreign function
call interface, support for interprocess communication and remote procedure call, and other features that provide
a good environment for developing Lisp code.

This research was sponsored by The Defense Advanced Research Projects Agency, Information Science and Technology
Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by DARPA/CMO under Contract
MDA972-90-C-0035.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. government.

Keywords: lisp, Common Lisp, manual, compiler, programming language implementation, programming
environment

Contents

1 Introduction
1.1 Support *
1.2 Local Distribution of CMU Common Lisp 1

1.3 Net Distribution of CMU Common Lisp . . . 2

1.4 Source Availability 2

1.5 Command Line Options 3

1.6 Credits 3

2 Design Choices and Extensions 5

2.1 Data Types 5

2.1.1 Symbols 5

2.1.2 Integers 5

2.1.3 Floats 5

2.1.4 Characters 8

2.1.5 Array Initialization 8

2.2 Default Interrupts for Lisp 8

2.3 Packages 8

2.4 The Editor 9

2.5 Garbage Collection 9

2.6 Describe 1 0

2.7 The Inspector . . 1 1

2.7.1 The Windowing Inspector H
2.7.2 The TTY Inspector 12

2.8 Load 1 2

2.9 The Reader 13
2.10 Running Programs from Lisp 13

2.10.1 Process Accessors 14
2.11 Saving a Core Image 16
2.12 Search Lists 16

2.12.1 Search List Example 17
2.13 Time Parsing and Formatting 17
2.14 Lisp Library I 8

3 The Debugger 20
3.1 Debugger Introduction 20
3.2 The Command Loop 21
3.3 Stack Frames 21

3.3.1 Stack Motion 21
3.3.2 How Arguments are Printed 21
3.3.3 Function Names 22
3.3.4 Funny Frames 23
3.3.5 Debug Tail Recursion 23
3.3.6 Unknown Locations and Interrupts 24

3.4 Variable Access 24

CONTENTS ii

3.4.1 Variable Value Availability 25
3.4.2 Note On Lexical Variable Access 25

3.5 Source Location Printing 25
3.5.1 How the Source is Found 26
3.5.2 Source Location Availability 27

3.6 Compiler Policy Control 27
3.7 Exiting Commands 28
3.8 Information Commands 28
3.9 Breakpoint Commands 29

3.9.1 Breakpoint Example 29
3.10 Function TVacing 30

3.10.1 Encapsulation Functions 32
3.11 Specials 32

4 The Compiler 3 3

4.1 Compiler Introduction 33
4.2 Calling the Compiler 33
4.3 Compilation Units 35

4.3.1 Undefined Warnings 35
4.3.2 Context Declarations 36
4.3.3 Context Declaration Example 36

4.4 Interpreting Error Messages 37
4.4.1 The Parts of the Error Message 37
4.4.2 The Original and Actual Source 39
4.4.3 The Processing Path 39
4.4.4 Error Severity 40
4.4.5 Errors During Macroexpansion 40
4.4.6 Read Errors 40
4.4.7 Error Message Parameterization 41

4.5 Types in Python 42
4.5.1 Compile Time Type Errors 42
4.5.2 Precise Type Checking 43
4.5.3 Weakened Type Checking 43

4.6 Getting Existing Programs to Run 44
4.7 Compiler Policy 46

4.7.1 The Optimize Declaration 46
4.7.2 The Optimize-Interface Declaration 46

4.8 Open Coding and Inline Expansion 47

5 Advanced Compiler Use and Efficiency Hints 48
5.1 Advanced Compiler Introduction 48

5.1.1 Types 48
5.1.2 Optimization 48
5.1.3 Function Call 49
5.1.4 Representation of Objects 50
5.1.5 Writing Efficient Code 50

5.2 More About Types in Python 50
5.2.1 More Types Meaningful 51
5.2.2 Canonicalization 51
5.2.3 Member Types 51
5.2.4 Union Types 52
5.2.5 The Empty Type 52
5.2.6 Function Types 52
5.2.7 The Values Declaration 53
5.2.8 Structure Types 54
5.2.9 The Freeze-Type Declaration 54

CONTENTS l i [

5.2.10 Type Restrictions 5 4

5.2.11 Type Style Recommendations 55
5.3 Type Inference 5 5

5.3.1 Variable Type Inference 5 6

5.3.2 Local Function Type Inference 56
5.3.3 Global Function Type Inference 56
5.3.4 Operation Specific Type Inference 57
5.3.5 Dynamic Type Inference 57
5.3.6 Type Check Optimization 58

5.4 Source Optimization 59
5.4.1 Let Optimization 6 0

5.4.2 Constant Folding 6 1

5.4.3 Unused Expression Elimination 61
5.4.4 Control Optimization 61
5.4.5 Unreachable Code Deletion 62
5.4.6 Multiple Values Optimization 64
5.4.7 Source to Source Transformation 64
5.4.8 Style Recommendations 65

5.5 Tail Recursion 65
5.5.1 Tail Recursion Exceptions 67

5.6 Local Call 67
5.6.1 Self-Recursive Calls 67
5.6.2 Let Calls r 67
5.6.3 Closures 68
5.6.4 Local Tail Recursion 68
5.6.5 Return Values 69

5.7 Block Compilation 69
5.7.1 Block Compilation Semantics 70
5.7.2 Block Compilation Declarations 70
5.7.3 Compiler Arguments 71
5.7.4 Practical Difficulties 71

5.8 Inline Expansion 72
5.8.1 Inline Expansion Recording 73
5.8.2 Semi-Inline Expansion 73
5.8.3 The Maybe-Inline Declaration 73

5.9 Object Representation 74
5.9.1 Think Before You Use a List 75
5.9.2 Structures 75
5.9.3 Arrays 75
5.9.4 Vectors 75
5.9.5 Bit-Vectors 76
5.9.6 Hashtables 76

5.10 Numbers 76
5.10.1 Descriptors 77
5.10.2 Non-Descriptor Representations 77
5.10.3 Variables 78
5.10.4 Generic Arithmetic 78
5.10.5 Fixnums 79
5.10.6 Word Integers 80
5.10.7 Floating Point Efficiency 80
5.10.8 Specialized Arrays 80
5.10.9 Interactions With Local Call 81
5.10.10Representation of Characters 81

5.11 General Efficiency Hints 81
5.11.1 Compile Your Code 81

CONTENTS iv

5.11.2 Avoid Unnecessary Consing 82
5.11.3 Complex Argument Syntax 82
5.11.4 Mapping and Iteration 83
5.11.5 Trace Files and Disassembly 83

5.12 Efficiency Notes 84
5.12.1 Type Uncertainty 84
5.12.2 Efficiency Notes and Type Checking 84
5.12.3 Representation Efficiency Notes 85
5.12.4 Verbosity Control 86

5.13 Profiling 86
5.13.1 Profile Interface 87
5.13.2 Profiling Techniques 87
5.13.3 Nested or Recursive Calls 87
5.13.4 Clock resolution 87
5.13.5 Profiling overhead 88
5.13.6 Additional Timing Utilities 88
5.13.7 A Note on Timing 88
5.13.8 Benchmarking Techniques 89

6 UNIX Interface 90
6.1 Reading the Command Line 90
6.2 Useful Variables 91
6.3 Lisp Equivalents for C Routines 91
6.4 Type Translations 92
6.5 System Area Pointers 92
6.6 Unix System Calls 93
6.7 File Descriptor Streams 93
6.8 Making Sense of Mach Return Codes 94
6.9 Unix Interrupts 94

6.9.1 Changing Interrupt Handlers 95
6.9.2 Examples of Signal Handlers 96

7 Event Dispatching with SERVE-EVENT 97
7.1 Object Sets 97
7.2 The SERVE-EVENT Function 98
7.3 Using SERVE-EVENT with Unix File Descriptors 98
7.4 Using SERVE-EVENT with the CLX Interface to X 99

7.4.1 Without Object Sets 99
7.4.2 With Object Sets 100

7.5 A SERVE-EVENT Example 100
7.5.1 Without Object Sets Example 100
7.5.2 With Object Sets Example 102

8 Alien Objects 105
8.1 Introduction to Aliens 105
8.2 Alien Types 105

8.2.1 Defining Alien Types 106
8.2.2 Alien Types and Lisp Types 106
8.2.3 Alien Type Specifiers 106
8.2.4 The C-Call Package 107

8.3 Alien Operations 108
8.3.1 Alien Access Operations 108
8.3.2 Alien Coercion Operations 108
8.3.3 Alien Dynamic Allocation 109

8.4 Alien Variables 109
8.4.1 Local Alien Variables 109

CONTENTS v

8.4.2 External Alien Variables 1 1 0

8.5 Alien Data Structure Example HO
8.6 Loading Unix Object Files 1 1 1

8.7 Alien Function Calls 1 1 2

8.7.1 The alien-funcall Primitive H2
8.7.2 The def-alien-routine Macro 113
8.7.3 def-alien-routine Example 113
8.7.4 Calling Lisp from C i 1 4

8.8 Step-by-Step Alien Example 114

9 In terprocess Communica t ion u n d e r LISP 117
9.1 The REMOTE Package 117

9.1.1 Connecting Servers and Clients 117
9.1.2 Remote Evaluations 118
9.1.3 Remote Objects 119
9.1.4 Host Addresses 120

9.2 The WIRE Package 120
9.2.1 Untagged Data 120
9.2.2 Tagged Data 121
9.2.3 Making Your Own Wires 121

9.3 Out-Of-Band Data 121

10 Debugger P r o g r a m m e r ' s Interface 123
10.1 DI Exceptional Conditions 123

10.1.1 Debug-conditions 123
10.1.2 Debug-errors 124

10.2 Debug-variables 124
10.3 Frames 125
10.4 Debug-functions 126
10.5 Debug-blocks 128
10.6 Breakpoints 128
10.7 Code-locations 129
10.8 Debug-sources 130

10.9 Source Translation Utilities 131

Funct ion Index 132

Variable Index 135

Type Index 136

Concept Index 137

Chapter 1

Introduction

CMU Common Lisp is a public-domain implementation of Common Lisp developed in the Computer Science
Department of Carnegie Mellon University. CMU Common Lisp is currently supported on MlPS-processor
DECstations, Sparc-based workstations from Sun and the IBM RT PC, and other ports are planned. Currently,
it runs under CMU's Mach operating system, OSF/1 or SunOS. This document describes the implementation
based on the Python compiler. Previous versions of CMU Common Lisp ran on the IBM RT PC and (when known
as Spice Lisp) on the Perq workstation. See man cmucl ('man/manl/cmucl. 1') for other general information.

CMU Common Lisp sources and executables are freely available via anonymous FTP; this software is "as is",
and has no warranty of any kind. CMU and the authors assume no responsibility for the consequences of any
use of this software. See ' doc / r e l ea se -no te s . t x t ' for a description of the state of the release you have.

1 . 1 S u p p o r t

The CMU Common Lisp project's goal is to develop a high quality public domain system, so we want your bug
reports, bug fixes and enhancements. However, staff limitations prevent us from providing extensive support
to people outside of CMU. We are looking for university and industrial affiliates to help us with porting and
maintenance for hardware and software that is not widely used at CMU.

This manual contains only implementation-specific information about CMU Common Lisp. Users will also
need a separate manual describing the Common Lisp standard. Common Lisp was initially defined in Common
Lisp: The Language, by Guy L. Steele Jr. Common Lisp is now undergoing standardization by the X3J13
committee of ANSI. The X3J13 spec is not yet completed, but a number of clarifications and modification have
been approved. We intend that CMU Common Lisp will eventually adhere to the X3J13 spec, and we have
already implemented many of the changes approved by X3J13.

Until the X3J13 standard is completed, the second edition of Common Lisp: The Language2 is probably the
best available manual for the language and for our implementation of it. This book has no official role in the
standardization process, but it does include many of the changes adopted since the first edition was completed.

In addition to the language itself, this document describes a number of useful library modules that run in
CMU Common Lisp. Hemlock, an Emacs-like text editor, is included as an integral part of the CMU Common
Lisp environment. Two documents describe Hemlock: the Hemlock User's Manual, and the Hemlock Command
Implement's Manual.

1 . 2 L o c a l D i s t r i b u t i o n o f C M U C o m m o n L i s p

At CMU, you can get Common Lisp by running modmisc:

/usr /cs /e tc /modmisc - cs.misc.cmucl

This establishes Vusr /misc / .cmucl ' as a symbolic link to the release area. In your ' . l og in ' , add CMU CL
to your path:

se tpa th - i /us r /misc / . cmucl

1

CHAPTER 1. INTRODUCTION 2

Then run ' l i s p ' . Note that the first time you run Lisp, it will take AFS several minutes to copy the image into
its local cache. Subsequent starts will be much faster.

Or, you can run directly out of the AFS release area (which may be necessary on SunOS machines). Put this
in your ' . l og in ' shell script:

setenv CMUCLLIB M / a i s / c s / m i s c / c m u c l / C s y s / b e t a / l i b M

se tpa th - i / a i s / cs /misc /cmucl /Csys /be ta
After setting your path, 'man cmucl' will give an introduction to CMU CL and 'man l i s p ' will describe

command line options. For SunOS installation notes, see the 'README' file in the SunOS release area.
See Vusr /misc/ .cmucl /doc ' for release notes and documentation. Hardcopy documentation is available in

the document room. Documentation supplements may be available for recent additions: see the 'README' file.
Send bug reports and questions to 'cmucl-bugsCcs.cmu.edu'. If you send a bug report to ' g r ipe ' or 'help' ,

they will just forward it to this mailing list.

1.3 N e t D i s t r i b u t i o n of C M U C o m m o n Lisp
Externally, CMU Common Lisp is only available via anonymous FTP. We don't have the manpower to make
tapes. These are our distribution machines:

l i s p - r t 1 . s l i s p . c s . e m u . e d u (128.2.217.9)
l i s p - r t 2 . s l i s p . c s . e m u . e d u (128.2.217.10)
Log in with the user 'anonymous' and 'usernameChost' as password (i.e. your EMAIL address.) When you

log in, the current directory should be set to the CMU Common Lisp release area. If you have any trouble with
FTP access, please send mail to 'sl ispCcs.cmu.edu' .

The release area holds compressed tar files with names of the form:

version-machine ..os. t a r . Z
FTP compressed tar archives in binary mode. To extract, 'cd' to the directory that is to be the root of the tree,
then type:

uncompress < i i l e . t a r . Z I t a r xt - .
The resulting tree is about 23 megabytes. For installation directions, see the section "site initialization" in
README file at the root of the tree.

If poor network connections make it difficult to transfer a 10 meg file, the release is also available split into
five parts, with the suffix ' . 0 ' to ' . 4 ' . To extract from multiple files, use:

cat f i l e . t a r . Z . * I uncompress I t a r xi - .
The release area also contains source distributions and other binary distributions. A listing of the current

contents of the release area is in 'FILES'. Major release announcements will be made to comp. lang. l i sp until
there is enough volume to warrant a comp.lang.lisp.emu.

1.4 Source Avai labi l i ty
Lisp and documentation sources are available via anonymous FTP ftp to any CMU CS machine. All CMU
written code is public domain, but CMU CL also makes use of two imported packages: PCL and CLX. Although
these packages are copyrighted, they may be freely distributed without any licensing agreement or fee. See the
'README' file in the binary distribution for up-to-date source pointers.

The release area contains a source distribution, which is an image of all the ' . l i s p ' source files used to build
a particular system version:

version-s our c e . t a r . Z (3.6 meg)
All of our files (including the release area) are actually in the AFS file system. On the release machines, the

FTP server's home is the release directory: ' / a i s / c s . e m u . e d u / p r o j e c t / c l i s p / r e l e a s e ' . The actual working
source areas are in other subdirectories of ' c l i sp ' , and you can directly "cd" to those directories if you know the
name. Due to the way anonymous FTP access control is done, it is important to "cd" to the source directory
with a single command, and then do a "get" operation.

http://'cmucl-bugsCcs.cmu.edu'
http://'slispCcs.cmu.edu'

CHAPTER 1. INTRODUCTION 3

1.5 C o m m a n d Line Op t ions
The command line syntax and environment is described in the lisp(l) man page in the man/man 1 directory of
the distribution. See also cmucl(l). Currently Lisp accepts the following switches:
-core requires an argument that should be the name of a core file. Rather than using the default core file

(V u s r / m i s c / . l i s p / l i b / l i s p . c o r e ') , the specified core file is loaded.

- e d i t specifies to enter Hemlock. A file to edit may be specified by placing the name of the file between the
program name (usually ' l i sp ') and the first switch.

- eva l accepts one argument which should be a Lisp form to evaluate during the start up sequence. The value
of the form will not be printed unless it is wrapped in a form that does output.

- h i n i t accepts an argument that should be the name of the hemlock init file to load the first time the function
ed is invoked. The default is to load 'hemlock-ini t . object-type', or if that does not exist, 'heralock-
i n i t . l i s p ' from the user's home directory. If the file is not in the user's home directory, the full path
must be specified.

- i n i t accepts an argument that should be the name of an init file to load during the normal start up sequence.
The default is to load 'init.object-type' or, if that does not exist, ' i n i t . l i s p ' from the user's home
directory. If the file is not in the user's home directory, the full path must be specified.

- n o i n i t accepts no arguments and specifies that an init file should not be loaded during the normal start up
sequence. Also, this switch suppresses the loading of a hemlock init file when Hemlock is started up with
the - e d i t switch.

- load accepts an argument which should be the name of a file to load into Lisp before entering Lisp's read-eval-
print loop.

- s l ave specifies that Lisp should start up as a siave Lisp and try to connect to an editor Lisp. The
name of the editor to connect to must be specified — to find the editor's name, use the Hemlock
"Accept Slave Connections" command. The name for the editor Lisp is of the form:

machine-name: socket

where machine-name is the internet host name for the machine and socket is the decimal number of the
socket to connect to.

For more details on the use of the - e d i t and - s l ave switches, see the Hemlock User's Manual.
Arguments to the above switches can be specified in one of two ways: switch-value or switch<space>value.

For example, to start up the saved core file mylisp.core use either of the following two commands:

l i s p -core=mylisp.core
l i s p -core myl isp .core

1.6 C r e d i t s
Since 1981 many people have contributed to the development of CMU Common Lisp. The currently active
members are:

David Axmark
Miles Bader
Ted Dunning
Scott Fahlman * (f e a r l e s s l eader)
Mike Garland +
Paul Gleichauf *
Sean Hallgren +
Simon Leinen
William Lott *
Robert A. Maclachlan *
Tim Moore

CHAPTER 1. INTRODUCTION 4

Many people are voluntarily working on improving CMU Common Lisp. "*" means a full-time CMU employee,
and "+" means a part-time student employee. A partial listing of significant past contributors follows:

Rick Busdiecker
B i l l Chiles *
Chris Hoover +
John Kolojejchick
Todd Kauxmann +
Dave McDonald *
Skei Wholey *

This research was sponsored by the Defense Advanced Research Projects Agency, Information Science and
Technology Office, under the title Research on Parallel Computing issued by DARPA/CMO under Contract
MDA972-90-C-0035 ARPA Order No. 7330.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. government.

Chapter 2

Design Choices and Extensions

Several design choices in Common Lisp are left to the individual implementation, and some essential parts of
the programming environment are left undefined. This chapter discusses the most important design choices and
extensions.

2 . 1 D a t a T y p e s

2 . 1 . 1 S y m b o l s

As in Common Lisp: The Language, all symbols and package names are printed in lower case, as a user is likely
to type them. Internally, they are normally stored upper case only.

2 . 1 . 2 I n t e g e r s

The f ixnum type is equivalent to (s igned-byte 30). Integers outside this range are represented as a bignum or
a word integer (see section 5.10.6, page 80.) Almost all integers that appear in programs can be represented as
a f ixnum, so integer number consing is rare.

2 . 1 . 3 F l o a t s

CMU Common Lisp supports two floating point formats: s i n g l e - f l o a t and double- f loa t . These are im­
plemented with IEEE single and double float arithmetic, respectively, s h o r t - f l o a t is a synonym for s i n g l e -
f loa t , and long- f loa t is a synonym for double-f loa t . The initial value of *read-defaul t - f loa t - format*
is s i n g l e - f l o a t .

Both s i n g l e - f l o a t and double- f loa t are represented with a pointer descriptor, so float operations can cause
number consing. Number consing is greatly reduced if programs are written to allow the use of non-descriptor
representations (see section 5.10, page 76.)

2.1.3.1 IEEE Special Values

CMU Common Lisp supports the IEEE infinity and NaN special values. These non-numeric values will only be
generated when trapping is disabled for some floating point exception (see section 2.1.3.4, page 6), so users of
the default configuration need not concern themselves with special values.

e x t e n s i o n s : s h o r t - f l o a t - p o s i t i v e - i n f i n i t y
e x t e n s i o n s : s h o r t - f l o a t - n e g a t i v e - i n f i n i t y
e x t e n s i o n s : s i n g l e - f l o a t - p o s i t i v e - i n f i n i t y
e x t e n s i o n s : s i n g l e - f l o a t - n e g a t i v e - i n f i n i t y
e x t e n s i o n s : d o u b l e - f l o a t - p o s i t i v e - i n f i n i t y
ex t ens ions :doub le - f l oa t -nega t ive - in f in i t y

[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]

5

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 6

extensions : long-f loat-pos i t ive- inf i n i t y [Constant]
extensions: long- f loat -negat ive- inf in i ty [Constant]

The values of these constants are the IEEE positive and negative infinity objects for each float format.

extens ions : f loat - in f in i ty -p x [Function]
This function returns true if x is an IEEE float infinity (of either sign.) x must be a float.

extensions :float-nan-p x [Function]
extensions:float-trapping-nan-p x [Function]

f loat-nan-p returns true if x is an IEEE NaN (Not A Number) object, f loat-trapping-nan-p returns
true only if x is a trapping NaN. With either function, x must be a float.

2.1.3.2 Negative Zero

The IEEE float format provides for distinct positive and negative zeros. To test the sign on zero (or any other
float), use the Common Lisp f l oa t - s i gn function. Negative zero prints as -O.OfO or -O.OdO.

2.1.3.3 Denormalized Floats

CMU Common Lisp supports IEEE denormalized floats. Denormalized floats provide a mechanism for grad­
ual underflow. The Common Lisp f loat -prec i s ion function returns the actual precision of a denormalized
float, which will be less than f l o a t - d i g i t s . Note that in order to generate (or even print) denormalized
floats, trapping must be disabled for the underflow exception (see section 2.1.3.4, page 6.) The Common Lisp
least-posi t ive - format - f loat constants are denormalized.

extensions:float-normalized-p x [Function]
This function returns true if x is a denormalized float, x must be a float.

2.1.3.4 Floating Point Exceptions

The IEEE floating point standard defines several exceptions that occur when the result of a floating point
operation is unclear or undesirable. Exceptions can be ignored, in which case some default action is taken, such
as returning a special value. When trapping is enabled for an exception, a error is signalled whenever that
exception occurs. These are the possible floating point exceptions:

: underflow This exception occurs when the result of an operation is too small to be represented as a normal­
ized float in its format. If trapping is enabled, the floating-point-underflow condition is signalled.
Otherwise, the operation results in a denormalized float or zero.

: overflow This exception occurs when the result of an operation is too large to be represented as a float in
its format. If trapping is enabled, the f loating-point-overflow exception is signalled. Otherwise, the
operation results in the appropriate infinity.

."inexact This exception occurs when the result of a floating point operation is not exact, i.e. the result
was rounded. If trapping is enabled, the extensions:f loating-point- inexact condition is signalled.
Otherwise, the rounded result is returned.

: invalid This exception occurs when the result of an operation is ill-defined, such as (/ 0 . 0 0 . 0) . If trapping
is enabled, the extensions:f loat ing-point- inval id condition is signalled. Otherwise, a quiet NaN is
returned.

:divide-by-zero This exception occurs when a float is divided by zero. If trapping is enabled, the d i v i d e -
by-zero condition is signalled. Otherwise, the appropriate infinity is returned.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 7

2.1.3.5 Floa t ing Point Round ing Mode

IEEE floating point specifies four possible rounding modes:

-.nearest In this mode, the inexact results are rounded to the nearer of the two possible result values. If the
neither possibility is nearer, then the even alternative is chosen. This form of rounding is also called "round
to even", and is the form of rounding specified for the Common Lisp round function.

: p o s i t i v e - i n f i n i t y This mode rounds inexact results to the possible value closer to positive infinity. This is
analogous to the Common Lisp c e i l i n g function.

: n e g a t i v e - i n f i n i t y This mode rounds inexact results to the possible value closer to negative infinity. This is
analogous to the Common Lisp f loor function.

:zero This mode rounds inexact results to the possible value closer to zero. This is analogous to the Common
Lisp t r u n c a t e function.

Warn ing : Although the rounding mode can be changed with se t - f loa t ing-poin t -modes , use of any value
other than the default (:neares t) can cause unusual behavior, since it will affect rounding done by Common
Lisp system code as well as rounding in user code. In particular, the unary round function will stop doing
round-to-nearest on floats, and instead do the selected form of rounding.

2.1.3.6 Accessing t h e Float ing Point Modes

These functions can be used to modify or read the floating point modes:

ex tens ions : se t - f loa t ing-poin t -modes ftkey : t r aps :rounding-mode [Function]
:fast-mode :accrued-exceptions
:cur ren t -except ions

ex tens ions :ge t - f loa t ing-poin t -modes [Function]
The keyword arguments to se t - f loa t ing-poin t -modes set various modes controlling how floating point

arithmetic is done:

: t r a p s A list of the exception conditions that should cause traps. Possible exceptions are : underflow,
: overflow, : inexact , : i nva l id and : d ivide-by-zero. Initially all traps except : inexact are enabled.
See section 2.1.3.4, page 6.

:rounding-mode The rounding mode to use when the result is not exact. Possible values are :neares t ,
: p o s i t i v e - i n f i n i t y , : n e g a t i v e - i n f i n i t y and :zero. Initially, the rounding mode is :neares t . See
the warning in section 2.1.3.5 about use of other rounding modes.

. •current-exceptions, : accrued-exceptions Lists of exception keywords used to set the exception flags. The
current-exceptions are the exceptions for the previous operation, so setting it is not very useful. The
accrued-exceptions are a cumulative record of the exceptions that occurred since the last time these flags
were cleared. Specifying () will clear any accrued exceptions.

: fast-mode Set the hardware's "fast mode" flag, if any. When set, IEEE conformance or debuggability may be
impaired. Some machines may not have this feature, in which case the value is always n i l . No currently
supported machines have a fast mode.

If a keyword argument is not supplied, then the associated state is not changed.
ge t - f loa t ing-poin t -modes returns a list representing the state of the floating point modes. The list is in

the same format as the keyword arguments to se t - f loa t ing-poin t -modes , so apply could be used with s e t -
f loat ing-point-modes to restore the modes in effect at the time of the call to ge t - f loa t ing-point -modes .

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 8

2 . 1 . 4 C h a r a c t e r s
CMU Common Lisp implements characters according to Common Lisp: the Language II. The main difference
from the first version is that character bits and font have been eliminated, and the names of the types have been
changed, base-character is the new equivalent of the old string-char. In this implementation, all characters
are base characters (there are no extended characters.) Character codes range between 0 and 255, using the
ASCII encoding.

2 . 1 . 5 A r r a y I n i t i a l i z a t i o n

If no ' . in i t ia l -value is specified, arrays are initialized to zero.

2.2 Defaul t I n t e r r u p t s for Lisp
CMU Common Lisp has several interrupt handlers defined when it starts up, as follows:

SIGIHT (| c) causes Lisp to enter a break loop. This puts you into the debugger which allows you to look at the
current state of the computation. If you proceed from the break loop, the computation will proceed from
where it was interrupted.

SIGQUIT (|) causes Lisp to do a throw to the top-level. This causes the current computation to be aborted, and
control returned to the top-level read-eval-print loop.

SIGTSTP (| z) causes Lisp to suspend execution and return to the Unix shell. If control is returned to Lisp, the
computation will proceed from where it was interrupted.

SIGILL, SIGBUS, SIGSEGV, and SIGFPE cause Lisp to signal an error.

For keyboard interrupt signals, the standard interrupt character is in parentheses. Your ' . login' may set up
different interrupt characters. When a signal is generated, there may be some delay before it is processed since
Lisp cannot be interrupted safely in an arbitrary place. The computation will continue until a safe point is
reached and then the interrupt will be processed. See section 6.9.1, page 95 to define your own signal handlers.

2.3 Packages
When CMU Common Lisp is first started up, the default package is the user package. The user package uses
the common-lisp, extensions, and pel packages. The symbols exported from these three packages can be
referenced without package qualifiers. This section describes packages which have exported interfaces that may
concern users. The numerous internal packages which implement parts of the system are not described here.
Package nicknames are in parenthesis after the full name.

al ien, c - c a l l Export the features of the Alien foreign data structure facility (see section 8, page 105.)

pe l This package contains PCL (Portable CommonLoops), which is a portable implementation of CLOS (the
Common Lisp Object System.) This implements most (but not all) of the features in the CLOS chapter
of Common Lisp: The Language"!.

debug The debug package contains the command-line oriented debugger. It exports utility various functions and
switches.

debug-internals The debug-internals package exports the primitives used to write debuggers. See section
10, page 123.

extensions (ext) The extensions packages exports local extensions to Common Lisp that are documented in
this manual. Examples include the save - l i sp function and time parsing.

hemlock (ed) The hemlock package contains all the code to implement Hemlock commands. The hemlock
package currently exports no symbols.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 9

hemlock- internals (h i) The hemlock-internals package contains code that implements low level primitives
and exports those symbols used to write Hemlock commands.

keyword The keyword package contains keywords (e.g., : s t a r t) . All symbols in the keyword package are
exported and evaluate to themselves (i.e., the value of the symbol is the symbol itself).

p r o f i l e The p r o f i l e package exports a simple run-time profiling facility (see section 5.13, page 86).

common-lisp (c l l i s p) The common-lisp package exports all the symbols defined by Common Lisp: the Lan­
guage and only those symbols. Strictly portable Lisp code will depend only on the symbols exported from
the l i s p package.

unix, mach These packages export system call interfaces to generic BSD Unix and Mach (see section 6, page 90).

system (sys) The system package contains functions and information necessary for system interfacing. This
package is used by the l i s p package and exports several symbols that are necessary to interface to system
code.

common-lisp-user (user c l - u s e r) The common-lisp-user package is the default package and is where a user's
code and data is placed unless otherwise specified. This package exports no symbols.

x l i b The x l i b package contains the Common Lisp X interface (CLX) to the XI1 protocol. This is mostly Lisp
code with a couple of functions that are defined in C to connect to the server.

wire The wire package exports a remote procedure call facility (see section 9, page 117).

2.4 T h e E d i t o r
The ed function invokes the Hemlock editor which is described in Hemlock User's Manual and Hemlock Command
Implementor's Manual. Most users at CMU prefer to use Hemlock's slave Common Lisp mechanism which
provides an interactive buffer for the r e a d - e v a l - p r i n t loop and editor commands for evaluating and compiling
text from a buffer into the slave Common Lisp. Since the editor runs in the Common Lisp, using slaves keeps
users from trashing their editor by developing in the same Common Lisp with Hemlock.

2.5 G a r b a g e Col lect ion
CMU Common Lisp uses a stop-and-copy garbage collector that compacts the items in dynamic space every time
it runs. Most users cause the system to garbage collect (GC) frequently, long before space is exhausted. With
16 or 24 megabytes of memory, causing GC's more frequently on less garbage allows the system to GC without
much (if any) paging.

The following functions invoke the garbage collector or control whether automatic garbage collection is in
effect:

extensions :gc [Function]
This function runs the garbage collector. If ex t : *gc-verbose* is non-nil, then it invokes ext : *gc-notif y-

before* before GC'ing and ext : *gc-not i fy-af te r* afterwards.

extensions :gc-off [Function]
This function inhibits automatic garbage collection. After calling it, the system will not GC unless you call

extrgc or ext :gc-on.

ex tens ions : gc-on [Function]
This function reinstates automatic garbage collection. If the system would have GC'ed while automatic GC

was inhibited, then this will call ex t :gc .
The following variables control the behavior of the garbage collector:

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 10

ex tens ions : *bytes-consed-between-gcs* [Variable]
CMU Common Lisp automatically GC's whenever the amount of memory allocated to dynamic objects

exceeds the value of an internal variable. After each GC, the system sets this internal variable to the amount
of dynamic space in use at that point plus the value of the variable ext :*bytes-consed-between-gcs*. The
default value is 2000000.

ex tens ions : *gc-verbose* [Variable]
This variable controls whether ex t :gc invokes the functions in ext :*gc-not i fy-before* and ex t :*gc -

no t i fy -a f t e r* . If*gc-verbose* is n i l , extrgc foregoes printing any messages. The default value is T.

ex tens ions : *gc-not i f y-before* [Variable]
This variable's value is a function that should notify the user that the system is about to GC. It takes one

argument, the amount of dynamic space in use before the GC measured in bytes. The default value of this
variable is a function that prints a message similar to the following:

[GC th resho ld exceeded wi th 2,107,124 bytes in use. Commencing G C]

extens ions : *gc-no t i fy -a f te r* [Variable]
This variable's value is a function that should notify the user when a GC finishes. The function must take

three arguments, the amount of dynamic spaced retained by the GC, the amount of dynamic space freed, and
the new threshold which is the minimum amount of space in use before the next GC will occur. All values are
byte quantities. The default value of this variable is a function that prints a message similar to the following:

[GC comple ted wi th 25,680 bytes re ta ined and 2,096,808 bytes freed.]
[GC will nex t occur when at least 2,025,680 bytes are in use.]

Note that a garbage collection will not happen at exactly the new threshold printed by the default ex t : *gc-
no t i f y-af t e r * function. The system periodically checks whether this threshold has been exceeded, and only
then does a garbage collection.

ex tens ions : *gc - inh ib i t -hook* [Variable]
This variable's value is either a function of one argument or n i l . When the system has triggered an automatic

GC, if this variable is a function, then the system calls the function with the amount of dynamic space currently
in use (measured in bytes). If the function returns n i l , then the GC occurs; otherwise, the system inhibits
automatic GC as if you had called ext :gc-off . The writer of this hook is responsible for knowing when
automatic GC has been turned off and for calling or providing a way to call ex t : gc-on. The default value of
this variable is n i l .

ex tens ions : *bef ore-gc-hooks* [Variable]
extens ions : *af te r -gc-hooks* [Variable]

These variables' values are lists of functions to call before or after any GC occurs. The system provides these
purely for side-effect, and the functions take no arguments.

2.6 Descr ibe
In addition to the basic function described below, there are a number of switches and other things that can be
used to control desc r ibed behavior.

descr ibe object ^optional stream [Function]
The descr ibe function prints useful information about object on stream, which defaults to • s t andard-

output*. For any object, descr ibe will print out the type. Then it prints other information based on the type
of object. The types which are presently handled are:

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 11

hash-table describe prints the number of entries currently in the hash table and the number of buckets
currently allocated.

function describe prints a list of the function's name (if any) and its formal parameters. If the name has
function documentation, then it will be printed. If the function is compiled, then the file where it is defined
will be printed as well.

fixnum describe prints whether the integer is prime or not.

symbol The symbol's value, properties, and documentation are printed. If the symbol has a function definition,
then the function is described.

If there is anything interesting to be said about some component of the object, describe will invoke itself recur­
sively to describe that object. The level of recursion is indicated by indenting output.

extensions: *describe- level* [Variable]
The maximum level of recursive description allowed. Initially two.

extensions: *describe-indentation* [Variable]
The number of spaces to indent for each level of recursive description, initially three.

extensions: *describe-print- level* [Variable]
extensions: *describe-print-length* [Variable]

The values of *print- leve l* and *print-length* during description. Initially two and five.

2.7 T h e I n s p e c t o r
CMU Common Lisp has both a graphical inspector that uses X windows and a simple terminal-based inspector.

inspect ^optional object [Function]
Inspect calls the inspector on the optional argument object. If object is unsupplied, inspect immediately

returns n i l . Otherwise, the behavior of inspect depends on whether Lisp is running under X. When inspect is
eventually exited, it returns some selected Lisp object.

2 . 7 . 1 T h e W i n d o w i n g I n s p e c t o r

If X is available, inspect creates an X window and displays object in the window. While inspect is running
and the cursor is in the inspector's X window, mouse clicks and keyboard input have the following meaning:

Left When the left mouse button is clicked over a component object, that object will be inspected in the current
inspector window.

Middle When the middle mouse button is clicked over a component object, inspect is exited returning the
component as the result. All the new inspector windows are deleted.

Shift Middle When the shift key is depressed and the middle mouse button is clicked over a component object,
inspect exits and returns the component as the result. All the inspector windows are left displayed on
the screen.

Right When the right mouse button is clicked over a component object, that object will be inspected in a new
inspector window.

d, D When either d or D is typed, the current window is deleted. If there are no more windows, then inspect
exits and returns the original object.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 12

h, H, ? When any of h, H, or ? are typed while in an inspector window, a new window with help information
is displayed.

m, M When either m or M is typed, a component object may be modified. The cursor changes to an arrow
with an M beside it. Clicking any mouse button while the mouse is over a component will select that
component as the destination for modification. If m was typed, the source object is also selected by the
mouse which is indicated by an S beside the arrow in the cursor. If M was typed, the source object will be
prompted for on the * query-io* stream. The source object replaces the destination object. While choosing
the destination or source with the mouse, the operation can be aborted by type q or Q.

q, Q When either q or Q is typed, inspect exits and returns the original object. All new inspector windows
are deleted.

p, P When either p or P is typed, inspect exits and returns the original object. All the inspector windows are
left on the screen.

r, R When either r or R is typed, the current inspector display is recomputed. This is necessary to maintain a
consistent display for an object that may have changed since the display was originally computed.

u , U When either u or U is typed, the object of which the current object is a component is displayed. This is
the inverse operation to clicking the left mouse button over a component object. If the window is currently
displaying the top level object, nothing changes.

When the cursor is over a component object, the object is highlighted with a surrounding box.

2 . 7 . 2 T h e T T Y I n s p e c t o r

If X is unavailable, a terminal inspector is invoked. The TTY inspector is a crude interface to describe which
allows objects to be traversed and maintains a history. This inspector prints information about and object and a
numbered list of the components of the object. The command-line based interface is a normal read -eva l -pr in t
loop, but an integer n descends into the n'th component of the current object, and symbols with these special
names are interpreted as commands:

U Move back to the enclosing object. As you descend into the components of an object, a stack of all the objects
previously seen is kept. This command pops you up one level of this stack.

Q, E Return the current object from inspect.

R Recompute object display, and print again. Useful if the object may have changed.

D Display again without recomputing.

H, ? Show help message.

2.8 Load

load filename kkey : verbose :print : i f -does -not -ex i s t [Function]
:if-source-newer :contents

As in standard Common Lisp, this function loads a file containing source or object code into the running Lisp.
Several CMU extensions have been made to load to conveniently support a variety of program file organizations.
filename may be a wildcard pathname such as ' * . l i s p \ in which case all matching files are loaded.

If filename has a pathname-type (or extension), then that exact file is loaded. If the file has no extension,
then this tells load to use a heuristic to load the "right" file. The *load-source-types* and • load -ob jec t -
types* variables below are used to determine the default source and object file types. If only the source or the
object file exists (but not both), then that file is quietly loaded. Similarly, if both the source and object file exist,
and the object file is newer than the source file, then the object file is loaded. The value of the if-source-newer
argument is used to determine what action to take when both the source and object files exist, but the object
file is out of date:

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 13

:load-object The object file is loaded even though the source file is newer.

:load-source The source file is loaded instead of the older object file,

-.compile The source file is compiled and then the new object file is loaded.

:query The user is asked a yes or no question to determine whether the source or object file is loaded.

This argument defaults to the value of ext :*load- i f -source-newer* (initially : load-object .)
The contents argument can be used to override the heuristic (based on the file extension) that normally

determines whether to load the file as a source file or an object file. If non-null, this argument must be either
: source or :binary, which forces loading in source and binary mode, respectively. You really shouldn't ever
need to use this argument.

ex tens ions : * load-source- types* [Variable]
extens ions : * load-objec t - types* [Variable]

These variables are lists of possible pathname-type values for source and object files to be passed to load.
These variables are only used when the file passed to load has no type; in this case, the possible source and
object types are used to default the type in order to determine the names of the source and object files.

ex tens ions : *load-if-source-newer* [Variable]
This variable determines the default value of the if-source-newer argument to load. Its initial value is

: load-objec t .

