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Abstract 

LR parsing techniques have long been studied as efficient and powerful methods for processing 
context free languages. A linear time algorithm for recognizing languages representable by LR(k) 
grammars has long been known. Recognizing substrings of a context-free language is at least as 
hard as recognizing full strings of the language, as the latter problem easily reduces to the former. 
In this paper we present a linear time algorithm for recognizing substrings of LR(k) languages, 
thus showing that the substring recognition problem for these languages is no harder than the full 
string recognition problem. An interesting data structure, the Forest Structured Stack, allows the 
algorithm to track all possible parses of a substring without loosing the efficiency of the original 
LR parser. We present the algorithm, prove its correctness, analyze its complexity, and mention 
several applications that have been constructed. 
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1 Introduction 

The problem of recognizing substrings of context-free languages (CFLs) has emerged in many 
practical applications, in the areas of both formal and natural languages. Given a string x, we 
wish to know whether there exists some string w, such that x is a substring of w, and w is in the 
language of a given context-free grammar G. The ability to recognize that a given string is not 
a substring of any sentence in the language allows the early and local detection of syntax errors, 
without the need to complete a full parse or compilation. 

Recognition and parsing algorithms for CFLs have been studied extensively in the last three 
decades. Valiant [Val75] reduced the problem of recognizing a CFL to that of matrix multiplication, 
resulting in an indirect algorithm for CFL recognition with the best asymptotic time complexity 
known. This upper bound on matrix multiplication stands today at 0(n 2 * 3 7 6 ) [CW87]. However, 
other algorithms such as Earley's [Ear70] have proven to be much more efficient in practice. The LR 
parsing techniques have become popular as efficient and powerful methods for parsing CFLs. They 
were first proposed by Knuth [Knu65] and further developed by Korenjak [Kor69] and DeRemer 
[DeR69] [DeR71]. LR parsers parse the input bottom-up, scanning the input left to right, producing 
a right-most derivation. They are deterministic and efficient, being driven by a table of parsing 
actions pre-compiled from the grammar. 

Unfortunately, it is not always possible to construct an LR parser for an arbitrary context-free 
grammar. However, parsers can be constructed for a large class of grammars, called LR grammars. 
Lookaheads in the input can help resolve table conflicts that arise in the LR tables constructed for 
certain grammars, and enable the construction of a deterministic table. Parsers that employ such 
lookaheads are named LR(k) parsers, and the grammars that may be parsed by them are called 
LR(k) grammars. A detailed description of the theory behind the various LR parsing techniques, 
along with formal proofs of the the correctness of the algorithms presented, may be found in Aho 
and Ullman [AU72]. A more practical description of LR parsers appears in Aho and Ullman [AU77] 
and Aho Sethi and Ullman [ASU86], and a general survey of LR parsing can be found in Aho and 
Johnson [AJ74]. 

Substring recognizers have been considered in several works on recovery from syntax errors. 
Richter [Ric85] develops a formal method for reporting syntax errors, without attempting to correct 
them. His method requires a substring recognizer, although no such recognizer is described in his 
paper. Cormack [Cor89] describes a method for constructing an LR parser that recognizes all 
substrings of a context-free grammar G. This is done by a more complicated construction of the 
LR parsing tables, appropriate for dealing with substrings. Cormack's construction provides a 
deterministic parser (free of table conflicts) for only the bounded context class of grammars, which 
is a class smaller than LR(1). Rekers and Koorn [RK91] propose a substring parsing algorithm 
for arbitrary context-free grammars based on Tomita's generalized LR parsing algorithm [Tom86]. 
Although their algorithm has some similarities to the one proposed here, it is not linear, and it's 
correctness and complexity are not addressed in their paper. Substring recognizers appear to be also 
useful in the context of parallel and incremental parsing [Lin70] [AD83] [Cel78]. In particular, it has 
recently been brought to our attention that the seeds to some of the ideas present in our substring 
recognition algorithm can be traced back to Lindstrom's early work on incremental parsers [Lin70]. 

The substring recognition problem can be shown to be at least as hard as the full-string recog­
nition problem, as the latter problem is easily reducible to the first in constant time and space. 
The outline of such a reduction is as follows : 

Given a context-free grammar G and an input string x, we wish to construct a context-free 
grammar G1 and string w, such that x € L(G) iff w is a substring of some y 6 L(G'). We modify 



the grammar G by adding the rule 5' —• $5$, where S is the start symbol of grammar G, and '$'is 
a new terminal symbol, not in the original alphabet of grammar G. The non-terminal 5' becomes 
the new start symbol of grammar Gf. From the input string x we construct w = $x$. The output 
of the reduction is the pair ((£', w). This reduction is constructive in constant time and space. The 
details of this reduction's correctness proof are omitted, and may be easily filled in by the reader. 

Also, it can be shown that the set of all substrings of a CFL is itself a CFL. Since the set of 
CFLs is exactly the set of languages accepted by non-determinitic pushdown automata (NPDAs), 
one easy way to show this is by constructing an NPDA that accepts all substrings of the language 
of a given context-free grammar. The NPDA constructed for accepting the language of a given 
context-free grammar (in Greibach normal form) in [HU79] (page 116) can easily be modified to 
accept all substrings of the language. Thus, the general problem of recognizing substrings is not 
any harder than that of recognizing full-strings. However, the set of all substrings of an LR(k) 
language is not necessarily itself an LR(k) language, therefore a linear time bound for recognizing 
substrings of LR(k) languages is not trivial. 

In this paper we show that the substring recognition problem for LR(k) grammars is not any 
harder than the full-string recognition problem. We present an algorithm for the LR(k) substring 
recognition problem that runs in linear time, which is similar to that of the original LR parsing 
algorithm [AU72]. While previous substring parsing algorithms such as Cormack's [Cor89] modified 
the LR parsing tables to accommodate for substring recognition, our algorithm modifies the parsing 
algorithm itself, while leaving the original LR parsing tables intact. We introduce a data structure, 
the Forest Structured Stack (FSS), that keeps track of all possible parses of the substring, while 
preserving the efficiency of the original LR parsing algorithm. The SLR, canonical LR(1) and LALR 
parser variants differ only in the algorithms that produce the parsing tables from the grammar, 
and share a common LR parsing algorithm that is controlled by these tables. Since our substring 
algorithm replaces this run-time parsing algorithm while using the parsing tables "as is", it is 
equally applicable to all of the above LR variants. The parsing algorithm for canonical LR(k) 
grammars (k > 2) differs slightly from the other variants, in order to account for the extended 
lookahead into the input. Thus, a slightly different version of our substring algorithm handles 
canonical LR(k) grammars. 

