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Abstract 

Optimistic replication is an important technique for achieving high availability 
in distributed file systems. A key problem in optimistic replication is using 
semantic knowledge of objects to resolve concurrent updates from multiple 
partitions. In this paper, we describe how the Coda File System resolves 
partitioned updates to directories. The central result of our work is that logging 
of updates is a simple yet efficient and powerful technique for directory 
resolution in Unix file systems. Measurements from our implementation show 
that the time for resolution is typically within 10% of the time for performing 
the original set of partitioned updates. Analysis based on file traces from our 
environment indicate that a log size of 2 MB per hour of partition should be 
ample for typical servers. 
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1. Introduction 
Optimistic replication is an effective technique for attaining high availability in distributed file 
systems [3]. The term "optimistic" refers to the fact that concurrent updates are allowed in multiple 
network partitions. A pessimistic scheme, in contrast, allows updates in atmost one partition. An 
optimistic strategy provides higher data availability but cannot guarantee data consistency across 
partitions. Therefore optimistic replication is preferable when closely-spaced sequential write-sharing is 
rare, and when coping with it is less onerous than being denied update access during network failures. 
There is substantial evidence to suggest that this combination of circumstances is often present in 
distributed Unix1 file systems [7]. 

A key problem in optimistic replication is detecting when an object has been updated concurrently in 
multiple partitions, and determining whether those updates can be transparently merged without violating 
semantic constraints. Concurrent updates that can be merged are called benign. Other updates are called 
conflicting. Without semantic knowledge all concurrent partitioned updates to an object must be treated 
as conflicting, and merged manually by the user. Manual resolution is undesirable because it reduces the 
overall usability of the system. 

An extremely important object, with known semantics, in Unix file systems is a directory. We refer to 
the process of examining replicas of a directory, deducing the set of partitioned updates and merging them 
using Unix semantics as directory resolution. It has two important side-effects. First, benign updates are 
propagated to all replicas, thus making them identical. Second, directories with conflicting updates are 
marked unusable and preserved for future manual repair. 

In this paper we describe how the Coda File System [10,11] exploits Unix directory semantics to 
effectively support optimistic replication. The central result of our work is that logging of directory 
updates is a simple yet efficient and powerful technique for directory resolution. An implementation of 
directory resolution is complete, and is used on a daily basis by a small user community. Measurements 
from our implementation show that the time for resolution is approximately 10% of the time for 
performing the original set of partitioned updates. Analysis based on file traces from our environment 
indicate that a log size of 2 MB per hour of partition should be ample for typical servers. 

2. Coda File System 
Coda is designed for a typical research and development environment and is intended for applications like 
electronic mail, bulletin boards, document preparation and program development It is not intended to be 
used for applications like databases that exhibit high degrees of fine-grain write-sharing. Coda consists of 
a large collection of untrusted Unix clients and a much smaller number of trusted Unix file servers. Each 
client has a local disk and can communicate with the servers over a high bandwidth network. At certain 
times, a client may be temporarily unable to communicate with some or all of the servers due to a server 
or network failure. 

Clients view Coda as a single, location-transparent shared Unix file system. The Coda namespace is 
mapped to individual file servers at the granularity of subtrees called volumes. At each client, a cache 
manager (Venus) dynamically obtains and caches volume mappings. 
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Coda uses two distinct, but complementary, mechanisms to achieve high availability. The first 
mechanism, server replication, allows volumes to have read-write replicas at more than one server. This 
reduces the probability of an object becoming unavailable due to failures. The second mechanism, 
disconnected operation, takes effect when no server is accessible. While disconnected, Venus services 
file requests by relying solely on the contents of its cache. When disconnection ends, Venus propagates 
modifications and reverts to server replication. 

2.1. Replica Control Algorithm 
The set of replication sites for a volume is its volume storage group (VSG). The subset of a VSG that is 
currently accessible is a client's accessible VSG (AVSG). File system requests are serviced by Venus 
from its cache. If the cache does not contain the latest copy of an object Venus contacts the AVSG. The 
protocol for accessing objects from the servers is read-status-all-data-one I write-all. Since this protocol 
has been described in detail earlier [10], we only present a summary here 

Read accesses return the latest accessible copy of an object. To service a cache miss, Venus nominates 
one server from the object's AVSG as the preferred server and obtains both data and status information 
from i t In parallel it obtains status information from other AVSG members. The system call that caused 
the cache miss returns successfully only if the version information from all AVSG sites is identical. 
Otherwise the object needs resolution. Validity of the cached objects is maintained by callbacks. 

The update protocol, which is executed when a directory is modified or a file is closed after being written, 
propagates changes in parallel to all accessible replicas. It consists of two phases, COPl and COP2, where 
COP stands for Coda optimistic protocol. COPl performs the semantic part of the operation at each AVSG 
member, such as transferring file contents, making a directory entry, or changing an access list. COP2 
distributes a data structure called the update set, which summarizes the client's knowledge of who 
performed the COPl operation successfully. The update set is used to maintain the version information 
used during resolution. 

2.2. Directory Updates 
Coda directories consist of a series of name-identifier pairs that map names to specific objects in the 
system. Coda supports the Unix interface for creating, removing and changing directory entries as well as 
modifying individual objects. Directory entries can be inserted via the creat, link or mkdir system 
calls, removed via the unlink or rmdir system calls, and changed via the rename system call. 
Unlike Unix, Coda allows hard links only within a directory. Consequently, the Coda naming hierarchy 
is constrained to be a strict tree rather than an acyclic graph. 