2.9 T h e R e a d e r

extens ions : * ignore-ex t ra -c lose-paren theses* [Variable]
If this variable is t (the default), then the reader merely prints a warning when an extra close parenthesis is

detected (instead of signalling an error.)

2.10 R u n n i n g P r o g r a m s from Lisp
It is possible to run programs from Lisp by using the following function.

ex tens ions : run-program program args ftkey : env :wait :pty : input [Function]
: i i - i n p u t - d o e s - n o t - e x i s t
:output . . .

Run-program runs program in a child process. Program should be a pathname or string naming the program.
Args should be a list of strings which this passes to program as normal Unix parameters. For no arguments,
specify args as n i l . The value returned is either a process structure or n i l . The process interface follows the
description of run-program. If run-program fails to fork the child process, it returns n i l .

Except for sharing file descriptors as explained in keyword argument descriptions, run-program closes all file
descriptors in the child process before running the program. When you are done using a process, call p rocess -
c lose to reclaim system resources. You only need to do this when you supply : stream for one of : input,
:output, or : e r ror , or you supply :pty non-nil. You can call p rocess -c lose regardless of whether you must
to reclaim resources without penalty if you feel safer.

run-program accepts the following keyword arguments:

:env This is an a-list mapping keywords and simple-strings. The default is ex t : *environment- l is t*. If :env
is specified, run-program uses the value given and does not combine the environment passed to Lisp with
the one specified.

:wait If non-nil (the default), wait until the child process terminates. If n i l , continue running Lisp while the
child process runs.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 14

:pty This should be one of t , n i l , or a stream. If specified non-nil, the subprocess executes under a Unix
PTY. If specified as a stream, the system collects all output to this pty and writes it to this stream. If
specified as t , the process-pty slot contains a stream from which you can read the program's output and
to which you can write input for the program. The default is n i l .

: input This specifies how the program gets its input. If specified as a string, it is the name of a file that contains
input for the child process, run-program opens the file as standard input. If specified as n i l (the default),
then standard input is the file Vdev/null'. If specified as t , the program uses the current standard input.
This may cause some confusion if :wait is n i l since two processes may use the terminal at the same time.
If specified as : stream, then the process-input slot contains an output stream. Anything written to this
stream goes to the program as input. .Input may also be an input stream that already contains all the
input for the process. In this case run-program reads all the input from this stream before returning, so
this cannot be used to interact with the process.

: i f - input-does-not -ex is t This specifies what to do if the input file does not exist. The following values are
valid: n i l (the default) causes run-program to return n i l without doing anything; : create creates the
named file; and : error signals an error.

: output This specifies what happens with the program's output. If specified as a pathname, it is the name of
a file that contains output the program writes to its standard output. If specified as n i l (the default), all
output goes to Vdev/null'. If specified as t , the program writes to the Lisp process's standard output.
This may cause confusion if :wait is n i l since two processes may write to the terminal at the same time.
If specified as : stream, then the process-output slot contains an input stream from which you can read
the program's output.

: i f -output -ex i s t s This specifies what to do if the output file already exists. The following values are valid:
n i l causes run-program to return n i l without doing anything; : error (the default) signals an error;
: supersede overwrites the current file; and : append appends all output to the file.

: error This is similar to :output, except the file becomes the program's standard error. Additionally, : e r ro r
can be :output in which case the program's error output is routed to the same place specified for : output.
If specified as : stream, the process-error contains a stream similar to the process-output slot when
specifying the : output argument.

: i f - e r r o r - e x i s t s This specifies what to do if the error output file already exists. It accepts the same values
as : i f - ou tput - ex i s t s .

: status-hook This specifies a function to call whenever the process changes status. This is especially useful
when specifying :wait as n i l . The function takes the process as a required argument.

:bef ore-execve This specifies a function to run in the child process before it becomes the program to run. This
is useful for actions such as authenticating the child process without modifying the parent Lisp process.

2 . 1 0 . 1 P r o c e s s A c c e s s o r s

The following functions interface the process returned by run-program:

extensions :process-p thing [Function]
This function returns t if thing is a process. Otherwise it returns n i l

extensions :process-pid process [Function]
This function returns the process ID, an integer, for the process.

extensions: process-status process [Function]
This function returns the current status of process, which is one of :running, :stopped, -.exited, or

:signaled.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 15

extensions: process-exit-code process [Function]
This function returns either the exit code for process, if it is : exited, or the termination signal process if it

is : signaled. The result is undefined for processes that are still alive.

extensions: process-core-dumped process [Function]
This function returns t if someone used a Unix signal to terminate the process and caused it to dump a Unix

core image.

extensions: process-pty process [Function]
This function returns either the two-way stream connected to process's Unix PTY connection or n i l if there

is none.

extensions: process-input process [Function]
extensions: process-output process [Function]
extensions: process-error process [Function]

If the corresponding stream was created, these functions return the input, output or error file descriptor, n i l
is returned if there is no stream.

extensions: process-status-hook process [Function]
This function returns the current function to call whenever process's status changes. This function takes the

process as a required argument, process-status-hook is set! 'able.

extensions :process-pl i s t process [Function]
This function returns annotations supplied by users, and it is setf 'able. This is available solely for users to

associate information with process without having to build a-lists or hash tables of process structures.

extensions:process-wait process ^optional check-for-stopped [Function]
This function waits for process to finish. If check-for-stopped is non-nil, this also returns when process stops.

extens ions:process-ki l l process signal ^optional whom [Function]
This function sends the Unix signal to process. Signal should be the number of the signal or a keyword with

the Unix name (for example, isigsegv). Whom should be one of the following:

:pid This is the default, and it indicates sending the signal to process only.

:process-group This indicates sending the signal to process's group.

:pty-process-group This indicates sending the signal to the process group currently in the foreground on the
Unix PTY connected to process. This last option is useful if the running program is a shell, and you wish
to signal the program running under the shell, not the shell itself. If process-pty of process is n i l , using
this option is an error.

extensions :process-al ive-p process [Function]
This function returns t if process's status is either : running or : stopped.

extensions:process-close process
This function closes all the streams associated with process.

reclaim system resources.

[Function]
When you are done using a process, call this to

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 16

2 . 1 1 S a v i n g a C o r e I m a g e

A mechanism has been provided to save a running Lisp core image and to later restore it. This is convenient if
you don't want to load several files into a Lisp when you first start it up. The main problem is the large size of
each saved Lisp image, typically at least 20 megabytes.

extens ions:save- l i sp file ftkey :purify :root-structures : in i t - funct ion [Function]
: l o a d - i n i t - f i l e :print-heraid
:process-command-line

The save - l i sp function saves the state of the currently running Lisp core image in file. The keyword
arguments have the following meaning:

:purify If non-NIL (the default), the core image is purified before it is saved. This means moving accessible Lisp
objects from dynamic space into read-only and static space. This reduces the amount of work the garbage
collector must do when the resulting core image is being run. Also, if more than one Lisp is running on
the same machine, this maximizes the amount of memory that can be shared between the two processes.
Objects in read-only and static space can never be reclaimed, even if all pointers to them are dropped.

.•root-structures This should be a list of the main entry points for the resulting core image. The purification
process tries to localize symbols, functions, etc., in the core image so that paging performance is improved.
The default value is NIL which means that Lisp objects will still be localized but probably not as optimally
as they could be. This argument has no meaning if :purify is NIL.

: i n i t - f unction This is a function which is called when the saved core is resumed. The default function simply
aborts to the top-level read-eval-print loop. If the function returns, it will be the value of save- l i sp .

: l o a d - i n i t - f i l e If non-NIL, then load an init file; either the one specified on the command line or
"' i n i t . 'fasi- type", or, if " * i n i t . 'fasi- type" does not exist, i n i t . l i s p from the user's home directory.
If the init file is found, it is loaded into the resumed core file before the read-eval-print loop is entered.

: print -herald If non-NIL, then print out the standard Lisp herald when starting.

: process-command-line If non-NIL, processes the command line switches and performs the appropriate actions.

To resume a saved file, type:

l i s p -core f i l e

2 . 1 2 S e a r c h L i s t s

Search lists are an extension to Common Lisp pathnames. Search lists are used for two purposes:

• They provide a convenient shorthand for commonly used directory names, and

• They allow the abstract (directory structure independent) specification of file locations in program path­
name constants (similar to logical pathnames.)

Each search list has an associated list of directories (represented as pathnames with no name or type component.)
The namestring for any relative pathname may be prefixed with "slist:", indicating that the pathname is relative
to the search list slist (instead of to the current working directory.) Once qualified with a search list, the pathname
is no longer considered to be relative.

When a search list qualified pathname is passed to a file-system operation such as open, load or truename,
each directory in the search list is successively used as the root of the pathname until the file is located. When
a file is written to a search list directory, the file is always written to the first directory in the list.

extensions: s earch- l i s t name [Function]
This function returns the list of directories associated with the search list name. If name is not a defined

search list, then an error is signalled. When set with setf , the list of directories is changed to the new value. If

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 17

the new value is just a namestring or pathname, then it is interpreted as a one-element list. Note that (unlike
Unix pathnames), search list names are case-insensitive.

s e a r c h - l i s t - d e f i n e d - p returns t if name is a defined search list name, n i l otherwise, c l e a r - s e a r c h - l i s t
make the search list name undefined.

This macro provides an interface to search list resolution. The body forms are executed with var bound to
each successive possible expansion for name. If name does not contain a search-list, then the body is executed
exactly once. Everything is wrapped in a block named n i l , so r e t u r n can be used to terminate early. The result
form (default n i l) is evaluated to determine the result of the iteration.

2 . 1 2 . 1 S e a r c h L i s t E x a m p l e

The search list code: can be defined as follows:

(s e t ! (e x t : s e a r c h - l i s t "code:") ' (" / u s r / l i s p / c o d e / "))

It is now possible to use code: as an abbreviation for the directory V u s r / l i s p / c o d e / ' in all file operations. For
example, you can now specify c o d e : e v a l . l i s p to refer to the file V u s r / l i s p / c o d e / e v a l . l i s p ' .

To obtain the value of a search-list name, use the function search-list as follows:

(e x t : s e a r c h - l i s t name)

Where name is the name of a search list as described above. For example, calling ext : s e a r c h - l i s t on code:
as follows:

(e x t : s e a r c h - l i s t "code:")

returns the list (" / u s r / l i s p / c o d e / ") .

2.13 T i m e Pa r s ing and F o r m a t t i n g
Functions are provided to allow parsing strings containing time information and printing time in various formats
are available.

ex tens ions :parse- t ime time-string ftkey : error-on-mismatch :defaul t -seconds [Function]
:defaul t -minutes :defaul t -hours
:defaul t -day . . .

parse- t ime accepts a string containing a time (e.g., "Jan 12, 1952") and returns the universal time if it is
successful. If it is unsuccessful and the keyword argument : error-on-mismatch is non-nil, it signals an error.
Otherwise it returns n i l . The other keyword arguments have the following meaning:

•.default-seconds specifies the default value for the seconds value if one is not provided by time-string. The
default value is 0.

: defaul t -minutes specifies the default value for the minutes value if one is not provided by time-string. The
default value is 0.

: defau l t -hours specifies the default value for the hours value if one is not provided by time-string. The default

: defaul t -day specifies the default value for the day value if one is not provided by time-string. The default
value is the current day.

e x t e n s i o n s : s e a r c h - l i s t - d e f i n e d - p name
e x t e n s i o n s : c l e a r - s e a r c h - l i s t name

[Function]
[Function]

ex tens ions :enumera te - sea rch- l i s t (var pathname [result]) {form}* [Macro]

value is 0.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 18

: default-month specifies the default value for the month value if one is not provided by time-string. The default
value is the current month.

: de fau l t -yea r specifies the default value for the year value if one is not provided by time-string. The default
value is the current year.

: defaul t -zone specifies the default value for the time zone value if one is not provided by time-string. The
default value is the current time zone.

: default-weekday specifies the default value for the day of the week if one is not provided by time-string. The
default value is the current day of the week.

Any of the above keywords can be given the value : current which means to use the current value as determined
by a call to the operating system.

ex tens ions : format-universa l - t ime dest universal-time Jfckey :timezone [Function]
: s t y l e : d a t e - f i r s t
:p r in t - seconds . . .

extensions:format-decoded-time dest seconds minutes hours day month year &key ... [Function]
format-universa l - t ime formats the time specified by universal-time, f ormat-decoded-time formats the

time specified by seconds, minutes, hours, day, month, and year. Dest is any destination accepted by the format
function. The keyword arguments have the following meaning:

:timezone is an integer specifying the hours west of Greenwich. .Timezone defaults to the current time zone.

: s t y l e specifies the style to use in formatting the time. The legal values are:

: shor t specifies to use a numeric date.

: long specifies to format months and weekdays as words instead of numbers,
a b b r e v i a t e d is similar to long except the words are abbreviated.
: government is similar to abbreviated, except the date is of the form "day month year" instead of "month

day, year".

: d a t e - f i r s t if non-nil (default) will place the date first. Otherwise, the time is placed first.

: p r in t - seconds if non-nil (default) will format the seconds as part of the time. Otherwise, the seconds will
be omitted.

: p r i n t -meridian if non-nil (default) will format "AM" or "PM" as part of the time. Otherwise, the "AM"
or "PM" will be omitted.

:pr in t - t imezone if non-nil (default) will format the time zone as part of the time. Otherwise, the time zone
will be omitted.

:p r in t - seconds if non-nil (default) will format the seconds as part of the time. Otherwise, the seconds will
be omitted.

: print-weekday if non-nil (default) will format the weekday as part of date. Otherwise, the weekday will be
omitted.

2.14 Lisp L ib ra ry
The CMU Common Lisp project maintains a collection of useful or interesting programs written by users of our
system. The library is in ' l i b / c o n t r i b / ' . Two files there that users should read are:

CATALOG.TXT This file contains a page for each entry in the library. It contains information such as the
author, portability or dependency issues, how to load the entry, etc.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 19

READ-ME.TXT This file describes the library's organization and all the possible pieces of information an
entry's catalog description could contain.

Hemlock has a command Library Entry that displays a list of the current library entries in an editor buffer.
There are mode specific commands that display catalog descriptions and load entries. This is a simple and
convenient way to browse the library.

Chapter 3

The Debugger

By Robert MacLachlan

3.1 Debugge r I n t r o d u c t i o n
The CMU Common Lisp debugger is unique in its level of support for source-level debugging of compiled code.
Although some other debuggers allow access of variables by name, this seems to be the first Common Lisp
debugger that:

• Tells you when a variable doesn't have a value because it hasn't been initialized yet or has already been
deallocated, or

• Can display the precise source location corresponding to a code location in the debugged program.

These features allow the debugging of compiled code to be made almost indistinguishable from interpreted code
debugging.

The debugger is an interactive command loop that allows a user to examine the function call stack. The
debugger is invoked when:

• A se r ious -cond i t ion is signalled, and it is not handled, or

• e r r o r is called, and the condition it signals is not handled, or

• The debugger is explicitly invoked with the Common Lisp break or debug functions.

When you enter the debugger, it looks something like this:

Error in funct ion CAR.
Wrong type argument, 3 , should have been of type LIST.

R e s t a r t s :
0: Return t o Top-Level.

Debug (type H for help)

(CAR 3)
0]

The first group of lines describe what the error was that put us in the debugger. In this case car was called
on 3. After R e s t a r t s : is a list of all the ways that we can restart execution after this error. In this case, the
only option is to return to top-level. After printing its banner, the debugger prints the current frame and the
debugger prompt.

20

CHAPTER 3. THE DEBUGGER 21

3*2 T h e C o m m a n d Loop
The debugger is an interactive read-eval-print loop much like the normal top-level, but some symbols are inter­
preted as debugger commands instead of being evaluated. A debugger command starts with the symbol name
of the command, possibly followed by some arguments on the same line. Some commands prompt for additional
input. Debugger commands can be abbreviated by any unambiguous prefix: help can be typed as h, he, etc.
For convenience, some commands have ambiguous one-letter abbreviations: f for frame.

The package is not significant in debugger commands; any symbol with the name of a debugger command
will work. If you want to show the value of a variable that happens also to be the name of a debugger command,
you can use the l i s t - l o c a l s command or the debug: var function, or you can wrap the variable in a progn to
hide it from the command loop.

The debugger prompt is "frame]", where frame is the number of the current frame. Frames are numbered
starting from zero at the top (most recent call), increasing down to the bottom. The current frame is the frame
that commands refer to. The current frame also provides the lexical environment for evaluation of non-command
forms.

The debugger evaluates forms in the lexical environment of the functions being debugged. The debugger
can only access variables. You can't go or return-from into a function, and you can't call local functions.
Special variable references are evaluated with their current value (the innermost binding around the debugger
invocation) — you don't get the value that the special had in the current frame. See section 3.4, page 24 for
more information on debugger variable access.

3.3 Stack F rames
A stack frame is the run-time representation of a call to a function; the frame stores the state that a function
needs to remember what it is doing. Frames have:

• Variables (see section 3.4, page 24), which are the values being operated on, and

• Arguments to the call (which are really just particularly interesting variables), and

• A current location (see section 3.5, page 25), which is the place in the program where the function was
running when it stopped to call another function, or because of an interrupt or error.

3 . 3 . 1 S t a c k M o t i o n

These commands move to a new stack frame and print the name of the function and the values of its arguments
in the style of a Lisp function call:

up Move up to the next higher frame. More recent function calls are considered to be higher on the stack,

down Move down to the next lower frame,

top Move to the highest frame,

bottom Move to the lowest frame.

frame [n] Move to the frame with the specified number. Prompts for the number if not supplied.

3 . 3 . 2 H o w A r g u m e n t s are P r i n t e d

A frame is printed to look like a function call, but with the actual argument values in the argument positions.
So the frame for this call in the source:

(myfun (+ 3 4) ' a)

would look like this:

(MYFUN 7 A)

CHAPTER 3. THE DEBUGGER 22

All keyword and optional arguments are displayed with their actual values; if the corresponding argument was
not supplied, the value will be the default. So this call:

(subseq "too" 1)

would look like this:

(SUBSEQ "foo" 1 3)

And this call:

(s t r ing -upcase " t e s t case")

would look like this:

(STRIIG-UPCASE " t e s t case" :START 0 :EHD MIL)

The arguments to a function call are displayed by accessing the argument variables. Although those variables
are initialized to the actual argument values, they can be set inside the function; in this case the new value will
be displayed.

teest arguments are handled somewhat differently. The value of the rest argument variable is displayed as
the spread-out arguments to the call, so:

(format t "~A i s a ""A." "This" ' t e s t)

would look like this:

(FORMAT T "~A i s a "A." "This" 'TEST)

Rest arguments cause an exception to the normal display of keyword arguments in functions that have both
ftrest and Jkkey arguments. In this case, the keyword argument variables are not displayed at all; the rest arg
is displayed instead. So for these functions, only the keywords actually supplied will be shown, and the values
displayed will be the argument values, not values of the (possibly modified) variables.

If the variable for an argument is never referenced by the function, it will be deleted. The variable value is
then unavailable, so the debugger prints <unused-arg> instead of the value. Similarly, if for any of a number
of reasons (described in more detail in section 3.4) the value of the variable is unavailable or not known to be
available, then <unavailable-arg> will be printed instead of the argument value.

Printing of argument values is controlled by *debug-pr in t - leve l* and *debug-pr int - length* (page 32).

3 . 3 . 3 F u n c t i o n N a m e s

If a function is defined by defun, l a b e l s , or tlet, then the debugger will print the actual function name after
the open parenthesis, like:

(STRING-UPCASE " t e s t case" :START 0 :END NIL)
((SETF AREF) # \ a "for" 1)

Otherwise, the function name is a string, and will be printed in quotes:

("DEFUN MYFUN" BAR)
("DEFMACRO DO" (DO ((I 0 (1+ I))) ((= I 13))) NIL)
("SETQ *GC-NOTIFY-BEFORE*")

This string name is derived from the def mumble form that encloses or expanded into the lambda, or the
outermost enclosing form if there is no def mumble.

CHAPTER 3. THE DEBUGGER 23

3 . 3 . 4 F u n n y F r a m e s

Sometimes the evaluator introduces new functions that are used to implement a user function, but are not directly
specified in the source. The main place this is done is for checking argument type and syntax. Usually these
functions do their thing and then go away, and thus are not seen on the stack in the debugger. But when you
get some sort of error during lambda-list processing, you end up in the debugger on one of these funny frames.

These funny frames are flagged by printing "[keyword]" after the parentheses. For example, this call:

(car ' a »b)

will look like this:

(CAR 2 A) [:EXTERNAL]

And this call:

(s t r ing-upcase " t e s t case" :end)

would look like this:

("DEFUN STRING-UPCASE" " t e s t case" 335544424 1) [:OPTIONAL]

As you can see, these frames have only a vague resemblance to the original call. Fortunately, the error
message displayed when you enter the debugger will usually tell you what problem is (in these cases, too many
arguments and odd keyword arguments.) Also, if you go down the stack to the frame for the calling function,
you can display the original source (see section 3.5, page 25.)

With recursive or block compiled functions (see section 5.7, page 69), an : EXTERNAL frame may appear
before the frame representing the first call to the recursive function or entry to the compiled block. This is a
consequence of the way the compiler does block compilation: there is nothing odd with your program. You will
also see : CLEANUP frames during the execution of unwind-protect cleanup code. Note that inline expansion and
open-coding affect what frames are present in the debugger, see sections 3.6 and 4.8.

3 . 3 . 5 D e b u g T a i l R e c u r s i o n

Both the compiler and the interpreter are "properly tail recursive." If a function call is in a tail-recursive
position, the stack frame will be deallocated at the time of the call, rather than after the call returns. Consider
this backtrace:

(BAR . . .)
(FOO . . .)

Because of tail recursion, it is not necessarily the case that FOO directly called BAR. It may be that FOO called
some other function F002 which then called BAR tail-recursively, as in this example:

(defun foo ()

(foo2 . . .)
. . .)

(defun foo2 (. . .)

(bar . . .))

(defun bar (. . .)
. . .)

Usually the elimination of tail-recursive frames makes debugging more pleasant, since theses frames are mostly
uninformative. If there is any doubt about how one function called another, it can usually be eliminated by
finding the source location in the calling frame (section 3.5.)

For a more thorough discussion of tail recursion, see section 5.5, page 65.

CHAPTER 3. THE DEBUGGER 24

3 . 3 . 6 U n k n o w n L o c a t i o n s a n d I n t e r r u p t s

The debugger operates using special debugging information attached to the compiled code. This debug infor­
mation tells the debugger what it needs to know about the locations in the code where the debugger can be
invoked. If the debugger somehow encounters a location not described in the debug information, then it is said
to be unknown. If the code location for a frame is unknown, then some variables may be inaccessible, and the
source location cannot be precisely displayed.

There are three reasons why a code location could be unknown:

• There is inadequate debug information due to the value of the debug optimization quality. See section 3.6,
page 27.

• The debugger was entered because of an interrupt such as ~C.

• A hardware error such as "bus error" occurred in code that was compiled unsafely due to the value of
the safety optimization quality. See section 4.7.1, page 46.

In the last two cases, the values of argument variables are accessible, but may be incorrect. See section 3.4.1,
page 25 for more details on when variable values are accessible.

It is possible for an interrupt to happen when a function call or return is in progress. The debugger may
then flame out with some obscure error or insist that the bottom of the stack has been reached, when the real
problem is that the current stack frame can't be located. If this happens, return from the interrupt and try
again.

When running interpreted code, all locations should be known. However, an interrupt might catch some
subfunction of the interpreter at an unknown location. In this case, you should be able to go up the stack a
frame or two and reach an interpreted frame which can be debugged.

3 . 4 V a r i a b l e A c c e s s

There are three ways to access the current frame's local variables in the debugger. The simplest is to type the
variable's name into the debugger's read-eval-print loop. The debugger will evaluate the variable reference as
though it had appeared inside that frame.

The debugger doesn't really understand lexical scoping; it has just one namespace for all the variables in
a function. If a symbol is the name of multiple variables in the same function, then the reference appears
ambiguous, even though lexical scoping specifies which value is visible at any given source location. If the scopes
of the two variables are not nested, then the debugger can resolve the ambiguity by observing that only one
variable is accessible.

When there are ambiguous variables, the evaluator assigns each one a small integer identifier. The debug: var
function and the l i s t - l o c a l s command use this identifier to distinguish between ambiguous variables:

l i s t - l o c a l s [prefix]
This command prints the name and value of all variables in the current frame whose name has the specified
prefix, prefix may be a string or a symbol. If no prefix is given, then all available variables are printed. If
a variable has a potentially ambiguous name, then the name is printed with a "^identifier" suffix, where
identifier is the small integer used to make the name unique.

debug:var name ^optional identifier [Function]
This function returns the value of the variable in the current frame with the specified name. If supplied,

identifier determines which value to return when there are ambiguous variables.
When name is a symbol, it is interpreted as the symbol name of the variable, i.e. the package is significant.

If name is an uninterned symbol (gensym), then return the value of the uninterned variable with the same name.
If name is a string, debug: var interprets it as the prefix of a variable name, and must unambiguously complete
to the name of a valid variable.

This function is useful mainly for accessing the value of uninterned or ambiguous variables, since most
variables can be evaluated directly.

CHAPTER 3. THE DEBUGGER 25

3 . 4 . 1 V a r i a b l e V a l u e A v a i l a b i l i t y

The value of a variable may be unavailable to the debugger in portions of the program where Common Lisp says
that the variable is defined. If a variable value is not available, the debugger will not let you read or write that
variable. With one exception, the debugger will never display an incorrect value for a variable. Rather than
displaying incorrect values, the debugger tells you the value is unavailable.

The one exception is this: if you interrupt (e.g., with ~C) or if there is an unexpected hardware error such
as "bus e r r o r " (which should only happen in unsafe code), then the values displayed for arguments to the
interrupted frame might be incorrect.1 This exception applies only to the interrupted frame: any frame farther
down the stack will be fine.

The value of a variable may be unavailable for these reasons:

• The value of the debug optimization quality may have omitted debug information needed to determine
whether the variable is available. Unless a variable is an argument, its value will only be available when
debug is at least 2.

• The compiler did lifetime analysis and determined that the value was no longer needed, even though its
scope had not been exited. Lifetime analysis is inhibited when the debug optimization quality is 3.

• The variable's name is an uninterned symbol (gensym). To save space, the compiler only dumps debug
information about uninterned variables when the debug optimization quality is 3.

• The frame's location is unknown (see section 3.3.6, page 24) because the debugger was entered due to an
interrupt or unexpected hardware error. Under these conditions the values of arguments will be available,
but might be incorrect. This is the exception above.

• The variable was optimized out of existence. Variables with no reads are always optimized away, even
in the interpreter. The degree to which the compiler deletes variables will depend on the value of the
compile-speed optimization quality, but most source-level optimizations are done under all compilation
policies.

Since it is especially useful to be able to get the arguments to a function, argument variables are treated
specially when the speed optimization quality is less than 3 and the debug quality is at least 1. With this
compilation policy, the values of argument variables are almost always available everywhere in the function, even
at unknown locations. For non-argument variables, debug must be at least 2 for values to be available, and even
then, values are only available at known locations.

3 . 4 . 2 N o t e O n L e x i c a l V a r i a b l e A c c e s s

When the debugger command loop establishes variable bindings for available variables, these variable bindings
have lexical scope and dynamic extent. 2 You can close over them, but such closures can't be used as upward
fun args.

You can also set local variables using setq, but if the variable was closed over in the original source and
never set, then setting the variable in the debugger may not change the value in all the functions the variable is
defined in. Another risk of setting variables is that you may assign a value of a type that the compiler proved
the variable could never take on. This may result in bad things happening.

3.5 Source Loca t ion P r i n t i n g
One of CMU Common Lisp's unique capabilities is source level debugging of compiled code. These commands
display the source location for the current frame:

source [context]
This command displays the file that the current frame's function was defined from (if it was defined from a
file), and then the source form responsible for generating the code that the current frame was executing. If
context is specified, then it is an integer specifying the number of enclosing levels of list structure to print.

1 Since the location of an interrupt or hardware error wiU always be an unknown location (see section 3.3.6, page 24), non-argument
variable values wiU never be available in the interrupted frame.

2The variable bindings are actually created using the Common Lisp symbol-macro-let special form.

CHAPTER 3. THE DEBUGGER 26

vsource [context]
This command is identical to source, except that it uses the global values of * p r i n t - l e v e l * and • p r i n t -
length* instead of the debugger printing control variables *debug-pr in t - leve l* and *debug-pr int-
length*.

The source form for a location in the code is the innermost list present in the original source that encloses
the form responsible for generating that code. If the actual source form is not a list, then some enclosing list
will be printed. For example, if the source form was a reference to the variable *some-random-special*, then
the innermost enclosing evaluated form will be printed. Here are some possible enclosing forms:

(l e t ((a *some-random-special*))
. . .)

(+ *some-random-special* . . .)

If the code at a location was generated from the expansion of a macro or a source-level compiler opti­
mization, then the form in the original source that expanded into that code will be printed. Suppose the file
7usr/me/mystuff . l isp ' looked like this:

(defmacro mymac ()
'(myfun))

(defun foo ()
(mymac)
. . .)

If foo has called myfun, and is waiting for it to return, then the source command would print:

; F i l e : / u s r /me /mys tu f f . l i sp

(MYMAC)

Note that the macro use was printed, not the actual function call form, (myfun).
If enclosing source is printed by giving an argument to source or vsource, then the actual source form is

marked by wrapping it in a list whose first element is #: ***HERE***. In the previous example, source 1 would
print:

; F i l e : / u s r /me /mys tu f f . l i sp

(DEFUM FOO ()
(#:***HERE***

(MYMAC))
. . .)

3 -5 .1 H o w t h e S o u r c e is F o u n d

If the code was defined from Common Lisp by compile or eval, then the source can always be reliably located.
If the code was defined from a f a s l file created by compile-f i l e , then the debugger gets the source forms it
prints by reading them from the original source file. This is a potential problem, since the source file might have
moved or changed since the time it was compiled.

The source file is opened using the truename of the source file pathname originally given to the compiler.
This is an absolute pathname with all logical names and symbolic links expanded. If the file can't be located
using this name, then the debugger gives up and signals an error.

If the source file can be found, but has been modified since the time it was compiled, the debugger prints
this warning:

; F i l e has been modified s ince compilat ion:
; filename
; Using form of f se t ins tead of charac te r p o s i t i o n .

CHAPTER 3. THE DEBUGGER 27

where filename is the name of the source file. It then proceeds using a robust but not foolproof heuristic for
locating the source. This heuristic works if:

• No top-level forms before the top-level form containing the source have been added or deleted, and

• The top-level form containing the source has not been modified much. (More precisely, none of the list
forms beginning before the source form have been added or deleted.)

If the heuristic doesn't work, the displayed source will be wrong, but will probably be ifear the actual source.
If the "shape" of the top-level form in the source file is too different from the original form, then an error will
be signalled. When the heuristic is used, the the source location commands are noticeably slowed.

Source location printing can also be confused if (after the source was compiled) a read-macro you used in the
code was redefined to expand into something different, or if a read-macro ever returns the same eq list twice. If
you don't define read macros and don't use ## in perverted ways, you don't need to worry about this.

3 . 5 . 2 S o u r c e L o c a t i o n A v a i l a b i l i t y

Source location information is only available when the debug optimization quality is at least 2. If source location
information is unavailable, the source commands will give an error message.

If source location information is available, but the source location is unknown because of an interrupt or
unexpected hardware error (see section 3.3.6, page 24), then the command will print:

Unknown l o c a t i o n : using block s t a r t .

and then proceed to print the source location for the start of the basic block enclosing the code location. It's a
bit complicated to explain exactly what a basic block is, but here are some properties of the block start location:

• The block start location may be the same as the true location.

• The block start location will never be later in the the program's flow of control than the true location.

• No conditional control structures (such as if, cond, or) will intervene between the block start and the
true location (but note that some conditionals present in the original source could be optimized away.)
Function calls do not end basic blocks.

• The head of a loop will be the start of a block.

• The programming language concept of "block structure" and the Common Lisp block special form are
totally unrelated to the compiler's basic block.

In other words, the true location lies between the printed location and the next conditional (but watch out
because the compiler may have changed the program on you.)

3.6 Compi l e r Pol icy Cont ro l
The compilation policy specified by optimize declarations affects the behavior seen in the debugger. The
debug quality directly affects the debugger by controlling the amount of debugger information dumped. Other
optimization qualities have indirect but observable effects due to changes in the way compilation is done.

Unlike the other optimization qualities (which are compared in relative value to evaluate tradeoffs), the debug
optimization quality is directly translated to a level of debug information. This absolute interpretation allows
the user to count on a particular amount of debug information being available even when the values of the other
qualities are changed during compilation. These are the levels of debug information that correspond to the values
of the debug quality:

0 Only the function name and enough information to allow the stack to be parsed.

> 0 Any level greater than 0 gives level 0 plus all argument variables. Values will only be accessible if the
argument variable is never set and speed is not 3. CMU Common Lisp allows any real value for opti­
mization qualities. It may be useful to specify 0.5 to get backtrace argument display without argument
documentation.

CHAPTER 3. THE DEBUGGER 28

1 Level 1 provides argument documentation (printed arglists) and derived argument/result type information.
This makes descr ibe more informative, and allows the compiler to do compile-time argument count and
type checking for any calls compiled at run-time.

2 Level 1 plus all interned local variables, source location information, and lifetime information that tells the
debugger when arguments are available (even when speed is 3 or the argument is set.) This is the default.

3 Level 2 plus all uninterned variables. In addition, lifetime analysis is disabled (even when speed is 3), ensuring
that all variable values are available at any known location within the scope of the binding. This has a
speed penalty in addition to the obvious space penalty.

As you can see, if the speed quality is 3, debugger performance is degraded. This effect comes from the
elimination of argument variable special-casing (see section 3.4.1, page 25.) Some degree of speed/debuggability
tradeoff is unavoidable, but the effect is not too drastic when debug is at least 2.

In addition to i n l i n e and n o t i n l i n e declarations, the relative values of the speed and space qualities also
change whether functions are inline expanded (see section 5.8, page 72.) If a function is inline expanded, then
there will be no frame to represent the call, and the arguments will be treated like any other local variable.
Functions may also be "semi-inline", in which case there is a frame to represent the call, but the call is to an
optimized local version of the function, not to the original function.

3.7 Ex i t ing C o m m a n d s
These commands get you out of the debugger,

qu i t Throw to top level,

r e s t a r t [n]
Invokes the nth restart case as displayed by the e r ro r command. If n is not specified, the available restart
cases are reported.

go Calls continue on the condition given to debug. If there is no restart case named continue, then an error is
signaled.

abort Calls abort on the condition given to debug. This is useful for popping debug command loop levels or
aborting to top level, as the case may be.

3.8 In fo rmat ion C o m m a n d s
Most of these commands print information about the current frame or function, but a few show general infor­
mation.

he lp , ? Displays a synopsis of debugger commands.

descr ibe Calls descr ibe on the current function, displays number of local variables, and indicates whether the
function is compiled or interpreted.

p r i n t Displays the current function call as it would be displayed by moving to this frame.

vpr in t (or pp) [verbosity]
Displays the current function call using * p r i n t - l e v e l * and *p r in t - l eng th* instead of •debug-pr in t -
l e v e l * and *debug-print- length*. verbosity is a small integer (default 2) that controls other dimensions
of verbosity.

e r ro r Prints the condition given to invoke-debugger and the active proceed cases,

backtrace [n]
Displays all the frames from the current to the bottom. Only shows n frames if specified. The printing is
controlled by *debug-pr in t - leve l* and *debug-print- length*.

CHAPTER 3. THE DEBUGGER 29

3.9 Breakpo in t C o m m a n d s
CMU Common Lisp supports setting of breakpoints inside compiled functions and stepping of compiled code.
Breakpoints can only be set at at known locations (see section 3.3.6, page 24), so these commands are largely
useless unless the debug optimize quality is at least 2 (see section 3.6, page 27). These commands manipulate
breakpoints:

breakpoint location {option vaiue}*
Set a breakpoint in some function, location may be an integer code location number (as displayed by l i s t -
l o c a t i o n s) or a keyword. The keyword can be used to indicate setting a breakpoint at the function start
(: s t a r t , :s) or function end (:end, :e) . The breakpoint command has : c o n d i t i o n , :break, :pr in t and
: f u n c t i o n options which work similarly to the t r a c e options.

l i s t - l o c a t i o n s (or 11) [function]
List all the code locations in the current frame's function, or in function if it is supplied. The display
format is the code location number, a colon and then the source form for that location:

3: (1 - N)

If consecutive locations have the same source, then a numeric range like 3-5: will be printed. For example,
a default function call has a known location both immediately before and after the call, which would result
in two code locations with the same source. The listed function becomes the new default function for
breakpoint setting (via the breakpoint) command.

l i s t - b r e a k p o i n t s (or l b)
List all currently active breakpoints with their breakpoint number.

d e l e t e - b r e a k p o i n t (or db) [number]
Delete a breakpoint specified by its breakpoint number. If no number is specified, delete all breakpoints.

s t e p
Step to the next possible breakpoint location in the current function. This always steps over function calls,
instead of stepping into them

3 . 9 . 1 B r e a k p o i n t E x a m p l e

Consider this definition of the factorial function:

(defun ! (n)
(i f (zerop n)

1

(* n (! (1 - n)))))

This debugger session demonstrates the use of breakpoints:

common-l isp-user> (break) ; Invoke debugger

Break

R e s t a r t s :
0: [COHTIHUE] Return from BREAK.
1: [ABORT] Return t o Top-Level .

Debug (type H f o r h e l p)

(INTERACTIVE-EVAL (BREAK))
0] 11 #M
0: #'(LAMBDA (N) (BLOCK ! (IF # 1 #)))
1: (ZEROP N)

CHAPTER 3. THE DEBUGGER 30

2: (* I (! (1 - N)))
3 : (1 - N)
4 : (! (1 - I))
5: (* N (! (1 - H)))
6: #'(LAMBDA (N) (BLOCK ! (IF # 1 #)))
0] br 2
(* H (! (1 - M)))
1: 2 i n !
Added.
0] q

common-l isp-user> (! 10) ; Ca l l t h e f u n c t i o n

•Breakpoint h i t *

R e s t a r t s :
0: [CONTINUE] Return from BREAK.
1: [ABORT] Return t o Top-Level .

Debug (t y p e H f o r h e l p)

(! 10) ; We are now i n f i r s t c a l l (arg 10) be fore t h e m u l t i p l y
Source: (* N (! (1 - N)))
3] s t

• S t e p *

(! 10) ; We have f i n i s h e d e v a l u a t i o n of (1 - n)
Source: (1 - N)
3] s t

•Breakpoint h i t *

R e s t a r t s :
0: [CONTINUE] Return from BREAK.
1: [ABORT] Return t o Top-Level .

Debug (type H f o r h e l p)

(! 9) ; We h i t t h e breakpoint i n t h e r e c u r s i v e c a l l
Source: (* N (! (1 - N)))
3]

3.10 Func t ion Trac ing
The tracer causes selected functions to print their arguments and their results whenever they are called. Options
allow conditional printing of the trace information and conditional breakpoints on function entry or exit.

t r a c e {option global-value}* {name {option value}* }* [Macro]
t r a c e is a debugging tool that prints information when specified functions are called. In its simplest form:

(t r a c e name-J name-2 . . .)

t r a c e causes a printout on * t r a c e - o u t p u t * each time that one of the named functions is entered or returns
(the names are not evaluated.) Trace output is indented according to the number of pending traced calls, and

CHAPTER 3. THE DEBUGGER 31

this trace depth is printed at the beginning of each line of output. Printing verbosity of arguments and return
values is controlled by *debug-print-level* and *debug-print-length*.

If no names or options are are given, trace returns the list of all currently traced functions, * t raced-
funct ion- l i s t* .

Trace options can cause the normal printout to be suppressed, or cause extra information to be printed.
Each option is a pair of an option keyword and a value form. Options may be interspersed with function names.
Options only affect tracing of the function whose name they appear immediately after. Global options are
specified before the first name, and*affect all functions traced by a given use of trace. If an already traced
function is traced again, any new options replace the old options. The following options are defined:

: condition form, :condition-after form, : condit ion-al l form
If : condition is specified, then trace does nothing unless form evaluates to true at the time of the call.
: condit ion-ai ter is similar, but suppresses the initial printout, and is tested when the function returns.
: condit ion-al l tries both before and after.