Section 2 describes the FSS data structure and presents the substring recognition algorithm for 
LR(1) grammars. In section 3 we prove the correctness of the algorithm. Section 4 analyzes the 
time complexity of our algorithm. An amortized analysis is used to prove that the algorithm does 
indeed run in linear time. Section 5 extends the algorithm to the general LR(k) case. Finally, some 
applications of the algorithm and our conclusions are presented in section 6. 

2 The Algorithm 
In this section we present our fundamental substring recognition algorithm, appropriate for SLR, 
canonical LR(1) and LALR parsing tables. These LR parsing variants assume that only the single 
next input symbol is available to the parser at any point (no further lookaheads). The slightly 
modified algorithm for canonical LR(k) grammars (k > 2) is presented in section 5. The sub­
string recognition algorithm we describe in this section is denoted by SSR. It is a variation of the 
conventional LR parsing algorithm, denoted by LRP. 
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2.1 T h e Forest Structured Stack 

The Forest Structured Stack (FSS) is a graph, consisting of a set of trees, representing a possibly 
infinite set of stacks of LRP. The nodes of the graph are labeled by states of the LR machine. The 
edges that connect the state nodes are labeled by grammar symbols. Each path from a root to a 
leaf corresponds to the top portion of an LRP stack, in which the node at the root of the path 
represents the state at the top of the stack. 

The algorithm simulates the behavior of LRP on all the stacks represented in the FSS, adding 
nodes in correspondence with actions that push items on the stack (shifts), and removing nodes 
in correspondence with stack reductions. The tree representation avoids the duplication of stacks 
which have an identical top part but which differ in content deeper down. 

2.2 A n Informal Descr ipt ion of the Algor i thm 

The idea behind SSR is to effectively simulate the behavior of LRP on all possible strings of which 
the input is a suffix. When parsing a string w, of which our input string x == x i x 2 • • • x„ is a suffix, 
LRP is in some state (at the top of the stack) upon shifting xi, the first symbol of x. We are 
interested in all such states and thus we initialize SSR by building a FSS with a distinct single 
node tree for each state that can be the result of shifting xi according to the pre-compiled action 
table. Since each single node tree represents all stacks with that state at the top, the initial FSS 
represents the set of all possible stacks after the shifting of xi. 

From here on we continue the parsing of x according to each of the FSS trees. SSR performs a 
series of alternating Reduce and Shift phases, one pair of phases for each input symbol. 

During a Reduce Phase, reductions are performed on all trees whose top state indicates that 
a reduction is to be performed. In LR parsing, reductions remove nodes from the stack. When 
performed on a tree, they are done on all paths in the tree, starting at the root, to a depth 
corresponding to the number of symbols on the right-hand side of the rule being reduced. 

Reductions are a problem only when they wish to remove nodes deeper than the length of some 
path in the FSS. This corresponds to a reduction that includes symbols derived from parsing the 
part of the full string that is prior to x. In our algorithm, we refer to such reductions as long 
reductions, and treat them in a manner somewhat similar to our initialization. 

A reduction normally removes the right-hand side of the rule being reduced, and then shifts the 
non-terminal symbol A of the left-hand side of the rule. The new state at the top of the stack is 
determined from the goto table, and depends on A and on the state revealed at the top of the stack 
by the reduction. With long reductions, since only a partial stack exists, this state is not known. 
Our algorithm determines all such possible states by a lookup in the long reduction goto table. This 
supplemental table specifies for each possible reduction from a state at the top of the stack, the 
set of states that may be reached as a result of the shifting of the left-hand side non-terminal of 
the rule being reduced. The table is easily constructed from the parsing tables prior to run-time. 
Each of the determined goto states corresponds to at least one full string, the parsing of which 
would have resulted in that state being at the stack top at this point in the parsing process. It 
is sufficient at this point to add these states to the FSS as single node trees. Long reductions are 
performed at most once per state in a Reduce Phase, since a second long reduction from the same 
top state would produce the same new trees, and thus would be redundant 1 . 

JWe believe that we can manage without the long reduction goto table, and simply consider all states that are a 
result of shifting A. This leads to a somewhat simpler implementation, but the proof of correctness appears to be 
more difficult in this case. 
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When the action defined by the table on the root node of a tree is error, the entire tree is 
discarded. These are trees that correspond to prefix strings of x that cannot be completed to 
strings in the language. A Reduce Phase terminates when the action indicated by the table, on 
each of the tree root nodes, is to shift the next input symbol. All the shift operations are done in 
the consequent Shift Phase of the algorithm. 

Upon reaching the end of the input x, if the FSS is not empty, we can safely assume that there 
exists a prefix string у such that the parsing of the string yx by the LR parser would not have 
caused a parsing error by this point. Properties of LRP guarantee the existence of a suffix z, such 
that w = yxz is accepted. Thus x is confirmed to be a valid substring. 

To increase the efficiency of the algorithm, two operations, SUBSUME and CONTRACT, are 
performed on the FSS structure at appropriate times. When a single node tree is added to the FSS, 
and the state of the node is identical to that of some other tree root node in the FSS, the larger 
tree may be deleted from the FSS, since the single node tree represents all stacks of L#Pthat have 
that particular state at the top of the stack. This set of stacks necessarily includes all stacks that 
were represented by the larger tree rooted at a node of the same state. The SUBSUME operation 
detects such conditions and deletes the larger tree. Long reductions frequently create single node 
trees that subsume other trees in the FSS. 

The CONTRACT operation merges two trees, the roots of which are of the same state, returning 
a single tree as a result. The merging is done recursively down the two trees, to ensure that no 
immediate sibling nodes in the FSS are labeled by the same state. This in turn guarantees that 
at all times, the branching degree of every node in the FSS is bounded by the number of states in 
the parsing table, a property essential for maintaining a linear bound on the running time of the 
algorithm. Two trees may end up having the same top state as a result of either a shift operation 
or a reduction. In the shift case, since prior to the shift the trees necessarily had different top 
states, they may be simply merged at the top node level, and no deeper tree contraction is needed. 
However, in the case of a reduction, if the result of the reduction is a top state which is the same 
of that of another existing tree in the FSS, a full CONTRACT operation is performed. 