: wherein names
If specified, names is a function name or list of names, trace does nothing unless a call to one of those
functions encloses the call to this function (i.e. it would appear in a backtrace.) Anonymous functions
have string names like "DEFUN F00H.

: break form, :break-after form^ :break-all form
If specified, and form evaluates to true, then the debugger is invoked at the start of the function, at the
end of the function, or both, according to the respective option.

: print form, : pr int -af ter form^ : p r i n t - a l l form
In addition to the usual printout, the result of evaluating form is printed at the start of the function, at
the end of the function, or both, according to the respective option. Multiple print options cause multiple
values to be printed.

•.function function-form
This is a not really an option, but rather another way of specifying what function to trace. The function-
form is evaluated immediately, and the resulting function is traced.

: encapsulate {.'default I t I nil}
In CMU Common Lisp, tracing can be done either by temporarily redefining the function name (encap­
sulation), or using breakpoints. When breakpoints are used, the function object itself is destructively
modified to cause the tracing action. The advantage of using breakpoints is that tracing works even when
the function is anonymously called via f uncall.
When : encapsulate is true, tracing is done via encapsulation. : default is the default, and means
to use encapsulation for interpreted functions and funcallable instances, breakpoints otherwise. When
encapsulation is used, forms are not evaluated in the function's lexical environment, but debug:arg can
still be used.

: condition, :break and :print forms are evaluated in the lexical environment of the called function;
debug:var and debug:arg can be used. The -a f ter and - a l l forms are evaluated in the null environment.

untrace &rest function-names [Macro]
This macro turns off tracing for the specified functions, and removes their names from * t raced- func t ion-

l i s t * . If no function-names are given, then all currently traced functions are untraced.

extensions: *traced-f unct ion- l i s t* [Variable]
A list of function names maintained and used by t r ace , untrace, and u n t r a c e - a l l . This list should contain

the names of all functions currently being traced.

extensions: *max-trace-indent at ion* [Variable]
The maximum number of spaces which should be used to indent trace printout. This variable is initially set

to 40.

CHAPTER 3. THE DEBUGGER 32

3 . 1 0 . 1 E n c a p s u l a t i o n F u n c t i o n s
The encapsulation functions provide a mechanism for intercepting the arguments and results of a function,
encapsulate changes the function definition of a symbol, and saves it so that it can be restored later. The new
definition normally calls the original definition. The Common Lisp fde f in i t ion function always returns the
original definition, stripping off any encapsulation.

The original definition of the symbol can be restored at any time by the unencapsulate function,
encapsulate and unencapsulate allow a symbol to be multiply encapsulated in such a way that different
encapsulations can be completely transparent to each other.

Each encapsulation has a type which may be an arbitrary lisp object. If a symbol has several encapsulations
of different types, then any one of them can be removed without affecting more recent ones. A symbol may have
more than one encapsulation of the same type, but only the most recent one can be undone.

extensions:encapsulate symbol type body [Function]
Saves the current definition of symbol, and replaces it with a function which returns the result of evaluating

the form, body. Type is an arbitrary lisp object which is the type of encapsulation.

When the new function is called, the following variables are bound for the evaluation of body:

extensions: argument-list A list of the arguments to the function.

extensions:basic-def ini t ion The unencapsulated definition of the function.

The unencapsulated definition may be called with the original arguments by including the form

(apply extensions:basic-def ini t ion extensions:argument-list)

encapsulate always returns symbol.

extensions:unencapsulate symbol type [Function]
Undoes symbol's most recent encapsulation of type type. Type is compared with eq. Encapsulations of other

types are left in place.

extensions: encapsulated-p symbol type [Function]
Returns t if symbol has an encapsulation of type type. Returns n i l otherwise. Type is compared with eq.

3-11 Specials
These are the special variables that control the debugger action.

extensions: *debug-print-level* [Variable]
extensions: *debug-print-length* [Variable]

print - leve l and *print-length* are bound to these values during the execution of some debug com­
mands. When evaluating arbitrary expressions in the debugger, the normal values of *pr int - leve l* and •pr int -
length* are in effect. These variables are initially set to 3 and 5, respectively.

Chapter 4

The Compiler

4.1 Compi l e r I n t r o d u c t i o n
This chapter contains information about the compiler that every CMU Common Lisp user should be familiar
with. Chapter 5 goes into greater depth, describing ways to use more advanced features.

The CMU Common Lisp compiler (also known as Python) has many features that are seldom or never
supported by conventional Common Lisp compilers:

• Source level debugging of compiled code (see chapter 3.)

• Type error compiler warnings for type errors detectable at compile time.

• Compiler error messages that provide a good indication of where the error appeared in the source.

• Full run-time checking of all potential type errors, with optimization of type checks to minimize the cost.

• Scheme-like features such as proper tail recursion and extensive source-level optimization.

• Advanced tuning and optimization features such as comprehensive efficiency notes, flow analysis, and
untagged number representations (see chapter 5.)

4.2 Cal l ing t h e Compi le r
Functions may be compiled using compile, compile-f i l e , or compile-from-stream.

compile name ^optional definition [Function]
This function compiles the function whose name is name. If name is n i l , the compiled function object is

returned. If definition is supplied, it should be a lambda expression that is to be compiled and then placed in
the function cell of name. As per the proposed X3J13 cleanup "compile-argument-problems", definition may
also be an interpreted function.

The return values are as per the proposed X3J13 cleanup "compiler-diagnostics". The first value is the
function name or function object. The second value is n i l if no compiler diagnostics were issued, and t otherwise.
The third value is n i l if no compiler diagnostics other than style warnings were issued. A non-nil value indicates
that there were "serious" compiler diagnostics issued, or that other conditions of type e r ro r or warning (but
not s tyle-warning) were signalled during compilation.

compi le - f i le input-pathname ftkey : o u t p u t - f i l e : e r r o r - f i l e : t r a c e - f i l e [Function]
: e r ro r -ou tpu t :verbose : p r i n t :progress
: load :block-compile : en t ry -po in t s

The CMU Common Lisp compi le - f i le is extended through the addition of several new keywords and an
additional interpretation of input-pathname:

33

CHAPTER 4. THE COMPILER 34

input-pathname If this argument is a list of input files, rather than a single input pathname, then all the source
files are compiled into a single object file. In this case, the name of the first file is used to determine the
default output file names. This is especially useful in combination with block-compile.

output-file This argument specifies the name of the output file, t gives the default name, n i l suppresses the
output file.

error-file A listing of all the error output is directed to this file. If there are no errors, then no error file is
produced (and any existing error file is deleted.) t gives "name.er r" (the default), and n i l suppresses
the output file.

error-output If t (the default), then error output is sent to * e r ror -output* . If a stream, then output is sent to
that stream instead. If n i l , then error output is suppressed. Note that this error output is in addition to
(but the same as) the output placed in the error-file.

verbose If t (the default), then the compiler prints to error output at the start and end of compilation of each
file. See *compile-verbose* (page 34).

print If t (the default), then the compiler prints to error output when each function is compiled. See *compile-
p r i n t * (page 34).

progress If t (default n i l) , then the compiler prints to error output progress information about the phases of
compilation of each function. This is a CMU extension that is useful mainly in large block compilations.
See *compile-progress* (page 34).

trace-file If true, several of the intermediate representations (including annotated assembly code) are dumped
out to this file, t gives "name, t r ace" . Trace output is off by default. See section 5.11.5, page 83.

load If true, load the resulting output file.

block-compile Controls the compile-time resolution of function calls. By default, only self-recursive calls are
resolved, unless an e x t : b l o c k - s t a r t declaration appears in the source file. See section 5.7.3, page 71.

entry-points If non-null, then this is a list of the names of all functions in the file that should have global
definitions installed (because they are referenced in other files.) See section 5.7.3, page 71.

The return values are as per the proposed X3J13 cleanup "compiler-diagnostics". The first value from
compi le - f i l e is the truename of the output file, or n i l if the file could not be created. The interpretation of
the second and third values is described above for compile.

•compile-verbose* [Variable]
compile-print [Variable]
compile-progress [Variable]

These variables determine the default values for the : verbose, : p r i n t and :progress arguments to compile-
f i l e .

extensions:compile-from-stream input-stream Jtkey : e r ro r - s t ream [Function]
: t r ace -s t ream
:block-compile : en t ry -po in t s

This function is similar to compile-f i l e , but it takes ail its arguments as streams. It reads Common Lisp
code from input-stream until end of file is reached, compiling into the current environment. This function returns
the same two values as the last two values of compile. No output files are produced.

CHAPTER 4. THE COMPILER 35

4.3 Compi l a t i on Un i t s
CMU Common Lisp supports the with-compilation-unit macro added to the language by the proposed X3J13
"with-compilation-unit" compiler cleanup. This provides a mechanism for eliminating spurious undefined warn­
ings when there are forward references across files, and also provides a standard way to access compiler extensions.

with-compilat ion-unit ({key vaiue}*) {form}* [Macro]
This macro evaluates the forms in an environment that causes warnings for undefined variables, functions

and types to be delayed until all the forms have been evaluated. Each keyword vaiue is an evaluated form. These
keyword options are recognized:

: override If uses of with-compilat ion-unit are dynamically nested, the outermost use will take precedence,
suppressing printing of undefined warnings by inner uses. However, when the override option is true this
shadowing is inhibited; an inner use will print summary warnings for the compilations within the inner
scope.

: optimize This is a CMU extension that specifies of the "global" compilation policy for the dynamic extent of
the body. The argument should evaluate to an optimize declare form, like:

(optimize (speed 3) (safety 0))

See section 4.7.1, page 46

: optimize-interface Similar to : optimize, but specifies the compilation policy for function interfaces (argu­
ment count and type checking) for the dynamic extent of the body. See section 4.7.2, page 46.

: context-declarations This is a CMU extension that pattern-matches on function names, automatically splic­
ing in any appropriate declarations at the head of the function definition. See section 4.3.2, page 36.

4 . 3 . 1 U n d e f i n e d W a r n i n g s

Warnings about undefined variables, functions and types are delayed until the end of the current compilation unit.
The compiler entry functions (compile, etc.) implicitly use with-compilat ion-unit, so undefined warnings will
be printed at the end of the compilation unless there is an enclosing with-compilat ion-unit. In order the gain
the benefit of this mechanism, you should wrap a single with-compilat ion-unit around the calls to compile-
f i l e , i.e.:

(with-compilation-unit ()
(compile- f i le " f i l e l")
(compile- f i le "fi le2")
. . .)

Unlike for functions and types, undefined warnings for variables are not suppressed when a definition (e.g.
def var) appears after the reference (but in the same compilation unit.) This is because doing special declarations
out of order just doesn't work — although early references will be compiled as special, bindings will be done
lexically.

Undefined warnings are printed with full source context (see section 4.4, page 37), which tremendously
simplifies the problem of finding undefined references that resulted from macroexpansion. After printing detailed
information about the undefined uses of each name, with-compilation-unit also prints summary listings of
the names of all the undefined functions, types and variables.

undef ined-waming-limit [Variable]
This variable controls the number of undefined warnings for each distinct name that are printed with full

source context when the compilation unit ends. If there are more undefined references than this, then they are
condensed into a single warning:

Warning: count more uses of undefined function name.

When the value is 0, then the undefined warnings are not broken down by name at all: only the summary listing
of undefined names is printed.

CHAPTER 4. THE COMPILER 36

4 . 3 . 2 C o n t e x t D e c l a r a t i o n s
CMU Common Lisp has a context-sensitive declaration mechanism which is useful because it allows flexible
control of the compilation policy in large systems without requiring changes to the source files. The primary
use of this feature is to allow the exported interfaces of a system to be compiled more safely than the system
internals. The context used is the name being defined and the kind of definition (function, macro, etc.)

The : con tex t -dec la ra t ions option to wi th-compi la t ion-uni t (page 35) has dynamic scope, affecting all
compilation done during the evaluation of the body. The argument to this option should evaluate to a list of
lists of the form:

{context-spec {declare-form}+)

In the indicated context, the specified declare forms are inserted at the head of each definition. The declare
forms for all contexts that match are appended together, with earlier declarations getting precedence over later
ones. A simple example:

: con tex t -dec l a ra t ions
' ((: e x t e r n a l (dec la re (optimize (safe ty 2)))))

This will cause all functions that are named by external symbols to be compiled with sa fe ty 2.
The full syntax of context specs is:

: i n t e r n a l , : ex te rna l True if the symbol is internal (external) in its home package.

runin temed True if the symbol has no home package.

(: package {package-name}*) True if the symbol's home package is in any of the named packages (false if
uninterned.)

•.anonymous True if the function doesn't have any interesting name (not defmacro, defun, l a b e l s or f l e t) .

:macro, : funct ion :macro is a global (defmacro) macro. : function is anything else.

: l o c a l , :g lobal : l o c a l is a l a b e l s or f l e t . :g lobal is anything else.

(:o r {context-spec}*) True when any supplied context-spec is true.

(:and {context-spec}*) True only when all supplied context-specs are true.

(:not {context-spec}*) True when context-spec is false.

(:member {name}*) True when the defined name is one of these names (equal test.)

(:match {pattern}*) True when any of the patterns is a substring of the name. The name is wrapped with $'s,
so M $F00 M matches names beginning with "F00M, etc.

4 . 3 . 3 C o n t e x t D e c l a r a t i o n E x a m p l e

Here is a more complex example of wi th-compi la t ion-uni t options:

:optimize ' (op t imize (speed 2) (space 2) (inh ib i t -warn ings 2)
(debug 1) (safe ty 0))

:op t imize - in te r face ' (op t imize - in t e r f ace (safe ty 1) (debug 1))
: con tex t -dec la ra t ions
' (((: o r : ex te rna l (:and (:match "%") (:match "SET")))

(dec la re (op t imize - in te r face (safe ty 2))))
((: o r (:and :ext e rna l :macro)

(:match "$PARSE—"))
(dec lare (optimize (safe ty 2)))))

CHAPTER 4. THE COMPILER 37

The optimize and extensions .'optimize-inter!ace declarations (see section 4.7.1, page 46) set up the global
compilation policy. The bodies of functions are to be compiled completely unsafe (safety 0), but argument
count and weakened argument type checking is to be done when a function is called (speed 2 safety l) .

The first declaration specifies that all functions that are external or whose names contain both "%" and "SET"
are to be compiled compiled with completely safe interfaces (safety 2). The reason for this particular :match
rule is that se t f inverse functions in this system tend to have both strings in their name somewhere. We want
setf inverses to be safe because they are implicitly called by users even though their name is not exported.

The second declaration makes external macros or functions whose names start with "PARSE-" have safe bodies
(as well as interfaces). This is desirable because a syntax error in a macro may cause a type error inside the body.
The :match rule is used because macros often have auxiliary functions whose names begin with this string.

This particular example is used to build part of the standard CMU Common Lisp system. Note however,
that context declarations must be set up according to the needs and coding conventions of a particular system;
different parts of CMU Common Lisp are compiled with different context declarations, and your system will
probably need its own declarations. In particular, any use of the :match option depends on naming conventions
used in coding.

4.4 I n t e r p r e t i n g E r r o r Messages
One of Python's unique features is the level of source location information it provides in error messages. The
error messages contain a lot of detail in a terse format, to they may be confusing at first. Error messages will be
illustrated using this example program:

(defmacro zoq (x)
'(roq (ploq (+ ,x 3))))

(defun foo (y)
(declare (symbol y))
(zoq y))

The main problem with this program is that it is trying to add 3 to a symbol. Note also that the functions roq
and ploq aren't defined anywhere.

4 . 4 . 1 T h e P a r t s of t h e E r r o r M e s s a g e

The compiler will produce this warning:

Fi l e : / u s r / m e / s t u f f . l i s p

In: DEFUH FOO
(ZOQ Y)

—> ROQ PLOQ +
==>

Y
Warning: Result i s a SYMBOL, not a NUMBER.

In this example we see each of the six possible parts of a compiler error message:

Fi le : / u s r / m e / s t u f f . l i s p This is the file that the compiler read the relevant code from. The file name is
displayed because it may not be immediately obvious when there is an error during compilation of a large
system, especially when with -compilat ion-uni t is used to delay undefined warnings.

In: DEFUN FOO This is the definition or top-level form responsible for the error. It is obtained by taking the first
two elements of the enclosing form whose first element is a symbol beginning with "DEF". If there is no
enclosing de/mumble, then the outermost form is used. If there are multiple def mumbles, then they are
all printed from the out in, separated by =>'s. In this example, the problem was in the defun for foo.

(ZOQ Y) This is the original source form responsible for the error. Original source means that the form directly
appeared in the original input to the compiler, i.e. in the lambda passed to compile or the top-level form
read from the source file. In this example, the expansion of the zoq macro was responsible for the error.

CHAPTER 4. THE COMPILER 38

—> ROQ PLOQ + This is the processing path that the compiler used to produce the errorful code. The processing
path is a representation of the evaluated forms enclosing the actual source that the compiler encountered
when processing the original source. The path is the first element of each form, or the form itself if the
form is not a list. These forms result from the expansion of macros or source-to-source transformation done
by the compiler. In this example, the enclosing evaluated forms are the calls to roq, ploq and +. These
calls resulted from the expansion of the zoq macro.

==> Y This is the actuai source responsible for the error. If the actual source appears in the explanation, then
we print the next enclosing evaluated form, instead of printing the actual source twice. (This is the form
that would otherwise have been the last form of the processing path.) In this example, the problem is with
the evaluation of the reference to the variable y.

Warning: Result i s a SYMBOL, not a IUMBER. This is the explanation the problem. In this example, the prob­
lem is that y evaluates to a symbol, but is in a context where a number is required (the argument to

Note that each part of the error message is distinctively marked:

• F i l e : and In : mark the file and definition, respectively.

• The original source is an indented form with no prefix.

• Each line of the processing path is prefixed with —>.

• The actual source form is indented like the original source, but is marked by a preceding —> line. This is
like the "macroexpands to M notation used in Common Lisp: The Language.

• The explanation is prefixed with the error severity (see section 4.4.4, page 40), either Er ror : , Warning:,
or Note:.

Each part of the error message is more specific than the preceding one. If consecutive error messages are for
nearby locations, then the front part of the error messages would be the same. In this case, the compiler omits
as much of the second message as in common with the first. For example:

F i l e : / u s r / m e / s t u f f . l i s p

In : DEFUM F00
(ZOQ Y)

—> ROQ
==>

(PLOQ (+ Y 3))
Warning: Undefined funct ion: PLOQ

(ROQ (PLOQ (+ Y 3)))
Warning: Undefined funct ion: ROQ

In this example, the file, definition and original source are identical for the two messages, so the compiler omits
them in the second message. If consecutive messages are entirely identical, then the compiler prints only the
first message, followed by:

[Last message occurs repeats t imes]

where repeats is the number of times the message was given.
If the source was not from a file, then no file line is printed. If the actual source is the same as the original

source, then the processing path and actual source will be omitted. If no forms intervene between the original
source and the actual source, then the processing path will also be omitted.

CHAPTER 4. THE COMPILER 39

4 . 4 . 2 T h e O r i g i n a l a n d A c t u a l S o u r c e

The original source displayed will almost always be a list. If the actual source for an error message is a symbol,
the original source will be the immediately enclosing evaluated list form. So even if the offending symbol does
appear in the original source, the compiler will print the enclosing list and then print the symbol as the actual
source (as though the symbol were introduced by a macro.)

When the actual source is displayed (and is not a symbol), it will always be code that resulted from the
expansion of a macro or a source-to-source compiler optimization. This is code that did not appear in the
original source program; it was introduced by the compiler.

Keep in mind that when the compiler displays a source form in an error message, it always displays the most
specific (innermost) responsible form. For example, compiling this function:

(defun bar (x)
(l e t (a)

(dec la re (fixnum a))
(se tq a (foo x))
a))

Gives this error message:

In : DEFUH BAR
(LET (A) (DECLARE (FIXNUM A)) (SETQ A (FOO X)) A)

Warning: The binding of A i s not a FIXNUM:
NIL

This error message is not saying "there's a problem somewhere in this l e t " — it is saying that there is a problem
with the l e t itself. In this example, the problem is that a's n i l initial value is not a f ixnum.

4 . 4 . 3 T h e P r o c e s s i n g P a t h

The processing path is mainly useful for debugging macros, so if you don't write macros, you can ignore the
processing path. Consider this example:

(defun foo (n)

(dotimes (i n *undefined*)))

Compiling results in this error message:

In : DEFUN FOO
(DOTIMES (I N *UNDEFINED*))

—> DO BLOCK LET TAGBODY RETURN-FROM
(PROGN *UNDEFINED*)

Warning: Undefined v a r i a b l e : *UNDEFINED*

Note that do appears in the processing path. This is because dotimes expands into:

(do ((i 0 (1+ i)) (# :g l n))
((>= i # :g l) *undefined*)

(dec la re (type unsigned-byte i)))

The rest of the processing path results from the expansion of do:

(block n i l
(l e t ((i 0) (# :g l n))

(dec la re (type unsigned-byte i))
(tagbody (go #:g3)
#:g2 (psetq i (1+ i))
#:g3 (unless (>= i # :g l) (go #:g2))

(return-from n i l (progn *undefined*)))))

CHAPTER 4. THE COMPILER 40

In this example, the compiler descended into the block, l e t , tagbody and return-from to reach the progn
printed as the actual source. This is a place where the "actual source appears in explanation" rule was applied.
The innermost actual source form was the symbol *undefined* itself, but that also appeared in the explanation,
so the compiler backed out one level.

4 . 4 . 4 E r r o r S e v e r i t y

There are three levels of compiler error severity:

Er ror This severity is used when the compiler encounters a problem serious enough to prevent normal processing
of a form. Instead of compiling the form, the compiler compiles a call to e r ro r . Errors are used mainly
for signalling syntax errors. If an error happens during macroexpansion, the compiler will handle it. The
compiler also handles and attempts to proceed from read errors.

Warn ing Warnings are used when the compiler can prove that something bad will happen if a portion of the
program is executed, but the compiler can proceed by compiling code that signals an error at runtime if
the problem has not been fixed:

• Violation of type declarations, or
• Function calls that have the wrong number of arguments or malformed keyword argument lists, or
• Referencing a variable declared ignore, or unrecognized declaration specifiers.

In the language of the Common Lisp standard, these are situations where the compiler can determine
that a situation with undefined consequences or that would cause an error to be signalled would result at
runtime.

No te Notes are used when there is something that seems a bit odd, but that might reasonably appear in correct
programs.

Note that the compiler does not fully conform to the proposed X3J13 "compiler-diagnostics" cleanup. Errors,
warnings and notes mostly correspond to errors, warnings and style-warnings, but many things that the cleanup
considers to be style-warnings are printed as warnings rather than notes. Also, warnings, style-warnings and
most errors aren't really signalled using the condition system.

4 . 4 . 5 E r r o r s D u r i n g M a c r o e x p a n s i o n

The compiler handles errors that happen during macroexpansion, turning them into compiler errors. If you want
to debug the error (to debug a macro), you can set *break-on-s ignals* to e r ror . For example, this definition:

(defun ioo (e 1)
(do ((cu r r en t 1 (cdr c u r r e n t))

((atom cur ren t) n i l))
(when (eq (car cur ren t) e) (r e tu rn c u r r e n t))))

gives this error:

In : DEFUI F00
(DO ((CURRENT L #) (# NIL)) (WHEN (EQ # E) (RETURN CURRENT)))

Er ror : (during macroexpansion)

Error in funct ion LISP::DO-DO-BODY.
DO s t ep va r i ab l e i s not a symbol: (ATOM CURRENT)

4 . 4 . 6 R e a d E r r o r s

The compiler also handles errors while reading the source. For example:

CHAPTER 4. THE COMPILER 41

Error : Read e r ro r a t 2:
• ' (, / \ i o o) "

Error in funct ion LISP::COMMA-MACRO.
Comma not i n s ide a backquote.

The "at 2" refers to the character position in the source file at which the error was signalled, which is generally
immediately after the erroneous text. The next line, " (, / \ f o o) " , is the line in the source that contains the
error file position. The " A " indicates the error position within that line (in this example, immediately after the
offending comma.)

When in Hemlock (or any other EMACS-like editor), you can go to a character position with:

M-< C-u position C-f
Note that if the source is from a Hemlock buffer, then the position is relative to the start of the compiled region
or defun, not the file or buffer start.

After printing a read error message, the compiler attempts to recover from the error by backing up to the
start of the enclosing top-level form and reading again with *read-suppress* true. If the compiler can recover
from the error, then it substitutes a call to ce r ro r for the unreadable form and proceeds to compile the rest of
the file normally.

If there is a read error when the file position is at the end of the file (i.e., an unexpected EOF error), then
the error message looks like this:

Error : Read e r ro r in form s t a r t i n g a t 14:
"(defun t e s t () "

Error in funct ion LISP::FLUSH-WHITESPACE.
EOF while reading #<Stream for f i l e " / u s r / m e / t e s t . l i s p " >

In this case, " s t a r t i n g a t 14" indicates the character position at which the compiler started reading, i.e. the
position before the start of the form that was missing the closing delimiter. The line "(defun t e s t () " is first
line after the starting position that the compiler thinks might contain the unmatched open delimiter.

4 . 4 . 7 E r r o r M e s s a g e P a r a m e t e r i z a t i o n

There is some control over the verbosity of error messages. See also *undefined-warning-limit* (page 35),
eff i c i ency -no t e - l im i t and *eff i c i ency-no te -cos t - th resho ld* (page 86).

*enclosing-source-cutof f * [Variable]
This variable specifies the number of enclosing actual source forms that are printed in full, rather than in the

abbreviated processing path format. Increasing the value from its default of 1 allows you to see more of the guts
of the macroexpanded source, which is useful when debugging macros.

* e r r o r - p r i n t - l e n g t h * [Variable]
• e r r o r - p r i n t - l e v e l * [Variable]

These variables are the print level and print length used in printing error messages. The default values are 5
and 3. If null, the global values of * p r i n t - l e v e l * and *pr in t - l eng th* are used.

extensions : def-source-context name lambda-list {form}* [Macro]
This macro defines how to extract an abbreviated source context from the named form when it appears in

the compiler input, lambda-list is a def macro style lambda-list used to parse the arguments. The body should
return a list of subforms that can be printed on about one line. There are predefined methods for def s t r u c t ,
defmethod, etc. If no method is defined, then the first two subforms are returned. Note that this facility
implicitly determines the string name associated with anonymous functions.

CHAPTER 4. THE COMPILER 42

4.5 T y p e s in P y t h o n
A big difference between Python and all other Common Lisp compilers is the approach to type checking and
amount of knowledge about types:

• Python treats type declarations much differently that other Lisp compilers do. Python doesn't blindly
believe type declarations; it considers them assertions about the program that should be checked.

• Python also has a tremendously greater knowledge of the Common Lisp type system than other compilers.
Support is incomplete only for the not, and and s a t i s f i e s types.

See also sections 5.2 and 5.3.

4 . 5 . 1 C o m p i l e T i m e T y p e E r r o r s

If the compiler can prove at compile time that some portion of the program cannot be executed without a type
error, then it will give a warning at compile time. It is possible that the offending code would never actually be
executed at run-time due to some higher level consistency constraint unknown to the compiler, so a type warning
doesn't always indicate an incorrect program. For example, consider this code fragment:

(defun raz (foo)
(l e t ((x (case foo

(: t h i s 13)
(: t h a t 9)
(: t h e - o t h e r 42))))

(dec la re (fixnum x))
(foo x)))

Compilation produces this warning:

In : DEFUN RAZ
(CASE FOO (:THIS 13) (:THAT 9) (:THE-OTHER 42))

—> LET COND IF COND IF COND IF

(COND)
Warning: This i s not a FIXNUM:

NIL
In this case, the warning is telling you that if foo isn't any of : t h i s , : t h a t or : the -o ther , then x will be
initialized to n i l , which the fixnum declaration makes illegal. The warning will go away if ecase is used instead
of case, or if : t he -o the r is changed to t .

This sort of spurious type warning happens moderately often in the expansion of complex macros and in
inline functions. In such cases, there may be dead code that is impossible to correctly execute. The compiler
can't always prove this code is dead (could never be executed), so it compiles the erroneous code (which will
always signal an error if it is executed) and gives a warning.

ex tens ions : required-argument [Function]
This function can be used as the default value for keyword arguments that must always be supplied. Since it

is known by the compiler to never return, it will avoid any compile-time type warnings that would result from
a default value inconsistent with the declared type. When this function is called, it signals an error indicating
that a required keyword argument was not supplied. This function is also useful for def s t r u c t slot defaults
corresponding to required arguments. See section 5.2.5, page 52.

Although this function is a CMU extension, it is relatively harmless to use it in otherwise portable code, since
you can easily define it yourself:

(defun required-argument ()
(e r r o r MA requi red keyword argument was not supp l i ed . "))

Type warnings are inhibited when the ex tens ions : inhibi t -warnings optimization quality is 3 (see section
4.7, page 46.) This can be used in a local declaration to inhibit type warnings in a code fragment that has
spurious warnings.

CHAPTER 4. THE COMPILER 43

4 . 5 . 2 P r e c i s e T y p e C h e c k i n g

With the default compilation policy, all type assertions1 are precisely checked. Precise checking means that the
check is done as though typep had been called with the exact type specifier that appeared in the declaration.
Python uses policy to determine whether to trust type assertions (see section 4.7, page 46). Type assertions
from declarations are indistinguishable from the type assertions on arguments to built-in functions. In Python,
adding type declarations makes code safer.

If a variable is declared to be (i n t ege r 3 17), then its value must always always be an integer between 3
and 17. If multiple type declarations apply to a single variable, then all the declarations must be correct; it is
as though all the types were intersected producing a single and type specifier.

Argument type declarations are automatically enforced. If you declare the type of a function argument, a
type check will be done when that function is called. In a function call, the called function does the argument
type checking, which means that a more restrictive type assertion in the calling function (e.g., from the) may
be lost.

The types of structure slots are also checked. The value of a structure slot must always be of the type indicated
in any : type slot option. 2 Because of precise type checking, the arguments to slot accessors are checked to be
the correct type of structure.

In traditional Common Lisp compilers, not all type assertions are checked, and type checks are not precise.
Traditional compilers blindly trust explicit type declarations, but may check the argument type assertions for
built-in functions. Type checking is not precise, since the argument type checks will be for the most general type
legal for that argument. In many systems, type declarations suppress what little type checking is being done,
so adding type declarations makes code unsafe. This is a problem since it discourages writing type declarations
during initial coding. In addition to being more error prone, adding type declarations during tuning also loses
all the benefits of debugging with checked type assertions.

To gain maximum benefit from Python's type checking, you should always declare the types of function
arguments and structure slots as precisely as possible. This often involves the use of or, member and other
list-style type specifiers. Paradoxically, even though adding type declarations introduces type checks, it usually
reduces the overall amount of type checking. This is especially true for structure slot type declarations.

Python uses the safe ty optimization quality (rather than presence or absence of declarations) to choose one
of three levels of run-time type error checking: see section 4.7.1, page 46. See section 5.2, page 50 for more
information about types in Python.

4 . 5 . 3 W e a k e n e d T y p e C h e c k i n g

When the value for the speed optimization quality is greater than safety, and safe ty is not 0, then type
checking is weakened to reduce the speed and space penalty. In structure-intensive code this can double the
speed, yet still catch most type errors. Weakened type checks provide a level of safety similar to that of "safe"
code in other Common Lisp compilers.

A type check is weakened by changing the check to be for some convenient supertype of the asserted type. For
example, (i n t ege r 3 17) is changed to f ixnum, (s imple-vector 17) to s imple-vector , and structure types
are changed to s t r u c t u r e . A complex check like:

(or node hunk (member :foo :bar :baz))

will be omitted entirely (i.e., the check is weakened to *.) If a precise check can be done for no extra cost, then
no weakening is done.

Although weakened type checking is similar to type checking done by other compilers, it is sometimes safer
and sometimes less safe. Weakened checks are done in the same places is precise checks, so all the preceding
discussion about where checking is done still applies. Weakened checking is sometimes somewhat unsafe because
although the check is weakened, the precise type is still input into type inference. In some contexts this will
result in type inferences not justified by the weakened check, and hence deletion of some type checks that would
be done by conventional compilers.

For example, if this code was compiled with weakened checks:
1 There are a few circumstances where a type declaration is discarded rather than being used as type assertion. This doesn't

affect safety much, since such discarded declarations are also not believed to be true by the compiler.
2The initial value need not be of this type as long as the corresponding argument to the constructor is always supplied, but this

will cause a compile-time type warning unless required-argument is used.

CHAPTER 4. THE COMPILER 44

(de f s t ruc t foo
(a n i l : type s imp le - s t r i ng))

(def s t r u c t bar
(a n i l : type s i n g l e - f l o a t))

(defun myfun (x)
(dec la re (type bar x))
(* (bar -a x) 3 .0))

and myfun was passed a foo, then no type error would be signalled, and we would try to multiply a s imple-
vector as though it were a float (with unpredictable results.) This is because the check for bar was weakened
to s t r u c t u r e , yet when compiling the call to bar-a , the compiler thinks it knows it has a bar.

Note that normally even weakened type checks report the precise type in error messages. For example, if
myfun's bar check is weakened to s t r u c t u r e , and the argument is n i l , then the error will be:

Type-error in MYFUN:
NIL i s not of type BAR

However, there is some speed and space cost for signalling a precise error, so the weakened type is reported if
the speed optimization quality is 3 or debug quality is less than 1:

Type-error in MYFUN:
NIL i s not of type STRUCTURE

See section 4.7.1, page 46 for further discussion of the optimize declaration.

4.6 G e t t i n g Exis t ing P r o g r a m s t o R u n
Since Python does much more comprehensive type checking than other Lisp compilers, Python will detect type
errors in many programs that have been debugged using other compilers. These errors are mostly incorrect
declarations, although compile-time type errors can find actual bugs if parts of the program have never been
tested.

Some incorrect declarations can only be detected by run-time type checking. It is very important to initially
compile programs with full type checks and then test this version. After the checking version has" been tested,
then you can consider weakening or eliminating type checks. This applies even to previously debugged
p rograms . Python does much more type inference than other Common Lisp compilers, so believing an incorrect
declaration does much more damage.

The most common problem is with variables whose initial value doesn't match the type declaration. Incorrect
initial values will always be flagged by a compile-time type error, and they are simple to fix once located. Consider
this code fragment:

(prog (foo)
(dec la re (fixnum foo))
(s e tq foo . . .)
. . .)

Here the variable foo is given an initial value of n i l , but is declared to be a fixnum. Even if it is never read,
the initial value of a variable must match the declared type. There are two ways to fix this problem. Change
the declaration:

(prog (foo)
(dec la re (type (or fixnum n u l l) foo))
(s e tq foo . . .)
. . .)

or change the initial value:

CHAPTER 4. THE COMPILER 45

(prog ((ioo 0))
(declare (fixnum foo))
(setq foo . . .)
. . .)

It is generally preferable to change to a legal initial value rather than to weaken the declaration, but sometimes
it is simpler to weaken the declaration than to try to make an initial value of the appropriate type.

Another declaration problem occasionally encountered is incorrect declarations on def macro arguments. This
probably usually happens when a function is converted into a macro. Consider this macro:

(defmacro my-l+ (x)
(declare (fixnum x))
' (the fixnum (1+ , x)))

Although legal and well-defined Common Lisp, this meaning of this definition is almost certainly not what the
writer intended. For example, this call is illegal:

(my-l+ (+ 4 5))

The call is illegal because the argument to the macro is (+ 4 5), which is a l i s t , not a fixnum. Because of
macro semantics, it is hardly ever useful to declare the types of macro arguments. If you really want to assert
something about the type of the result of evaluating a macro argument, then put a the in the expansion:

(defmacro my-l+ (x)
' (the fixnum (1+ (the fixnum , x))))

In this case, it would be stylistically preferable to change this macro back to a function and declare it inline.
Macros have no efficiency advantage over inline functions when using Python. See section 5.8, page 72.

Some more subtle problems are caused by incorrect declarations that can't be detected at compile time.
Consider this code:

(do ((pos 0 (pos i t ion # \ a string :start (1+ pos))))
((nul l pos))

(declare (fixnum pos))
. . .)

Although pos is almost always a fixnum, it is n i l at the end of the loop. If this example is compiled with full
type checks (the default), then running it will signal a type error at the end of the loop. If compiled without
type checks, the program will go into an infinite loop (or perhaps pos i t ion will complain because (1+ n i l) isn't
a sensible start.) Why? Because if you compile without type checks, the compiler just quietly believes the type
declaration. Since pos is always a fixnum, it is never n i l , so (null pos) is never true, and the loop exit test is
optimized away. Such errors are sometimes flagged by unreachable code notes (see section 5.4.5, page 62), but
it is still important to initially compile any system with full type checks, even if the system works fine when
compiled using other compilers.

In this case, the fix is to weaken the type declaration to (or fixnum n u l l) . 3 Note that there is usually
little performance penalty for weakening a declaration in this way. Any numeric operations in the body can still
assume the variable is a fixnum, since n i l is not a legal numeric argument. Another possible fix would be to
say:

(do ((pos 0 (posi t ion # \ a string :start (1+ po s))))
((nul l pos))

(l e t ((pos pos))
(declare (fixnum pos))
. . .))

This would be preferable in some circumstances, since it would allow a non-standard representation to be used
for the local pos variable in the loop body (see section 5.10.3.)

In summary, remember that all values that a variable ever has must be of the declared type, and that you
should test using safe code initially.

3ActuaUy, this declaration is totaUy unnecessary in Python, since it already knows position returns a non-negative fixnum or
nil.

CHAPTER 4. THE COMPILER 46

4.7 Compi l e r Pol icy
The policy is what tells the compiler how to compile a program. This is logically (and often textually) distinct
from the program itself. Broad control of policy is provided by the optimize declaration; other declarations and
variables control more specific aspects of compilation.

4 . 7 . 1 T h e O p t i m i z e D e c l a r a t i o n

The optimize declaration recognizes six different qualities. The qualities are conceptually independent aspects
of program performance. In reality, increasing one quality tends to have adverse effects on other qualities. The
compiler compares the relative values of qualities when it needs to make a trade-off; i.e., if speed is greater than
safety, then improve speed at the cost of safety.

The default for all qualities (except debug) is 1. Whenever qualities are equal, ties are broken according to
a broad idea of what a good default environment is supposed to be. Generally this downplays speed, compile-
speed and space in favor of sa fe ty and debug. Novice and casual users should stick to the default policy.
Advanced users often want to improve speed and memory usage at the cost of safety and debuggability.

If the value for a quality is 0 or 3, then it may have a special interpretation. A value of 0 means "totally
unimportant", and a 3 means "ultimately important." These extreme optimization values enable "heroic" com­
pilation strategies that are not always desirable and sometimes self-defeating. Specifying more than one quality
as 3 is not desirable, since it doesn't tell the compiler which quality is most important.

These are the optimization qualities:
speed How fast the program should is run. speed 3 enables some optimizations that hurt debuggability.

compilation-speed How fast the compiler should run. Note that increasing this above safe ty weakens type
checking.

space How much space the compiled code should take up. Inline expansion is mostly inhibited when space
is greater than speed. A value of 0 enables promiscuous inline expansion. Wide use of a 0 value is not
recommended, as it may waste so much space that run time is slowed. See section 5.8, page 72 for a
discussion of inline expansion.

debug How debuggable the program should be. The quality is treated differently from the other qualities: each
value indicates a particular level of debugger information; it is not compared with the other qualities. See
section 3.6, page 27 for more details.

safe ty How much error checking should be done. If speed, space or compilation-speed is more important
than safety, then type checking is weakened (see section 4.5.3, page 43). If safe ty if 0, then no run time
error checking is done. In addition to suppressing type checks, 0 also suppresses argument count checking,
unbound-symbol checking and array bounds checks.

ex tens ions : inh ib i t -warn ings This is a CMU extension that determines how little (or how much) diagnostic
output should be printed during compilation. This quality is compared to other qualities to determine
whether to print style notes and warnings concerning those qualities. If speed is greater than i n h i b i t -
warnings, then notes about how to improve speed will be printed, etc. The default value is 1, so raising
the value for any standard quality above its default enables notes for that quality. If inh ib i t -warnings
is 3, then all notes and most non-serious warnings are inhibited. This is useful with dec la re to suppress
warnings about unavoidable problems.

4 . 7 . 2 T h e O p t i m i z e - I n t e r f a c e D e c l a r a t i o n

The ex tens ions :op t imize - in te r face declaration is identical in syntax to the optimize declaration, but it
specifies the policy used during compilation of code the compiler automatically generates to check the number
and type-of arguments supplied to a function. It is useful to specify this policy separately, since even thoroughly
debugged functions are vulnerable to being passed the wrong arguments. The op t imize - in te r face declaration
can specify that arguments should be checked even when the general optimize policy is unsafe.

Note that this argument checking is the checking of user-supplied arguments to any functions defined within
the scope of the declaration, not the checking of arguments to Common Lisp primitives that appear in those
definitions.

CHAPTER 4. THE COMPILER 47

The idea behind this declaration is that it allows the definition of functions that appear fully safe to other
callers, but that do no internal error checking. Of course, it is possible that arguments may be invalid in ways
other than having incorrect type. Functions compiled unsafely must still protect themselves against things like
user-supplied array indices that are out of bounds and improper lists. See also the : con tex t -dec la ra t ions
option to with-compilat ion-un i t (page 35).

4.8 O p e n Cod ing and Inl ine Expans ion
Since Common Lisp forbids the redefinition of standard functions4, the compiler can have special knowledge of
these standard functions embedded in it. This special knowledge is used in various ways (open coding, inline
expansion, source transformation), but the implications to the user are basically the same:

• Attempts to redefine standard functions may be frustrated, since the function may never be called. Al­
though it is technically illegal to redefine standard functions, users sometimes want to implicitly redefine
these functions when they are debugging using the t r a c e macro. Special-casing of standard functions can
be inhibited using the not i n l i n e declaration.

• The compiler can have multiple alternate implementations of standard functions that implement different
trade-offs of speed, space and safety. This selection is based on the compiler policy, see section 4.7, page 46.

When a function call is open coded, inline code whose effect is equivalent to the function call is substituted
for that function call. When a function call is closed coded, it is usually left as is, although it might be turned
into a call to a different function with different arguments. As an example, if nthcdr were to be open coded,
then

(nthcdr 4 foobar)

might turn into

(cdr (cdr (cdr (cdr foobar))))

or even

(do ((i 0 (1+ i))
(l i s t foobar (cdr foobar)))

((= i 4) l i s t))

If n th is closed coded, then

(nth x 1)

might stay the same, or turn into something like:

(car (nthcdr x 1))

In general, open coding sacrifices space for speed, but some functions (such as car) are so simple that they
are always open-coded. Even when not open-coded, a call to a standard function may be transformed into a
different function call (as in the last example) or compiled as static call. Static function call uses a more efficient
calling convention that forbids redefinition.

4 See the proposed X3J13 "lisp-symbol-redefinition" cleanup.

Chapter 5

Advanced Compiler Use and Efficiency
Hints

By Robe r t MacLachlan

5.1 Advanced Compi l e r I n t r o d u c t i o n
In CMU Common Lisp, as is any language on any computer, the path to efficient code starts with good algo­
rithms and sensible programming techniques, but to avoid inefficiency pitfalls, you need to know some of this
implementation's quirks and features. This chapter is mostly a fairly long and detailed overview of what opti­
mizations Python does. Although there are the usual negative suggestions of inefficient features to avoid, the
main emphasis is on describing the things that programmers can count on being efficient.

The optimizations described here can have the effect of speeding up existing programs written in conventional
styles, but the potential for new programming styles that are clearer and less error-prone is at least as significant.
For this reason, several sections end with a discussion of the implications of these optimizations for programming
style.

5 . 1 . 1 T y p e s

Python's support for types is unusual in three major ways:

• Precise type checking encourages the specific use of type declarations as a form of run-time consistency
checking. This speeds development by localizing type errors and giving more meaningful error messages.
See section 4.5.2, page 43. Python produces completely safe code; optimized type checking maintains
reasonable efficiency on conventional hardware (see section 5.3.6, page 58.)

• Comprehensive support for the Common Lisp type system makes complex type specifiers useful. Using type
specifiers such as or and member has both efficiency and robustness advantages. See section 5.2, page 50.

• Type inference eliminates the need for some declarations, and also aids compile-time detection of type
errors. Given detailed type declarations, type inference can often eliminate type checks and enable more
efficient object representations and code sequences. Checking all types results in fewer type checks. See
sections 5.3 and 5.10.2.

5 . 1 . 2 O p t i m i z a t i o n

The main barrier to efficient Lisp programs is not that there is no efficient way to code the program in Lisp, but
that it is difficult to arrive at that efficient coding. Common Lisp is a highly complex language, and usually has
many semantically equivalent "reasonable" ways to code a given problem. It is desirable to make all of these

48

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 49

equivalent solutions have comparable efficiency so that programmers don't have to waste time discovering the
most efficient solution.

Source level optimization increases the number of efficient ways to solve a problem. This effect is much
larger than the increase in the efficiency of the "best" solution. Source level optimization transforms the orig­
inal program into a more efficient (but equivalent) program. Although the optimizer isn't doing anything the
programmer couldn't have done, this high-level optimization is important because:

• The programmer can code simply and directly, rather than obfuscating code to please the compiler.

• When presented with a choice of similar coding alternatives, the programmer can chose whichever happens
to be most convenient, instead of worrying about which is most efficient.

Source level optimization eliminates the need for macros to optimize their expansion, and also increases the
effectiveness of inline expansion. See sections 5.4 and 5.8.

Efficient support for a safer programming style is the biggest advantage of source level optimization. Existing
tuned programs typically won't benefit much from source optimization, since their source has already been
optimized by hand. However, even tuned programs tend to run faster under Python because:

• Low level optimization and register allocation provides modest speedups in any program.

• Block compilation and inline expansion can reduce function call overhead, but may require some program
restructuring. See sections 5.8, 5.6 and 5.7.

• Efficiency notes will point out important type declarations that are often missed even in highly tuned
programs. See section 5.12, page 84.

• Existing programs can be compiled safely without prohibitive speed penalty, although they would be faster
and safer with added declarations. See section 5.3.6, page 58.

5 . 1 . 3 F u n c t i o n Ca l l

The sort of symbolic programs generally written in Common Lisp often favor recursion over iteration, or have
inner loops so complex that they involve multiple function calls. Such programs spend a larger fraction of their
time doing function calls than is the norm in other languages; for this reason Common Lisp implementations
strive to make the general (or full) function call as inexpensive as possible. Python goes beyond this by providing
two good alternatives to full call:

• Local call resolves function references at compile time, allowing better calling sequences and optimization
across function calls. See section 5.6, page 67.

• Inline expansion totally eliminates call overhead and allows many context dependent optimizations. This
provides a safe and efficient implementation of operations with function semantics, eliminating the need
for error-prone macro definitions or manual case analysis. Although most Common Lisp implementations
support inline expansion, it becomes a more powerful tool with Python's source level optimization. See
sections 5.4 and 5.8.

Generally, Python provides simple implementations for simple uses of function call, rather than having only
a single calling convention. These features allow a more natural programming style:

• Proper tail recursion. See section 5.5, page 65

• Relatively efficient closures.

• A funca l l that is as efficient as normal named call.

• Calls to local functions such as from l abe l s are optimized:

— Control transfer is a direct jump.
— The closure environment is passed in registers rather than heap allocated.
— Keyword arguments and multiple values are implemented more efficiently.

See section 5.6, page 67.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 50

5 . 1 . 4 R e p r e s e n t a t i o n o f O b j e c t s

Sometimes traditional Common Lisp implementation techniques compare so poorly to the techniques used in
other languages that Common Lisp can become an impractical language choice. Terrible inefficiencies appear in
number-crunching programs, since Common Lisp numeric operations often involve number-consing and generic
arithmetic. Python supports efficient natural representations for numbers (and some other types), and allows
these efficient representations to be used in more contexts. Python also provides good efficiency notes that warn
when a crucial declaration is missing.

See section 5.10.2 for more about object representations and numeric types. Also see section 5.12, page 84
about efficiency notes.

5 . 1 . 5 W r i t i n g Eff ic ient C o d e

Writing efficient code that works is a complex and prolonged process. It is important not to get so involved in
the pursuit of efficiency that you lose sight of what the original problem demands. Remember that:

• The program should be correct — it doesn't matter how quickly you get the wrong answer.

• Both the programmer and the user will make errors, so the program must be robust — it must detect
errors in a way that allows easy correction.

• A small portion of the program will consume most of the resources, with the bulk of the code being
virtually irrelevant to efficiency considerations. Even experienced programmers familiar with the problem
area cannot reliably predict where these "hot spots" will be.

The best way to get efficient code that is still worth using, is to separate coding from tuning. During coding,
you should:

• Use a coding style that aids correctness and robustness without being incompatible with efficiency.

• Choose appropriate data structures that allow efficient algorithms and object representations (see section
5.9, page 74). Try to make interfaces abstract enough so that you can change to a different representation
if profiling reveals a need.

• Whenever you make an assumption about a function argument or global data structure, add consistency
assertions, either with type declarations or explicit uses of a s s e r t , ecase, etc.

During tuning, you should:

• Identify the hot spots in the program through profiling (section 5.13.)

• Identify inefficient constructs in the hot spot with efficiency notes, more profiling, or manual inspection of
the source. See sections 5.11 and 5.12.

• Add declarations and consider the application of optimizations. See sections 5.6, 5.8 and 5.10.2.

• If all else fails, consider algorithm or data structure changes. If you did a good job coding, changes will be
easy to introduce.

5.2 M o r e A b o u t T y p e s in P y t h o n
This section goes into more detail describing what types and declarations are recognized by Python. The area
where Python differs most radically from previous Common Lisp compilers is in its support for types:

• Precise type checking helps to find bugs at run time.

• Compile-time type checking helps to find bugs at compile time.

• Type inference minimizes the need for generic operations, and also increases the efficiency of run time type
checking and the effectiveness of compile time type checking.

• Support for detailed types provides a wealth of opportunity for operation-specific type inference and opti­
mization.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 51

5 . 2 . 1 M o r e T y p e s M e a n i n g f u l

Common Lisp has a very powerful type system, but conventional Common Lisp implementations typically only
recognize the small set of types special in that implementation. In these systems, there is an unfortunate paradox:
a declaration for a relatively general type like fixnum will be recognized by the compiler, but a highly specific
declaration such as (i n t ege r 3 17) is totally ignored.

This is obviously a problem, since the user has to know how to specify the type of an object in the way the
compiler wants it. A very minimal (but rarely satisfied) criterion for type system support is that it be no worse
to make a specific declaration than to make a general one. Python goes beyond this by exploiting a number of
advantages obtained from detailed type information.

Using more restrictive types in declarations allows the compiler to do better type inference and more compile-
time type checking. Also, when type declarations are considered to be consistency assertions that should be
verified (conditional on policy), then complex types are useful for making more detailed assertions.

Python "understands" the list-style or, member, function, array and number type specifiers. Understanding
means that:

• If the type contains more information than is used in a particular context, then the extra information is
simply ignored, rather than derailing type inference.

• In many contexts, the extra information from these type specifier is used to good effect. In particular,
type checking in Python is precise, so these complex types can be used in declarations to make interesting
assertions about functions and data structures (see section 4.5.2, page 43.) More specific declarations also
aid type inference and reduce the cost for type checking.

For related information, see section 5.10, page 76 for numeric types, and section 5.9.3 for array types.

5 . 2 . 2 C a n o n i c a l i z a t i o n

When given a type specifier, Python will often rewrite it into a different (but equivalent) type. This is the
mechanism that Python uses for detecting type equivalence. For example, in Python's canonical representation,
these types are equivalent:

(or l i s t (member :end)) = (or cons (member n i l :end))

This has two implications for the user:

• The standard symbol type specifiers for atom, nu l l , fixnum, etc., are in no way magical. The n u l l type
is actually defined to be (member n i l) , l i s t is (or cons n u l l) , and fixnum is (s igned-byte 30).

• When the compiler prints out a type, it may not look like the type specifier that originally appeared in the
program. This is generally not a problem, but it must be taken into consideration when reading compiler
error messages.

5 . 2 . 3 M e m b e r T y p e s

The member type specifier can be used to represent "symbolic" values, analogous to the enumerated types of
Pascal. For example, the second value of find-symbol has this type:

(member : i n t e r n a l : ex te rna l : i n h e r i t e d n i l)

Member types are very useful for expressing consistency constraints on data structures, for example:

(de f s t ruc t ice-cream
(f lavor : v a n i l l a : type (member : v a n i l l a :chocolate : s t rawber ry)))

Member types are also useful in type inference, as the number of members can sometimes be pared down to one,
in which case the value is a known constant.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 52

5 . 2 . 4 U n i o n T y p e s

The or (union) type specifier is understood, and is meaningfully applied in many contexts. The use of or allows
assertions to be made about types in dynamically typed programs. For example:

(deistruct box
(next n i l :type (or box nu l l))
(top :removed :type (or box-top (member :removed))))

The type assertion on the top slot ensures that an error will be signalled when there is an attempt to store an
illegal value (such as : moved.) Although somewhat weak, these union type assertions provide a useful input
into type inference, allowing the cost of type checking to be reduced. For example, this loop is safely compiled
with no type checks:

(defun.find-box-with-top (box)
(declare (type (or box nul l) box))
(do ((current box (box-next current)))

((nu l l current))
(unless (eq (box-top current) :removed)

(return current))))

Union types are also useful in type inference for representing types that are partially constrained. For example,
the result of this expression:

(i f ioo
(log ior x y)
(l i s t x y))

can be expressed as (or integer cons).

5 . 2 .5 T h e E m p t y T y p e

The type n i l is also called the empty type, since no object is of type n i l . The union of no types, (o r) , is also
empty. Python's interpretation of an expression whose type is n i l is that the expression never yields any value,
but rather fails to terminate, or is thrown out of. For example, the type of a call to e r ro r or a use of r e t u rn
is n i l . When the type of an expression is empty, compile-time type warnings about its value are suppressed;
presumably somebody else is signalling an error. If a function is declared to have return type n i l , but does in
fact return, then (in safe compilation policies) a "MIL Function returned" error will be signalled. See also the
function required-argument (page 42).

5 . 2 . 6 F u n c t i o n T y p e s

function types are understood in the restrictive sense, specifying:

• The argument syntax that the function must be called with. This is information about what argument
counts are acceptable, and which keyword arguments are recognized. In Python, warnings about argument
syntax are a consequence of function type checking.

• The types of the argument values that the caller must pass. If the compiler can prove that some argument
to a call is of a type disallowed by the called function's type, then it will give a compile-time type warning.
In addition to being used for compile-time type checking, these type assertions are also used as output type
assertions in code generation. For example, if foo is declared to have a f ixnum argument, then the 1+ in
(foo (1+ x)) is compiled with knowledge that the result must be a fixnum.

• The types the values that will be bound to argument variables in the function's definition. Declaring a
function's type with f type implicitly declares the types of the arguments in the definition. Python checks
for consistency between the definition and the f type declaration. Because of precise type checking, an
error will be signalled when a function is called with an argument of the wrong type.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 53

• The type of return value(s) that the caller can expect. This information is a useful input to type inference.
For example, if a function is declared to return a fixnum, then when a call to that function appears in an
expression, the expression will be compiled with knowledge that the call will return a fixnum.

• The type of return value(s) that the definition must return. The result type in an f type declaration is
treated like an implicit the wrapped around the body of the definition. If the definition returns a value of
the wrong type, an error will be signalled. If the compiler can prove that the function returns the wrong
type, then it will give a compile-time warning.

This is consistent with the new interpretation of function types and the f type declaration in the proposed
X3J13 "function-type-argument-type-semantics" cleanup. Note also, that if you don't explicitly declare the type
of a function using a global f type declaration, then Python will compute a function type from the definition,
providing a degree of inter-routine type inference, see section 5.3.3, page 56.

5 . 2 . 7 T h e V a l u e s D e c l a r a t i o n

CMU Common Lisp supports the values declaration as an extension to Common Lisp. The syntax is
(values typel type2 . . . typen). This declaration is semantically equivalent to a the form wrapped around the
body of the special form in which the values declaration appears. The advantage of values over the is purely
syntactic — it doesn't introduce more indentation. For example:

(defun foo (x)
(declare (values s i n g l e - f l o a t))
(ecase x

(: th i s . . .)
(:that . . .)
(:the-other . . .)))

is equivalent to:

(defun foo (x)
(the s ing l e - f l oa t

(ecase x
(: th i s . . .)
(:that . . .)
(:the-other . . .))))

and

(defun f loor (number ^optional (divisor 1))
(declare (values integer rea l))
. . .)

is equivalent to:

(defun f loor (number ^optional (divisor 1))
(the (values integer real)

. . .))

In addition to being recognized by lambda (and hence by defun), the values declaration is recognized by all
the other special forms with bodies and declarations: l e t , l e t* , labels and f l e t . Macros with declarations
usually splice the declarations into one of the above forms, so they will accept this declaration too, but the exact
effect of a values declaration will depend on the macro.

If you declare the types of all arguments to a function, and also declare the return value types with values,
you have described the type of the function. Python will use this argument and result type information to derive
a function type that will then be applied to calls of the function (see section 5.2.6, page 52.) This provides a
way to declare the types of functions that is much less syntactically awkward than using the f type declaration
with a function type specifier.

Although the values declaration is non-standard, it is relatively harmless to use it in otherwise portable code,
since any warning in non-CMU implementations can be suppressed with the standard dec l a r a t i on proclamation.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 54

5 , 2 . 8 S t r u c t u r e T y p e s
Because of precise type checking, structure types are much better supported by Python than by conventional
compilers:

• The structure argument to structure accessors is precisely checked — if you call foo-a on a bar, an error
will be signalled.

• The types of slot values are precisely checked — if you pass the wrong type argument to a constructor or
a slot setter, then an error will be signalled.

This error checking is tremendously useful for detecting bugs in programs that manipulate complex data struc­
tures.

An additional advantage of checking structure types and enforcing slot types is that the compiler can safely
believe slot type declarations. Python effectively moves the type checking from the slot access to the slot setter
or constructor call. This is more efficient since caller of the setter or constructor often knows the type of the
value, entirely eliminating the need to check the value's type. Consider this example:

(de f s t ruc t coordinate
(x n i l : type s i n g l e - f l o a t)
(y n i l : type s i n g l e - f l o a t))

(defun make-it ()
(make-coordinate :x 1.0 :y 1 . 0))

(defun u s e - i t (i t)
(dec la re (type coordinate i t))
(sq r t (expt (coordinate-x i t) 2) (expt (coordinate-y i t) 2)))

make-it and u s e - i t are compiled with no checking on the types of the float slots, yet u s e - i t can use s i n g l e -
f l o a t arithmetic with perfect safety. Note that make-coordinate must still check the values of x and y unless
the call is block compiled or inline expanded (see section 5.6, page 67.) But even without this advantage, it is
almost always more efficient to check slot values on structure initialization, since slots are usually written once
and read many times.

5 . 2 . 9 T h e F r e e z e - T y p e D e c l a r a t i o n

The extensions : f reeze- type declaration is a CMU extension that enables more efficient compilation of user-
defined types by asserting that the definition is not going to change. This declaration may only be used glob­
ally (with declaim or proclaim). Currently f reeze- type only affects structure type testing done by typep,
typecase, etc. Here is an example:

(declaim (f reeze- type foo ba r))

This asserts that the types foo and bar and their subtypes are not going to change. This allows more efficient
type testing, since the compiler can open-code a test for all possible subtypes, rather than having to examine
the type hierarchy at run-time.

5 . 2 . 1 0 T y p e R e s t r i c t i o n s

Avoid use of the and, not and s a t i s f i e s types in declarations, since type inference has problems with them.
When these types do appear in a declaration, they are still checked precisely, but the type information is of
limited use to the compiler, and types are effective as long as the intersection can be canonicalized to a type
that doesn't use and. For example:

(and fixnum unsigned-byte)

is fine, since it is the same as:

(i n t ege r 0 most-positive-fixnum)

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 55

but this type:

(and symbol (not (member :end)))

will not be fully understood by type interference since the and can't be removed by canonicalization.
Using any of these type specifiers in a type test with typep or typecase is fine, since as tests, these types

can be translated into the and macro, the not function or a call to the satisfies predicate.

5.2*11 Type Style Recommendations
Python provides good support for some currently unconventional ways of using the Common Lisp type system.
With Python, it is desirable to make declarations as precise as possible, but type inference also makes some
declarations unnecessary. Here are some general guidelines for maximum robustness and efficiency:

• Declare the types of all function arguments and structure slots as precisely as possible (while avoiding not,
and and satisiies). Put these declarations in during initial coding so that type assertions can find bugs
for you during debugging.

• Use the member type specifier where there are a small number of possible symbol values, for example:
(member :red rblue :green).

• Use the or type specifier in situations where the type is not certain, but there are only a few possibilities,
for example: (or list vector).

• Declare integer types with the tightest bounds that you can, such as (integer 3 7).

• Define def type or def struct types before they are used. Definition after use is legal (producing no
"undefined type" warnings), but type tests and structure operations will be compiled much less efficiently.

• In addition to declaring the array element type and simpleness, also declare the dimensions if they are
fixed, for example:

(simple-array single-float (1024 1024))

This bounds information allows array indexing for multi-dimensional arrays to be compiled much more
efficiently, and may also allow array bounds checking to be done at compile time. See section 5.9.3,
page 75.

• Avoid use of the the declaration within expressions. Not only does it clutter the code, but it is also almost
worthless under safe policies. If the need for an output type assertion is revealed by efficiency notes during
tuning, then you can consider the, but it is preferable to constrain the argument types more, allowing the
compiler to prove the desired result type.

• Don't bother declaring the type of let or other non-argument variables unless the type is non-obvious. If
you declare function return types and structure slot types, then the type of a variable is often obvious both
to the programmer and to the compiler. An important case where the type isn't obvious, and a declaration
is appropriate, is when the value for a variable is pulled out of untyped structure (e.g., the result of car),
or comes from some weakly typed function, such as read.

• Declarations are sometimes necessary for integer loop variables, since the compiler can't always prove that
the value is of a good integer type. These declarations are best added during tuning, when an efficiency
note indicates the need.

5.3 Type Inference
Type inference is the process by which the compiler tries to figure out the types of expressions and variables,
given an inevitable lack of complete type information. Although Python does much more type inference than
most Common Lisp compilers, remember that the more precise and comprehensive type declarations are, the
more type inference will be able to do.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 56

5.3.1 Variable Type Inference
The type of a variable is the union of the types of all the definitions. In the degenerate case of a let, the type of
the variable is the type of the initial value. This inferred type is intersected with any declared type, and is then
propagated to all the variable's references. The types of multiple-value-bind variables are similarly inferred
from the types of the individual values of the values form.

If multiple type declarations apply to a single variable, then all the declarations must be correct; it is as
though all the types were intersected producing a single and type specifier. In this example:

(defmacro my-dotimes ((var count) ftbody body)
'(do ((, var 0 (1+ ,var)))

((>= ,var .count))
(declare (type (integer 0 *) .var))
,«body))

(my-dotimes (i . . .)
(declare (fixnum i))
. . .)

the two declarations for i are intersected, so i is known to be a non-negative fixnum.
In practice, this type inference is limited to lets and local functions, since the compiler can't analyze all the

calls to a global function. But type inference works well enough on local variables so that it is often unnecessary
to declare the type of local variables. This is especially likely when function result types and structure slot types
are declared. The main areas where type inference breaks down are:

• When the initial value of a variable is a untyped expression, such as (car x), and

• When the type of one of the variable's definitions is a function of the variable's current value, as in: (se tq
x (l + x))

5.3.2 Local Function Type Inference
The types of arguments to local functions are inferred in the same was as any other local variable; the type is
the union of the argument types across all the calls to the function, intersected with the declared type. If there
are any assignments to the argument variables, the type of the assigned value is unioned in as well.

The result type of a local function is computed in a special way that takes tail recursion (see section 5.5,
page 65) into consideration. The result type is the union of all possible return values that aren't tail-recursive
calls. For example, Python will infer that the result type of this function is integer:

(defun ! (n res)
(declare (integer n res))
(i f (zerop n)

res
(! (1- n) (* n r e s))))

Although this is a rather obvious result, it becomes somewhat less trivial in the presence of mutual tail recursion
of multiple functions. Local function result type inference interacts with the mechanisms for ensuring proper tail
recursion mentioned in section 5.6.5.

5.3.3 Global Function Type Inference
As described in section 5.2.6, a global function type (f type) declaration places implicit type assertions on the
call arguments, and also guarantees the type of the return value. So wherever a call to a declared function
appears, there is no doubt as to the types of the arguments and return value. Furthermore, Python will infer
a function type from the function's definition if there is no f type declaration. Any type declarations on the
argument variables are used as the argument types in the derived function type, and the compiler's best guess
for the result type of the function is used as the result type in the derived function type.

This method of deriving function types from the definition implicitly assumes that functions won't be redefined
at run-time. Consider this example:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 57

(defun foo-p (x)
(let ((res (and (consp x) (eq (car x) 'foo))))

(format t "It is ~:[not ~;~]foo." res)))

(defnn frob (it)
(if (foo-p it)

(setf (cadr it) 'yow!)
(1+ it)))

Presumably, the programmer really meant to return res from foo-p, but he seems to have forgotten. When
he tries to call do (frob (list 'foo nil)), frob will flame out when it tries to add to a cons. Realizing his
error, he fixes foo-p and recompiles it. But when he retries his test case, he is baffled because the error is
still there. What happened in this example is that Python proved that the result of foo -p is nu l l , and then
proceeded to optimize away the setf in frob.

Fortunately, in this example, the error is detected at compile time due to notes about unreachable code (see
section 5.4.5, page 62.) Still, some users may not want to worry about this sort of problem during incremental
development, so there is a variable to control deriving function types.

extensions: *derive-function-types* [Variable]
If true (the default), argument and result type information derived from compilation of def uns is used when

compiling calls to that function. If false, only information from f type proclamations will be used.

5.3.4 Operation Specific Type Inference
Many of the standard Common Lisp functions have special type inference procedures that determine the result
type as a function of the argument types. For example, the result type of aref is the array element type. Here
are some other examples of type inferences:

(logand x #xFF) => (unsigned-byte 8)

(+ (the (integer 0 12) x) (the (integer 0 1) y)) => (integer 0 13)

(ash (the (unsigned-byte 16) x) -8) => (unsigned-byte 8)

5.3.5 Dynamic Type Inference
Python uses flow analysis to infer types in dynamically typed programs. For example:

(ecase x
(list (length x))
. . .)

Here, the compiler knows the argument to length is a list, because the call to length is only done when x is a
list. The most significant efficiency effect of inference from assertions is usually in type check optimization.

Dynamic type inference has two inputs: explicit conditionals and implicit or explicit type assertions. Flow
analysis propagates these constraints on variable type to any code that can be executed only after passing though
the constraint. Explicit type constraints come from ifs where the test is either a lexical variable or a function
of lexical variables and constants, where the function is either a type predicate, a numeric comparison or eq.

If there is an eq (or eql) test, then the compiler will actually substitute one argument for the other in the
true branch. For example:

(when (eq x :yow!) (return x))

becomes:

(when (eq x :yow!) (return :yow!))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 58

This substitution is done when one argument is a constant, or one argument has better type information than
the other. This transformation reveals opportunities for constant folding or type-specific optimizations. If the
test is against a constant, then the compiler can prove that the variable is not that constant value in the false
branch, or (not (member :yow!)) in the example above. This can eliminate redundant tests, for example:

(if (eq x nil)

(if x a b))

is transformed to this:

(if (eq x nil)

a)

Variables appearing as if tests are interpreted as (not (eq var nil)) tests. The compiler also converts = into
eql where possible. It is difficult to do inference directly on = since it does implicit coercions.

When there is an explicit < or > test on integer variables, the compiler makes inferences about the ranges
the variables can assume in the true and false branches. This is mainly useful when it proves that the values
are small enough in magnitude to allow open-coding of arithmetic operations. For example, in many uses of
dotimes with a f ixnum repeat count, the compiler proves that fixnum arithmetic can be used.

Implicit type assertions are quite common, especially if you declare function argument types. Dynamic
inference from implicit type assertions sometimes helps to disambiguate programs to a useful degree, but is most
noticeable when it detects a dynamic type error. For example:

(defun foo (x)
(+ (car x) x))

results in this warning:

In: DEFUH FOO
(+ (CAR X) X)

X
Warning: Result is a LIST, not a NUMBER.

Note that Common Lisp's dynamic type checking semantics make dynamic type inference useful even in
programs that aren't really dynamically typed, for example:

(+ (car x) (length x))

Here, x presumably always holds a list, but in the absence of a declaration the compiler cannot assume x is a
list simply because list-specific operations are sometimes done on it. The compiler must consider the program
to be dynamically typed until it proves otherwise. Dynamic type inference proves that the argument to length
is always a list because the call to length is only done after the list-specific car operation.

5.3.6 Type Check Optimization
Python backs up its support for precise type checking by minimizing the cost of run-time type checking. This is
done both through type inference and though optimizations of type checking itself.

Type inference often allows the compiler to prove that a value is of the correct type, and thus no type check
is necessary. For example:

(de f s t ruc t foo a b c)
(defstruct link

(foo (required-argument) :type foo)
(next nil :type (or link null)))

(foo-a (link-foo x))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 59

Here, there is no need to check that the result of l ink-foo is a ioo, since it always is. Even when some type
checks are necessary, type inference can often reduce the number:

(defun t e s t (z)
(l e t ((a (foo-a x))

(b (foo-b x))
(c (foo-c x)))

. . .))

In this example, only one (foo-p x) check is needed. This applies to a lesser degree in list operations, such as:

(i f (eql (car x) 3) (cdr x) y)

Here, we only have to check that x is a list once.
Since Python recognizes explicit type tests, code that explicitly protects itself against type errors has little

introduced overhead due to implicit type checking. For example, this loop compiles with no implicit checks
checks for car and cdr:

(defun memq (e 1)
(do ((current 1 (cdr current)))

((atom current) n i l)
(when (eq (car current) e) (return current))))

Python reduces the cost of checks that must be done through an optimization called complementing. A
complemented check for type is simply a check that the value is not of the type (not type). This is only
interesting when something is known about the actual type, in which case we can test for the complement of
(and known-type (not type)), or the difference between the known type and the assertion. An example:

(l ink-foo (l ink-next x))

Here, we change the type check for l ink-f oo from a test for foo to a test for:

(not (and (or foo nul l) (not foo.)))

or more simply (not nul l) . This is probably the most important use of complementing, since the situation is
fairly common, and a nul l test is much cheaper than a structure type test.

Here is a more complicated example that illustrates the combination of complementing with dynamic type
inference:

(defun f ind-a (a x)
(declare (type (or l ink nul l) x))
(do ((current x (l ink-next current)))

((nul l current) n i l)
(l e t ((foo (l ink-foo current)))

(when (eq (foo-a foo) a) (return f o o)))))

This loop can be compiled with no type checks. The l ink test for l ink-f oo and l ink-next is complemented to
(not nu l l) , and then deleted because of the explicit null test. As before, no check is necessary for foo-a, since
the l ink-f oo is always a foo. This sort of situation shows how precise type checking combined with precise
declarations can actually result in reduced type checking.

5.4 Source Optimization
This section describes source-level transformations that Python does on programs in an attempt to make them
more efficient. Although source-level optimizations can make existing programs more efficient, the biggest advan­
tage of this sort of optimization is that it makes it easier to write efficient programs. If a clean, straightforward
implementation is can be transformed into an efficient one, then there is no need for tricky and dangerous hand
optimization.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 60

5.4.1 Let Optimization
The primary optimization of let variables is to delete them when they are unnecessary. Whenever the value of
a let variable is a constant, a constant variable or a constant (local or non-notinline) function, the variable is
deleted, and references to the variable are replaced with references to the constant expression. This is useful
primarily in the expansion of macros or inline functions, where argument values are often constant in any given
call, but are in general non-constant expressions that must be bound to preserve order of evaluation. Let variable
optimization eliminates the need for macros to carefully avoid spurious bindings, and also makes inline functions
just as efficient as macros.

A particularly interesting class of constant is a local function. Substituting for lexical variables that are
bound to a function can substantially improve the efficiency of functional programming styles, for example:

(let ((a #'(lambda (x) (zow x))))
(xuncall a 3))

effectively transforms to:

(zow 3)
This transformation is done even when the function is a closure, as in:

(let ((a (let ((y (zug)))
#'(lambda (x) (zow x y)))))

(funcall a 3))

becoming:

(zow 3 (zug))
A constant variable is a lexical variable that is never assigned to, always keeping its initial value. Whenever

possible, avoid setting lexical variables — instead bind a new variable to the new value. Except for loop variables,
it is almost always possible to avoid setting lexical variables. This form:

(let ((x (i x)))
...)

is more efficient than this form:

(setq x (f x))

Setting variables makes the program more difficult to understand, both to the compiler and to the program­
mer. Python compiles assignments at least as efficiently as any other Common Lisp compiler, but most let
optimizations are only done on constant variables.

Constant variables with only a single use are also optimized away, even when the initial value is not constant. 1

For example, this expansion of incf:
(let ((#:g3 (+ x 1)))

(setq x #:G3))

becomes:

(setq x (+ x 1))
The type semantics of this transformation are more important than the elimination of the variable itself. Consider
what happens when x is declared to be a f ixnum; after the transformation, the compiler can compile the addition
knowing that the result is a f ixnum, whereas before the transformation the addition would have to allow for
fixnum overflow.

Another variable optimization deletes any variable that is never read. This causes the initial value and any
assigned values to be unused, allowing those expressions to be deleted if they have no side-effects.

Note that a let is actually a degenerate case of local call (see section 5.6.2, page 67), and that let optimization
can be done on calls that weren't created by a let. Also, local call allows an applicative style of iteration that is
totally assignment free.

JThe source transformation in this example doesn't represent the preservation of evaluation order implicit in the compiler's
internal representation. Where necessary, the back end will reintroduce temporaries to preserve the semantics.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 61

5.4.2 Constant Folding
Constant folding is an optimization that replaces a call of constant arguments with the constant result of that
call. Constant folding is done on all standard functions for which it is legal. Inline expansion allows folding of
any constant parts of the definition, and can be done even on functions that have side-effects.

It is convenient to rely on constant folding when programming, as in this example:

(defconstant limit 42)

(defun foo ()
(... (1- limit) ...))

Constant folding is also helpful when writing macros or inline functions, since it usually eliminates the need to
write a macro that special-cases constant arguments.

Constant folding of a user defined function is enabled by the extensions: constant-function proclamation.
In this example:

(declaim (ext:constant-function myfun))
(defun myexp (x y)

(declare (single-float x y))
(exp (* (log x) y)))

... (myexp 3.0 1.3) ...

The call to myexp is constant-folded to 4.1711674.

5.4.3 Unused Expression Elimination
If the value of any expression is not used, and the expression has no side-effects, then it is deleted. As with
constant folding, this optimization applies most often when cleaning up after inline expansion and other op­
timizations. Any function declared an extensions: constant-function is also subject to unused expression
elimination.

Note that Python will eliminate parts of unused expressions known to be side-effect free, even if there are
other unknown parts. For example:

(let ((a (list (foo) (bar))))
(if t

(zow)
(raz a)))

becomes:

(progn (foo) (bar))
(zow)

5.4.4 Control Optimization
The most important optimization of control is recognizing when an if test is known at compile time, then
deleting the if, the test expression, and the unreachable branch of the if. This can be considered a special case
of constant folding, although the test doesn't have to be truly constant as long as it is definitely not n i l . Note
also, that type inference propagates the result of an if test to the true and false branches, see section 5.3.5,
page 57.

A related if optimization is this transformation:2

(if (if a b c) x y)

into:
2Note that the code for x and y isn't actuaUy replicated.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 62

(i f a
(i f b x y)
(i f c x y))

The opportunity for this sort of optimization usually results from a conditional macro. For example:

(i f (not a) x y)

is actually implemented as this:

(i f (i f a n i l t) x y)

which is transformed to this:

(i f a
(i f n i l x y)
(i f t x y))

which is then optimized to this:

(i f a y x)

Note that due to Python's internal representations, the i f—if situation will be recognized even if other forms
are wrapped around the inner if, like:

(i f (l e t ((g . . .))
(loop

(r e tu rn (not g))
. . .))

x y)

In Python, all the Common Lisp macros really are macros, written in terms of if, block and tagbody, so
user-defined control macros can be just as efficient as the standard ones. Python emits basic blocks using a
heuristic that minimizes the number of unconditional branches. The code in a tagbody will not be emitted in
the order it appeared in the source, so there is no point in arranging the code to make control drop through to
the target.

5.4.5 Unreachable Code Deletion
Python will delete code whenever it can prove that the code can never be executed. Code becomes unreachable
when:

• An i f is optimized away, or

• There is an explicit unconditional control transfer such as go or r e t u r n - f rom, or

• The last reference to a local function is deleted (or there never was any reference.)

When code that appeared in the original source is deleted, the compiler prints a note to indicate a possible
problem (or at least unnecessary code.) For example:

(defun foo ()
(i f t

(w r i t e - l i n e "True.")
(w r i t e - l i n e ••False .")))

will result in this note:

In : DEFUN FOO
(WRITE-LINE "Fa l se . ")

Note: Delet ing unreachable code.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 63

It is important to pay attention to unreachable code notes, since they often indicate a subtle type error. For
example:

(defstruct foo a b)

(defun lose (x)
(let ((a (foo-a x))

(b (if x (foo-b x) :none)))
...))

results in this note:

In: DEFUN LOSE
(IF X (FOO-B X) :NONE)

==>
:NONE

Note: Deleting unreachable code.

The :none is unreachable, because type inference knows that the argument to foo-a must be a foo, and thus
can't be nil. Presumably the programmer forgot that x could be nil when he wrote the binding for a.

Here is an example with an incorrect declaration:

(defun count-a (string)
(do ((pos 0 (position # \a string :start (1+ pos)))

(count 0 (1+ count)))
((null pos) count)

(declare (fixnum pos))))

This time our note is:

In: DEFUN COUNT-A
(DO ((POS 0 #) (COUNT 0 #))

((NULL POS) COUNT)
(DECLARE (FIXNUM POS)))

— > BLOCK LET TAGBODY RETURN-FROM PROGN

COUNT
Note: Deleting unreachable code.

The problem here is that pos can never be null since it is declared a f ixnum.
It takes some experience with unreachable code notes to be able to tell what they are trying to say. In

non-obvious cases, the best thing to do is to call the function in a way that should cause the unreachable code
to be executed. Either you will get a type error, or you will find that there truly is no way for the code to be
executed.

Not all unreachable code results in a note:

• A note is only given when the unreachable code textually appears in the original source. This prevents
spurious notes due to the optimization of macros and inline functions, but sometimes also foregoes a note
that would have been useful.

• Since accurate source information is not available for non-list forms, there is an element of heuristic in
determining whether or not to give a note about an atom. Spurious notes may be given when a macro
or inline function defines a variable that is also present in the calling function. Notes about n i l and t
are never given, since it is too easy to confuse these constants in expanded code with ones in the original
source.

• Notes are only given about code unreachable due to control flow. There is no note when an expression is
deleted because its value is unused, since this is a common consequence of other optimizations.

Somewhat spurious unreachable code notes can also result when a macro inserts multiple copies of its argu­
ments in different contexts, for example:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 64

(defmacro t-and-f (var form)
'(if ,var ,form ,form))

(defun foo (x)

(t-and-f x (if x "True." "False.")))

results in these notes:

In: DEFUI FOO
(IF X "True." "False.")

"False."

Note: Deleting unreachable code.

"True."
Note: Deleting unreachable code.

It seems like it has deleted both branches of the if, but it has really deleted one branch in one copy, and the
other branch in the other copy. Note that these messages are only spurious in not satisfying the intent of the
rule that notes are only given when the deleted code appears in the original source; there is always some code
being deleted when a unreachable code note is printed.
5.4.6 Multiple Values Optimization
Within a function, Python implements uses of multiple values particularly efficiently. Multiple values can be kept
in arbitrary registers, so using multiple values doesn't imply stack manipulation and representation conversion.
For example, this code:

(let ((a (if x (foo x) u))
(b (if x (bar x) v)))

. . .)

is actually more efficient written this way:

(multiple-value-bind
(a b)
(if x

(values (foo x) (bar x))
(values u v))

. . .)
Also, see section 5.6.5, page 69 for information on how local call provides efficient support for multiple function

return values.