The RECLAIM operation is responsible for freeing the dynamically allocated storage for those 
nodes and trees that are discarded in the course of the algorithm. 

2.3 A Formal Descr ipt ion of t h e Algor i thm 

We next present a more formal description of algorithm SSR in a pseudo "high-lever language. 
We use the following notation : 

• nodes of the FSS are presented as structures with two fields. A state field containing the 
parser state, and an action field containing the next parser action to be done upon processing 
the node. 

• actions are of the form Shif t(s) in case of a shift, where s is the state of the new node to 
be created after shifting the input symbol, Goto(s) at the end of a reduction, where s is the 
state of the new node created after shifting the left-hand side non-terminal symbol of the ride 
reduced, or of the form Reduce ( i ) in the case of a reduction, where i is the number of the 
grammar rule being reduced. 

• STATES is the set of all parser states (according to the parsing table). 

• ROOTS is the set of nodes that are roots of trees in the FSS. 
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• NEW-ROOTS - temporary set of new roots. 

• EOS - token representing the end of the input string. 

• geLnextsym(x) : function returning the next input token x. 

• length-ofjrule(i) : function returning the length (in number of symbols) of right hand side of 
grammar rule i. 

• leftJiandsym(i) : function returning the left hand side non-terminal symbol of grammar 
rule i. 

• ACT(s,sym) : Action specified in the parsing table for state s and symbol sym. 

• LONG (sf sym) : Set of goto states in the long reduction goto table for top state s and symbol 
sym. 

The following is the high level description of the algorithm : 

(1) INIT : 
get_next_sym(x); 
let S = { s in STATES I exists a state s* st ACT(s,,x)= Shift(s) } ; 
For each s in S 
do : 

create a node n with n. state = s; 
add n to ROOTS ; 

end; 

(2) TERM : 
get_next_sym(x); 
if ROOTS = O then REJECT 
else if x = EOS then ACCEPT 
else 

(3) DISTRIBUTE : 
For each node n in ROOTS do n.action = ACT(n.state,x); 

(4) REDUCTION PHASE : 
unmark all states for long reductions; 
while there exists a node n in ROOTS with n.action = Reduce(i) 
do : 

REDUCE.TREE(n,i) ; 
if (length.of.rule(i) > 0) then RECLAIM(n); 

end; 

(5) SHIFT PHASE : 
NEW_R00TS = {} ; 
for each node n in ROOTS do 

if n.action = Shift(s) then 
if there exists a node n' in NEW.R00TS with n*.state = s 
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then add node n as a new child of n' 
else do : 

create a node n' with n*.state = s and node n as its child; 
add n' to NEW.ROOTS ; 

end; 
else RECLAIM(n) ; 

ROOTS := NEW.ROOTS ; 
goto TERM ; 

2.4 Descr ipt ion of Procedures 

2.4.1 REDUCE_TREE 

REDUCELTREE performs the reduction operation on an entire tree rooted at a given node n, 
according to a given rule i of the grammar. 

REDUCE.TREE(n,i) 
let L = length.of_rule(i); 
let N = left_hand_sym(i); 
let ts = n.state; 
for every path of length K > L in the tree rooted at n 
do : 

let n'= the L+l node on the path and s = n>.state ; 
if ACT(s,N)= Goto(s') then 
do : 

create a node nl with nl.state = s* and n* as its child; 
if there exists a node n2 in ROOTS with n2.state = s* 

then CONTRACTOR,n2) 
else add nl to ROOTS with nl.action = ACTCs'.x); 

end; 
end; 
for every path in of length K <= L in the tree rooted at n 
do : 

if state ts not marked for long reduction then 
do : 

let S = L0NG(ts,x) 
for each state s in S 
do : 

create a new singleton node n with n.state = s. 
if there exists a node n* in ROOTS with n*.state = s 

then SUBSUME(n,n*) 
else add node n to ROOTS with n.action = ACT(s,x); 

end; 
end; 
mark state ts for long reduction ; 

end; 
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2.4,2 CONTRACT 

CONTRACT merges two trees that have root nodes of the same state into a single tree. 

C0NTRACT(nl,n2) 
if nl is a singleton node then RECLAIM(n2) and return nl; 
else if n2 is a singleton node then RECLAIM(nl) and return n2; 
else for each child c2 of n2 
do : 

if nl has a child cl with cl.state = c2.state 
then CONTRACT(cl, c2) and replace cl with the resulting tree 

else add c2 as a new child of nl; 
end; 

2.4.3 SUBSUME 

SUBSUME replaces a tree rooted at a node n with a singleton new node that has the same state. 

SUBSUME (n,n>) 
replace node n' in ROOTS with node n; 
RECLAIM(n*); 

2.4.4 RECLAIM 

RECLAIM deletes all nodes of the tree rooted at given node n from the Forest Structured Stack. 

RECLAIM(n) 
for all children nodes c of n do RECLAIM(c); 
delete node n; 

2.5 A n E x a m p l e 

To further clarify how the algorithm works, we present a simple example. Figure 1 contains a simple 
arithmetic expression grammar, taken from [ASU86] (page 218). Table 1 contains the SLR parsing 
table for this grammar, as it appears in Figure 4.31 of [ASU86] (page 219). Table 2 shows the long 
reduction goto table for this parsing table. For each state, the long reduction goto table contains 
the list of states into which the parser may shift after a reduction from that state 2 . Figure 2 shows 
the contents of the FSS along the various stages of the execution of the algorithm on the input 
1 ' * id ) ' ' . 

Let us follow a trace of this execution. The initialization stage of the algorithm results in 
entering a single node of state 7 into the FSS, since this is the only state that is the result of 
shifting the first input symbol . Thus, after the initialization, the FSS contains the the 
single node tree shown in Figure 2a. State 7 wishes to shift the next input symbol ' ' i d ' ' , thus 
the first Reduce Phase is empty, and the shifting of € ' i d 9 ' occurs in the Shift Phase, resulting in 

2Note that in the general LR(k) case, the action table may indicate reductions by several different rules from a 
particular state for different lookaheads. Thus, strictly speaking, the long reduction goto table specifies a partial 
function from top states and lookaheads to sets of states. However, in our simple example, the grammar is LR(0) 
and a reduction by at most a single rule is possible from each state. We have therefore simplified the table for this 
example by omitting the lookaheads. 
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1. E-> E + T 
2. E->T 
3. T->T * F 
4. T-> F 
5 . F - ( E ) 
6. F -> id 