5.4.7 Source to Source Transformation
The compiler implements a number of operation-specific optimizations as source-to-source transformations. You
will often see unfamiliar code in error messages, for example:

(defun my-zerop () (zerop x))

gives this warning:

In: DEFUN MY-ZEROP
(ZEROP X)

(« X 0)
Warning: Undefined variable: X

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 65

The original zerop has been transformed into a call to =. This transformation is indicated with the same ==>
used to mark macro and function inline expansion. Although it can be confusing, display of the transformed
source is important, since warnings are given with respect to the transformed source. This a more obscure
example:

(defun foo (x) (logand 1 x))

gives this efficiency note:

In: DEFUN FOO
(LOGAND 1 X)

==>
(LOGAND C::Y C::X)

Note: Forced to do static-function Two-arg-and (cost 53).
Unable to do inline fixnum arithmetic (cost 1) because:
The first argument is a INTEGER, not a FIXNUM.
etc.

Here, the compiler commuted the call to logand, introducing temporaries. The note complains that the first
argument is not a f ixnum, when in the original call, it was the second argument. To make things more confusing,
the compiler introduced temporaries called c: :x and c: :y that are bound to y and 1, respectively.

You will also notice source-to-source optimizations when efficiency notes are enabled (see section 5.12,
page 84.) When the compiler is unable to do a transformation that might be possible if there was more in­
formation, then an efficiency note is printed. For example, my-zerop above will also give this efficiency note:

In: DEFUN FOO
(ZEROP X)

(= X 0)
Note: Unable to optimize because:

Operands might not be the same type, so can't open code.

5.4,8 Style Recommendations
Source level optimization makes possible a clearer and more relaxed programming style:

• Don't use macros purely to avoid function call. If you want an inline function, write it as a function and
declare it inline. It's clearer, less error-prone, and works just as well.

• Don't write macros that try to "optimize" their expansion in trivial ways such as avoiding binding variables
for simple expressions. The compiler does these optimizations too, and is less likely to make a mistake.

• Make use of local functions (i.e., labels or f let) and tail-recursion in places where it is clearer. Local
function call is faster than full call.

• Avoid setting local variables when possible. Binding a new let variable is at least as efficient as setting an
existing variable, and is easier to understand, both for the compiler and the programmer.

• Instead of writing similar code over and over again so that it can be hand customized for each use, define
a macro or inline function, and let the compiler do the work.

5,5 Tail Recursion
A call is tail-recursive if nothing has to be done after the the call returns, i.e. when the call returns, the
returned value is immediately returned from the calling function. In this example, the recursive call to myfun is
tail-recursive:

(defun myfun (x)
(if (oddp (random x))

(isqrt x)
(myfun (1- x))))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 66

Tail recursion is interesting because it is form of recursion that can be implemented much more efficiently
than general recursion. In general, a recursive call requires the compiler to allocate storage on the stack at
run-time for every call that has not yet returned. This memory consumption makes recursion unacceptably
inefficient for representing repetitive algorithms having large or unbounded size. Tail recursion is the special case
of recursion that is semantically equivalent to the iteration constructs normally used to represent repetition in
programs. Because tail recursion is equivalent to iteration, tail-recursive programs can be compiled as efficiently
as iterative programs.

So why would you want to write a program recursively when you can write it using a loop? Well, the main
answer is that recursion is a more general mechanism, so it can express some solutions simply that are awkward
to write as a loop. Some programmers also feel that recursion is a stylistically preferable way to write loops
because it avoids assigning variables. For example, instead of writing:

(defun funl (x)
something-that-uses-x)

(defun fun2 (y)
something-that-uses-y)

(do ((x something (fun2 (funl x))))
(n i l))

You can write:

(defun funl (x)
(fun2 something-that-uses-x))

(defun fun2 (y)
(funl something-that-uses-y))

(funl something)

The tail-recursive definition is actually more efficient, in addition to being (arguably) clearer. As the number of
functions and the complexity of their call graph increases, the simplicity of using recursion becomes compelling.
Consider the advantages of writing a large finite-state machine with separate tail-recursive functions instead of
using a single huge prog.

It helps to understand how to use tail recursion if you think of a tail-recursive call as a psetq that assigns
the argument values to the called function's variables, followed by a go to the start of the called function. This
makes clear an inherent efficiency advantage of tail-recursive call: in addition to not having to allocate a stack
frame, there is no need to prepare for the call to return (e.g., by computing a return PC.)

Is there any disadvantage to tail recursion? Other than an increase in efficiency, the only way you can tell
that a call has been compiled tail-recursively is if you use the debugger. Since a tail-recursive call has no stack
frame, there is no way the debugger can print out the stack frame representing the call. The effect is that
backtrace will not show some calls that would have been displayed in a non-tail-recursive implementation. In
practice, this is not as bad as it sounds — in fact it isn't really clearly worse, just different. See section 3.3.5,
page 23 for information about the debugger implications of tail recursion.

In order to ensure that tail-recursion is preserved in arbitrarily complex calling patterns across separately
compiled functions, the compiler must compile any call in a tail-recursive position as a tail-recursive call. This is
done regardless of whether the program actually exhibits any sort of recursive calling pattern. In this example,
the call to f un2 will always be compiled as a tail-recursive call:

(defun funl (x)
(fun2 x))

So tail recursion doesn't necessarily have anything to do with recursion as it is normally thought of. See section
5.6.4, page 68 for more discussion of using tail recursion to implement loops.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 67

5.5.1 Tail Recursion Exceptions
Although Python is claimed to be "properly" tail-recursive, some might dispute this, since there are situations
where tail recursion is inhibited:

• When the call is enclosed by a special binding, or

• When the call is enclosed by a catch or unwind-protect, or

• When the call is enclosed by a block or tagbody and the block name or go tag has been closed over.

These dynamic extent binding forms inhibit tail recursion because they allocate stack space to represent the
binding. Shallow-binding implementations of dynamic scoping also require cleanup code to be evaluated when
the scope is exited.

5.6 Local Call
Python supports two kinds of function call: full call and local call. Full call is the standard calling convention;
its late binding and generality make Common Lisp what it is, but create unavoidable overheads. When the
compiler can compile the calling function and the called function simultaneously, it can use local call to avoid
some of the overhead of full call. Local call is really a collection of compilation strategies. If some aspect of call
overhead is not needed in a particular local call, then it can be omitted. In some cases, local call can be totally
free. Local call provides two main advantages to the user:

• Local call makes the use of the lexical function binding forms f l e t and labe ls much more efficient. A
local call is always faster than a full call, and in many cases is much faster.

• Local call is a natural approach to block compilation, a compilation technique that resolves function
references at compile time. Block compilation speeds function call, but increases compilation times and
prevents function redefinition.

5.6.1 Self-Recursive Calls
Local call is used when a function defined by deiun calls itself. For example:

(defun fact (n)
(i f (zerop n)

1
(* n (fact (1- n)))))

This use of local call speeds recursion, but can also complicate debugging, since trace will only show the first call
to fact , and not the recursive calls. This is because the recursive calls directly jump to the start of the function,
and don't indirect through the symbol-function. Self-recursive local call is inhibited when the :block-compile
argument to compile-f i le is n i l (see section 5.7.3, page 71.)

5.6.2 Let Calls
Because local call avoids unnecessary call overheads, the compiler internally uses local call to implement some
macros and special forms that are not normally thought of as involving a function call. For example, this l e t :

(l e t ((a (foo))
(b (bar)))

. . .)

is internally represented as though it was macroexpanded into:

(funcall #'(lambda (a b)
. . .)

(foo)
(bar))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 68

This implementation is acceptable because the simple cases of local call (equivalent to a l e t) result in good code.
This doesn't make l e t any more efficient, but does make local calls that are semantically the same as l e t much
more efficient than full calls. For example, these definitions are all the same as far as the compiler is concerned:

(defun foo ()
. . .some other s t u f f . . .
(l e t ((a something))

. . .some s t u f f . . .))

(defun foo ()
(f l e t ((local fun (a)

. . .some s t u f f . . .))
. . .some other s t u f f . . .
(localfun something)))

(defun foo ()
(l e t ((funvar #'(lambda (a)

. . .some s t u f f . . .)))
. . .some other s t u f f . . .
(funcal l funvar something)))

Although local call is most efficient when the function is called only once, a call doesn't have to be equivalent
to a l e t to be more efficient than full call. All local calls avoid the overhead of argument count checking and
keyword argument parsing, and there are a number of other advantages that apply in many common situations.
See section 5.4.1, page 60 for a discussion of the optimizations done on let calls.

5.6.3 Closures
Local call allows for much more efficient use of closures, since the closure environment doesn't need to be allocated
on the heap, or even stored in memory at all. In this example, there is no penalty for local fun referencing a
and b:

(defun foo (a b)
(f l e t ((local fun (x)

(1+ (* a b x))))
(i f (= a b)

(localfun (- x))
(localfun x))))

In local call, the compiler effectively passes closed-over values as extra arguments, so there is no need for you to
"optimize" local function use by explicitly passing in lexically visible values. Closures may also be subject to let
optimization (see section 5.4.1, page 60.)

Note: indirect value cells are currently always allocated on the heap when a variable is both assigned to (with
se tq or set f) and closed over, regardless of whether the closure is a local function or not. This is another reason
to avoid setting variables when you don't have to.

5.6.4 Local Tail Recursion
Tail-recursive local calls are particularly efficient, since they are in effect an assignment plus a control transfer.
Scheme programmers write loops with tail-recursive local calls, instead of using the imperative go and setq. This
has not caught on in the Common Lisp community, since conventional Common Lisp compilers don't implement
local call. In Python, users can choose to write loops such as:

(defun ! (n)
(labels ((loop (n t o t a l)

(i f (zerop n)
t o t a l
(loop (1- n) (* n t o t a l)))))

(loop n 1)))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 69

extensions :iterate name ({(var initial-value)}*) {declaration}* {form}* [Macro]
This macro provides syntactic sugar for using labels to do iteration. It creates a local function name with

the specified vars as its arguments and the declarations and forms as its body. This function is then called with
the initial-values, and the result of the call is return from the macro.

Here is our factorial example rewritten using iterate:

(defun ! (n)
(iterate loop

((n n)
(total 1))

(if (zerop n)
total
(loop (1- n) (* n total)))))

The main advantage of using iterate over do is that iterate naturally allows stepping to be done differently
depending on conditionals in the body of the loop, iterate can also be used to implement algorithms that
aren't really iterative by simply doing a non-tail call. For example, the standard recursive definition of factorial
can be written like this:

(iterate fact
((n n))

(if (zerop n)
1

(* n (fact (1- n)))))

5.6.5 Return Values
One of the more subtle costs of full call comes from allowing arbitrary numbers of return values. This overhead
can be avoided in local calls to functions that always return the same number of values. For efficiency reasons
(as well as stylistic ones), you should write functions so that they always return the same number of values. This
may require passing extra nil arguments to values in some cases, but the result is more efficient, not less so.

When efficiency notes are enabled (see section 5.12, page 84), and the compiler wants to use known values
return, but can't prove that the function always returns the same number of values, then it will print a note like
this:

In: DEFUN GRUE
(DEFUH GRUE (X) (DECLARE (FIXNUM X)) (COND (# #) (# NIL) (T #)))

Note: Return type not fixed values, so can't use known return convention:
(VALUES (OR (INTEGER -536870912 -1) NULL) &REST T)

In order to implement proper tail recursion in the presence of known values return (see section 5.5, page 65),
the compiler sometimes must prove that multiple functions all return the same number of values. When this
can't be proven, the compiler will print a note like this:

In: DEFUN BLUE
(DEFUN BLUE (X) (DECLARE (FIXNUM X)) (COND (# #) (# #) (# #) (T #)))

Note: Return value count mismatch prevents known return from
these functions:

BLUE
SN00

See section 5.10.9, page 81 for the interaction between local call and the representation of numeric types.

5.7 Block Compilation
Block compilation allows calls to global functions defined by defun to be compiled as local calls. The function
call can be in a different top-level form than the defun, or even in a different file.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 70

In addition, block compilation allows the declaration of the entry points to the block compiled portion. An
entry point is any function that may be called from outside of the block compilation. If a function is not an
entry point, then it can be compiled more efficiently, since all calls are known at compile time. In particular, if
a function is only called in one place, then it will be let converted. This effectively inline expands the function,
but without the code duplication that results from defining the function normally and then declaring it inline.

The main advantage of block compilation is that it it preserves efficiency in programs even when (for read­
ability and syntactic convenience) they are broken up into many small functions. There is absolutely no overhead
for calling a non-entry point function that is defined purely for modularity (i.e. called only in one place.)

Block compilation also allows the use of non-descriptor arguments and return values in non-trivial programs
(see section 5.10.9, page 81).

5.7.1 Block Compilation Semantics
The effect of block compilation can be envisioned as the compiler turning all the def uns in the block compilation
into a single l a b e l s form:

(declaim (s t a r t - b l o c k i un l fun3))

(defun funl ()
. . .)

(defun fun2 ()

(funl)
. . .)

(defun fun3 (x)
(i f x

(funl)
(fun2)))

(declaim (end-block))

becomes:

(labels ((funl ()
...)

(fun2 ()

(funl)
...)

(fun3 (x)
(if x

(funl)
(fun2))))

(setf (fdefinition 'funl) #'funl)
(setf (fdefinition *fun3) #'fun3))

Calls between the block compiled functions are local calls, so changing the global definition of funl will have no
effect on what fun2 does; fun2 will keep calling the old funl.

The entry points funl and fun3 are still installed in the symbol-function as the global definitions of the
functions, so a full call to an entry point works just as before. However, f un2 is not an entry point, so it is not
globally defined. In addition, fun2 is only called in one place, so it will be let converted.

5.7.2 Block Compilation Declarations
The extensions: start-block and extensions: end-block declarations allow fine-grained control of block com­
pilation. These declarations are only legal as a global declarations (declaim or proclaim).

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 71

The s tart-block declaration has this syntax:

(start-block {entry-point-name}*)

When processed by the compiler, this declaration marks the start of block compilation, and specifies the entry
points to that block. If no entry points are specified, then all functions are made into entry points. If already
block compiling, then the compiler ends the current block and starts a new one.
The end-block declaration has no arguments:

(end-block)

The end-block declaration ends a block compilation unit without starting a new one. This is useful mainly
when only a portion of a file is worth block compiling.

5.7.3 Compiler Arguments
The : block-compile and : entry-points arguments to extensions: compile-from-str earn and compi le- f i le
(page 33) provide overall control of block compilation, and allow block compilation without requiring modification
of the program source.

There are three possible values of the : block-compile argument:

n i l Do no compile-time resolution of global function names, not even for self-recursive calls. This inhibits any
start-block declarations appearing in the file, allowing all functions to be incrementally redefined.

t Start compiling in block compilation mode. This is mainly useful for block compiling small files that contain
no s tart-block declarations. See also the : entry-points argument.

: speci f ied Start compiling in form-at-a-time mode, but exploit start-block declarations and compile self-
recursive calls as local calls. Normally : specif ied is the default for this argument (see *block-compile-
def ault* (page 71).)

The : entry-points argument can be used in conjunction with : block-compile t to specify the entry-points
to a block-compiled file. If not specified or n i l , all global functions will be compiled as entry points. When
:block-compile is not t, this argument is ignored.

block-compile-default [Variable]
This variable determines the default value for the : block-compile argument to compile-f i le and compile-

from-stream. The initial value of this variable is : specif ied, but n i l is sometimes useful for totally inhibiting
block compilation.

5.7.4 Practical Difficulties
The main problem with block compilation is that the compiler uses large amounts of memory when it is block
compiling. This places an upper limit on the amount of code that can be block compiled as a unit. To make best
use of block compilation, it is necessary to locate the parts of the program containing many internal calls, and
then add the appropriate start-block declarations. When writing new code, it is a good idea to put in block
compilation declarations from the very beginning, since writing block declarations correctly requires accurate
knowledge of the program's function call structure. If you want to initially develop code with full incremental
redefinition, you can compile with *block-compile-def ault* (page 71) set to n i l .

Note if a defun appears in a non-null lexical environment, then calls to it cannot be block compiled.
Unless files are very small, it is probably impractical to block compile multiple files as a unit by specifying a

list of files to compile-f i le . Semi-inline expansion (see section 5.8.2, page 73) provides another way to extend
block compilation across file boundaries.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 72

5.8 Inline Expansion
Python can expand almost any function inline, including functions with keyword arguments. The only restrictions
are that keyword argument keywords in the call must be constant, and that global function definitions (defun)
must be done in a null lexical environment (not nested in a l e t or other binding form.) Local functions (f l e t)
can be inline expanded in any environment. Combined with Python's source-level optimization, inline expansion
can be used for things that formerly required macros for efficient implementation. In Python, macros don't have
any efficiency advantage, so they need only be used where a macro's syntactic flexibility is required.

Inline expansion is a compiler optimization technique that reduces the overhead of a function call by simply
not doing the call: instead, the compiler effectively rewrites the program to appear as though the definition of the
called function was inserted at each call site. In Common Lisp, this is straightforwardly expressed by inserting
the lambda corresponding to the original definition:

(proclaim ' (i n l i n e my-l+))
(defun my-l+ (x) (+ x 1))

(my-l+ someval) ((lambda (x) (+ x 1)) someval)

When the function expanded inline is large, the program after inline expansion may be substantially larger
than the original program. If the program becomes too large, inline expansion hurts speed rather than helping
it, since hardware resources such as physical memory and cache will be exhausted. Inline expansion is called for:

• When profiling has shown that a relatively simple function is called so often that a large amount of time
is being wasted in the calling of that function (as opposed to running in that function.) If a function is
complex, it will take a long time to run relative the time spent in call, so the speed advantage of inline
expansion is diminished at the same time the space cost of inline expansion is increased. Of course, if a
function is rarely called, then the overhead of calling it is also insignificant.

• With functions so simple that they take less space to inline expand than would be taken to call the
function (such as my-l+ above.) It would require intimate knowledge of the compiler to be certain when
inline expansion would reduce space, but it is generally safe to inline expand functions whose definition is
a single function call, or a few calls to simple Common Lisp functions.

In addition to this speed/space tradeoff from inline expansion's avoidance of the call, inline expansion can
also reveal opportunities for optimization. Python's extensive source-level optimization can make use of context
information from the caller to tremendously simplify the code resulting from the inline expansion of a function.

The main form of caller context is local information about the actual argument values: what the argument
types are and whether the arguments are constant. Knowledge about argument types can eliminate run-time
type tests (e.g., for generic arithmetic.) Constant arguments in a call provide opportunities for constant folding
optimization after inline expansion.

A hidden way that constant arguments are often supplied to functions is through the defaulting of unsupplied
optional or keyword arguments. There can be a huge efficiency advantage to inline expanding functions that
have complex keyword-based interfaces, such as this definition of the member function:

(proclaim ' (i n l i n e member))
(defun member (item l i s t Jkkey

(key # ' i d e n t i t y)
(t e s t # ' e q l t e s t p)
(t e s t - n o t n i l notp))

(do ((l i s t l i s t (cdr l i s t)))
((n u l l l i s t) n i l)

(l e t ((ca r (car l i s t)))
(i f (cond (t e s t p

(funcal l t e s t item (funcal l key c a r)))
(notp

(not (funca l l t e s t - n o t item (funcal l key c a r))))
(t

(funca l l t e s t item (funcal l key c a r))))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 73

(return l i s t)))))

After inline expansion, this call is simplified to the obvious code:

(member a 1 :key #' foo-a : t e s t #'char=) =>

(do ((l i s t l i s t (cdr l i s t)))
((nul l l i s t) n i l)

(l e t ((car (car l i s t)))
(i f (char= item (foo-a car))

(return l i s t))))

In this example, there could easily be more than an order of magnitude improvement in speed. In addition
to eliminating the original call to member, inline expansion also allows the calls to char= and foo-a to be
open-coded. We go from a loop with three tests and two calls to a loop with one test and no calls.

See section 5.4, page 59 for more discussion of source level optimization.

5.8.1 Inline Expansion Recording
Inline expansion requires that the source for the inline expanded function to be available when calls to the
function are compiled. The compiler doesn't remember the inline expansion for every function, since that would
take an excessive about of space. Instead, the programmer must tell the compiler to record the inline expansion
before the definition of the inline expanded function is compiled. This is done by globally declaring the function
inline before the function is defined, by using the in l ine and extensions:maybe-inline (see section 5.8.3,
page 73) declarations.

In addition to recording the inline expansion of inline functions at the time the function is compiled, compile-
f i l e also puts the inline expansion in the output file. When the output file is loaded, the inline expansion is
made available for subsequent compilations; there is no need to compile the definition again to record the inline
expansion.

If a function is declared inline, but no expansion is recorded, then the compiler will give an efficiency note
like:

Note: MYFUN i s declared i n l i n e , but has no expansion.

When you get this note, check that the in l ine declaration and the definition appear before the calls that are
to be inline expanded. This note will also be given if the inline expansion for a defun could not be recorded
because the defun was in a non-null lexical environment.

5.8.2 Semi-Inline Expansion
Python supports semi-inline functions. Semi-inline expansion shares a single copy of a function across all the calls
in a component by converting the inline expansion into a local function (see section 5.6, page 67.) This takes up
less space when there are multiple calls, but also provides less opportunity for context dependent optimization.
When there is only one call, the result is identical to normal inline expansion. Semi-inline expansion is done
when the space optimization quality is 0, and the function has been declared extensions:maybe-inline.

This mechanism of inline expansion combined with local call also allows recursive functions to be inline
expanded. If a recursive function is declared in l ine , calls will actually be compiled semi-inline. Although
recursive functions are often so complex that there is little advantage to semi-inline expansion, it can still be
useful in the same sort of cases where normal inline expansion is especially advantageous, i.e. functions where
the calling context can help a lot.

5.8.3 The Maybe-Inline Declaration
The extensions:maybe-inline declaration is a CMU Common Lisp extension. It is similar to i n l i ne , but
indicates that inline expansion may sometimes be desirable, rather than saying that inline expansion should
almost always be done. When used in a global declaration, extensions:maybe-inline causes the expansion for

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 74

the named functions to be recorded, but the functions aren't actually inline expanded unless space is 0 or the
function is eventually (perhaps locally) declared in l ine .

Use of the extensions:maybe-inline declaration followed by the defun is preferable to the standard idiom
of:

(proclaim ' (i n l i n e myfun))
(defun myfun () . . .)
(proclaim ' (not in l ine myfun))

;;; Any calls to myfun here are not inline expanded.

(defun somefun ()
(declare (in l ine myfun))
>»
;; Calls to myfun here are inline expanded.
. . .)

The problem with using not in l ine in this way is that in Common Lisp it does more than just suppress inline
expansion, it also forbids the compiler to use any knowledge of myfun until a later in l ine declaration overrides
the not inl ine . This prevents compiler warnings about incorrect calls to the function, and also prevents block
compilation.

The extensions:maybe-inline declaration is used like this:
(proclaim 9 (extensions:maybe-inline myfun))
(defun myfun () . . .)

;;; Any calls to myfun here are not inline expanded.

(defun somefun ()
(declare (in l ine myfun))
»»
;; Calls to myfun here are inline expanded.
. . .)

(defun someotherfun ()
(declare (optimize (space 0)))

;; Calls to myfun here are expanded semi-inline.
. . .)

In this example, the use of extensions: may be- in l ine causes the expansion to be recorded when the defun for
somefun is compiled, and doesn't waste space through doing inline expansion by default. Unlike n o t i n l i n e ,
this declaration still allows the compiler to assume that the known definition really is the one that will be called
when giving compiler warnings, and also allows the compiler to do semi-inline expansion when the policy is
appropriate.

When the goal is merely to control whether inline expansion is done by default, it is preferable to use
extensions:maybe-inline rather than not inl ine. The not inl ine declaration should be reserved for those
special occasions when a function may be redefined at run-time, so the compiler must be told that the obvious
definition of a function is not necessarily the one that will be in effect at the time of the call.

5.9 Object Representation
A somewhat subtle aspect of writing efficient Common Lisp programs is choosing the correct data structures
so that the underlying objects can be implemented efficiently. This is partly because of the need for multiple
representations for a given value (see section 5.10.2, page 77), but is also due to the sheer number of object
types that Common Lisp has built in. The number of possible representations complicates the choice of a good
representation because semantically similar objects may vary in their efficiency depending on how the program
operates on them.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 75

5.9.1 Think Before You Use a List
Although Lisp's creator seemed to think that it was for LISt Processing, the astute observer may have noticed
that the chapter on list manipulation makes up less that three percent of Common Lisp: the Language II. The
language has grown since Lisp 1.5 — new data types supersede lists for many purposes.

5.9.2 Structures
One of the best ways of building complex data structures is to define appropriate structure types using def s t r u c t .
In Python, access of structure slots is always at least as fast as list or vector access, and is usually faster. In
comparison to a list representation of a tuple, structures also have a space advantage.

Even if structures weren't more efficient than other representations, structure use would still be attractive
because programs that use structures in appropriate ways are much more maintainable and robust than programs
written using only lists. For example:

(rplaca (caddr (cadddr x)) (caddr y))

could have been written using structures in this way:

(set f (beverage-flavor (astronaut-beverage x)) (beverage-flavor y))

The second version is more maintainable because it is easier to understand what it is doing. It is more robust
because structures accesses are type checked. An astronaut will never be confused with a beverage, and the
result of beverage-flavor is always a flavor. See sections 5.2.8 and 5.2.9 for more information about structure
types. See section 5.3, page 55 for a number of examples that make clear the advantages of structure typing.

Note that the structure definition should be compiled before any uses of its accessors or type predicate so
that these function calls can be efficiently open-coded.

5.9.3 Arrays
Arrays are often the most efficient representation for collections of objects because:

• Array representations are often the most compact. An array is always more compact than a list containing
the same number of elements.

• Arrays allow fast constant-time access.

• Arrays are easily destructively modified, which can reduce consing.

• Array element types can be specialized, which reduces both overall size and consing (see section 5.10.8,
page 80.)

Access of arrays that are not of type simple-array is less efficient, so declarations are appropriate when an
array is of a simple type like s imple-string or s imple-bit-vector. Arrays are almost always simple, but the
compiler may not be able to prove simpleness at every use. The only way to get a non-simple array is to use the
:displaced-to, :f i l l - p o i n t e r or adjustable arguments to make-array. If you don't use these hairy options,
then arrays can always be declared to be simple.

Because of the many specialized array types and the possibility of non-simple arrays, array access is much
like generic arithmetic (see section 5.10.4, page 78). In order for array accesses to be efficiently compiled, the
element type and simpleness of the array must be known at compile time. If there is inadequate information,
the compiler is forced to call a generic array access routine. You can detect inefficient array accesses by enabling
efficiency notes, see section 5.12, page 84.

5.9.4 Vectors
Vectors (one dimensional arrays) are particularly useful, since in addition to their obvious array-like applications,
they are also well suited to representing sequences. In comparison to a list representation, vectors are faster
to access and take up between two and sixty-four times less space (depending on the element type.) As with
arbitrary arrays, the compiler needs to know that vectors are not complex, so you should use s imple - s t r ing in
preference to string, etc.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 76

The only advantage that lists have over vectors for representing sequences is that it is easy to change the
length of a list, add to it and remove items from it. Likely signs of archaic, slow lisp code are n th and nthcdr.
If you are using these functions you should probably be using a vector.

5.9.5 Bit-Vectors
Another thing that lists have been used for is set manipulation. In applications where there is a known, reasonably
small universe of items bit-vectors can be used to improve performance. This is much less convenient than using
lists, because instead of symbols, each element in the universe must be assigned a numeric index into the bit
vector. Using a bit-vector will nearly always be faster, and can be tremendously faster if the number of elements
in the set is not small. The logical operations on s imple -b i t -vec to rs are efficient, since they operate on a word
at a time.

5.9.6 Hashtables
Hashtables are an efficient and general mechanism for maintaining associations such as the association between
an object and its name. Although hashtables are usually the best way to maintain associations, efficiency and
style considerations sometimes favor the use of an association list (a-list).

assoc is fairly fast when the test argument is eq or eql and there are only a few elements, but the time
goes up in proportion with the number of elements. In contrast, the hash-table lookup has a somewhat higher
overhead, but the speed is largely unaffected by the number of entries in the table. For an equal hash-table or
alist, hash-tables have an even greater advantage, since the test is more expensive. Whatever you do, be sure to
use the most restrictive test function possible.

The style argument observes that although hash-tables and alists overlap in function, they do not do all
things equally well.

• Alists are good for maintaining scoped environments. They were originally invented to implement scoping
in the Lisp interpreter, and are still used for this in Python. With an alist one can non-destructively change
an association simply by consing a new element on the front. This is something that cannot be done with
hash-tables.

• Hashtables are good for maintaining a global association. The value associated with an entry can easily
be changed with setf . With an alist, one has to go through contortions, either rplacd'ing the cons if the
entry exists, or pushing a new one if it doesn't. The side-effecting nature of hash-table operations is an
advantage here.

Historically, symbol property lists were often used for global name associations. Property lists provide an
awkward and error-prone combination of name association and record structure. If you must use the property
list, please store all the related values in a single structure under a single property, rather than using many
properties. This makes access more efficient, and also adds a modicum of typing and abstraction. See section
5.2, page 50 for information on types in CMU Common Lisp.

5.10 Numbers
Numbers are interesting because numbers are one of the few Common Lisp data types that have direct support
in conventional hardware. If a number can be represented in the way that the hardware expects it, then there is
a big efficiency advantage.

Using hardware representations is problematical in Common Lisp due to dynamic typing (where the type
of a value may be unknown at compile time.) It is possible to compile code for statically typed portions of
a Common Lisp program with efficiency comparable to that obtained in statically typed languages such as C,
but not all Common Lisp implementations succeed. There are two main barriers to efficient numerical code in
Common Lisp:

• The compiler must prove that the numerical expression is in fact statically typed, and

• The compiler must be able to somehow reconcile the conflicting demands of the hardware mandated number
representation with the Common Lisp requirements of dynamic typing and garbage-collecting dynamic
storage allocation.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 77

Because of its type inference (see section 5.3, page 55) and efficiency notes (see section 5.12, page 84), Python
is better than conventional Common Lisp compilers at ensuring that numerical expressions are statically typed.
Python also goes somewhat farther than existing compilers in the area of allowing native machine number
representations in the presence of garbage collection.

5.10.1 Descriptors
Common Lisp's dynamic typing requires that it be possible to represent any value with a fixed length object,
known as a descriptor. This fixed-length requirement is implicit in features such as:

• Data types (like simple-vector) that can contain any type of object, and that can be destructively
modified to contain different objects (of possibly different types.)

• Functions that can be called with any type of argument, and that can be redefined at run time.

In order to save space, a descriptor is invariably represented as a single word. Objects that can be directly
represented in the descriptor itself are said to be immediate. Descriptors for objects larger than one word are in
reality pointers to the memory actually containing the object.

Representing objects using pointers has two major disadvantages:

• The memory pointed to must be allocated on the heap, so it must eventually be freed by the garbage
collector. Excessive heap allocation of objects (or "consing") is inefficient in several ways. See section
5.11.2, page 82.

• Representing an object in memory requires the compiler to emit additional instructions to read the actual
value in from memory, and then to write the value back after operating on it.

The introduction of garbage collection makes things even worse, since the garbage collector must be able
to determine whether a descriptor is an immediate object or a pointer. This requires that a few bits in each
descriptor be dedicated to the garbage collector. The loss of a few bits doesn't seem like much, but it has a major
efficiency implication — objects whose natural machine representation is a full word (integers and single-floats)
cannot have an immediate representation. So the compiler is forced to use an unnatural immediate representation
(such as fixnum) or a natural pointer representation (with the attendant consing overhead.)

5.10.2 Non-Descriptor Representations
From the discussion above, we can see that the standard descriptor representation has many problems, the
worst being number consing. Common Lisp compilers try to avoid these descriptor efficiency problems by using
non-descriptor representations. A compiler that uses non-descriptor representations can compile this function
so that it does no number consing:

(defun multby (vec n)
(declare (type (simple-array s ing le - f loa t (*)) vec)

(s ing l e - f l oa t n))
(dotimes (i (length vec))

(se t f (aref vec i)
(* n (aref vec i)))))

If a descriptor representation were used, each iteration of the loop might cons two floats and do three times as
many memory references.

As its negative definition suggests, the range of possible non-descriptor representations is large. The per­
formance improvement from non-descriptor representation depends upon both the number of types that have
non-descriptor representations and the number of contexts in which the compiler is forced to use a descriptor
representation.

Many Common Lisp compilers support non-descriptor representations for float types such as s i n g l e - f l o a t
and double-float (section 5.10.7.) Python adds support for full word integers (see section 5.10.6, page 80),
characters (see section 5.10.10, page 81) and system-area pointers (unconstrained pointers, see section 6.5,
page 92.) Many Common Lisp compilers support non-descriptor representations for variables (section 5.10.3)
and array elements (section 5.10.8.) Python adds support for non-descriptor arguments and return values in
local call (see section 5.10.9, page 81).

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 78

5.10.3 Variables
In order to use a non-descriptor representation for a variable or expression intermediate value, the compiler
must be able to prove that the value is always of a particular type having a non-descriptor representation. Type
inference (see section 5.3, page 55) often needs some help from user-supplied declarations. The best kind of type
declaration is a variable type declaration placed at the binding point:

(l e t ((x (car 1)))
(declare (s ing l e - f l oa t x))
. . .)

Use of the, or of variable declarations not at the binding form is insufficient to allow non-descriptor representation
of the variable — with these declarations it is not certain that all values of the variable are of the right type.
It is sometimes useful to introduce a gratuitous binding that allows the compiler to change to a non-descriptor
representation, like:

(etypecase x
((signed-byte 32)

(l e t ((x x))
(declare (type (signed-byte 32) x))
. . . »

. . .)

The declaration on the inner x is necessary here due to a phase ordering problem. Although the compiler will
eventually prove that the outer x is a (signed-byte 32) within that etypecase branch, the inner x would have
been optimized away by that time. Declaring the type makes let optimization more cautious.

Note that storing a value into a global (or special) variable always forces a descriptor representation.
Wherever possible, you should operate only on local variables, binding any referenced globals to local variables
at the beginning of the function, and doing any global assignments at the end.

Efficiency notes signal use of inefficient representations, so programmer's needn't continuously worry about
the details of representation selection (see section 5.12.3, page 85.)

5.10.4 Generic Arithmetic
In Common Lisp, arithmetic operations are generic.3 The + function can be passed f ixnums, bignums, r a t i o s ,
and various kinds of f l o a t s and complexes, in any combination. In addition to the inherent complexity of bignum
and ra t io operations, there is also a lot of overhead in just figuring out which operation to do and what contagion
and canonicalization rules apply. The complexity of generic arithmetic is so great that it is inconceivable to open
code it. Instead, the compiler does a function call to a generic arithmetic routine, consuming many instructions
before the actual computation even starts.

This is ridiculous, since even Common Lisp programs do a lot of arithmetic, and the hardware is capable of
doing operations on small integers and floats with a single instruction. To get acceptable efficiency, the compiler
special-cases uses of generic arithmetic that are directly implemented in the hardware. In order to open code
arithmetic, several constraints must be met:

• All the arguments must be known to be a good type of number.

• The result must be known to be a good type of number.

• Any intermediate values such as the result of (+ a b) in the call (+ a b c) must be known to be a good
type of number.

• All the above numbers with good types must be of the same good type. Don't try to mix integers and
floats or different float formats.

3 As Steele notes in CLTL II, this is a generic conception of generic, and is not to be confused with the CLOS concept of a generic
function.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 79

The "good types" are (signed-byte 32), (unsigned-byte 32), single-float and double-float. See
sections 5.10.5, 5.10.6 and 5.10.7 for more discussion of good numeric types.

float is not a good type, since it might mean either single-float or double-float, integer is not a good
type, since it might mean bignum. rational is not a good type, since it might mean ratio. Note however that
these types are still useful in declarations, since type inference may be able to strengthen a weak declaration into
a good one, when it would be at a loss if there was no declaration at all (see section 5.3, page 55). The integer
and unsigned-byte (or non-negative integer) types are especially useful in this regard, since they can often be
strengthened to a good integer type.

Arithmetic with complex numbers is inefficient in comparison to float and integer arithmetic. Complex
numbers are always represented with a pointer descriptor (causing consing overhead), and complex arithmetic is
always closed coded using the general generic arithmetic functions. But arithmetic with complex types such as:

(complex float)
(complex fixnum)

is still faster than bignum or ratio arithmetic, since the implementation is much simpler.
Note: don't use / to divide integers unless you want the overhead of rational arithmetic. Use truncate even

when you know that the arguments divide evenly.
You don't need to remember all the rules for how to get open-coded arithmetic, since efficiency notes will tell

you when and where there is a problem — see section 5.12, page 84.

5.10.5 Fixnums
A fixnum is a "FIXed precision NUMber". In modern Common Lisp implementations, fixnums can be represented
with an immediate descriptor, so operating on fixnums requires no consing or memory references. Clever choice
of representations also allows some arithmetic operations to be done on fixnums using hardware supported
word-integer instructions, somewhat reducing the speed penalty for using an unnatural integer representation.

It is useful to distinguish the fixnum type from the fixnum representation of integers. In Python, there
is absolutely nothing magical about the fixnum type in comparison to other finite integer types, fixnum is
equivalent to (is defined with def type to be) (signed-byte 30). fixnum is simply the largest subset of integers
that can be represented using an immediate fixnum descriptor.

Unlike in other Common Lisp compilers, it is in no way desirable to use the fixnum type in declarations
in preference to more restrictive integer types such as bit, (integer-43 7) and (unsigned-byte 8) . Since
Python does understand these integer types, it is preferable to use the more restrictive type, as it allows better
type inference (see section 5.3.4, page 57.)

The small, efficient fixnum is contrasted with bignum, or "BIG NUMber". This is another descriptor repre­
sentation for integers, but this time a pointer representation that allows for arbitrarily large integers. Bignum
operations are less efficient than fixnum operations, both because of the consing and memory reference over­
heads of a pointer descriptor, and also because of the inherent complexity of extended precision arithmetic.
While fixnum operations can often be done with a single instruction, bignum operations are so complex that
they are always done using generic arithmetic.

A crucial point is that the compiler will use generic arithmetic if it can't prove that all the arguments,
intermediate values, and results are fixnums. With bounded integer types such as fixnum, the result type proves
to be especially problematical, since these types are not closed under common arithmetic operations such as +,
-, * and / . For example, (1+ (the fixnum x)) does not necessarily evaluate to a fixnum. Bignums were added
to Common Lisp to get around this problem, but they really just transform the correctness problem "if this
add overflows, you will get the wrong answer" to the efficiency problem "if this add might overflow then your
program will run slowly (because of generic arithmetic.)"

There is just no getting around the fact that the hardware only directly supports short integers. To get the
most efficient open coding, the compiler must be able to prove that the result is a good integer type. This is an
argument in favor of using more restrictive integer types: (1+ (the fixnum x)) may not always be a fixnum,
but (1+ (the (unsigned-byte 8) x)) always is. Of course, you can also assert the result type by putting in
lots of the declarations and then compiling with safety 0.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 80

5.10.6 Word Integers
Python is unique in its efficient implementation of arithmetic on full-word integers through non-descriptor rep­
resentations and open coding. Arithmetic on any subtype of these types:

(signed-byte 32)
(unsigned-byte 32)

is reasonably efficient, although subtypes of fixnum remain somewhat more efficient.
If a word integer must be represented as a descriptor, then the bignum representation is used, with its

associated consing overhead. The support for word integers in no way changes the language semantics, it just
makes arithmetic on small bignums vastly more efficient. It is fine to do arithmetic operations with mixed fixnum
and word integer operands; just declare the most specific integer type you can, and let the compiler decide what
representation to use.

In fact, to most users, the greatest advantage of word integer arithmetic is that it effectively provides a few
guard bits on the fixnum representation. If there are missing assertions on intermediate values in a fixnum
expression, the intermediate results can usually be proved to fit in a word. After the whole expression is
evaluated, there will often be a fixnum assertion on the final result, allowing creation of a fixnum result without
even checking for overflow.

The remarks in section 5.10.5 about fixnum result type also apply to word integers; you must be careful to
give the compiler enough information to prove that the result is still a word integer. This time, though, when
we blow out of word integers we land in into generic bignum arithmetic, which is much worse than sleazing from
fixnums to word integers. Note that mixing (unsigned-byte 32) arguments with arguments of any signed type
(such as fixnum) is a no-no, since the result might not be unsigned.

5.10.7 Floating Point Efficiency
Arithmetic on objects of type single-float and double-float is efficiently implemented using non-descriptor
representations and open coding. As for integer arithmetic, the arguments must be known to be of the same
float type. Unlike for integer arithmetic, the results and intermediate values usually take care of themselves due
to the rules of float contagion, i.e. (1+ (the single-float x)) is always a single-float.

Although they are not specially implemented, short-float and long-float are also acceptable in decla­
rations, since they are synonyms for the single-float and double-float types, respectively. It is harmless
to use list-style float type specifiers such as-(single-float 0.0 1.0), but Python currently makes little use of
bounds on float types.

When a float must be represented as a descriptor, a pointer representation is used, creating consing overhead.
For this reason, you should try to avoid situations (such as full call and non-specialized data structures) that
force a descriptor representation. See sections 5.10.8 and 5.10.9.

See section 2.1.3, page 5 for information on the extensions to support IEEE floating point.

5.10.8 Specialized Arrays
Common Lisp supports specialized array element types through the : element-type argument to make-array.
When an array has a specialized element type, only elements of that type can be stored in the array. From this
restriction comes two major efficiency advantages:

• A specialized array can save space by packing multiple elements into a single word. For example, a base-
char array can have 4 elements per word, and a bit array can have 32. This space-efficient representation
is possible because it is not necessary to separately indicate the type of each element.

• The elements in a specialized array can be given the same non-descriptor representation as the one used in
registers and on the stack, eliminating the need for representation conversions when reading and writing
array elements. For objects with pointer descriptor representations (such as floats and word integers) there
is also a substantial consing reduction because it is not necessary to allocate a new object every time an
array element is modified.

These are the specialized element types currently supported:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 81

bit
(unsigned-byte 2)
(unsigned-byte 4)
(unsigned-byte 8)
(unsigned-byte 16)
(unsigned-byte 32)
base-character
single-float
double-iloat

Although a simple-vector can hold any type of object, t should still be considered a specialized array type,
since arrays with element type t are specialized to hold descriptors.

When using non-descriptor representations, it is particularly important to make sure that array accesses
are open-coded, since in addition to the generic operation overhead, efficiency is lost when the array element
is converted to a descriptor so that it can be passed to (or from) the generic access routine. You can detect
inefficient array accesses by enabling efficiency notes, see section 5.12, page 84. See section 5.9.3, page 75.

5.10.9 Interactions With Local Call
Local call has many advantages (see section 5.6, page 67); one relevant to our discussion here is that local call
extends the usefulness of non-descriptor representations. If the compiler knows from the argument type that
an argument has a non-descriptor representation, then the argument will be passed in that representation. The
easiest way to ensure that the argument type is known at compile time is to always declare the argument type
in the called function, like:

(defun 2+f (x)
(declare (single-float x))
(+ x 2.0))

The advantages of passing arguments and return values in a non-descriptor representation are the same as for
non-descriptor representations in general: reduced consing and memory access (see section 5.10.2, page 77.) This
extends the applicative programming styles discussed in section 5.6 to numeric code. Also, if source files are kept
reasonably small, block compilation can be used to reduce number consing to a minimum.

Note that non-descriptor return values can only be used with the known return convention (section 5.6.5.) If
the compiler can't prove that a function always returns the same number of values, then it must use the unknown
values return convention, which requires a descriptor representation. Pay attention to the known return efficiency
notes to avoid number consing.

5.10.10 Representation of Characters
Python also uses a non-descriptor representation for characters when convenient. This improves the efficiency of
string manipulation, but is otherwise pretty invisible; characters have an immediate descriptor representation, so
there is not a great penalty for converting a character to a descriptor. Nonetheless, it may sometimes be helpful
to declare character-valued variables as base-character.

5.11 General Efficiency Hints
This section is a summary of various implementation costs and ways to get around them. These hints are
relatively unrelated to the use of the Python compiler, and probably also apply to most other Common Lisp
implementations. In each section, there are references to related in-depth discussion.

5,11.1 Compile Your Code
At this point, the advantages of compiling code relative to running it interpreted probably need not be emphasized
too much, but remember that in CMU Common Lisp, compiled code typically runs hundreds of times faster
than interpreted code. Also, compiled (f a s l) files load significantly faster than source files, so it is worthwhile
compiling files which are loaded many times, even if the speed of the functions in the file is unimportant.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 82

Even disregarding the efficiency advantages, compiled code is as good or better than interpreted code. Com­
piled code can be debugged at the source level (see chapter 3), and compiled code does more error checking. For
these reasons, the interpreter should be regarded mainly as an interactive command interpreter, rather than as
a programming language implementation.

Do not be concerned about the performance of your program until you see its speed compiled. Some
techniques that make compiled code run faster make interpreted code run slower.

5.11.2 Avoid Unnecessary Consing
Consing is another name for allocation of storage, as done by the cons function (hence its name.) cons is by
no means the only function which conses — so does make-array and many other functions. Arithmetic and
function call can also have hidden consing overheads. Consing hurts performance in the following ways:

• Consing reduces memory access locality, increasing paging activity.

• Consing takes time just like anything else.

• Any space allocated eventually needs to be reclaimed, either by garbage collection or by starting a new
l i s p process.

Consing is not undiluted evil, since programs do things other than consing, and appropriate consing can
speed up the real work. It would certainly save time to allocate a vector of intermediate results that are reused
hundreds of times. Also, if it is necessary to copy a large data structure many times, it may be more efficient
to update the data structure non-destructively; this somewhat increases update overhead, but makes copying
trivial.

Note that the remarks in section 5.1.5 about the importance of separating tuning from coding also apply to
consing overhead. The majority of consing will be done by a small portion of the program. The consing hot spots
are even less predictable than the CPU hot spots, so don't waste time and create bugs by doing unnecessary
consing optimization. During initial coding, avoid unnecessary side-effects and cons where it is convenient. If
profiling reveals a consing problem, then go back and fix the hot spots.

See section 5.10.2, page 77 for a discussion of how to avoid number consing in Python.

5.11.3 Complex Argument Syntax
Common Lisp has very powerful argument passing mechanisms. Unfortunately, two of the most powerful mech­
anisms, rest arguments and keyword arguments, have a significant performance penalty:

• With keyword arguments, the called function has to parse the supplied keywords by iterating over them
and checking them against the desired keywords.

• With rest arguments, the function must cons a list to hold the arguments. If a function is called many
times or with many arguments, large amounts of memory will be allocated.

Although rest argument consing is worse than keyword parsing, neither problem is serious unless thousands
of calls are made to such a function. The use of keyword arguments is strongly encouraged in functions with
many arguments or with interfaces that are likely to be extended, and rest arguments are often natural in user
interface functions.

Optional arguments have some efficiency advantage over keyword arguments, but their syntactic clumsiness
and lack of extensibility has caused many Common Lisp programmers to abandon use of optionals except in
functions that have obviously simple and immutable interfaces (such as subseq), or in functions that are only
called in a few places. When defining an interface function to be used by other programmers or users, use of
only required and keyword arguments is recommended.

Parsing of deimacro keyword and rest arguments is done at compile time, so a macro can be used to provide
a convenient syntax with an efficient implementation. If the macro-expanded form contains no keyword or rest
arguments, then it is perfectly acceptable in inner loops.

Keyword argument parsing overhead can also be avoided by use of inline expansion (see section 5.8, page 72)
and block compilation (section 5.7.)

Note: the compiler open-codes most heavily used system functions which have keyword or rest arguments,
so that no run-time overhead is involved.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 83

5.11.4 Mapping and Iteration
One of the traditional Common Lisp programming styles is a highly applicative one, involving the use of mapping
functions and many lists to store intermediate results. To compute the sum of the square-roots of a list of numbers,
one might say:

(apply #'+ (mapcar #'sqrt l ist-oi-numbers))

This programming style is clear and elegant, but unfortunately results in slow code. There are two reasons
why:

• The creation of lists of intermediate results causes much consing (see 5.11.2).

• Each level of application requires another scan down the list. Thus, disregarding other effects, the above
code would probably take twice as long as a straightforward iterative version.

An example of an iterative version of the same code:

(do ((num list-of-numbers (cdr num))
(sum 0 (+ (sqrt (car num)) sum)))

((nul l num) sum))

See sections 5.3.1 and 5.4.1 for a discussion of the interactions of iteration constructs with type inference and
variable optimization. Also, section 5.6.4 discusses an applicative style of iteration.

5.11.5 Trace Files and Disassembly
In order to write efficient code, you need to know the relative costs of different operations. The main reason
why writing efficient Common Lisp code is difficult is that there are so many operations, and the costs of these
operations vary in obscure context-dependent ways. Although efficiency notes point out some problem areas,
the only way to ensure generation of the best code is to look at the assembly code output.

The disassemble function is a convenient way to get the assembly code for a function, but it can be very
difficult to interpret, since the correspondence with the original source code is weak. A better (but more awkward)
option is to use the : t r a c e - f i l e argument to compile-f i le to generate a trace file.

A trace file is a dump of the compiler's internal representations, including annotated assembly code. Each
component in the program gets three pages in the trace file (separated by M~L"):

• The implicit-continuation (or IR1) representation of the optimized source. This is a dump of the flow graph
representation used for "source level" optimizations. As you will quickly notice, it is not really very close
to the source. This representation is not very useful to even sophisticated users.

• The Virtual Machine (VM, or IR2) representation of the program. This dump represents the generated
code as sequences of "Virtual OPerations" (VOPs.) This representation is intermediate between the source
and the assembly code — each VOP corresponds fairly directly to some primitive function or construct,
but a given VOP also has a fairly predictable instruction sequence. An operation (such as +) may have
multiple implementations with different cost and applicability. The choice of a particular VOP such as
+/f ixnum or + / s ing le - f loa t represents this choice of implementation. Once you are familiar with it, the
VM representation is probably the most useful for determining what implementation has been used.

• An assembly listing, annotated with the VOP responsible for generating the instructions. This listing is
useful for figuring out what a VOP does and how it is implemented in a particular context, but its large
size makes it more difficult to read.

Note that trace file generation takes much space and time, since the trace file is tens of times larger than the
source file. To avoid huge confusing trace files and much wasted time, it is best to separate the critical program
portion into its own file and then generate the trace file from this small file.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 84

5.12 Efficiency Notes
Efficiency notes are messages that warn the user that the compiler has chosen a relatively inefficient implemen­
tation for some operation. Usually an efficiency note reflects the compiler's desire for more type information. If
the type of the values concerned is known to the programmer, then additional declarations can be used to get a
more efficient implementation.

Efficiency notes are controlled by the extensions: inhibit-warnings optimization quality (see section 4.7.1,
page 46.) When speed is greater than extensions: inhibit-warnings, efficiency notes are enabled. Note that
this implicitly enables efficiency notes whenever speed is increased from its default of 1.

Consider this program with an obscure missing declaration:

(defun ell-note (x y z)
(declare (lixnum x y z))
(the lixnum (+ x y z)))

If compiled with (speed 3) (salety 0), this note is given:

In: DEFUM EFF-HOTE
(+ X Y Z)

(+ (+ X Y) Z)
Note: Forced to do inline (signed-byte 32) arithmetic (cost 3) .

Unable to do inline lixnum arithmetic (cost 2) because:
The lirst argument is a (INTEGER -1073741824 1073741822),
not a FIXNUM.

This efficiency note tells us that the result of the intermediate computation (+ x y) is not known to be a lixnum,
so the addition of the intermediate sum to z must be done less efficiently. This can be fixed by changing the
definition of ell-note:

(defun ell-note (x y z)
(declare (lixnum x y z))
(the lixnum (+ (the lixnum (+ x y)) z)))

5.12.1 Type Uncertainty
The main cause of inefficiency is the compiler's lack of adequate information about the types of function argument
and result values. Many important operations (such as arithmetic) have an inefficient general (generic) case, but
have efficient implementations that can usually be used if there is sufficient argument type information.

Type efficiency notes are given when a value's type is uncertain. There is an important distinction between
values that are not known to be of a good type (uncertain) and values that are known not to be of a good type.
Efficiency notes are given mainly for the first case (uncertain types.) If it is clear to the compiler that that there
is not an efficient implementation for a particular function call, then an efficiency note will only be given if the
extensions: inhibit-warnings optimization quality is 0 (see section 4.7.1, page 46.)

In other words, the default efficiency notes only suggest that you add declarations, not that you change the
semantics of your program so that an efficient implementation will apply. For example, compilation of this form
will not give an efficiency note:

(elt (the list 1) i)

even though a vector access is more efficient than indexing a list.

5.12.2 Efficiency Notes and Type Checking
It is important that the ell-note example above used (salety 0). When type checking is enabled, you may
get apparently spurious efficiency notes. With (salety 1), the note has this extra line on the end:

The result is a (INTEGER -1610612736 1610612733), not a FIXNUM.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 85

This seems strange, since there is a the declaration on the result of that second addition.
In fact, the inefficiency is real, and is a consequence of Python's treating declarations as assertions to be

verified. The compiler can't assume that the result type declaration is true — it must generate the result and
then test whether it is of the appropriate type.

In practice, this means that when you are tuning a program to run without type checks, you should work
from the efficiency notes generated by unsafe compilation. If you want code to run efficiently with type checking,
then you should pay attention to all the efficiency notes that you get during safe compilation. Since user supplied
output type assertions (e.g., from the) are disregarded when selecting operation implementations for safe code,
you must somehow give the compiler information that allows it to prove that the result truly must be of a good
type. In our example, it could be done by constraining the argument types more:

(defun eff-note (x y z)
(declare (type (unsigned-byte 18) x y z))
(+ x y z))

Of course, this declaration is acceptable only if the arguments to eff-note always are (unsigned-byte 18)
integers.

5.12.3 Representation Efficiency Notes
When operating on values that have non-descriptor representations (see section 5.10.2, page 77), there can be
a substantial time and consing penalty for converting to and from descriptor representations. For this reason,
the compiler gives an efficiency note whenever it is forced to do a representation coercion more expensive than
efficiency-note-cost-threshold (page 86).

Inefficient representation coercions may be due to type uncertainty, as in this example:

(defun set-flo (x)
(declare (single-float x))
(prog ((var 0.0))

(setq var (gorp))
(setq var x)
(return var)))

which produces this efficiency note:

In: DEFUH SET-FLO
(SETQ VAR X)

Note: Doing float to pointer coercion (cost 13) from X to VAR.

The variable var is not known to always hold values of type single-float, so a descriptor representation must
be used for its value. In sort of situation, and adding a declaration will eliminate the inefficiency.

Often inefficient representation conversions are not due to type uncertainty — instead, they result from
evaluating a non-descriptor expression in a context that requires a descriptor result:

• Assignment to or initialization of any data structure other than a specialized array (see section 5.10.8,
page 80), or

• Assignment to a special variable, or

• Passing as an argument or returning as a value in any function call that is not a local call (see section
5.10.9, page 81.)

If such inefficient coercions appear in a "hot spot" in the program, data structures redesign or program
reorganization may be necessary to improve efficiency. See sections 5.7, 5.10 and 5.13.

Because representation selection is done rather late in compilation, the source context in these efficiency notes
is somewhat vague, making interpretation more difficult. This is a fairly straightforward example:

(defun cf+ (x y)
(declare (single-float x y))
(cons (+ x y) t))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 86

which gives this efficiency note:

In: DEFUI CF+
(COIS (+ X Y) T)

Note: Doing float to pointer coercion (cost 13), for:
The first argument of CONS.

The source context form is almost always the form that receives the value being coerced (as it is in the preceding
example), but can also be the source form which generates the coerced value. Compiling this example:

(defun if-cf+ (x y)
(declare (single-float x y))
(cons (if (gme) (+ x y) (snoc)) t))

produces this note:

In: DEFUN IF-CF+
(+ X Y)

Note: Doing float to pointer coercion (cost 13).

In either case, the note's text explanation attempts to include additional information about what locations
are the source and destination of the coercion. Here are some example notes:

(IF (GRUE) X (SNOC))
Note: Doing float to pointer coercion (cost 13) from X.

(SETQ VAR X)
Note: Doing float to pointer coercion (cost 13) from X to VAR.

Note that the return value of a function is also a place to which coercions may have to be done:

(DEFUN F+ (X Y) (DECLARE (SINGLE-FLOAT X Y)) (+ X Y))
Note: Doing float to pointer coercion (cost 13) to M<return value> M.

Sometimes the compiler is unable to determine a name for the source or destination, in which case the source
context is the only clue.

5.12.4 Verbosity Control
These variables control the verbosity of efficiency notes:

efficiency-note-cost-threshold [Variable]
Before printing some efficiency notes, the compiler compares the value of this variable to the difference in

cost between the chosen implementation and the best potential implementation. If the difference is not greater
than this limit, then no note is printed. The units are implementation dependent; the initial value suppresses
notes about "trivial" inefficiencies. A value of 1 will note any inefficiency.

ef f iciency-note-limit [Variable]
When printing some efficiency notes, the compiler reports possible efficient implementations. The initial

value of 2 prevents excessively long efficiency notes in the common case where there is no type information, so
all implementations are possible.

5.13 Profiling
The first step in improving a program's performance is to profile the activity of the program to find where it
spends its time. The best way to do this is to use the profiling utility found in the p r o f i l e package. This
package provides a macro p r o f i l e that encapsulates functions with statistics gathering code.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 87

5.13.1 Profile Interface

* t imed-funct ions*
This variable holds a list of all functions that are currently being profiled.

[Variable]

prof i l e {name}* [Macro]
This macro wraps profiling code around the named functions. As in trace, the names are not evaluated. If a

function is already profiled, then the function is unprofiled and reprofiled (useful to notice function redefinition.)
A warning is printed for each name that is not a defined function.

This macro removes profiling code from the named functions. If no names are supplied, all currently profiled
functions are unprofiled.

This macro prints a report for each named function of the following information:

• The total CPU time used in that function for all calls,

• the total number of bytes consed in that function for all calls,

• the total number of calls,

• the average amount of CPU time per call.

Summary totals of the CPU time, consing and calls columns are printed. An estimate of the profiling overhead is
also printed (see below). If no names are supplied, then the times for all currently profiled functions are printed.

reset-t ime {name}* [Macro]
This macro resets the profiling counters associated with the named functions. If no names are supplied, then

all currently profiled functions are reset.

5.13.2 Profiling Techniques
Start by profiling big pieces of a program, then carefully choose which functions close to, but not in, the inner
loop are to be profiled next. Avoid profiling functions that are called by other profiled functions, since this opens
the possibility of profiling overhead being included in the reported times.

If the per-call time reported is less than 1/10 second, then consider the clock resolution and profiling overhead
before you believe the time. It may be that you will need to run your program many times in order to average
out to a higher resolution.

5.13.3 Nested or Recursive Calls
The profiler attempts to compensate for nested or recursive calls. Time and consing overhead will be charged
to the dynamically innermost (most recent) call to a profiled function. So profiling a subfunction of a profiled
function will cause the reported time for the outer function to decrease. However if an inner function has a large
number of calls, some of the profiling overhead may "leak" into the reported time for the outer function. In
general, be wary of profiling short functions that are called many times.

5.13.4 Clock resolution
Unless you are very lucky, the length of your machine's clock "tick" is probably much longer than the time it
takes simple function to run. For example, on the IBM RT, the clock resolution is 1/50 second. This means that
if a function is only called a few times, then only the first couple decimal places are really meaningful.

Note however, that if a function is called many times, then the statistical averaging across all calls should
result in increased resolution. For example, on the IBM RT, if a function is called a thousand times, then a
resolution of tens of microseconds can be expected.

unprofile {name}* [Macro]

report-time {name}* [Macro]

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 88

5.13.5 Profiling overhead
The added profiling code takes time to run every time that the profiled function is called, which can disrupt the
attempt to collect timing information. In order to avoid serious inflation of the times for functions that take
little time to run, an estimate of the overhead due to profiling is subtracted from the times reported for each
function.

Although this correction works fairly well, it is not totally accurate, resulting in times that become increasingly
meaningless for functions with short runtimes. This is only a concern when the estimated profiling overhead is
many times larger than reported total CPU time.

The estimated profiling overhead is not represented in the reported total CPU time. The sum of total CPU
time and the estimated profiling overhead should be close to the total CPU time for the entire profiling run (as
determined by the time macro.) Time unaccounted for is probably being used by functions that you forgot to
profile.

5.13.6 Additional Timing Utilities

time form [Macro]
This macro evaluates form, prints some timing and memory allocation information to *trace-output*, and

returns any values that form returns. The timing information includes real time, user run time, and system
run time. This macro executes a form and reports the time and consing overhead. If the time form is not
compiled (e.g. it was typed at top-level), then compile will be called on the form to give more accurate timing
information. If you really want to time interpreted speed, you can say:

(time (eval 9form))

Things that execute fairly quickly should be timed more than once, since there may be more paging overhead in
the first timing. To increase the accuracy of very short times, you can time multiple evaluations:

(time (dotimes (i 100) form))

extensions:get-bytes-consed [Function]
This function returns the number of bytes allocated since the first time you called it. The first time it is

called it returns zero. The above profiling routines use this to report consing information.

extensions: *gc-run-time* [Variable]
This variable accumulates the run-time consumed by garbage collection, in the units returned by g e t -

in t ernal-run-t ime.

internal-time-units-per-second [Constant]
The value of internal-time-units-per-second is 100.

5.13.7 A Note on Timing
There are two general kinds of timing information provided by the time macro and other profiling utilities: real
time and run time. Real time is elapsed, wall clock time. It will be affected in a fairly obvious way by any
other activity on the machine. The more other processes contending for CPU and memory, the more real time
will increase. This means that real time measurements are difficult to replicate, though this is less true on a
dedicated workstation. The advantage of real time is that it is real. It tells you really how long the program took
to run under the benchmarking conditions. The problem is that you don't know exactly what those conditions
were.

Run time is the amount of time that the processor supposedly spent running the program, as opposed to
waiting for I/O or running other processes. "User run time" and "system run time" are numbers reported by
the Unix kernel. They are supposed to be a measure of how much time the processor spent running your "user"
program (which will include GC overhead, etc.), and the amount of time that the kernel spent running "on your
behalf".

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 89

Ideally, user time should be totally unaffected by benchmarking conditions; in reality user time does depend
on other system activity, though in rather non-obvious ways.

System time will clearly depend on benchmarking conditions. In Lisp benchmarking, paging activity increases
system run time (but not by as much as it increases real time, since the kernel spends some time waiting for the
disk, and this is not run time, kernel or otherwise.)

In my experience, the biggest trap in interpreting kernel/user run time is to look only at user time. In reality,
it seems that the sum of kernel and user time is more reproducible. The problem is that as system activity
increases, there is a spurious decrease in user run time. In effect, as paging, etc., increases, user time leaks into
system time.

So, in practice, the only way to get truly reproducible results is to run with the same competing activity on
the system. Try to run on a machine with nobody else logged in, and check with "ps aux H to see if there are
any system processes munching large amounts of CPU or memory. If the ratio between real time and the sum
of user and system time varies much between runs, then you have a problem.

5.13.8 Benchmarking Techniques
Given these imperfect timing tools, how do should you do benchmarking? The answer depends on whether you
are trying to measure improvements in the performance of a single program on the same hardware, or if you are
trying to compare the performance of different programs and/or different hardware.

For the first use (measuring the effect of program modifications with constant hardware), you should look at
both system-fuser and real time to understand what effect the change had on CPU use, and on I/O (including
paging.) If you are working on a CPU intensive program, the change in system-fuser time will give you a moder­
ately reproducible measure of performance across a fairly wide range of system conditions. For a CPU intensive
program, you can think of system-fuser as "how long it would have taken to run if I had my own machine." So
in the case of comparing CPU intensive programs, system-fuser time is relatively real, and reasonable to use.

For programs that spend a substantial amount of their time paging, you really can't predict elapsed time
under a given operating condition without benchmarking in that condition. User or system-fuser time may be
fairly reproducible, but it is also relatively meaningless, since in a paging or I/O intensive program, the program
is spending its time waiting, not running, and system time and user time are both measures of run time. A
change that reduces run time might increase real time by increasing paging.

Another common use for benchmarking is comparing the performance of the same program on different hard­
ware. You want to know which machine to run your program on. For comparing different machines (operating
systems, etc.), the only way to compare that makes sense is to set up the machines in exactly the way that they
will normally be run, and then measure reai time. If the program will normally be run along with X, then run X.
If the program will normally be run on a dedicated workstation, then be sure nobody else is on the benchmarking
machine. If the program will normally be run on a machine with three other Lisp jobs, then run three other
Lisp jobs. If the program will normally be run on a machine with 8meg of memory, then run with 8meg. Here,
"normal" means "normal for that machine". If you the choice of an unloaded RT or a heavily loaded PMAX,
do your benchmarking on an unloaded RT and a heavily loaded PMAX.

If you have a program you believe to be CPU intensive, then you might be tempted to compare "run" times
across systems, hoping to get a meaningful result even if the benchmarking isn't done under the expected running
condition. Don't to this, for two reasons:

• The operating systems might not compute run time in the same way.

• Under the real running condition, the program might not be CPU intensive after all.

In the end, only real time means anything — it is the amount of time you have to wait for the result. The
only valid uses for run time are:

• To develop insight into the program. For example, if run time is much less than elapsed time, then you are
probably spending lots of time paging.

• To evaluate the relative performance of CPU intensive programs in the same environment.

Chapter 6

U N I X Interface

B y Robert MacLachlan, Skef Wholey,

Bill Chiles, and William Lott

CMU Common Lisp attempts to make the full power of the underlying environment available to the Lisp
programmer. This is done using combination of hand-coded interfaces and foreign function calls to C libraries.
Although the techniques differ, the style of interface is similar. This chapter provides an overview of the facilities
available and general rules for using them, as well as describing specific features in detail. It is assumed that the
reader has a working familiarity with Mach, Unix and X, as well as access to the standard system documentation.

6*1 Reading the Command Line
The shell parses the command line with which Lisp is invoked, and passes a data structure containing the parsed
information to Lisp. This information is then extracted from that data structure and put into a set of Lisp data
structures.

extensions: *command-line-strings* [Variable]
extensions: *command-line-utility-name* [Variable]
extensions: *command-line-words* [Variable]
extensions: * command-line-switches* [Variable]

The value of * command-line-words* is a list of strings that make up the command line, one word per string.
The first word on the command line, i.e. the name of the program invoked (usually lisp) is stored in •command-
line-utility-name*. The value of *command-line-switches* is a list of command-line-switch structures,
with a structure for each word on the command line starting with a hyphen. All the command line words between
the program name and the first switch are stored in * command-line-words*.

The following functions may be used to examine command-line-switch structures.

extensions: cmd-s witch-name switch [Function]
Returns the name of the switch, less the preceding hyphen and trailing equal sign (if any).

extensions: cmd-switch-value switch [Function]
Returns the value designated using an embedded equal sign, if any. If the switch has no equal sign, then this

is null.

extensions: cmd-switch-words switch [Function]
Returns a list of the words between this switch and the next switch or the end of the command line.

90

CHAPTER 6. UNIX INTERFACE 91

6.2 Useful Variables

system:*stdin*
system:*stdout*
system:*stderr*

[Variable]
[Variable]
[Variable]

Streams connected to the standard input, output and error file descriptors.

system:*tty*
A stream connected to '/dev/tty'.

[Variable]

system:*task-self*
system:*task-data*
system:*task-notiiy*

[Variable]
[Variable]
[Variable]

The initial ports for the Lisp process (Mach only.)

6.3 Lisp Equivalents for C Routines
The UNIX documentation describes the system interface in terms of C procedure headers. The corresponding
Lisp function will have a somewhat different interface, since Lisp argument passing conventions and datatypes
are different.

The main difference in the argument passing conventions is that Lisp does not support passing values by
reference. In Lisp, all argument and results are passed by value. Interface functions take some fixed number
of arguments and return some fixed number of values. A given "parameter" in the C specification will appear
as an argument, return value, or both, depending on whether it is an In parameter, Out parameter, or In/Out
parameter. The basic transformation one makes to come up with the Lisp equivalent of a C routine is to remove
the Out parameters from the call, and treat them as extra return values. In/Out parameters appear both as
arguments and return values. Since Out and In/Out parameters are only conventions in C, you must determine
the usage from the documentation.

Thus, the C routine declared as

kern_re tura_ t lookup(servpor t , portsname, po r t s i d)

•portsid = <expression to compute portsid field>
return(KEMLSUCCESS);

has as its Lisp equivalent something like

(deiun lookup (ServPort PortsHame)

(values
success
<expression to compute portsid field>))

If there are multiple out or in-out arguments, then there are multiple additional returns values.
Fortunately, CMU Common Lisp programmers rarely have to worry about the nuances of this translation

process, since the names of the arguments and return values are documented in a way so that the describe
function (and the Hemlock Describe Function Call command, invoked with C-M-Shift-A) will list this infor­
mation. Since the names of arguments and return values are usually descriptive, the information that describe
prints is usually all one needs to write a call. Most programmers use this on-line documentation nearly all of the
time, and thereby avoid the need to handle bulky manuals and perform the translation from barbarous tongues.

port
char
int

servport;
•portsname;

•portsid; /• out •/

CHAPTER 6. UNIX INTERFACE 92

6.4 Type Translations
Lisp data types have very different representations from those used by conventional languages such as C Since
the system interfaces are designed for conventional languages, Lisp must translate objects to and from the
Lisp representations. Many simple objects have a direct translation: integers, characters, strings and floating
point numbers are translated to the corresponding Lisp object. A number of types, however, are implemented
differently in Lisp for reasons of clarity and efficiency.

Instances of enumerated types are expressed as keywords in Lisp. Records, arrays, and pointer types are
implemented with the Alien facility (see page 105.) Access functions are defined for these types which convert
fields of records, elements of arrays, or data referenced by pointers into Lisp objects (possibly another object to
be referenced with another access function).

One should dispose of Alien objects created by constructor functions or returned from remote procedure calls
when they are no longer of any use, freeing the virtual memory associated with that object. Since Aliens contain
pointers to non-Lisp data, the garbage collector cannot do this itself. If the memory was obtained from make-
alien (page 109) or from a foreign function call to a routine that used malloc, then free-alien (page 109)
should be used. If the Alien was created using MACII memory allocation (e.g. vm . a l l o c a t e) , then the storage
should be freed using vm . d e a l l o c a t e .

6.5 System Area Pointers
Note that in some cases an address is represented by a Lisp integer, and in other cases it is represented by a real
pointer. Pointers are usually used when an object in the current address space is being referred to. The MACH
virtual memory manipulation calls must use integers, since in principle the address could be in any process, and
Lisp cannot abide random pointers. Because these types are represented differently in Lisp, one must explicitly
coerce between these representations.

System Area Pointers (SAPs) provide a mechanism that bypasses the Alien type system and accesses virtual
memory directly. A SAP is a raw byte pointer into the lisp process address space. SAPs are represented
with a pointer descriptor, so SAP creation can cause consing. However, the compiler uses a non-descriptor
representation for SAPs when possible, so the consing overhead is generally minimal. See section 5.10.2, page 77.

system: sap-int sap [Function]
system: int-sap int [Function]

The function sap-int is used to generate an integer corresponding to the system area pointer, suitable for
passing to the kernel interfaces (which want all addresses specified as integers). The function int-sap is used to
do the opposite conversion. The integer representation of a SAP is the byte offset of the SAP from the start of
the address space.

system:sap+ sap offset [Function]
This function adds a byte offset to sap, returning a new SAP.

system: sap-ref-8 sap offset [Function]
system:sap-ref-16 sap offset [Function]
system:sap-ref-32 sap offset [Function]

These functions return the 8, 16 or 32 bit unsigned integer at offset from sap. The offset is always a byte
offset, regardless of the number of bits accessed, setf may be used with the these functions to deposit values
into virtual memory.

system:signed-sap-ref-8 sap offset [Function]
system:signed-sap-ref-16 sap offset [Function]
system:signed-sap-ref-32 sap offset [Function]

These functions are the same as the above unsigned operations, except that they sign-extend, returning a
negative number if the high bit is set.

CHAPTER 6. UNIX INTERFACE 93

6.6 Unix System Calls
You probably won't have much cause to use them, but all the Unix system calls are available. The Unix system
call functions are in the Unix package. The name of the interface for a particular system call is the name of
the system call prepended with unix- . The system usually defines the associated constants without any prefix
name. To find out how to use a particular system call, try using descr ibe on it. If that is unhelpful, look at the
source in ' s y s c a l l . l i s p ' or consult your system maintainer.

The Unix system calls indicate an error by returning n i l as the first value and the Unix error number as the
second value. If the call succeeds, then the first value will always be non-nil, often t .

Unix: ge t -unix-er ror -msg error [Function]
This function returns a string describing the Unix error number error.

6.7 File Descriptor Streams
Many of the UNIX system calls return file descriptors. Instead of using other UNIX system calls to perform I/O
on them, you can create a stream around them. For this purpose, fd-streams exist.

system:make-f d-stream descriptor fckey : input : output : element-type [Function]
courier ing :name : f i l e r o r i g ina l
: d e l e t e - o r i g i n a l : au to-c lose
:timeout

This function creates a file descriptor stream using descriptor. If input is non-nil, input operations are
allowed. If output is non-nil , output operations are allowed. The default is input only. These keywords are
defined:

element-type is the type of the unit of transaction for the stream, which defaults to s t r i ng -cha r . See the
Common Lisp description of open for valid values.

buffering is the kind of output buffering desired for the stream. Legal values are :none for no buffering, . ' l ine
for buffering up to each newline, and : i u l l for full buffering.

name is a simple-string name to use for descriptive purposes when the system prints an fd-stream. When printing
fd-streams, the system prepends the streams name with Stream for . If name is unspecified, it defaults to
a string containing file or descriptor, in order of preference.

iiie, original : file specifies the name of the associated file when creating a file stream (must be a simple-
s t r i ng) , original is the s imple - s t r ing name of a backup file containing the original contents of file while
writing file.
When you abort the stream by passing t to c lose as the second argument, if you supplied both file and
original, c lose will rename the original name to the file name. When you c lose the stream normally,
if you supplied original, and delete-original is non-nil, c lose deletes original. If auto-close is true (the
default), then descriptor will be closed when the stream is garbage collected.

timeout if non-null, then timeout is an integer number of seconds after which an input wait should time out. If
a read does time out, then the system: io-t imeout condition is signalled.

system: id -s t ream-p object [Function]
This function returns t if object is an fd-stream, and n i l if not.

sys tem: id-s t ream-id stream
This returns the file descriptor associated with stream.

[Function]

CHAPTER 6. UNIX INTERFACE 94

6.8 Making Sense of Mach Return Codes
Whenever a remote procedure call returns a Unix error code (such as kern_re turn_t) , it is usually prudent to
check that code to see if the call was successful. To relieve the programmer of the hassle of testing this value
himself, and to centralize the information about the meaning of non-success return codes, CMU Common Lisp
provides a number of macros and functions. See also get -unix-error-msg (page 93).

system:gr-error function gr ^optional context [Function]
Signals a Lisp error, printing a message indicating that the call to the specified function failed, with the

return code gr. If supplied, the context string is printed after the function name and before the string associated
with the gr. For example:

* (gr-error 'nukegarbage 3 "lost big")

Error in function GR-ERROR:
NUKEGARBAGE lost big, no space.
Proceed cases:
0: Return to Top-Level.
Debug (type H for help)
(Signal #<Conditions:Simple-Error. 5FDE0>)
0]

system:gr-call function iciest args
system:gr-call* function &rest args

These macros can be used to call a function and
an appropriate error in case of non-successful return,
returns the second value of the function called.

* (gr-call mach:port.allocate *task-self*)
NIL

[Macro]
[Macro]

automatically check the GeneralReturn code and signal
g r - c a l l returns n i l if no error occurs, while g r - c a l l *

system:gr-bind ({var}*) (function {arg}*) {form}* [Macro]
This macro can be used much like multiple-value-bind to bind the vars to return values resulting from

calling the function with the given args. The first return value is not bound to a variable, but is checked as a
GeneralReturn code, as in gr-call.

* (gr-bind (port.list port_list_cnt)
(mach:port.select *task-self*)

(format t "The port count is "S." port.list.cnt)
port.list)

The port count is 0.
#<Alien value>
*

6.9 Unix Interrupts
CMU Common Lisp allows access to all the Unix signals that can be generated under Unix. It should be noted
that if this capability is abused, it is possible to completely destroy the running Lisp. The following macros
and functions allow access to the Unix interrupt system. The signal names as specified in section 2 of the Unix
Programmer's Manual are exported from the Unix package.

CHAPTER 6. UNIX INTERFACE 95

6.9.1 Changing Interrupt Handlers

system: with-enabled-interrupts specs iciest body [Macro]
This macro should be called with a list of signal specifications, specs. Each element of specs should be a list

of two elements: the first should be the Unix signal for which a handler should be established, the second should
be a function to be called when the signal is received One or more signal handlers can be established in this way.
with-enabled-interrupts establishes the correct signal handlers and then executes the forms in body. The
forms are executed in an unwind-protect so that the state of the signal handlers will be restored to what it was
before the with-enabled-interrupts was entered. A signal handler function specified as NIL will set the Unix
signal handler to the default which is normally either to ignore the signal or to cause a core dump depending on
the particular signal.

system: without-interrupts &rest body [Macro]
It is sometimes necessary to execute a piece a code that can not be interrupted. This macro the forms in

body with interrupts disabled. Note that the Unix interrupts are not actually disabled, rather they are queued
until after body has finished executing.

system:with-interrupts &rest body [Macro]
When executing an interrupt handler, the system disables interrupts, as if the handler was wrapped in in a

without-interrupts. The macro with-interrupts can be used to enable interrupts while the forms in body
are evaluated. This is useful if body is going to enter a break loop or do some long computation that might need
to be interrupted.

system: without-hemlock &rest body [Macro]
For some interrupts, such as SIGTSTP (suspend the Lisp process and return to the Unix shell) it is necessary

to leave Hemlock and then return to it. This macro executes the forms in body after exiting Hemlock. When
body has been executed, control is returned to Hemlock.

system: enable-interrupt signal function [Function]
This function establishes function as the handler for signal. Unless you want to establish a global sig­

nal handler, you should use the macro with-enabled-interrupts to temporarily establish a signal handler,
enable-interrupt returns the old function associated with the signal.

system: ignore-interrupt signal [Function]
Ignore-interrupt sets the Unix signal mechanism to ignore signal which means that the Lisp process will never

see the signal. Ignore-interrupt returns the old function associated with the signal or n i l if none is currently
defined.

system: default- interrupt signal [Function]
Default-interrupt can be used to tell the Unix signal mechanism to perform the default action for signal. For

details on what the default action for a signal is, see section 2 of the Unix Programmer's Manual. In general, it
is likely to ignore the signal or to cause a core dump.

CHAPTER 6. UNIX INTERFACE 96

6.9.2 Examples of Signal Handlers
The following code is the signal handler used by the Lisp system for the SIGINT signal.

(defun ih-sigint (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(with-int errupts
(break "Software Interrupt" t))))

The without-hemlock form is used to make sure that Hemlock is exited before a break loop is entered. The
with-interrupts form is used to enable interrupts because the user may want to generate an interrupt while
in the break loop. Finally, break is called to enter a break loop, so the user can look at the current state of the
computation. If the user proceeds from the break loop, the computation will be restarted from where it was
interrupted.

The following function is the Lisp signal handler for the SIGTSTP signal which suspends a process and
returns to the Unix shell.

(defun ih-sigtstp (signal code scp)
(declare (ignore signal code scp))
(«ithout-hemlock
(Unix:unix-kill (Unix:unix-getpid) Unix:sigstop)))

Lisp uses this interrupt handler to catch the SIGTSTP signal because it is necessary to get out of Hemlock in a
clean way before returning to the shell.

To set up these interrupt handlers, the following is recommended:

(with-enabled-interrupts ((Unix:SIGIMT #'ih-sigint)
(Unix:SIGTSTP #'ih-sigtstp))

<user code to execute with the above signal handlers enabled.>
)

Chapter 7

Event Dispatching with
S E R V E - E V E N T

By Bill Chiles and Robert MacLachlan

It is common to have multiple activities simultaneously operating in the same Lisp process. Furthermore,
Lisp programmers tend to expect a flexible development environment. It must be possible to load and modify
application programs without requiring modifications to other running programs. CMU Common Lisp achieves
this by having a central scheduling mechanism based on an event-driven, object-oriented paradigm.

An event is some interesting happening that should cause the Lisp process to wake up and do something.
These events include X events and activity on Unix file descriptors. The object-oriented mechanism is only
available with the first two, and it is optional with X events as described later in this chapter. In an X event, the
window ID is the object capability and the X event type is the operation code. The Unix file descriptor input
mechanism simply consists of an association list of a handler to call when input shows up on a particular file
descriptor.