Figure 1: A simple grammar for arithmetic expressions 

Action Goto 
State id + * ( ) $ E T F 
0 sh5 sh4 1 2 3 
1 sh6 acc 
2 r2 sh7 r2 r2 
3 r4 r4 r4 r4 
4 sh5 sh4 8 2 3 
5 r6 r6 r6 r6 
6 sh5 sh4 9 3 
7 sh5 sh4 10 
8 sh6 shll 
9 rl sh7 rl rl 
10 r3 r3 r3 r3 
11 r5 r5 r5 r5 

Table 1: SLR parsing table for grammar in Figure 1 

Top state Goto states after reduction 
0 
1 
2 1 8 
3 2 9 
4 
5 3 10 
6 
7 
8 
9 1 
10 2 
11 3 

Table 2: Long reduction goto table for the parsing table in Table 1 
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Figure 2: Structure of the FSS throughout the execution of algorithm SSR on the example 

the tree in Figure 2b. The next Reduce Phase includes several reductions. State 5 on input ' c ) ' * 
indicates a reduction by rule 6. This is a normal reduction, and results in the tree in Figure 2c. 
State 10 on input i 1 ) ' ' indicates a reduction by rule 3. This is a long reduction. According to the 
long reduction goto table, this long reduction results in the single node tree of state 2, as depicted 
in Figure 2d. State 2 on input 1 ' ) ' ' indicates a reduction by rule 2. This again is a long reduction, 
and according to the long reduction goto table, it results in two single node trees, of states 1 and 8 
respectively, as can be seen in Figure 2e. The Reduce Phase terminates at this point, since neither 
state 1 nor state 8 indicate a reduction on input 1 ' ) ' 9 . The following Shift Phase discards the 
node of state 1, since the parsing table indicates an error for state 1 on input 1 c ) ' S t a t e 8 
indicates a shift of 1 { ) } ' into state 11, resulting in the tree shown in Figure 2f. This completes 
the Shift Phase. The consequent termination test discovers that we have reached the end of the 
input. Since the FSS is not empty, the input is a valid substring (of an arithmetic expression in 
the language of our grammar), and the algorithm terminates. Note that due to the simplicity of 
the chosen example, no CONTRACT or SUBSUME operations occurred in the execution outlined 
above. 

3 Correctness 

We now prove the correctness of SSR. The reader is referred to Aho and Ullman [AU72] for a 
comprehensive proof of correctness of the original LR parsing algorithm LRP. In our proof, we 
rely on the correctness of LRP, namely that for an LR grammar G, given an input string x, LRP 
accepts x if and only if x £ L(G). We will therefore aim to prove the following theorem : 
Let G be an LR(1) grammar and x be an input string. SSR accepts x if and only if there exist 
strings y, z such that w = y • x • z is accepted by LRP. 
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We show that SSR simulates the parsing of x by LRP for all possible prefix strings y. If upon 
shifting x n , the last input symbol of x, SSR has not rejected x, there exists at least one such prefix 
string y, for which LRP has not rejected the input y • x after the shifting of xn. The existence of 
a suffix string 2 , for which w = y • x • z is accepted by LJ?P is assured by the fact that LR parsers 
reject inputs as early as possible [AU72]. We now provide a formalization of the above outline. 

Definition 1 A stack configuration c is a triple (s ,x , i ) , where s = [sti,st2, — - >stk] is a stack of 
states (with st^ at the top), x is the input string of length n, and 0 < i < n is a position within 
the input string. 

The set of stack configurations represented at any point of SSR includes a configuration for 
each path from a root node to a leaf in the FSS. The LRP stack configurations are those particular 
configurations that correspond to stacks manipulated by LRP. 

Definition 2 A stack configuration c = (s',w,j) is an LRP stack configuration if after some 
number of steps of LRP on input w, s' represents the LRP stack and j is the parser's position 
within the input string. In particular, the stack representation sf of an LRP stack configuration 
c always has the LR machine's start state at the bottom of the stack. Formally, we define the 
function step(x,k) which returns the pair («s,i), where s is the state stack of the parser after k 
steps on input x, and i is the parser's position within the input string x. step is uniquely defined 
by the LR action table. For all x, step(x,0) = ([5/0],0), where sto is the initial state of the LR 
parser, c = (s ,x, i ) is an LRP stack configuration if there exists a k such that step(x,k) = (s,i). 

To formally prove that SSR simulates the parsing of the input string x by LRP for all possi­
ble prefix strings y, we define a mapping function M, from general stack configurations to their 
corresponding LRP stack configurations. 

Definition 3 We define the function M, from stack configurations to sets of stack configurations 
in the following way. A stack configuration c = (s, x, i) of the FSS is mapped by M to the (possibly 
infinite) set of all LRP stack configurations with s as the top portion of the stack. Formally, let 5* 
denote the set of all state stacks, and LRC denote the set of all LRP stack configurations. Then : 

Jlf ( (* ,* , t ) ) = {(r • s9y • x,\y\ + i) £ LRC I r € S* & y G £*} 
where r • 5 denotes the concatenation of the state stacks. We extend the domain of M to the sets 
of configurations in the natural way, namely M({c,}) = (Ji -W(ct)-

In the following analysis we assume that all states of the LRP parsing table are reachable from 
the start state. If in fact this property does not hold, we may easily (in constant time and space) 
modify the table to include only such reachable states, and use our modified table instead of the 
original one. 

Lemma 1 Let c\ = (s ,x, i ) and C2 = (r -$,x,z') be two stack configurations. Then Mfa) C M(c\). 

Proof: Straightforward from the definitions of LRP stack configurations and the configuration 

mapping function M. • 

Both the SUBSUME and CONTRACT operations of SSR remove paths from the FSS when 
there exist other paths in the FSS that are suffixes of the paths being removed. Lemma 1 implies 
that the removal of such paths from the FSS does not alter the set of LRP configurations denoted. 

To formalize the effect of the parsing operations of algorithm SSR on the FSS, we define the 
function next, from stack configurations to sets of stack configurations. 
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Definition 4 For a given configuration c = ([sti, st2, • • • ,sti],x,j), nex^(c) is the set of configura­
tions c' that are the result of a sinj/e 55iZ parsing step from c. Thus, as in the SSR algorithm, 
next(c) is defined according to the action ACT(st\,Xj+\) indicated in the LR action table. In the 
case of a shift or a normal reduction, next(c) is a set containing the single resulting new config­
uration. In case of a long reduction, next(c) is the set of all stack configurations consisting of 
single state stacks, the states of which one can reach after shifting the left-hand side non-terminal 
of the rule being reduced, as determined by the long reduction goto table. If the action is accept3 

or the end of string is reached, we define next(c) = {c}, and if it is reject (a parse error), then 
next(c) = <f>. 