7.1 Object Sets
An object set is a collection of objects that have the same implementation for each operation. Externally the
object is represented by the object capability and the operation is represented by the operation code. Within Lisp,
the object is represented by an arbitrary Lisp object, and the implementation for the operation is represented
by-an arbitrary Lisp function. The object set mechanism maintains this translation from the external to the
internal representation.

system:make-object-set name ^optional default-handler [Function]
This function makes a new object set. Name is a string used only for purposes of identifying the object set

when it is printed. Default-handler is the function used as a handler when an undefined operation occurs on
an object in the set. You can define operations with the serve-operation functions exported the extensions
package for X events (see section 7.4, page 99). Objects are added with system:add-xwindow-object. Initially
the object set has no objects and no defined operations.

system:object-set-operation object-set operation-code [Function]
This function returns the handler function that is the implementation of the operation corresponding to

operation-code in object-set. When set with setf, the setter function establishes the new handler. The se rve-
operation functions exported from the extensions package for X events (see section 7.4, page 99) call this on
behalf of the user when announcing a new operation for an object set.

system:add-xwindow-object window object object-set [Function]
These functions add port or window to object-set. Object is an arbitrary Lisp object that is associated with

the port or window capability. Window is a CLX window. When an event occurs, system:serve-event passes
object as an argument to the handler function.

97

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 98

7.2 T h e S E R V E - E V E N T Func t ion
The system: serve-event function is the standard way for an application to wait for something to happen. For
example, the Lisp system calls system: serve-event when it wants input from X or a terminal stream. The idea
behind system: serve-event is that it knows the appropriate action to take when any interesting event happens.
If an application calls system: serve-event when it is idle, then any other applications with pending events can
run. This allows several applications to run Mat the same timeM without interference, even though there is only
one thread of control. Note that if an application is waiting for input of any kind, then other applications will
get events.

system:serve-event ^optional timeout [Function]
This function waits for an event to happen and then dispatches to the correct handler function. If specified,

timeout is the number of seconds to wait before timing out. A time out of zero seconds is legal and causes
system:serve-event to poll for any events immediately available for processing, system: serve-event returns
t if it serviced at least one event, and n i l otherwise. Depending on the application, when system: serve-event
returns t , you might want to call it repeatedly with a timeout of zero until it returns n i l .

If input is available on any designated file descriptor, then this calls the appropriate handler function supplied
by system:add-zd-handler.

Since events for many different applications may arrive simultaneously, an application waiting for a specific
event must loop on system:serve-event until the desired event happens. Since programs such as Hemlock call
system:serve-event for input, applications usually do not need to call system:serve-event at all; Hemlock
allows other application's handlers to run when it goes into an input wait.

system:serve-al l -events ^optional timeout [Function]
This function is similar to system: serve-event, except it serves all the pending events rather than just one.

It returns t if it serviced at least one event, and n i l otherwise.

7.3 Using S E R V E - E V E N T w i t h Un ix Fi le Desc r ip to r s
Object sets, are not available for use with file descriptors, as there are only two operations possible on file
descriptors: input and output. Instead, a handler for either input or output can be registered with system: s e rve -
event for a specific file descriptor. Whenever any input shows up, or output is possible on this file descriptor, the
function associated with the handler for that descriptor is funcalled with the descriptor as it's single argument.

system: add-id-handler fd direction function [Function]
This function installs and returns a new handler for the file descriptor fd. Direction can be either : input if

the system should invoke the handler when input is available or : output if the system should invoke the handler
when output is possible. This returns a unique object representing the handler, and this is a suitable argument
for system:remove-fd-handler Function must take one argument, the file descriptor.

system :remove-xd-handler handler [Function]
This function removes handler, that add-f d-handler must have previously returned.

system: with-fd-handler (direction fd function) {form}* [Macro]
This macro executes the supplied forms with a handler installed using fd, direction, and function. See

system:add-1d-handler.

system:wai t -unt i l - fd -usable direction fd ^optional timeout [Function]
This function waits for up to timeout seconds for fd to become usable for direction (either : input or : output).

If timeout is n i l or unspecified, this waits forever.

system: inval idate-descriptor fd [Function]
This function removes all handlers associated with fd. This should only be used in drastic cases (such as I/O

errors, but not necessarily EOF). Normally, you should use remove-id-handler to remove the specific handler.

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 99

7.4 Using SERVE-EVENT with the CLX Interface to X
Remember from section 7.1, an object set is a collection of objects, CLX windows in this case, with some
set of operations, event keywords, with corresponding implementations, the same handler functions. Since X
allows multiple display connections from a given process, you can avoid using object sets if every window in an
application or display connection behaves the same. If a particular X application on a single display connection
has windows that want to handle certain events differently, then using object sets is a convenient way to organize
this since you need some way to map the window/event combination to the appropriate functionality.

The following is a discussion of functions exported from the extensions package that facilitate handling
CLX events through system: serve-event. The first two routines are useful regardless of whether you use
system:serve-event:

ext: open-clx-display ^optional string [Function]
This function parses string for an X display specification including display and screen numbers. String

defaults to the following:

(cdr (assoc :display ext:*environment-list* : tes t #'eq))

If any field in the display specification is missing, this signals an error, ext: open-clx-display returns the CLX
display and screen.

ext: f lush-display-events display [Function]
This function flushes all the events in display's event queue including the current event, in case the user calls

this from within an event handler.

7.4.1 Without Object Sets
Since most applications that use CLX, can avoid the complexity of object sets, these routines are described in
a separate section. The routines described in the next section that use the object set mechanism are based on
these interfaces.

ext: enable-clx-event-handling display handler [Function]
This function causes system:serve-event to notice when there is input on display's connection to the XI1

server. When this happens, system:serve-event invokes handler on display in a dynamic context with an
error handler bound that flushes all events from display and returns. By returning, the error handler declines
to handle the error, but it will have cleared all events; thus, entering the debugger will not result in infinite
errors due to streams that wait via system: serve-event for input. Calling this repeatedly on the same display
establishes handler as a new handler, replacing any previous one for display.

ext: disable-clx-event-handling display [Function]
This function undoes the effect of ext: enable-clx-event-handling.

ext :with-clx-event-handling (display handler) {form}* [Macro]
This macro evaluates each form in a context where system: serve-event invokes handler on display whenever

there is input on display's connection to the X server. This destroys any previously established handler for display.

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 100

7.4.2 With Object Sets
This section discusses the use of object sets and system: serve-event to handle CLX events. This is necessary
when a single X application has distinct windows that want to handle the same events in different ways. Basically,
you need some way of asking for a given window which way you want to handle some event because this event
is handled differently depending on the window. Object sets provide this feature.

For each CLX event-key symbol-name XXX (for example, key-press), there is a function serve-XXX of two
arguments, an object set and a function. The serve-XXX function establishes the function as the handler for
the :XXX event in the object set. Recall from section 7.1, system:add-xwindow-object associates some Lisp
object with a CLX window in an object set. When system: serve-event notices activity on a window, it calls
the function given to ex t : enable-c lx-event-handl ing. If this function is ex t : ob jec t - se t -even t -hand le r ,
it calls the function given to serve-XXX, passing the object given to system:add-xwindow-object and the
event's slots as well as a couple other arguments described below.

To use object sets in this way:

• Create an object set.

• Define some operations on it using the serve-XXX functions.

• Add an object for every window on which you receive requests. This can be the CLX window itself or some
structure more meaningful to your application.

• Call system:serve-event to service an X event.

ex t : ob jec t - se t - even t -hand le r display [Function]
This function is a suitable argument to ex t : enable-c lx-event-handl ing. The actual event handlers defined

for particular events within a given object set must take an argument for every slot in the appropriate event. In
addition to the event slots, ext :ob jec t - se t - even t -hand le r passes the following arguments:

• The object, as established by system:add-xwindow-object, on which the event occurred.

• event-key, see x l i b : even t - ca se .

• send-event-p, see x l i b : even t - ca se .

Describing any ex t : serve-event-lcey-name function, where event-key-name is an event-key symbol-name (for
example, ex t : serve-key-press) , indicates exactly what all the arguments are in their correct order.

When creating an object set for use with ex t :ob jec t - se t - even t -hand le r , specify e x t : d e f a u l t - c l x -
e vent-handler as the default handler for events in that object set. If no default handler is specified, and
the system invokes the default default handler, it will cause an error since this function takes arguments suitable
for handling port messages.

7.5 A S E R V E - E V E N T E x a m p l e
This section contains two examples using system: serve-event . The first one does not use object sets, and the
second, slightly more complicated one does.

7.5.1 Without Object Sets Example
This example defines an input handler for a CLX display connection. It only recognizes :key-press events. The
body of the example loops over system: serve-event to get input.

(in-package "SERVER-EXAMPLE")

(deiun my-input-handler (d i sp lay)
(x l i b : even t - ca se (d i sp lay :timeout 0)

(:key-press (event-window code s t a t e)
(format t "KEY-PRESSED (Window = ~D) = "S."/."

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT

(xlib:window-id event-window)
;; See Hemlock Command Implementor>s Manual for convenient

input mapping function,
(ext:translate-character display code state))

Make XLIB:EVENT-CASE discard the event,
t)))

(defun server-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets to
handle CLX events."
(let* ((display (ext:open-clx-display))

(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(window (create-window :parent (screen-root screen)

:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press))))

Wrap code in UNWIND-PRQTECT, so we clean up after ourselves,
(unwind-protect

(progn
;; Enable event handling on the display.
(ext:enable-clx-event-handling display #'my-input-handler)

Map the windows to the screen,
(map-window window)
;; Make sure we send all our requests.
(display-force-output display)
;; Call serve-event for 100,000 events or immediate timeouts.
(dotimes (i 100000) (system:serve-event)))

;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
;; Get rid of the window.
(destroy-window window)
;; Pick off any events the X server has already queued for our
;; windows, so we don't choke since SYSTEM:SERVE-EVENT is no longer
;; prepared to handle events for us.
(loop
(unless (deleting-window-drop-event *display* window)
(return)))

;; Close the display,
(xlib:close-display display))))

(defun deleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."
(xlib:display-finish-output display)
(let ((result nil))

(xlib:process-event
display :timeout 0
:handler #'(lambda (ftkey event-window ftallow-other-keys)

(if (eq event-window win)
(setf result t)
nil)))

result))

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 102

7.5.2 With Object Sets Example
This example involves more work, but you get a little more for your effort. It defines two objects, input-box
and slider, and establishes a :key-press handler for each object, key-pressed and slider-pressed. We have
two object sets because we handle events on the windows manifesting these objects differently, but the events
come over the same display connection.

(in-package "SERVER-EXAMPLE")

(defstruct (input-box (:print-function print-input-box)
(:constructor make-input-box (display window)))

"Our program knows about input-boxes, and it doesn't care how they
are implemented."

display ; The CLX display on which my input-box is displayed,
window) ; The CLX window in which the user types.

> » »

(defun print-input-box (object stream n)
(declare (ignore n))
(format stream "#<Input-Box ~S>" (input-box-display object)))

(defvar *input-box-windows*
(system:make-object-set "Input Box Windows"

#'ext:default-clx-event-handler))

(defun key-pressed (input-box event-key event-window root child
same-screen-p x y root-x root-y modifiers time
key-code send-event-p)

"This is our :key-press event handler."
(declare (ignore event-key root child same-screen-p x y

root-x root-y time send-event-p))
(format t "KEY-PRESSED (Window = ~D) = S.~%"

(xlib:window-id event-window)
;; See Hemlock Command Implementor's Manual for convenient
;; input mapping function.
(ext:translate-character (input-box-display input-box)

key-code modifiers)))
» » »

(ext:serve-key-press *input-box-windows* #'key-pressed)

(defstruct (slider (:print-function print-slider)
(:include input-box)
(: constructor '/.make-slider

(display window window-width max)))
"Our program knows about sliders too, and these provide input values
zero to max."

bits-per-value ; bits per discrete value up to max.
max) ; End value for slider.

* » >

(defun print-slider (object stream n)
(declare (ignore n))
(format stream "#<Slider ~S 0..~D>"

(input-box-display object)
(1- (slider-max object))))

» » i
(defun make-slider (display window max)

(7.make-slider display window
(truncate (xlib:drawable-width window) max)

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT

max))

(defvar *slider-windows*
(system:make-object-set "Slider Windows"

#'ext:deiault-clx-event-handler))

(defun slider-pressed (slider event-key event-window root child
same-screen-p x y root-x root-y modifiers time
key-code send-event-p)

"This is our :key-press event handler for sliders. Probably this is
a mouse thing, but for simplicity here we take a character typed."
(declare (ignore event-key root child same-screen-p x y

root-x root-y time send-event-p))
(format t "KEY-PRESSED (Window = ~D) = **S — > ~D."/t"

(xlib:window-id event-window)
See Hemlock Command Implementor's Manual for convenient

;; input mapping function.
(ext:translate-character (input-box-display slider)

key-code modifiers)
(truncate x (slider-bits-per-value slider))))

> i i
(ext:serve-key-press *slider-windows* #'slider-pressed)

(defun server-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets
handle CLX events."
(let* ((display (ext:open-clx-display))

(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(iwindow (create-window :parent (screen-root screen)

:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press)))

(swindow (create-window :parent (screen-root screen)
:x 0 :y 300 :width 200 :height 50
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press)))

(input-box (make-input-box display iwindow))
(slider (make-slider display swindow 15)))

;; Wrap code in UMWIHD-PROTECT, so we clean up after ourselves,
(unwind-prot ect

(progn
;; Enable event handling on the display.
(ext:enable-clx-event-handling display

1ext:obj ect-set-event-handle
;; Add the windows to the appropriate object sets.
(system:add-xwindow-object iwindow input-box

•input-box-windows*)
(system:add-xwindow-object swindow slider

•slider-windows*)
;; Map the windows to the screen.

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT

(map-window iwindow)
(map-window swindow)
;; Make sure we send all our requests.
(display-force-output display)
;; Call server for 100.000 events or immediate timeouts.
(dotimes (i 100000) (system:serve-event)))

;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
(delete-window iwindow display)
(delete-window swindow display)
;; Close the display,
(xlib:close-display display))))

(defun delete-window (window display)
;; Remove the windows from the object sets before destroying them.
(system:remove-xwindow-obj ect window)
;; Destroy the window.
(destroy-window window)
;; Pick off any events the X server has already queued for our

windows, so we don't choke since SYSTEM:SERVE-EVENT is no longer
prepared to handle events for us.

(loop
(unless (deleting-window-drop-event display window)

(return))))

(defun deleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."
(xlib:display-f inish-output display)
(let ((result nil))

(xlib:process-event
display :timeout 0
:handler #'(lambda (Jfckey event-window ftallow-other-keys)

(if (eq event-window win)
(setf result t)
nil)))

result))

Chapter 8

Alien Objects

B y Robert MacLachlan and William Lott

8.1 Introduction to Aliens
Because of Lisp's emphasis on dynamic memory allocation and garbage collection, Lisp implementations use
unconventional memory representations for objects. This representation mismatch creates problems when a Lisp
program must share objects with programs written in another language. There are three different approaches to
establishing communication:

• The burden can be placed on the foreign program (and programmer) by requiring the use of Lisp object
representations. The main difficulty with this approach is that either the foreign program must be written
with Lisp interaction in mind, or a substantial amount of foreign "glue" code must be written to perform
the translation.

• The Lisp system can automatically convert objects back and forth between the Lisp and foreign representa­
tions. This is convenient, but translation becomes prohibitively slow when large or complex data structures
must be shared.

• The Lisp program can directly manipulate foreign objects through the use of extensions to the Lisp lan­
guage. Most Lisp systems make use of this approach, but the language for describing types and expressing
accesses is often not powerful enough for complex objects to be easily manipulated.

CMU Common Lisp relies primarily on the automatic conversion and direct manipulation approaches: Aliens of
simple scalar types are automatically converted, while complex types are directly manipulated in their foreign
representation. Any foreign objects that can't automatically be converted into Lisp values are represented by
objects of type a l ien-value. Since Lisp is a dynamically typed language, even foreign objects must have a
run-time type; this type information is provided by encapsulating the raw pointer to the foreign data within an
a l ien-value object.

The Alien type language and operations are most similar to those of the C language, but Aliens can also be
used when communicating with most other languages that can be linked with C.

8.2 Alien Types
Alien types have a description language based on nested list structure. For example:

struct foo {
int a;
struct foo *b[100];

105

};

CHAPTER 8. ALIEN OBJECTS 106

has the corresponding Alien type:

(struct foo
(a in t)
(b (array (* (struct foo)) 100)))

8.2.1 Defining Alien Types
Types may be either named or anonymous. With structure and union types, the name is part of the type
specifier, allowing recursively defined types such as:

(struct foo (a (* (struct f o o))))

An anonymous structure or union type is specified by using the name n i l . The with-al ien (page 109) macro
defines a local scope which "captures" any named type definitions. Other types are not inherently named, but
can be given named abbreviations using def-al ien-type.

a l i en: def-al ien-type name type [Macro]
This macro globally defines name as a shorthand for the Alien type type. When introducing global structure

and union type definitions, name may be n i l , in which case the name to define is taken from the type's name.

8.2.2 Alien Types and Lisp Types
The Alien types form a subsystem of the CMU Common Lisp type system. An a l i en type specifier provides a
way to use any Alien type as a Lisp type specifier. For example

(typep foo ' (a l i e n (* i n t)))

can be used to determine whether foo is a pointer to an int. a l i en type specifiers can be used in the same ways
as ordinary type specifiers (like string.) Alien type declarations are subject to the same precise type checking
as any other declaration (section See section 4.5.2, page 43.)

Note that the Alien type system overlaps with normal Lisp type specifiers in some cases. For example, the
type specifier (a l i en s i n g l e - f l o a t) is identical to s ing le - f loa t , since Alien floats are automatically converted
to Lisp floats. When type-of is called on an Alien value that is not automatically converted to a Lisp value,
then it will return an a l i en type specifier.

8.2.3 Alien Type Specifiers
Some Alien type names are Common Lispsymbols, but the names are still exported from the a l i e n package, so
it is legal to say a l i en: s ing le - f loa t . These are the basic Alien type specifiers:

* type Alien type
A pointer to an object of the specified type. If type is t , then it means a pointer to anything,
similar to "void *" in ANSI C. Currently, the only way to detect a null pointer is:

(zerop (sap-int (a l ien-sap ptr)))

See section 6.5, page 92

array type {dimension}* Alien type
An array of the specified dimensions, holding elements of type type. Note that (* i n t) and (array
int) are considered to be different types when type checking is done; pointer and array types must
be explicitly coerced using cast.
Arrays are accessed using deref, passing the indices as additional arguments. Elements are stored
in column-major order (as in C), so the first dimension determines only the size of the memory
block, and not the layout of the higher dimensions. An array whose first dimension is variable
may be specified by using n i l as the first dimension. Fixed-size arrays can be allocated as array
elements, structure slots or with-al ien variables. Dynamic arrays can only be allocated using
make-alien (page 109).

CHAPTER 8. ALIEN OBJECTS 107

s t r u c t name {(Geld type [bits])}* Alien type
A structure type with the specified name and fields. Fields are allocated at the same positions used
by the implementation's C compiler, bits is intended for C-like bit field support, but is currently
unused. If name is n i l , then the type is anonymous.
If a named Alien s t r u c t specifier is passed to de f - a l i en - type (page 106) or w i th -a l i en
(page 109), then this defines, respectively, a new global or local Alien structure type. If no fields are
specified, then the fields are taken from the current (local or global) Alien structure type definition
of name.

union name {(field type [bits])}* Alien type
Similar to s t r u c t , but defines a union type. All fields are allocated at the same offset, and the size
of the union is the size of the largest field. The programmer must determine which field is active
from context.

enum name {spec}* Alien type
An enumeration type that maps between integer values and keywords. If name is n i l , then the
type is anonymous. Each spec is either a keyword, or a list (keyword value). If integer is not
supplied, then it defaults to one greater than the value for the preceding spec (or to zero if it is the
first spec.)

signed [bits] Alien type
A signed integer with the specified number of bits precision. The upper limit on integer precision
is determined by the machine's word size. If no size is specified, the maximum size will be used.

in tege r [bits] Alien type
Identical to signed — the distinction between signed and in teger is purely stylistic.

unsigned [bits] Alien type
Like signed, but specifies an unsigned integer.

boolean [bits] Alien type
Similar to an enumeration type that maps 0 to n i l and all other values to t . bits determines the
amount of storage allocated to hold the truth value.

s i n g l e - f l o a t Alien type
A floating-point number in IEEE single format.

double- f loa t Alien type
A floating-point number in IEEE double format.

funct ion result-type {arg-type}* Alien type
A Alien function that takes arguments of the specified arg-types and returns a result of type result-
type. Note that the only context where a funct ion type is directly specified is in the argument
to a l i e n - f u n c a l l (see section 8.7.1.) In all other contexts, functions are represented by function
pointer types: (* (funct ion . . .)) .

sys tem-area-poin ter Alien type
A pointer which is represented in Lisp as a sys tem-area-pointer object (see section 6.5, page 92.)

8.2-4 The C-Call Package
The c - c a l l package exports these type-equivalents to the C type of the same name: char, short , in t , long,
unsigned-char, unsigned-short , uns igned- int , unsigned-long, f l oa t , double, c - c a l l also exports these
types:

CHAPTER 8. ALIEN OBJECTS 108

void Alien type
This type is used in function types to declare that no useful value is returned. Evaluation of an
alien-f uncall form will return zero values.

c-string Alien type
This type is similar to (* char), but is interpreted as a null-terminated string, and is automatically
converted into a Lisp string when accessed. If the pointer is C HULL (or 0), then accessing gives
Lisp nil.
Assigning a Lisp string to a c-string structure field or variable stores the contents of the string
to the memory already pointed to by that variable. When an Alien of type (* char) is assigned
to a c-string, then the c-string pointer is assigned to. This allows c-string pointers to be
initialized. For example:

(del-alien-type nil (struct foo (str c-string)))

(defun make-loo (str)
(let ((my-foo (make-alien (struct foo))))

(setf (slot my-foo 'str) (make-alien char (length str)))
(setf (slot my-foo 'str) str)
my-foo))

Storing Lisp nil writes C HULL to the c-string pointer.

8.3 Alien Operations
This section describes the basic operations on Alien values.

8.3.1 Alien Access Operations

alien:deref pointer-or-array &rest indices [Function]
This function returns the value pointed to by an Alien pointer or the value of an Alien array element. If a

pointer, an optional single index can be specified to give the equivalent of C pointer arithmetic; this index is
scaled by the size of the type pointed to. If an array, the number of indices must be the same as the number of
dimensions in the array type, deref can be set with setf to assign a new value.

a l i en :slot struct-or-union slot-name [Function]
This function extracts the value of slot slot-name from the an Alien struct or union. If struct-or-union is

a pointer to a structure or union, then it is automatically dereferenced. This can be set with setf to assign a
new value. Note that slot-name is evaluated, and need not be a compile-time constant (but only constant slot
accesses are efficiently compiled.)

8.3.2 Alien Coercion Operations

a l i en: addr alien-expr [Ma cro]
This macro returns a pointer to the location specified by alien-expr, which must be either an Alien variable,

a use of deref, a use of slot, or a use of e x t e r n - a l i e n (page 110).

a l i en :cast edien new-type [Macro]
This macro converts aiien to a new Alien with the specified new-type. Both types must be an Alien pointer,

array or function type. Note that the result is not eq to the argument, but does refer to the same data bits.

CHAPTER 8. ALIEN OBJECTS 109

alien:sap-alien sap type
alien: alien-sap alien-value

[Macro]
[Function]

sap-alien converts sap (a system area pointer see section 6.5, page 92) to an Alien value with the specified
type, type is not evaluated.

alien-sap returns the SAP which points to aiien-vaiue's data.
The type to sap-alien and the type of the alien-value to alien-sap must some Alien pointer, array or

8.3.3 Alien Dynamic Allocation
Dynamic Aliens are allocated using the malloc library, so foreign code can call free on the result of make-alien,
and Lisp code can call free-alien on objects allocated by foreign code.

This macro returns a dynamically allocated Alien of the specified type (which is not evaluated.) The allocated
memory is not initialized, and may contain arbitrary junk. If supplied, size is an expression to evaluate to compute
the size of the allocated object. There are two major cases:

• When type is an array type, an array of that type is allocated and a pointer to it is returned. Note that
you must use deref to change the result to an array before you can use deref to read or write elements:

(defvar *foo* (make-alien (array char 10)))

(type-of *foo*)
(alien (* (array (signed 8) 10)))

(setf (deref (deref foo) 0) 10)
=> 10

If supplied, size is used as the first dimension for the array.

• When type is any other type, then then an object for that type is allocated, and a pointer to it is returned.
So (make-alien int) returns a (* int). U size is specified, then a block of that many objects is allocated,
with the result pointing to the first one.

alien: free-alien aiien [Function]
This function frees the storage for a7ien (which must have been allocated with make-alien or malloc.)
See also with-alien (page 109), which stack-allocates Aliens.

8.4 Alien Variables
Both local (stack allocated) and external (C global) Alien variables are supported.

8.4.1 Local Alien Variables

alien: with-alien {(name type [initial-value])}* {form}* [Macro]
This macro establishes local alien variables with the specified Alien types and names for dynamic extent

of the body. The variable names are established as symbol-macros; the bindings have lexical scope, and may
be assigned with setq or setf. This form is analogous to defining a local variable in C: additional storage is
allocated, and the initial value is copied.

with-alien also establishes a new scope for named structures and unions. Any type specified for a variable
may contain name structure or union types with the slots specified. Within the lexical scope of the binding
specifiers and body, a locally defined structure type foo can be referenced by its name using:

(struct foo)

record type.

alien:make-alien type [size] [Macro]

CHAPTER 8. ALIEN OBJECTS 110

8.4.2 External Alien Variables
External Alien names are strings, and Lisp names are symbols. When an external Alien is represented using a
Lisp variable, there must be a way to convert from one name syntax into the other. The macros extern -a l ien,
def -a l ien-variable and def-al ien-routine (page 113) use this conversion heuristic:

• Alien names are converted to Lisp names by uppercasing and replacing underscores with hyphens.

• Conversely, Lisp names are converted to Alien names by lowercasing and replacing hyphens with under­
scores.

• Both the Lisp symbol and Alien string names may be separately specified by using a list of the form:

(lisp-symbol alien-string)

al ien: def-a l ien-variable name type [Macro]
This macro defines name as an external Alien variable of the specified Alien type, name and type are not

evaluated. The Lisp name of the variable (see above) becomes a global Alien variable in the Lisp namespace.
Global Alien variables are effectively "global symbol macros"; a reference to the variable fetches the contents
of the external variable. Similarly, setting the variable stores new contents — the new contents must be of the
declared type.

For example, it is often necessary to read the global C variable errno to determine why a particular function
call failed. It is possible to define errno and make it accessible from Lisp by the following:

(def-al ien-variable "errno" int)

;; Nov i t i s poss ible to get the value of the C variable errno simply by
;; referencing that Lisp variable:
i >
(print errno)

a l i en :ex tern-a l i en name type [Macro]
This macro returns an Alien with the specified type which points to an externally defined value, name is not

evaluated, and may be specified either as a string or a symbol, type is an unevaluated Alien type specifier.

8-5 Alien Data Structure Example
Now that we have Alien types, operations and variables, we can manipulate foreign data structures. This C
declaration can be translated into the following Alien type:

struct foo {
int a;
struct foo *b[100];

>;

(def-al ien-type n i l
(struct foo

(a int)

(b (array (* (struct foo)) 100))))

With this definition, the following C expression can be translated in this way:

CHAPTER 8. ALIEN OBJECTS 111

struct foo f;
f . b[7] . a

(with-al ien ((f (struct foo)))
(s l o t (deref (s l o t f >b) 7) 'a)
»»
;; Do something with f. . .
)

Or consider this example of an external C variable and some accesses:

struct c_struct {
short x, y;
char a, b;
int z;
c_struct *n;

};

extern struct c . s truct *my.struct;

my_struct->x++;
my_struct->a = 5;
my_stract = my_struct->n;

which can be made be manipulated in Lisp like this:

(def-al ien-type n i l
(struct c-struct

(x short)
(y short)
(a char)
(b char)
(z int)
(n (* c - s t r u c t))))

(def-al ien-variable Mmy_structM (* c - s truct))

(incf (s l o t my-struct *x))
(set f (s l o t my-struct *a) 5)
(setq my-struct (s l o t my-struct *n))

8.6 Loading Unix Object Files
Foreign object files are loaded into the running Lisp process by load-foreign. First, it runs the linker on the files
and libraries, creating an absolute Unix object file. This object file is then loaded into into the currently running
Lisp. The external symbols defining routines and variables are made available for future external references (e.g.
by extern-alien.) load-foreign must be run before any of the defined symbols are referenced.

Note that if a Lisp core image is saved (using save- l i sp (page 16)), all loaded foreign code is lost when the
image is restarted.

a l i en : load- fore ign files &key libraries base-file euv [Function]
files is a s imple-string or list of simple-strings specifying the names of the object files, libraries is a list of

s imple-strings specifying libraries in a format that Id, the Unix linker, expects. The default value for libraries
is (M - l c M) (i.e., the standard C library), base-file is the file to use for the initial symbol table information.

CHAPTER 8. ALIEN OBJECTS 112

The default is the Lisp start up code: 'path: l i sp ' , env should be a list of simple strings in the format of Unix
environment variables (i.e., A=B, where A is an environment variable and B is its value). The default value for
env is the environment information available at the time Lisp was invoked. Unless you are certain that you want
to change this, you should just use the default.

8.7 Alien Function Calls
The foreign function call interface allows a Lisp program to call functions written in other languages. The current
implementation of the foreign function call interface assumes a C calling convention and thus routines written
in any language that adheres to this convention may be called from Lisp.

Lisp sets up various interrupt handling routines and other environment information when it first starts up,
and expects these to be in place at all times. The C functions called by Lisp should either not change the
environment, especially the interrupt entry points, or should make sure that these entry points are restored
when the C function returns to Lisp. If a C function makes changes without restoring things to the way they
were when the C function was entered, there is no telling what will happen.

8.7.1 The alien-funcall Primitive

a l i en:a l i en- funca l l alien-function &rest arguments [Function]
This function is the foreign function call primitive: alien-function is called with the supplied arguments and

its value is returned. The alien-function is an arbitrary run-time expression; to call a constant function, use
extern-al ien (page 110) or def-al ien-routine.

The type of alien-function must be (a l i en (function . . .)) or (a l i en (* (function . . .))) , See section
8.2.3, page 107. The function type is used to determine how to call the function (as through it was declared with
a prototype.) The type need not be known at compile time, but only known-type calls are efficiently compiled.
Limitations:

• Structure type return values are not implemented.

• Passing of structures by value is not implemented.

Here is an example which allocates a (struct foo), calls a foreign function to initialize it, then returns a

Lisp vector of all the (* (struct foo)) objects filled in by the foreign call:

;; Allocate a foo on the stack,
(with-al ien ((f (struct foo)))

;; Call some C function to f i l l in foo f i e l d s .
(a l i en- funcal l (extern-al ien "mangle.foo" (function void (* foo)))

(addr f))
» >

;; Find how many foos to use by gett ing the A f i e l d ,
(l e t * ((num (s l o t f >a))

(resul t (make-array num)))
» »

;; Get a pointer to the array so that we don't have to keep extracting i t :
(with-al ien ((a (* (array (* (struct foo)) 100)) (addr (s l o t f *b))))

»>
;; Loop over the f i r s t N elements and stash them in the resul t vector,
(dotimes (i num)

(se t f (svref resul t i) (deref (deref a) i)))
r e s u l t)))

CHAPTER 8. ALIEN OBJECTS 113

8.7.2 The def-alien-routine Macro

al ien:def -a l ien-rout ine name result-type {(aname atype [style])}* [Macro]
This macro is a convenience for automatically generating Lisp interfaces to simple foreign functions. The

primary feature is the parameter style specification, which translates the C pass-by-reference idiom into additional
return values.

name is usually a string external symbol, but may also be a symbol Lisp name or a list of the Lisp name and
the foreign name. If only one name is specified, the other is automatically derived, (see section 8.4.2, page 110.)

result-type is the Alien type of the return value. Each remaining subform specifies an argument to the
foreign function, aname is the symbol name of the argument to the constructed function (for documentation)
and atype is the Alien type of corresponding foreign argument. The semantics of the actual call are the same as
for a l i en- funcal l (page 112). style should be one of the following:

:in specifies that the argument is passed by value. This is the default. : in arguments have no corresponding
return value from the Lisp function.

:out specifies a pass-by-reference output value. The type of the argument must be a pointer to a fixed sized
object (such as an integer or pointer). :out and : in-out cannot be used with pointers to arrays, records or
functions. An object of the correct size is allocated, and its address is passed to the foreign function. When
the function returns, the contents of this location are returned as one of the values of the Lisp function.

:copy is similar to : in, but the argument is copied to a pre-allocated object and a pointer to this object is
passed to the foreign routine.

:in-out is a combination of :copy and :out. The argument is copied to a pre-allocated object and a pointer
to this object is passed to the foreign routine. On return, the contents of this location is returned as an
additional value.

Any efficiency-critical foreign interface function should be inline expanded by preceding d e f - a l i e n - r o u t i n e
with:

(declaim (in l ine lisp-name))

In addition to avoiding the Lisp call overhead, this allows pointers, word-integers and floats to be passed using
non-descriptor representations, avoiding consing (see section 5.10.2, page 77.)

8.7.3 def-alien-routine Example
Consider the C function cf oo with the following calling convention:

cfoo (a, i)
char *str;
char *a; / * update */
int * i ; / * out */

{
/ * Body of cfoo. */
}

which can be described by the following call to def-al ien-routine:

(def-al ien-routine "cfoo" void
(s tr c -s tr ing)
(a char : in-out)
(i int :out))

The Lisp function cfoo will have two arguments (str and a) and two return values (a and i).

CHAPTER 8. ALIEN OBJECTS 114

8.7.4 Calling Lisp from C
There is currently a mechanism for calling Lisp functions from Cf but it is rather restricted, and is scheduled for
replacement. If you need to call Lisp functions from C, contact us and we will let you know what capabilities are
available in the system you have.

8.8 Step-by-Step Alien Example
This section presents a complete example of an interface to a somewhat complicated C function. This example
should give a fairly good idea of how to get the effect you want for almost any kind of C function. Suppose you
have the following C function which you want to be able to call from Lisp in the file 'test.c':

struct c_struct
{

int x;
char *s;

>;

struct obstruct *c_function (i, s, r, a)
int i;
char *s;
struct c_struct *r;
int a[10];

-C
int j;
struct c.struct *r2;

print*("i = #/.d\nM, i);
printf("s = 5.s\nM, s);
printf(Mr->x = %d\n M, r ->x);
print*(Mr->s = %s\n M, r->s);
for (j = 0; j < 10; j++) printf(•• a[%d] = #/.d.\n", j, a[j]);
r2 = (struct c.struct *) malloc (sizeof(struct c.struct));
r2->x = i + 5;
r2->s = 11A C string";
return(r2);

};

It is possible to call this function from Lisp using the file 'test.lisp' whose contents is:

;;; Package: test-c-call
(in-package "TEST-C-CALL")
(use-package "ALIEV")
(use-package "C-CALL")

;;; Define the record c-struct in Lisp,
(def-alien-type nil

(struct c-struct
(x int)
(s c-string)))

;;; Define the Lisp function interface to the C routine. It returns a
;;; pointer to a record of type c-struct. It accepts four parameters:
;;; i, an int; s, a pointer to a string; r, a pointer to a c-struct
;;; record; and a, a pointer to the array of 10 ints.

;;; The INLINE declaration eliminates some efficiency notes about heap

CHAPTER 8. ALIEN OBJECTS

;;; allocation of Alien values,
(declaim (inline c-function))
(def-alien-routine c-function

(* (struct c-struct))
(i int)
(s c-string)
(r (* (struct c-struct)))
(a (array int 10)))

;;; A function which sets up the parameters to the C function and
;;; actually calls it.
(defun call-cfun ()

(with-alien ((ar (array int 10))
(c-struct (struct c-struct)))

(dotimes (i 10) ; Fill array.
(setf (deref ar i) i))

(setf (slot c-struct *x) 20)
(setf (slot c-struct *s) "A Lisp String")

(with-alien ((res (* (struct c-struct))
(c-function 5 "Another Lisp String" (addr c-struct) ar)))
(format t "Returned from C function."%")
(mult iple-value-progl

(values (slot res 'x)
(slot res *s))

»i
;; Deallocate result after we are done using it.
(free-alien res)))))

To execute the above example, it is necessary to compile the C routine as follows:

cc -c test.c

In order to enable incremental loading with some linkers, you may need to say:

cc -G 0 -c test.c

Once the C code has been compiled, you can start up Lisp and load it in:

•/•lisp
;;; Lisp should start up with its normal prompt.

;;; Compile the Lisp file. This step can be done separately. You don't have
;;; to recompile every time.
* (compile-file "test.lisp")

Load the foreign object file to define the necessary symbols. This must
;;; be done before loading any code that refers to these symbols, next block
;;; of comments are actually the output of LOAD-FOREIGN. Different linkers

will give different warnings, but some warning about redefining the code
;;; size is typical.
* (load-foreign "test.o")

;;; Running library:load-foreign.csh...
;;; Loading object file...
;;; Parsing symbol table...
Warning: "_gp" moved from #x00C082C0 to #x00C08460.

CHAPTER 8. ALIEN OBJECTS 116

Warning: "end" moved from #x00C00340 to #x00C004E0.

;;; o.k. now load the compiled Lisp object file.
* (load "test")

;;; Mow we can call the routine that sets up the parameters and calls the C
;;; function.
* (test-c-call::call-cfun)

;;; The C routine prints the following information to standard output,
i = 5
s = Another Lisp string
r->x = 20
r->s = A Lisp string
a[0] = 0.
aCl] = 1.
a[2] = 2.
a[3] = 3.
a[4] = 4.
a[5] = 5.
a[6] = 6.
a[7] = 7.
a[8] = 8.
a[9] = 9.
;;; Lisp prints out the following information.
Returned from C function.
;;; Return values from the call to test-c-call::call-cfun.
10
" A C string"
*

If any of the foreign functions do output, they should not be called from within Hemlock. Depending on the
situation, various strange behavior occurs. Under X, the output-goes to the window in which Lisp was started;
on a terminal, the output will overwrite the Hemlock screen image; in a Hemlock slave, standard output is
Vdev/null' by default, so any output is discarded.

Chapter 9

Interprocess Communication under
LISP

W r i t t e n by Wil l iam Lott and Bill Chiles

CMU Common Lisp offers a facility for interprocess communication (IPC) on top of using Unix system calls
and the complications of that level of IPC. There is a simple remote-procedure-call (RPC) package build on top
of TCP/IP sockets.

9-1 The REMOTE Package
The remote package provides simple RPC facility including interfaces for creating servers, connecting to already
existing servers, and calling functions in other Lisp processes. The routines for establishing a connection be­
tween two processes, create-request-server and connect-to-remote-server, return wire structures. A wire
maintains the current state of a connection, and all the RPC forms require a wire to indicate where to send
requests.

9.1.1 Connecting Servers and Clients
Before a client can connect to a server, it must know the network address on which the server accepts connections.
Network addresses consist of a host address or name, and a port number. Host addresses are either a string of
the form VANCOUVER.SLISP.CS.CMU.EDU or a 32 bit unsigned integer. Port numbers are 16 bit unsigned integers.
Note: port in this context has nothing to do with Mach ports and message passing.

When a process wants to receive connection requests (that is, become a server), it first picks an integer to
use as the port. Only one server (Lisp or otherwise) can use a given port number on a given machine at any
particular time. This can be an iterative process- to find a free port: picking an integer and calling c r e a t e -
request-server. This function signals an error if the chosen port is unusable. You will probably want to write
a loop using handler-case, catching conditions of type error, since this function does not signal more specific
conditions.

wire:create-request-server port ^optional on-connect [Function]
create-request-server sets up the current Lisp to accept connections on the given port. If port is un­

available for any reason, this signals an error. When a client connects to this port, the acceptance mechanism
makes a wire structure and invokes the on-connect function. Invoking this function has a couple purposes, and
on-connect may be n i l in which case the system foregoes invoking any function at connect time.