Note that if c = (s,x,j) is an LRP stack configuration, then for some k, step(x, k) = (s,j), the 
action cannot be a long reduction, and therefore next(c) contains a single LRP stack configuration 
c', where c' = step(x, k + 1). 

To formalize the effect of the Reduce and Shift phases, we define the extension of next to sets 
of stack configurations in the following way. 

Definition 5 Let C = C\ U C2 be a set of stack configurations such that C\ contains exactly 
the stack configurations of C whose top state indicates that the next action is a reduction, and 
C2 is the rest of C. If C\ ^ <f> then next(C) = {c' £ next(c) \ c £ Ci} U C2. If Ci = <f> then 
next{C) = {c* £ next(c) \ c £ C2}. 

Thus, reductions have precedence over other actions. 
Based on this extended definition of next we define for every n > 0 the function next71, which 

is the result of n successive applications of next. Note that a Reduce Phase corresponds to some 
finite number of applications of next and that a Shift Phase corresponds to a single application 
of next. Also note that again, if c = (s,x,j) is an LRP stack configuration, then for some A;, 
step(x,k) = (s,j), the action taken on any of the n following parsing steps cannot be a long 
reduction, and therefore, for any n > 0, nextn({c}) contains the single LRP stack configuration cf, 
where c' = step(x, k + n). 

Lemma 2 The Simulation Lemma : 
Let C be a set of stack configurations. Then : M(next(C)) = next(M(C)) 

Proof: We prove this by case analysis on the parsing actions that occur on each c £ C. The cases 
of Shift, Accept, Reject and normal reductions are straightforward, as next is identical to the 
equivalent action of LRP. Long reductions are more subtle, and in this case we show that the 
result follows from the definitions of M and next : 

1. Let c = (s,x,i). Assume c' £ M(next(c). Since the action on c was a long reduction, 
next(c) is a set of configurations of the form ([st],x,i), where the states are determined 
from the long reduction goto table. Therefore, since st is a reachable state, by the 
definition of M, c' = (r-[st],y-x,\y\ + i) for some state stack r and terminal string y, and 
for some k, step(yx, k) = (r • [st],\y\ + i). Now the LRP configuration c" = (s", yx,\y\ + i) 
for which step(yx,k- 1) = (s", \y\ + i) must have s" = r • s. Therefore, by definition of 
M, c" £ M{c) and c1 = next{cn) £ next{M{c)). 

theTnd 'nftl^' l n ^ ^
 n C V e r b C

 Q C C e p t >
 S i n C C t h e ^orithm will have terminated upon reaching the end of the input string. However, we include this case for the sake of completeness. g 
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2. Let c = (s,x,z). Assume c' G next(M(c)). Since the action on c is a reduction, c' 
must be of the form (r • [st],yx,|y| + t), where the state st is a result of shifting the 
left-hand side non-terminal at the end of the reduction. Prom it's definition, the long 
reduction goto table includes state st as a possible result of the long reduction on c. 
Thus, ([siljXji) G next(c) and by definition of Af, d G M(next(c)). 

• 

We generalize Lemma 2 to any finite number of applications of next. 

Lemma 3 The Generalized Simulation Lemma : 
Let C be a set of stack configurations. For every n > 1 ; M(nextn(C)) = nextn(M(C)) 

Proof: By a straightforward induction on n using Lemma 2. 
Base: i = 1 : Since nex^(C) = next(C), by Lemma 2 M(next 1(C)) = next 1(Af(C)) 
Induction Hypothesis: Claim is true for all n < m. 
Induction Step: Proof for n = m. 
Let C" = nextm~l(C). By the induction hypothesis we have that 
M(C) = M(nextm~l(C) = next m " 1 (M(C)). The following set of equalities complete the 
proof of our claim : 

M(nextm(C)) = M{next{nextm"l{C))) by def. of next 
= M(next(C')) by def of C 
= next(M(C')) by Lemma 2 
= next(nextm~l(M(C))) by induction hyp. 
= nextm(M(C)) by def. of next 

This completes the proof of the Lemma 3. • 

Lemma 4 When parsing an input string x = X1X2 • • *xn, let C\ be the set of initial stack configu­
rations of the FSS, and let d denote the set of stack configurations represented by the FSS after 
the ith Shift Phase. The following two properties are maintained for each of the C{ (1 < t < n) : 

1. Soundness ; if c G C{ then M{c) ^ <f> 

2. Completeness : for all LRP stack configurations c' = (r • s,yx,|y| + i), such that the last 
operation of the parser is a shift of X{, there exists a configuration c = (s,x,t) G C{ such that 
c' G M(c). 

Proof: By induction on i. C\ has both properties due to the way it is constructed. The induction 
step is proven by the following arguments. Since the next function is a formal modeling of 
the Reduce and Shift phases of the algorithm (excluding the process of possibly discarding 
some configurations by SUBSUME and CONTRACT operations), it follows that for some n, 
d C nextn(C,-_i) (with the "missing" configurations being those discarded by the SUBSUME 
and CONTRACT operations) and since SUBSUME and CONTRACT have no effect on the 
set of configurations represented by M, M(C t) = M(next n (C t - i ) ) . The next function has the 
property that if M(c) / <f> and next(c) / <j>, then M(next(c)) ^ <£, which extends to nextn 

and thus guarantees soundness. By Lemma 3 M(d) = M(next n (C t _i)) = nextn(M(Ci-i))> 
which guarantees completeness. • 
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Corollary 1 If Cn is the set of stack configurations represented by the FSS after the nth Shift 
Phase, where n = then Cn ^ <f> iff there exists an LRP configuration c' = (s',yx, \y\ + \x\). 

Note that the existence of such an LRP configuration c1 implies the existence of a string w' = yx, 
such that w' is not rejected by LRP by the time xn was shifted. The soundness property of Lemma 
4 guarantees that if Cn ^ <f>, such an LRP stack configuration c' exists. The completeness property 
guarantees that if such a configuration c' exists, Cn ^ <j>. 

We may now proceed to proving the main theorem: 

Theorem 1 Let G be an LR grammar, and x be a given input string. Algorithm SSR accepts x if 
and only if there exist strings y, z such that w = y • x • z is accepted by algorithm LRP. 

Proof: 1. If: Since there exist strings y and z such that w = y • x • z is accepted by algorithm 
LRP, the string wf = y • x is not rejected by Li?P up to the point of the shifting of xn 

(where n = \x\). Thus, from the above corollary it follows that the FSS of algorithm 
SSR is not empty upon entering the nth TERM stage, and x will be accepted by SSR. 

2. Only if: Algorithm SSR accepts x only if the FSS is not empty upon entering the nth 
TERM stage. If the FSS is not empty, the above corollary implies that there exists a 
string y such that w1 = y • x is not rejected by algorithm LRP up to the point of the 
shifting of xn. Since LR parsers have the property that an input is rejected at the first 
possible opportunity on a left to right scan of the input string [AU72], this implies that 
there exists a string z such that w = w' - z = y - x - z is accepted by algorithm LRP. 

This completes the proof of correctness of algorithm SSR. • 

4 Complexity Analysis 

4.1 Complex i ty Analys i s for Grammars Free of Epsi lon Rules 

We now prove that SSR runs in linear time for grammars free of epsilon rules. In the next subsection 
we will demonstrate that SSR maintains a linear running time even in the presence of such rules. 

After the initialization of the FSS, the algorithm enters a loop that consists of a termination 
test for end of input, examining the next input symbol, a Reduce Phase and a Shift Phase. This 
loop can be executed up to n — 1 times, until the end of string is reached. The initialization of 
the FSS that precedes the loop requires only constant time. It involves scanning a column of the 
LR action table, and the creation of a constant number of root nodes. The termination check also 
takes constant time. Since there are only a constant number of root nodes (see Lemma 5 below), 
each Shift Phase involves only a constant number of shift operations and thus takes constant time. 
However the time cost of each Reduce Phase is not uniform, and varies from one run through 
the loop to the next. Each Reduce Phase involves some number of Tree Reductions, which are 
reductions on all paths of an FSS tree to a constant depth. We will show that each such Tree 
Reduction is completed in constant time and then use an amortized cost evaluation to obtain a 
linear bound on the total number of Tree Reductions. Finally, we will argue that the total time 
cost of all SUBSUME, CONTRACT and RECLAIM operations is also at most linear in the length 
of the input. 

In the following analysis, S denotes the set of states of the parser, and \S\ is the size of this set. 
We distinguish between root nodes of the FSS and internal nodes. 

Lemma 5 At any time there is at most a single root node of any given state. 
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Proof: The claim holds after the initialization of the algorithm, and throughout Reduce and Shift 
Phases SSR explicitly checks for root nodes of identical state, and when detected, merges the 
appropriate trees, using SUBSUME and CONTRACT as necessary. • 

Lemma 6 The total number of nodes that become internal in the course of execution of the algo­
rithm on a string x of length n is 0(n). 

Proof: In the case that the grammar is free of epsilon rules, root nodes become internal only as a 
result of shift operations. Once a node becomes internal, it never again becomes a root node. 
Thus, the Lemma is a direct result of the fact that the number of root nodes at the start 
of any Shift Phase is bounded by |5| , and there are at most n Shift Phases. Thus the total 
number of shift operations is 0(n). • 

Lemma 7 No node in the FSS ever has more than \S\ children. 

Proof: Throughout the algorithm CONTRACT operations are performed whenever necessary so 
as to maintain this property. • 

We now concentrate on analyzing the time complexity of Reduce Phases. A normal reduction 
on a single path of nodes in the FSS is identical to an LRP reduction, and takes constant time. 
Long reductions are very similar to normal reductions. However, they involve accessing the long 
reduction goto table in order to determine the possible states that may result from the shifting of 
the left-hand side non-terminal of the rule being reduced. This table access is done in constant 
time. New root nodes are created for the resulting states of this process, and each added new node 
may require a SUBSUME operation, if there already exists a root node of the same state. This 
condition can be detected in constant time by a linear scan of the set of root nodes, and need be 
done only a constant number of times per long reduction, since at most |5 | new root nodes may 
be added. We account for the time spent on the SUBSUME operations separately. Therefore, 
excluding the time spent on all SUBSUME operations, a long reduction on a single path requires 
only constant time. Thus, any reduction, normal or long, on a single path requires only constant 
time. 

A Reduce Phase reduction in SSR operates on a FSS stack tree, and performs the reduction 
on all paths in the tree that originate at the root node to a depth equal to the number of symbols 
on the right-hand side of the rule being reduced. Since this is a constant depth, and the fan-out 
degree of FSS tree nodes is also bounded by a constant, each such Tree Reduction involves only a 
constant number of reductions (one for each path), each taking constant time. Thus in order to 
complete the time analysis of Reduce phases, we need only demonstrate that 0(n) Tree Reductions 
are performed in the course of the algorithm. 

For the purpose of the analysis, we separate the rules of our grammar into two groups. Grammar 
rules with a single symbol on the right-hand side are grouped together as non-generative rules and 
their corresponding reductions are referred to as non-generative reductions. All other rules will be 
called generative rules and their corresponding reductions generative reductions. We will show that 
the cost of performing a generative reduction can be charged to internal nodes of the FSS that 
are discarded by the reduction, and that only a constant number of consecutive non-generative 
reductions may occur between the generative ones. Thus, the non-generative reductions may be 
charged to the generative ones, and they in turn can be charged to the nodes. 

Lemma 8 In a Reduce Phase of algorithm SSR, only a constant number of consecutive non-
generative Tree Reductions may be performed. 
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Proof: Since long reductions are performed at most once per state in a Reduce Phase, we need 
only consider the normal reductions. Non-generative reductions do not remove internal nodes 
from the FSS. By a counting argument it can be seen that after a constant number of such 
reductions on FSS trees, such a reduction is repeated. If this were to occur the non-generative 
rules that correspond to this series of reductions would form a cycle, in contrast with the fact 
that any LR grammar must be non-cyclic. • 

Lemma 9 In the course of an execution of algorithm SSR, there are only 0{n) generative Tree 
Reductions. 