The on-connect function is both a hook that allows you access to the wire created by the acceptance mecha­
nism, and it confirms the connection. This function takes two arguments, the wire and the host address of the
connecting process. See the section on host addresses below. When on-connect is n i l , the request server allows
all connections. When it is non-nil, the function returns two values, whether to accept the connection and a
function the system should call when the connection terminates. Either value may be n i l , but when the first
value is n i l , the acceptance mechanism destroys the wire.

117

http://SLISP.CS.CMU.EDU

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP 118

create-request-server returns an object that destroy-request-server uses to terminate a connection.

wire: destroy-request-server server [Function]
destroy-request-server takes the result of create-request-server and terminates that server. Any

existing connections remain intact, but all additional connection attempts will fail.

connect-to-remote-server attempts to connect to a remote server at the given port on host and returns a
wire structure if it is successful. If on-death is non-nil, it is a function the system invokes when this connection
terminates.

9.1.2 Remote Evaluations
After the server and client have connected, they each have a wire allowing function evaluation in the other
process. This RPC mechanism has three flavors: for side-effect only, for a single value, and for multiple values.

Only a limited number of data types can be sent across wires as arguments for remote function calls and
as return values: integers inclusively less than 32 bits in length, symbols, lists, and remote-objects (see section
9.1.3, page 119). The system sends symbols as two strings, the package name and the symbol name, and if the
package doesn't exist remotely, the remote process signals an error. The system ignores other slots of symbols.
Lists may be any tree of the above valid data types. To send other data types you must represent them in
terms of these supported types. For example, you could use pr in l - to - s t r ing locally, send the string, and use
read-from-string remotely.

wire'.remote wire {call-specs}* [Macro]
The remote macro arranges for the process at the other end of wire to invoke each of the functions in

the call-specs. To make sure the system sends the remote evaluation requests over the wire, you must call
wire-force-output.

Each of call-specs looks like a function call textually, but it has some odd constraints and semantics. The
function position of the form must be the symbolic name of a function, remote evaluates each of the argument
subforms for each of the call-specs locally in the current context, sending these values as the arguments for the
functions.

Consider the following example:

(defun write-remote-string (s tr)
(declare (s imple-string s t r))
(wire:remote wire

(wri te-s tr ing s t r)))

The value of s t r in the local process is passed over the wire with a request to invoke wri te-s tr ing on the value.
The system does not expect to remotely evaluate s t r for a value in the remote process.

wire: wire-force-output wire [Function]
wire-force-output flushes all internal bufTers associated with wire, sending the remote requests. This is

necessary after a call to remote.

wire:remote-value wire call-spec [Macro]
The remote-value macro is similar to the remote macro, remote-value only takes one call-spec, and it

returns the value returned by the function call in the remote process. The value must be a valid type the system
can send over a wire, and there is no need to call wire-force-output in conjunction with this interface.

If client unwinds past the call to remote-value, the server continues running, but the system ignores the
value the server sends back.

If the server unwinds past the remotely requested call, instead of returning normally, remote-value returns
two values, n i l and t. Otherwise this returns the result of the remote evaluation and n i l .

wire:connect-to-remote-server host port ^optional on-death [Function]

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP 119

wire:remote-value-bind wire ({variable}0) remote-form {local-forms}* [Macro]
remote-value-bind is similar to multiple-value-bind except the values bound come from remote-form's

evaluation in the remote process. The local-forms execute in an implicit progn.
If the client unwinds past the call to remote-value-bind, the server continues running, but the system

ignores the values the server sends back.
If the server unwinds past the remotely requested call, instead of returning normally, the local-forms never

execute, and remote-value-bind returns n i l .

9.1.3 Remote Objects
The wire mechanism only directly supports a limited number of data types for transmission as arguments
for remote function calls and as return values: integers inclusively less than 32 bits in length, symbols, lists.
Sometimes it is useful to allow remote processes to refer to local data structures without allowing the remote
process to operate on the data. We have remote-objects to support this without the need to represent the data
structure in terms of the above data types, to send the representation to the remote process, to decode the
representation, to later encode it again, and to send it back along the wire.

You can convert any Lisp object into a remote-object. When you send a remote-object along a wire, the
system simply sends a unique token for it. In the remote process, the system looks up the token and returns a
remote-object for the token. When the remote process needs to refer to the original Lisp object as an argument
to a remote call back or as a return value, it uses the remote-object it has which the system converts to the
unique token, sending that along the wire to the originating process. Upon receipt in the first process, the system
converts the token back to the same (eq) remote-object.

wire: make-remote-object object [Function]
make-remote-object returns a remote-object that has object as its value. The remote-object can be passed

across wires just like the directly supported wire data types.

wire:remote-object-p object [Function]
The function remote-object-p returns t if object is a remote object and n i l otherwise.

wire:remote-object-local-p remote [Function]
The function remote-object-local-p returns t if remote refers to an object in the local process. This is

can only occur if the local process created remote with make-remote-object.

wire:remote-object-eq objl obj2 [Function]
The function remote-object-eq returns t if objl and obj2 refer to the same (eq) lisp object, regardless of

which process created the remote-objects.

wire: remot e-obj ect-value remote [Function]
This function returns the original object used to create the given remote object. It is an error if some other

process originally created the remote-object.

wire: forget-remote-translation object [Function]
This function removes the information and storage necessary to translate remote-objects back into object,

so the next gc can reclaim the memory. You should use this when you no longer expect to receive references to
object. If some remote process does send a reference to object, remote-object -value signals an error.

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP 120

9.1.4 Host Addresses
The operating system maintains a database of all the valid host addresses. You can use this database to convert
between host names and addresses and vice-versa.

ext: lookup-host-entry host [Function]
lookup-host-entry searches the database for the given host and returns a host-entry structure for it. If it

fails to find host in the database, it returns n i l . Host is either the address (as an integer) or the name (as a
string) of the desired host.

ext: host-entry-name host-entry [Function]
ext: host -entry-a l iases host-entry [Function]
ext:host -entry-addr- l i s t host-entry [Function]
ext :host-entry-addr host-entry [Function]

host-entry-name, host -entry-a l iases , and host-entry-addr- l i s t each return the indicated slot from
the host-entry structure, host-entry-addr returns the primary (first) address from the list returned by hos t -
en t ry -addr- l i s t .

9.2 The WIRE Package
The wire package provides for sending data along wires. The remote package sits on top of this package. All
data sent with a given output routine must be read in the remote process with the complementary fetching
routine. For example, if you send so a string with wire-output-string, the remote process must know to use
wire-get-str ing. To avoid rigid data transfers and complicated code, the interface supports sending tagged
data. With tagged data, the system sends a tag announcing the type of the next data, and the remote system
takes care of fetching the appropriate type.

When using interfaces at the wire level instead of the RPC level, the remote process must read everything
sent by these routines. If the remote process leaves any input on the wire, it will later mistake the data for an
RPC request causing unknown lossage.

9.2.1 Untagged Data
When using these routines both ends of the wire know exactly what types are coming and going and in what
order. This data is restricted to the following types:

• 8 bit unsigned bytes.

• 32 bit unsigned bytes.

• 32 bit integers.

• simple-strings less than 65535 in length.

wire: wire-output-byte wire byte [Function
wire: wire-get-byte wire [Function
wire:wire-output-number wire number [Function
wire:wire-get-number wire ^optional signed [Function
wire:wire-output-string wire string [Function
wire: wire-get -s tr ing wire [Function

These functions either output or input an object of the specified data type. When you use any of these output
routines to send data across the wire, you must use the corresponding input routine interpret the data.

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP 121

9.2.2 Tagged Data
When using these routines, the system automatically transmits and interprets the tags for you, so both ends can
figure out what kind of data transfers occur. Sending tagged data allows a greater variety of data types: integers
inclusively less than 32 bits in length, symbols, lists, and remote-objects (see section 9.1.3, page 119). The system
sends symbols as two strings, the package name and the symbol name, and if the package doesn't exist remotely,
the remote process signals an error. The system ignores other slots of symbols. Lists may be any tree of the
above valid data types. To send other data types you must represent them in terms of these supported types.
For example, you could use pr in l - to - s t r ing locally, send the string, and use read-from-str ing remotely.

wire:wire-output-object wire object ^optional cache-it [Function]
wire: wire-get-object wire [Function]

The function wire-output-object sends object over wire preceded by a tag indicating its type.
If cache-it is non-nil, this function only sends object the first time it gets object. Each end of the wire

associates a token with object, similar to remote-objects, allowing you to send the object more efficiently on
successive transmissions. Cache-it defaults to t for symbols and n i l for other types. Since the RPC level requires
function names, a high-level protocol based on a set of function calls saves time in sending the functions' names
repeatedly.

The function wire -ge t -objec t reads the results of wire-output-object and returns that object.

9.2.3 Making Your Own Wires
You can create wires manually in addition to the remote package's interface creating them for you. To create a
wire, you need a Unix file descriptor. If you are unfamiliar with Unix file descriptors, see section 2 of the Unix
manual pages.

wire: make-wire descriptor [Function]
The function make-wire creates a new wire when supplied with the file descriptor to use for the underlying

I/O operations.

wire:wire-p object [Function]
This function returns t if object is indeed a wire, n i l otherwise.

wire: wire-Id wire [Function]
This function returns the file descriptor used by the wire.

9.3 Out-Of-Band Data
The TCP/IP protocol allows users to send data asynchronously, otherwise known as out-of-band data. When
using this feature, the operating system interrupts the receiving process if this process has chosen to be notified
about out-of-band data. The receiver can grab this input without affecting any information currently queued
on the socket. Therefore, you can use this without interfering with any current activity due to other wire and
remote interfaces.

Unfortunately, most implementations of TCP/IP are broken, so use of out-of-band data is limited for safety
reasons. You can only reliably send one character at a time.

This routines in this section provide a mechanism for establishing handlers for out-of-band characters and
for sending them out-of-band. These all take a Unix file descriptor instead of a wire, but you can fetch a wire's
file descriptor with wire-fd.

wire: add-oob-handler fd char handler [Function]
The function add-oob-handler arranges for handler to be called whenever char shows up as out-of-band

data on the file descriptor fd.

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP

wire:remove-oob-handler fd char
This function removes the handler for the character char on the file descriptor fd.

wire:remove-all-oob-handlers fd
This function removes all handlers for the file descriptor fd.

wire:send-character-out-of-band fd char
This function Sends the character char down the file descriptor fd out-of-band.

122

[Function]

[Function]

[Function]

Chapter 10

Debugger Programmer's Interface

The debugger programmers interface is exported from from the "DEBUG-INTERNALS" or "DI" package. This is a
CMU extension that allows debugging tools to be written without detailed knowledge of the compiler or run-time
system.

Some of the interface routines take a code-location as an argument. As described in the section on code-
locations, some code-locations are unknown. When a function calls for a basic-code-location, it takes either
type, but when it specifically names the argument code-location, the routine will signal an error if you give it an
unknown code-location.

10.1 DI Exceptional Conditions
Some of these operations fail depending on the availability debugging information. In the most severe case, when
someone saved a Lisp image stripping all debugging data structures, no operations are valid. In this case, even
backtracing and finding frames is impossible. Some interfaces can simply return values indicating the lack of
information, or their return values are naturally meaningful in light missing data. Other routines, as documented
below, will signal se r ious-condi t ions when they discover awkward situations. This interface does not provide
for programs to detect these situations other than by calling a routine that detects them and signals a condition.
These are serious-conditions because the program using the interface must handle them before it can correctly
continue execution. These debugging conditions are not errors since it is no fault of the programmers that the
conditions occur.

10.1.1 Debug-condit ions
The debug internals interface signals conditions when it can't adhere to its contract. These are serious-conditions
because the program using the interface must handle them before it can correctly continue execution. These
debugging conditions are not errors since it is no fault of the programmers that the conditions occur. The
interface does not provide for programs to detect these situations other than calling a routine that detects them
and signals a condition.

debug-condit ion Condition
This condition inherits from serious-condition, and all debug-conditions inherit from this. These
must be handled, but they are not programmer errors.

no-debug-inio Condition
This condition indicates there is absolutely no debugging information available.

no-debug-iunct i on - r e tu rns Condition
This condition indicates the system cannot return values from a frame since its debug-function
lacks debug information details about returning values.

no-debug-blocks Condition
This condition indicates that a function was not compiled with debug-block information, but this
information is necessary necessary for some requested operation.

m

CHAPTER 10. DEBUGGER PROGRAMMER'S INTERFACE 124

no-debug-variables Condition
Similar to no-debug-blocks, except that variable information was requested.

lambda-list-unavailable Condition
Similar to no-debug-blocks, except that lambda list information was requested.

invalid-value Condition
This condition indicates a debug-variable has : invalid or :unknown value in a particular frame.

ambiguous-variable-name Condition
This condition indicates a user supplied debug-variable name identifies more than one valid variable
in a particular frame.

10.1.2 Debug-errors
These are programmer errors resulting from misuse of the debugging tools' programmers' interface. You could
have avoided an occurrence of one of these by using some routine to check the use of the routine generating the
error.

debug-error Condition
This condition inherits from error, and all user programming errors inherit from this condition.

unhandled-condition Condition
This error results from a signalled debug-condition occurring without anyone handling it.

unknown-code-location Condition
This error indicates the invalid use of an unknown-code-location.

unknown-debug-variable Condition
This error indicates an attempt to use a debug-variable in conjunction with an inappropriate debug-
function; for example, checking the variable's validity using a code-location in the wrong debug-
function will signal this error.

frame-function-mismatch Condition
This error indicates you called a function returned by preprocess-f o r -eva l on a frame other than
the one for which the function had been prepared.

10.2 Debug-variables
Debug-variables represent the constant information about where the system stores argument and local variable
values. The system uniquely identifies with an integer every instance of a variable with a particular name and
package. To access a value, you must supply the frame along with the debug-variable since these are particular
to a function, not every instance of a variable on the stack.

debug-variable-name debug-variable [Function]
This function returns the name of the debug-variable. The name is the name of the symbol used as an

identifier when writing the code.

debug-variable-package debug-variable [Function]
This function returns the package name of the debug-variable. This is the package name of the symbol used

as an identifier when writing the code.

CHAPTER 10. DEBUGGER PROGRAMMER'S INTERFACE 125

debug-variable-symbol debug-variable [Function]
This function returns the symbol from interning debug-variable-name in the package named by debug-

variable-package.

debug-variable-id debug-variable [Function]
This function returns the integer that makes debug-variable's name and package name unique with respect

to other debug-variable's in the same function.

debug-variable-validity debug-variable basic-code-location [Function]
This function returns three values reflecting the validity of debug-variable's value at basic-code-location:

: val id The value is known to be available.

: inval id The value is known to be unavailable.

:unknown The value's availability is unknown.

debug-variable-value debug-variable franir [Function]
This function returns the value stored for debug-variable in frame. The value may be invalid. This is

SETF 'able.

debug-variable-valid-value debug-variable frame [Function]
This function returns the value stored for debug-variable in frame. If the value is not :va l id , then this

signals an invalid-value error.

10.3 Frames
Frames describe a particular call on the stack for a particular thread. This is the environment for name resolution,
getting arguments and locals, and returning values. The stack conceptually grows up, so the top of the stack is
the most recently called function.

top-frame, frame-down, frame-up, and frame-debug-function can only fail when there is absolutely no
debug information available. This can only happen when someone saved a Lisp image specifying that the system
dump all debugging data.

top-frame [Function]
This function never returns the frame for itself, always the frame before calling top-frame.

frame-down frame [Function]
This returns the frame immediately below frame on the stack. When frame is the bottom of the stack, this

returns n i l .

frame-up frame [Function]
This returns the frame immediately above frame on the stack. When frame is the top of the stack, this

returns n i l .

frame-debug-f unction frame [Function]
This function returns the debug-function for the function whose call frame represents.

frame-code-location frame [Function]
This function returns the code-location where frame's debug-function will continue running when program

execution returns to frame. If someone interrupted this frame, the result could be an unknown code-location.

CHAPTER 10. DEBUGGER PROGRAMMER'S INTERFACE 126

frame-catches frame [Function]
This function returns an a-list for all active catches in frame mapping catch tags to the code-locations at

which the catch re-enters.

eval- in-frame frame form [Function]
This evaluates form in frame's environment. This can signal several different debug-conditions since its

success relies on a variety of inexact debug information: inva l id -va lue , ambiguous-variable-name, frame-
function-mismatch. See also preprocess-f or -eval (page 127).

r e t u m - f rom - frame frame values [Function]
This returns the elements in the list values as multiple values from frame as if the function frame represents

returned these values. This signals a no-debug-function-returns condition when frame's debug-function lacks
information on returning values.

Not Yet Implemented

10 A Debug-functions
Debug-functions represent the static information about a function determined at compile time — argument and
variable storage, their lifetime information, etc. The debug-function also contains all the debug-blocks repre­
senting basic-blocks of code, and these contains information about specific code-locations in a debug-function.

do-debug-function-blocks (block-var debug-function [result-form]) {form}* [Macro]
This executes the forms in a context with block-var bound to each debug-block in debug-function successively.

Result-form is an optional form to execute for a return value, and do-debug-f unct ion-blocks returns nilif
there is no result-form. This signals a no-debug-blocks condition when the debug-function lacks debug-block
information.

debug-funct ion- lambda-l is t debug-function [Function]
This function returns a list representing the lambda-list for debug-function. The list has the following

structure:

(required-varl required-var2

(: op t iona l var3 suppliedp-var4)
(: op t i ona l var5)

(:rest var6) (:rest var7)

(:keyword keyword-symbol var8 suppliedp-var9)
(:keyword keyword-symbol varlO)

)

Each varn is a debug-variable; however, the symbol : deleted appears instead whenever the argument remains
unreferenced throughout debug-function.

If there is no lambda-list information, this signals a l ambda- l i s t -unava i l ab le condition.

do-debug-f unc t ion -va r i ab le s (var debug-function [result]) {form}* [Macro]
This macro executes each form in a context with var bound to each debug-variable in debug-function. This

returns the value of executing result (defaults to n i l) . This may iterate over only some of debug-function's
variables or none depending on debug policy; for example, possibly the compilation only preserved argument
information.

CHAPTER 10. DEBUGGER PROGRAMMER'S INTERFACE 127

debug-var iab le - in fo -ava i l ab le debug-function [Function]
This function returns whether there is any variable information for debug-function. This is useful for distin­

guishing whether there were no locals in a function or whether there was no variable information. For example,
if do-debug-funct ion-var iables executes its forms zero times, then you can use this function to determine the
reason.

debug-function-symbol-variables debug-function symbol * [Function]
This function returns a list of debug-variables in debug-function having the same name and package as

symbol. If symbol is uninterned, then this returns a list of debug-variables without package names and with
the same name as symbol. The result of this function is limited to the availability of variable information in
debug-function; for example, possibly debug-function only knows about its arguments.

ambiguous-debug-variables debug-function name-prefix-string [Function]
This function returns a list of debug-variables in debug-function whose names contain name-prefix-string as

an initial substring. The result of this function is limited to the availability of variable information in debug-
function; for example, possibly debug-function only knows about its arguments.

preprocess-f o r - eva l form basic-code-location [Function]
This function returns a function of one argument that evaluates form in the lexical context of basic-code-

location. This allows efficient repeated evaluation of form at a certain place in a function which could be useful
for conditional breaking. This signals a no-debug-variables condition when the code-location's debug-function
has no debug-variable information available. The returned function takes a frame as an argument. See also
eval- in-frame (page 126).

funct ion-debug-function function [Function]
This function returns a debug-function that represents debug information for function.

debug-funct ion-kind debug-function [Function]
This function returns the kind of function debug-function represents. The value is one of the following:

: op t iona l This kind of function is an entry point to an ordinary function. It handles optional defaulting,
parsing keywords, etc.

: ex te rna l This kind of function is an entry point to an ordinary function. It checks argument values and count
and calls the defined function.

: t o p - l e v e l This kind of function executes one or more random top-level forms from a file.

: cleanup This kind of function represents the cleanup forms in an unwind-protect .

n i l This kind of function is not one of the above; that is, it is not specially marked in any way.

debug-funct ion-funct ion debug-function [Function]
This function returns the Common Lisp function associated with the debug-function. This returns nil if the

function is unavailable or is non-existent as a user callable function object.

debug-funct ion-name debug-function [Function]
This function returns the name of the function represented by debug-function. This may be a string or a

cons; do not assume it is a symbol.

CHAPTER 10. DEBUGGER PROGRAMMER 9S INTERFACE 128

10.5 Debug-blocks
Debug-blocks contain information pertinent to a specific range of code in a debug-function.

do-debug-block-locations (code-var debug-block [nestift]) {form}* [Macro]
This macro executes each form in a context with code-var bound to each code-location in debug-block. This

returns the value of executing result (defaults to n i l) . •

debug-block-successors debug-block [Function]
This function returns the list of possible code-locations where execution may continue when the basic-block

represented by debug-block completes its execution.

debug-block-elsewhere-p debug-block [Function]
This function returns whether debug-block represents elsewhere code. This is code the compiler has moved

out of a function's code sequence for optimization reasons. Code-locations in these blocks are unsuitable for
stepping tools, and the first code-location has nothing to do with a normal starting location for the block.

10.6 Breakpoints
A breakpoint represents a function the system calls with the current frame when execution passes a certain
code-location. A break point is active or inactive independent of its existence. They also have an extra slot for
users to tag the breakpoint with information.

make-breakpoint hook-function what *key :kind :info :function-end-cookie [Function]
This function creates and returns a breakpoint. When program execution encounters the breakpoint, the

system calls book-function. Hook-function takes the current frame for the function in which the program is
running and the breakpoint object.

what and kind determine where in a function the system invokes hook-function, what is either a code-location
or a debug-function. kind is one of : code-location, : function-start , or :function-end. Since the starts and
ends of functions may not have code-locations representing them, designate these places by supplying what as a
debug-function and kind indicating the : function-start or :function-end. When what is a debug-function
and kind is : function-end, then hook-function must take two additional arguments, a list of values returned
by the function and a function-end-cookie.

info is information supplied by and used by the user.
function-end-cookie is a function. To implement function-end breakpoints, the system uses starter breakpoints

to establish the function-end breakpoint for each invocation of the function. Upon each entry, the system creates
a unique cookie to identify the invocation, and when the user supplies a function for this argument, the system
invokes it on the cookie. The system later invokes the function-end breakpoint hook on the same cookie. The
user may save the cookie when passed to the function-end-cookie function for later comparison in the hook
function.

This signals an error if what is an unknown code-location.

activate-breakpoint breakpoint [Function]
This function causes the system to invoke the breakpoint's hook-function until the next call to d e a c t i v a t e -

breakpoint or de lete -breakpoin t . The system invokes breakpoint hook functions in the opposite order that
you activate them.

deactivate-breakpoint breakpoint
This function stops the system from invoking the breakpoint's hook-function.

[Function]

CHAPTER 10. DEBUGGER PROGRAMMER'S INTERFACE 129

breakpoint-active-p breakpoint [Function]
This returns whether breakpoint is currently active.

breaJcpoint-hook-f unction breakpoint [Function]
This function returns the breakpoint's function the system calls when execution encounters breakpoint, and

it is active. This is SETF 'able.

breakpoint-inio breakpoint [Function]
This function returns breakpoint's information supplied by the user. This is SETF 'able.

breakpoint-kind breakpoint [Function]
This function returns the breakpoint's kind specification.

breakpoint-what breakpoint [Function]
This function returns the breakpoint's what specification.

delete-breakpoint breakpoint [Function]
This function frees system storage and removes computational overhead associated with breakpoint. After

calling this, breakpoint is useless and can never become active again.

10.7 Code-locations
Code-locations represent places in functions where the system has correct information about the function's
environment and where interesting operations can occur — asking for a local variable's value, setting breakpoints,
evaluating forms within the function's environment, etc.

Sometimes the interface returns unknown code-locations. These represent places in functions, but there is
no debug information associated with them. Some operations accept these since they may succeed even with
missing debug data. These operations' argument is named basic-code-location indicating they take known and
unknown code-locations. If an operation names its argument code-location, and you supply an unknown one,
it will signal an error. For example, frame-code-location may return an unknown code-location if someone
interrupted Lisp in the given frame. The system knows where execution will continue, but this place in the code
may not be a place for which the compiler dumped debug information.

code-location-debug-function basic-code-location [Function]
This function returns the debug-function representing information about the function corresponding to the

code-location.

code-location-debug-block basic-code-location [Function]
This function returns the debug-block containing code-location if it is available. Some debug policies inhibit

debug-block information, and if none is available, then this signals a no-debug-blocks condition.

code-location-top-level-form-offset code-location [Function]
This function returns the number of top-level forms before the one containing code-location as seen by the

compiler in some compilation unit. A compilation unit is not necessarily a single file, see the section on debug-
sources.

code-location-form-number code-location [Function]
This function returns the number of the form corresponding to code-location. The form number is derived

by walking the subforms of a top-level form in depth-first order. While walking the top-level form, count one in
depth-first order for each subform that is a cons. See form-number-translations (page 131).

CHAPTER 10. DEBUGGER PROGRAMMER'S INTERFACE 130

code-location-debug-source code-location [Function]
This function returns code-location's debug-source.

code-location-unknown-p basic-code-location [Function]
This function returns whether basic-code-location is unknown. It returns n i l when the code-location is known.

code-location* code-location 1 code-location2 [Function]
This function returns whether the two code-locations are the same.

10.8 Debug-sources
Debug-sources represent how to get back the source for some code. The source is either a file (compile-f i l e or
load), a lambda-expression (compile, defun, defmacro), or a stream (something particular to CMU Common
Lisp, compile-from-strearn).

When compiling a source, the compiler counts each top-level form it processes, but when the compiler handles
multiple files as one block compilation, the top-level form count continues past file boundaries. Therefore code-
locat ion-top- level - form-offset returns an offset that does not always start at zero for the code-location's
debug-source. The offset into a particular source is code-location-top-level-form-offset minus debug-
source-root-number.

Inside a top-level form, a code-location's form number indicates the subform corresponding to the code-
location.

debug-source-from debug-source [Function]
This function returns an indication of the type of source. The following are the possible values:

: f i l e from a file (obtained by compile-f i l e if compiled).

: l i s p from Lisp (obtained by compile if compiled).

: stream from a non-file stream (CMU Common Lisp supports compile-from-stream).

debug-source-name debug-source [Function]
This function returns the actual source in some sense represented by debug-source, which is related to debug-

source-from:

:f i l e the pathname of the file.

: l i s p a lambda-expression.

: stream some descriptive string that's otherwise useless.

debug-source-created debug-source [Function]
This function returns the universal time someone created the source. This may be iiilif it is unavailable.

debug-source-compiled debug-source [Function]
This function returns the time someone compiled the source. This is ni l i f the source is uncompiled.

debug-source-root-number debug-source [Function]
This returns the number of top-level forms processed by the compiler before compiling this source. If this

source is uncompiled, this is zero. This may be zero even if the source is compiled since the first form in the first
file compiled in one compilation, for example, must have a root number of zero — the compiler saw no other
top-level forms before it.

CHAPTER 10. DEBUGGER PROGRAMMER'S INTERFACE 131

10.9 Source Translation Utilities
These two functions provide a mechanism for converting the rather obscure (but highly compact) representation
of source locations into an actual source form:

debug-source-start-posit ions debug-source [Function]
This function returns the file position of each top-level form as an array if debug-source is from a . f i l e . If

debug-source-fromis : l i s p or : stream, this returns n i l .

form-number-translations form tlf-number [Function]
This function returns a table mapping form numbers (see code-location-form-number) to source-paths. A

source-path indicates a descent into the top-level-form form, going directly to the subform corresponding to a
form number. Tlf-number is the top-level-form number of form.

source-path-context form path context [Function]
This function returns the subform of form indicated by the source-path. Form is a top-level form, and path

is a source-path into it. Context is the number of enclosing forms to return instead of directly returning the
source-path form. When context is non-zero, the form returned contains a marker, #: ****HERE****, immediately
before the form indicated by path.

Function Index

A
activate-breakpoint 128
add-fd-handler 98
add-oob-handler 121
add-xwindow-object 97
addr 108
alien-funcall 112, 113
alien-sap 109
am biguous-debug-variables 127

B
break . 20
breakpoint-active-p 128
breakpoint-hook-function 129
breakpoint-info 129
breakpoint-kind 129
breakpoint-what 129

c
cast 108
ceiling 7
clear-search-list 17
cmd-switch-name 90
cmd-switch-value 90
cmd-switch-words 90
co de-location-debug-block 129
code-location-debug-function 129
code-location-debug-source 130
code-location-form-number 129
code-location-top-level-form-offset 129
code-location-unknown-p 130
code-location= 130
compile 33
compile-file 26, 33, 71
compile-from-stream 34
connect-to-remote-server 118
create-request-server 117

D
deactivate-breakpoint 128
debug 20
debug-block-elsewhere-p 128
debug-block-successors 128
debug-function-function 127
debug-function-kind 127
debug-function-lam bda-list 126
debug-function-name 127
debug-function-symbol-variables 127
debug-source-compiled 130
debug-source-created 130

debug-source-from 130
debug-source-name 130
debug-source-root-number 130
debug-source-start-positions 131
debug-variable-id 125
debug-variable-info-available 127
debug-variable-name 124
debug-variable-package 124
debug-variable-symbol 124
debug-variable-valid-value 125
debug-variable-validity 125
debug-variable-value 125
def-alien-routine 110, 113
def-alien-type 106, 107
def-alien-variable 110
def-source-context 41
default-interrupt 95
defstruct 55, 75
deftype 55
defun 69
delete-breakpoint 129
deref 108
describe 10, 28
destroy-request-server 118
disable-clx-e vent-handling 99
do-debug-block-locations 128
do-debug-function-blocks 126
do-debug-function-variables 126

E
ed 3
enable-clx-event-handling 99
enable-interrupt 95
encapsulate 32
encapsulated-p 32
enumerate-search-list 17
error 20
eval-in-frame 126, 127
extern-alien 108, 110, 112

F
fd-stream-fd 93
fd-stream-p 93
fdefinition 32
net 67
float-digits 6
float-infinity-p 6
float-nan-p 6
float- normalized-p 6
float-precision 6
float-sign 6

132

FUNCTION INDEX

float-trapping-nan-p 6
floor 7

flush-display-events 99
forget-remote-translation 119
form-number-translations 129, 131
format-decoded-time 18
format-universal-time 18
frame-catches 126
frame-code-location 125
frame-debug-function 125
frame-down 125
frame-up 125
free-alien 92, 109
function 52
function-debug-function 127

G
gc 9
gc-off 9
gc-on 9
get-bytes-consed 88
get-floating-point-modes 7
get-internal-run-time 88
get-unix-error-msg 93, 94
gr-bind 94
gr-call 94
gr-call* 94
gr-error 94

H
host-entry-addr 120
host-entry- addr-list 120
host-entry- aliases 120
host-entry-name 120

I
if 57, 61
ignore-in terrupt 95
inspect 11
int-sap 92
invalidate-descriptor 98
iterate 69

L
labels 67, 69
let 55
load 12
load-foreign . 1 1 1
lookup-host-entry 120

M
make-alien 92, 106, 109
make-breakpoint 128
make-fd-stream 93
make-object-set 97
make-remote-object 119
make-wire 121
multiple-value-bind . 56

133

o
object-set-event-handler 100
object-set-operation 97
open-clx-display 99

p
parse-time 17
preprocess-for-eval 126, 127
process- alive-p 15
process-close 15
process-core-dumped 15
process-error 15
process-exit-code 15
process-input 15
process-kill 15
process-output 15
process-p 14
process-pid 14
pro cess- plist 15
process-pty 15
process-status 14
process-status-hook 15
process-wait 15
profile 87

R
remote 118
remote-object-eq 119
remote-object-local-p 119
reinote-object-p 119
remote-object-value 119
remote-value 118
remote-value-bind 119
remove-all-oob-handlers 122
remove-fd-handler 98
remove-oob-handler 122
report-time 87
required-argument 42, 52
reset-time 87
ret urn-from-frame 126
round 7
run-program 13

S
sap+ , 92
sap-alien . 1 0 8
sap-int 92
sap-ref-16 92
sap-ref-32 92
sap-ref-8 92
save-lisp 16, 111
search-list 16
search- list-defined-p 17
send-character-out-of-band 122
serve-all-events 98
serve-event 98
set-floating-point-modes 7
signed-sap-ref-16 92
signed-sap-ref-32 92
signed-sap-ref-8 92

FUNCTION INDEX

slot 108
source-path-context 131

T
the 53, 55
time 88
top-frame 125
trace 30, 67
truncate 7

u
unencapsulate 32
unprofile 87
untrace 31

v
var 24

w
wait-until-fd-usable 98
wire-fd 121
wire-force-out put 118
wire-get-byte 120
wire-get-number 120
wire-get-object 121
wire-get-string 120
wire-output-byte 120
wire-output-number 120
wire-output-object 121
wire-output-string 120
wire-p 121
with-alien 106, 107, 109
with-clx-event-handling 99
with-compilation-unit 35, 36, 47
with-enabled-interrupts 95
with-fd-handler 98
with-interrupts 95
without-hemlock 95
without-interrupts 95

Variable Index

A
after- gc-hooks 10

B
before-gc-hooks 10
bio ck-compile-default 71
bytes-consed-between-gcs 10

c
command-line-strings 90
command-line-switches 90
command-line-utility-name 90
command-line-words 90
compile-print 34
compile-progress 34
compile-verbose 34

D
debug-print-length 22, 31, 32
debug-print-level 31, 32
derive-function-types 57
describe-indentation 11
describe-level 11
describe-print-length 11
describe-print-level 11
double-float-negative-infinity 5
double-float-positive-infinity 5

E
efficiency-note-cost-threshold 41, 85, 86
efficiency-note-limit 86
enclosing-source-cutoff 41
error-print-length 41
error-print-level 41

G
gc-inhibit-hook 10
gc-notify-after 10
gc-notify-before 10
gc-run-time 88
gc-verbose 10

i
ignore-extra-close-parentheses 13
internal-time-units-per-second 88

L
load-if-source-newer 13
load-object-types 13
load-source-types 13
long-float-negative-infinity 6
long-float-positive-infinity 5

M
max-trace-indentation 31

R
read-default-float-format 5

s
short-float-negative-infinity 5
short-float-positive-infinity 5
single-float-negative-infinity 5
single-float-positive-infinity 5
stderr 91
stdin 91
stdout 91

T
task-data 91
task-notify 91
task-self 91
timed-functions 87
trace-output 30
traced-function-list 31
tty 91

u
undefined-warning-limit 35, 41

135

Type Index

* 106

A
ambiguous-vaxiable-name 124
and 56
array 106

B
base-character 8
bignum 5
boolean 107

c
c-string 108

D
debug-condition 123
debug-error 124
divide-by-zero
double-float 5, 107

E
enum 107
error 33

F
fixnum 5, 11, 51
floating-point-overflow 6
floating-point-underflow 6
frame-function-mismatch 124
ftype 56
function II. 107

H
hash-table 11

i
integer 107
in valid- value 124

L
lambda- list-unavailable 124
list 51

M
member 51, 55

N
no-debug-blocks 123
no-debug-function-returns 123
no-debug-info 123
no-debug-variables 124
null 51

o
or 52, 55

s
serious-condition 20
signed 107
single-float 5, 107
string-char 8
struct 107
style-warning 33
symbol 11
system-area-pointer 107

u
unhandled-condition 124
union 107
unknown-code-location 124
unknown-debug-variable 124
unsigned 107

v
void 108

w
warning 33

136

Concept Index

A
actual source 39
advising 32
aliens 92
argument syntax

efficiency $2
arithmetic

generic ^8
arithmetic type inference 57
array types

specialized $0
arrays

efficiency of 75
assembly listing 83
availability of debug variables 25
B
benchmarking techniques 89
bignums 79
bit-vectors

efficiency of 76
block

basic 27
block compilation 69

debugger implications 23
start location 27

c
call

inline 72
local 67
numeric operands 81

canonicalization of types 51
characters 81
cleanup

stack frame kind 23
closures 68
compatibility with other Lisps 44
compilation

block 69
units 35
why to 81

compilation-speed optimization quality 46
compile time type errors 42
compile-file

block compilation arguments 71
compiler error messages 37
compiler error severity 40
compiler policy 46
compiling 33

VM

138
CONCEPT INDEX

59
complemented type checks 1 3 7
Concept Index 57
conditional type inference 82, 86
consing 77

overhead of 61
constant folding 61
constant-function declaration 3 6

context sensitive declarations
continuations 83

implicit representation 61
control optimization
CPU time 88

interpretation of

D 61, 62
dead code elimination 25, 27, 46
debug optimization quality 24
debug variables 20
debugger
declarations 46

optimize-interface 46
optimize 70
block compilation 36
context-sensitive 54

defstruct types 55
derivation of types
descriptor representations 85

forcing of
descriptors 77

object 57
dynamic type inference
E
efficiency 81

general hints 84
efficiency notes 85

for representation 86
verbosity 82
of argument syntax 82
of memory use 78
of numeric variables 74
of objects 84
of type checking

empty type 52
the 32

encapsulation 70
end-block declaration
entry points 23

external 51
equivalence of types
error messages 37

compiler 41
verbosity

errors 52
result type of 24
run-time

evaluation 21, 25
debugger . .

existing programs 44
to run

expansion 72
inline 23

external entry points 23
stack frame kind

CONCEPT INDEX 139

F
fixnums 79
floating point efficiency 80
folding

constant 61
frames

stack 2 1

free
C function 92

freeze-type declaration 5 4

function call
inline 72
local 6 7

Function Index 132
function

names 22
tracing 30
type inference 56
types 52

G
garbage collection 82
generic arithmetic 78
H
hash-tables

efficiency of 76
i
implicit continuation representation (IRl) 83
inference of types 55
inhibit-warnings optimization quality 46
inline expansion 28, 47, 72
interpretation of run time 88
interrupts 24, 94

K
keyword argument efficiency 82

L
let optimization 60
listing files

trace 83
lists

efficiency of 75
local call 67

numeric operands • 81
return values 69
type inference 56

locations
unknown 24

M
macro expansion 39

errors during 40
malloc

C function 92
mapping

efficiency of 83
maybe-inline declaration 73
member types 51
memory allocation 82
multiple value optimization 64

CONCEPT INDEX 140

N
names

function 22
NIL type 52
non-descriptor representations 77, 85
notes

efficiency 84
numbers in local call 81
numeric

operation efficiency 78
type inference 57
types 76

o
object representation 74, 77
object representation efficiency notes 85
object sets 97
open-coding . .' 47
operation specific type inference 57
optimization 59

control 61
function call 72
let . 6 0
multiple value 64
type check 58, 84

optimize declaration 27, 46
optimize-interface declaration 46
optional

stack frame kind 23
or (union) types 52
original source 39

p
pointers 92
policy

compiler 46
debugger 27

precise type checking 43
processing path 39
profiling 86

R
read errors

compiler 40
recording of inline expansions 73
recursion 65

self ' 67
tail • 23, 68

representation efficiency notes 85
object 74, 77

rest argument efficiency 82
return values

local call 69
run time

interpretation of 88

s
safety optimization quality 46
semi-inline expansion 28
severity of compiler errors 40
source location printing

debugger 25

CONCEPT INDEX
141

source-to-source transformation
space optimization quality 39, 64
specialized array types 4 6

speed optimization quality 8 0

stack frames 46
stack numbers 21
start-block declaration 77, 85
static functions 70
strings 47
structure types 81

efficiency of 54
style recommendations . . 7 5

55, 65
T
tail recursion
time formatting 23, 65, 68
time parsing 17
timing 17
trace files 86
tracing 83
transformation 30

source-to-source
tuning • 64
type checking 8 4 ? 8 6

at compile time
efficiency of 42
optimization 84
precise 58
weakened 43

type declarations 43
variable

Type Index 78
type inference 136

dynamic . . . 55
^ P ^ 57

alien
equivalence 92
foreign language 51
function 92
in python 52
numeric 42, 50
portability 76
restrictions on 44
specialized array 54
structure 80
uncertainty 54

84
U
uncertainty of types
undefined warnings 84
union (or) types 35
unix interrupts 52
unknown code locations 94
unreachable code deletion 24
unused expression elimination 62

validity of debug variables
values declaration 25
Variable Index . . . 53
variables 135

CONCEPT INDEX 142

debugger access 24
non-descriptor 78

vectors
efficiency of 75

verbosity
of efficiency notes 86
of error messages 41

Virtual Machine (VM, or IR2) representation 83
w
weakened type checking 43
word integers 80