Proof: We recall that at most one long reduction can occur for each state per Reduce Phase. 
Therefore, at most 0(n) such reductions may occur in all Reduce Phases combined. Thus 
again we need only consider the normal reductions. Generative normal reductions are per­
formed on trees with internal nodes. Such a Tree Reduction will remove all internal nodes to 
a depth corresponding to the number of symbols on the right-hand side of the rule. We there­
fore account for these reductions by charging a unit of cost to each internal node removed 
by the Tree Reduction. Since the node is removed from the FSS by the Tree Reduction, it 
may only be charged once. Also, for each generative Tree Reduction performed, at least one 
internal node is charged. Thus the total number of internal nodes charged is an upper bound 
on the total number of generative Tree Reductions. By Lemma 6 there are only 0{n) nodes 
that become internal in the course of the execution of SSR. Thus, at most 0(n) internal nodes 
may be charged for Tree Reductions and we obtain an 0(n) bound on the total number of 
generative Tree reductions. • 

Lemma 10 The Total number of Tree Reductions is 0(n). 

Proof: We look at the non generative reductions as groups of consecutive reductions that occur 
before, between and after the generative reductions. Due to the 0(n) bound on the number 
of generative reductions, we obtain a similar bound on the number of such groups of non 
generative reductions. We therefore get an 0(n) bound on the total number of non generative 
Tree Reductions. This in turn provides us with a bound of 0(n) on the total number of all 
Tree reductions. • 

We complete the time complexity analysis of our algorithm by showing that all CONTRACT, 
RECLAIM and SUBSUME operations together require only 0(n) time. 

First we consider the CONTRACT operations. The CONTRACT operation merges two FSS 
trees that have root nodes of the same state. The contraction itself is done by comparing the states 
of the children of the first root node with those of the second root node. Lemma 7 guarantees 
at most I . S I 2 comparisons. If a child of the first root node has a state identical to that of a child 
of the second root node, the two subtrees are contracted by a recursive call to CONTRACT. All 
other children (and their appropriate subtrees) are added as children of the first root node, and 
the second root node is deleted. Thus, the top level CONTRACT operation requires constant 
time. Note that any recursive call to CONTRACT will necessarily result in the elimination of an 
internal node. We may thus charge a unit of cost to the node deleted as a result of each recursive 
call to CONTRACT, and since the node is deleted from the FSS by the this operation, it may be 
charged only once. Since CONTRACTUS invoked only after reductions, there are at most 0(n) top 
level calls to CONTRACT. Lemma 6 guarantees that at most 0(n) internal nodes will be charged, 
therefore implying at most 0(n) recursive calls to CONTRACT. This provides us with an 0(n) 
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Figure 3: An LR(O) grammar for the language anbn 

bound on the total number of CONTRACT calls and a similar bound on the total time complexity 
of all CONTRACT operations. 

Next, we consider the RECLAIM operations. These operations delete entire subtrees from the 
FSS, when these become obsolete. We assume the cost of such an operation is directly proportional 
to the number of nodes in the subtree, i.e. constant time per node being deleted. The deletion of 
internal nodes can be charged a unit of cost to the node being deleted, and only 0(n) root nodes 
are reclaimed in all Shift Phases and Reduce Phases combined, since at most one root node is 
reclaimed per operation. 

Finally, we observe that we have already accounted for the SUBSUME operations. SUBSUME 
searches for a root node of a state identical to that of a new single node tree created by a long 
reduction. This requires constant time. If found, the tree is the reclaimed by the RECLAIM 
operation, the time for which we have already accounted for. 

This completes the time complexity analysis of our algorithm, under the assumption that the 
grammar contains no epsilon rules. Our analysis has shown that the total time cost of all operations 
in an execution of the algorithm on an input string of length n is 0(n). 

4.2 E x t e n d i n g t h e Complex i ty Analys is t o Grammars w i th Epsi lon Rules 

We now turn to deal with the case that the grammar contains epsilon rules. Epsilon rules complicate 
our algorithm due to the fact that root nodes may become internal nodes as a result of a reduction 
by an epsilon rule. Thus, Lemma 6 must be re-argued, namely that the total number of root nodes 
that become internal in the course of an execution of the algorithm continues to be 0(n) , even in 
the presence of epsilon reductions. 

Since epsilon rules have no effect on the Shift Phase of our algorithm, in order for our entire 
complexity analysis to still carry through, we need only to prove that the total number of Tree 
Reductions is still 0(n). 

Let us note that a grammar may indeed have epsilon rules, and still be LR. For example consider 
the natural grammar for the language anbn (for n > 0) in figure 3, which is in fact LR(0). 

It is convenient to look at epsilon rules as normal grammar rules that generate an "invisible" 
terminal symbol epsilon. Thus strings in the language generated by the grammar correspond to 
modified strings that include the epsilon symbols in the appropriate places. For a non-ambiguous 
grammar we are guaranteed that this is a one to one correspondence (each string in the language 
corresponds to exactly one string with epsilon symbols). 
Lemma 11 An LR grammar has the property that only a constant number of epsilons may appear 
between two non-epsilon terminal symbols in the modified strings that correspond to strings in the 
language generated by the grammar. Furthermore, if we denote the length of the longest right hand 
side of all grammar rules by L, and the number of grammar rules by i, this constant number of 
consecutive epsilons is bounded by Lx. 

Proof: In order to prove this claim we restrict our attention to E, the subset of grammar rules 
that may produce a consecutive string of epsilons. It is easy to see that if the rules in E 
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can produce an infinite string of epsilons (starting from any rule in E, whose left-hand side 
non-terminal is reachable), then the grammar is necessarily ambiguous and thus not LR. The 
fact that E cannot produce an infinite string of epsilons poses several restrictions on the rules 
in this subset. No rule in E contains a terminal symbol on its right-hand side. Also, no rule 
in E can be recursive (the left-hand side non-terminal cannot appear on the right-hand side 
of the rule). Using these properties, by a simple induction on z, the number of rules in Ey it 
can be shown that the number of consecutive epsilons that can be produced by E is bounded 
by the constant Ce = L\ where L is the length of the longest right-hand side of the rules in 
E. • 

In order to prove that the total number of Tree Reductions continues to be O(n), it is sufficient 
for us to show that Lemma 6 still holds. 

Lemma 12 The total number of root nodes that become internal nodes in the course of an execution 
of algorithm SSR on a string x of length n is 0(n) , even if the grammar has epsilon rules. 

Proof: For every i: 0 < i < n, let internal(i) be the total number of nodes that have become 
internal in the course of the algorithm, up until the completion of the Shift Phase of X{. We 
prove by induction on i that for every 0 < i < n, internal(i) < C * i, where C is a the 
constant \S\ * (Ce + 1). 
Base : i = 1 : The shifting of x\ occurs in the INIT stage, where at most \S\ root nodes are 
created. Since no internal nodes exist at this point, the claim is trivially true. 
Induction Hypothesis : Assume the claim is true for i < m. 
Induction step : Proof for i = m + 1. Clearly internal(m + 1) is the sum of internal(m) 
and the number of root nodes that became internal during the Reduce Phase of xm, and the 
Shift phase of x m + i . from the analysis presented above, it is clear that during the Reduce 
Phase, at most Ce epsilon reductions can be performed on each individual tree of the FSS 
(corresponding to the maximum number of epsilons that may appear in the string prior to the 
next "real" terminal symbol). Since each such epsilon reduction causes a single root node of 
the FSS to become internal, the total number of root nodes that become internal during the 
Reduce Phase due to epsilon reductions is bounded by | 5 | * Ce. As before, in the consequent 
Reduce Phase of £ m + i , since there are at most 151 root nodes upon entering the Shift Phase, 
at most | S\ root nodes may become internal nodes by the end of the Shift Phase. Summing 
up the total number of nodes that become internal, we get : 

internal(m + 1) < internal(m) + \S\ *Ce + \S\ 
< C * m + C (by induction hypothesis) 
= C * ( r a + 1) 

Now since the total number of nodes that become internal in the course of the execution of 
algorithm SSR is bounded by internal(n), and internal(n) < C * n, the above total has 
indeed been shown to be 0(n). • 

In the process of proving the above lemma, we in fact have shown that only 0(n) epsilon 
reductions may occur in the course of executing SSR on a string x of length n. It thus follows that 
Lemma 10 continues to hold, and the number of Tree Reductions continues to be O(n), taking into 
account all three types of tree reductions that now exist, non-generative tree reductions, generative 
tree reductions, and epsilon rule tree reductions. Combined with the time analysis of the other 
operations which continues to hold as before, we may again conclude a linear time bound on the 
total running time of algorithm SSR. 
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5 The Algorithm for Canonical LR(k) Grammars 
In this section we consider the implications of generalizing algorithm SSR to deal with the general 
cause of canonical LR(k) parsing tables. 

First, let us consider the necessary modifications to the algorithm itself. These turn out to be 
quite minimal. In fact, only the INIT stage needs to modified. In the INIT stage, instead of reading 
just the first symbol of the input string, we must obtain the first k symbols for the lookahead. This 
is due to the fact that the LR(k) action table is defined according to the A;-lookahead on the input. 
The action table is then searched in order to construct the initial set of root nodes. An obvious 
complication occurs whenever the length of the input string is less than the needed lookahead 
(\x\ < k). To handle this case, all possible extensions of the input string x to a string y of length 
k are considered, and the set of root nodes is constructed as the union of the sets derived for all 
such y. The algorithm will then terminate immediately in the following TERM stage. If the set of 
root nodes constructed in the INIT stage is not empty, x is accepted, otherwise x is rejected. 

Following is the "high level" description of the modified INIT stage : 

• first-ksyms(x) returns the first k symbols of the input string x. U \x\ < k it returns the entire 
string x. 

(1) INIT : 
let 1 = |x| 
lookahead = first_k_syms(x) 
if (1 < k) 

then : 
let Y = { y = x.z I |y| = k } 
for each y in Y 

let Sy • { 8 I exists a state s' st ACT(s,,y)= Shift(s) } ; 
for each s in Sy 
do : 
if ROOTS contains no node n' with n*.state = s 

then create a node n with n.state = s; 
add n to ROOTS ; 

end; 
end; 

else 
let S = { s | exists a state s' st ACT(s*,lookahead)= Shift(s) } ; 
for each s in S 
do : 

create a node n with n.state - s; 
add n to ROOTS ; 

end; 
All other stages of the algorithm stay exactly the same as in algorithm SSR, as presented 

in section 2. In the DISTRIBUTE stage, the actions determined from the LR(k) action table 
depend on the existing fc-lookahead at that particular point in time. In the Shift Phase, the first 
symbol of the lookahead (the symbol being shifted) is removed from the lookahead and shifted. The 
get_next_sym function call in the subsequent TERM stage completes the lookahead from length 
k - 1 to k. The algorithm terminates when the end of string (EOS) is encountered, with k - 1 
symbols of the input string still in the lookahead. 
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Let us now consider what implications (if any) does the above modification of algorithm SSR 
have on its correctness and complexity. 

The proof of correctness presented in section 3 continues to hold for our modified algorithm. 
Lemma 4 continues to hold with respect to the appropriate LR(k) version of algorithm SSR. Since 
the property of rejecting an input at the earliest possible opportunity [AU72] holds for general 
LR(k) grammars, the proof of the main theorem of correctness continues to hold as well. 

Finally let us consider the complexity analysis. It is easily seen that the revised INIT stage still 
takes only constant time. The set Sy is a finite set bounded by a constant, thus constructing the 
initial set of root nodes clearly takes only constant time. The size of this set is still bounded by 
I * ? ) , the number of states in the LR action table. Since all other stages of algorithm SSR are the 
same as before, the time complexity analysis of the algorithm remains valid. 

6 Conclusions 

We have presented and proved a linear time algorithm for recognizing substrings of LR(k) languages. 
The original version of this algorithm was initially developed by the first author in 1980. It 

did not include the CONTRACT operation for merging trees of the FSS. Tree contractions are 
crucial to retaining a linear bound on the running time of the algorithm. In the process of trying 
to prove the linear time bound we discovered this deficiency, and the proper modifications were 
consequently made. 

The original algorithm, while in fact not always linear, was used as the basis for a syntax 
checking modification to the IBM VM/370 editor XEDIT. That modification enabled the IBM 
editor to check COBOL source code for syntax errors, when users modified lines, screens or files. 
For instance, when the cursor was moved off a modified line, the editor would beep and display 
an unobtrusive error message if the line was not a substring of any COBOL program. Though 
COBOL has a large grammar, this modification had no apparent effect on the speed of XEDIT on 
machines of the early 1980's. The algorithm was also used to check Pascal programs on an IBM PC 
editor, and this too had no apparent effect on the speed of the editor. Thus, the original algorithm 
appeared to be adequately fast in practice. 

We have implemented our revised algorithm and have tried it on several test grammars. No 
precise measurements have been performed to compare the actual running time of our substring 
algorithm with that of the original LR parser. However, in practice, the revised implementation 
continues to run as fast as before. 
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