Directory updates are independent of one another as long as they do not reference the same object A set 
of independent updates can be executed in any order resulting in the same final directory state. For 
example, operations "mkdir f oo" and "mkdir bar" in a directory baz commute with one another 
and result in the directory baz containing two new names f oo and bar. By definition, independent 
directory updates are benign since we are only interested in write-write conflicts. 
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Directory updates that are not independent are also benign unless they correspond to one of the following 
situations: 

• NamelName conflicts: Two different objects with the same name are inserted in a directory in 
different partitions. 

• Remove/Update conflicts: An entry is removed from a directory in one partition but the 
corresponding object or its descendants are updated in another partition. 

• Update/Update conflicts: A directory's meta data, such as its access list, is updated in two or 
more partitions. 

• Rename!Rename conflicts: An object is moved into different directories in two partitions. 

The first three cases were first identified by Guy in the context of the Locus file system [5]. The fourth 
category does not exist in Guy's classification because his model does not restrict the naming hierarchy to 
be a tree. 

3. Overview of Directory Resolution 
Partitioned updates on an object are detected the first time it is accessed after two or more partitions 
reconnect. If Venus detects a version mismatch amongst the replicas while servicing a cache miss, it 
alerts the preferred server to perform resolution and pauses. If resolution is successful, Venus retries 
servicing the cache miss. In this case, resolution is completely transparent to applications and users. The 
only noticeable effect is a slight delay in the servicing of the system call. If resolution is unsuccessful, 
Venus returns an error as the result of the system call that generated the cache miss. 

Directory resolution is performed entirely on servers, with clients being responsible only for its activation. 
This dichotomy is crucial to meeting Coda's goal of scalability without compromising security. Relying 
on clients to detect partitioned updates eliminates the need for elaborate machinery on servers to keep 
track of the state of connectivity of other servers. Such machinery has to be present on clients anyway to 
guarantee coherence. This is consistent with our strategy of enhancing scalability by using client 
resources rather than server resources wherever possible [12]. 

A logical extension of this strategy would make clients rather than servers perform resolution. 
Unfortunately, this would compromise security because the process of resolution may require 
examination and modification of regions of the file system for which the user at the client performing the 
resolution has no access privileges. Our assumption that a client is only as trustworthy as its user requires 
us to perform such operations on servers. 

Coda performs resolution lazily: although there may be many partitioned updates in a volume, the system 
only resolves those objects needed to satisfy the triggering system call. An aggressive approach to 
resolution would, in contrast, strive to eliminate all unresolved partitioned updates as soon as partitions 
reconnect. Our strategy minimizes the latency of systems calls that trigger resolution. It also reduces the 
peak demands made on servers immediately after recovery from a crash or network partition. Its main 
drawback is that unresolved partitioned updates may persist until a further crash or partition, thus 
increasing the chances of stale data being used or a conflicting update being made. A compromise would 
be to perform resolution lazily when triggered by a client, but to conduct aggressive resolution in the 
background during periods of low server load. Our usage experience so far with Coda has not indicated 
the need for such a hybrid policy. 
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The resolution subsystem is responsible for classifying partitioned updates, propagating benign updates, 
and preserving evidence from conflicting updates. To perform this function, the subsystem maintains 
data structures at each server and executes a resolution protocol involving the AVSG of the object being 
resolved. We describe the design of the data structures, their use during resolution and the resolution 
protocol in the following sections. 

4. The Resolution Log 
Every replica of a volume in Coda is associated with a data structure known as its resolution log. 
Conceptually, a resolution log contains the entire list of directory mutating operations on a replica since 
its creation. In practice, of course, logs are of finite length and only the tail is preserved. The size of the 
log is specified when creating a volume, but can be later adjusted by a system administrator. 

4.1. Log Storage 
Resolution requires log modifications to be made in a fault-tolerant manner. Each modification should be 
permanent as well as atomic with respect to the directory update it reflects. We achieve this by placing 
both the resolution log and directory contents in recoverable virtual memory and modifying them within 
the same transaction. This is implemented using a lightweight transactional package called RVM [8]. 

RVM is a Unix library that supports local, non-nested transactions on data structures mapped into a 
process' virtual memory. It provides the basic transactional properties of atomicity and permanence by 
using a NO-UNDO/REDO write-ahead value log that records committed updates to recoverable virtual 
memory. Periodically, the modifications represented by the log records are applied to the committed 
image of virtual memory on disk to reclaim space used by those records. By placing the resolution log in 
RVM, we combine the well-known strengths of operation logging and value logging. 

Our decision to associate resolution logs with volumes was motivated by a number of considerations. 
First, a per-volume log achieves a reasonable balance between resource usage and efficiency. A single 
log per server would have achieved better utilization of RVM, but would have given us no control over the 
usage of RVM by individual users. At the other extreme, a per-directory log would have been more 
efficient since irrelevant entries would not have to be examined during resolution. But that approach 
would have resulted in much greater internal fragmentation of RVM. A second consideration is that a 
per-volume log is consistent with Coda's policy of associating disk quotas with volumes. A final 
consideration is that the operands of system calls in Coda may span directories but not a volume 
boundary. Consequently, a volume is the smallest encapsulating unit whose log is guaranteed to contain 
all the information needed to resolve an update. 

4.2. Log Format 
The organization of the resolution log meets three requirements. First, it makes efficient use of log 
storage. Second, it supports efficient recording of updates during normal operation, as well as efficient 
traversal of log entries during resolution. Third, it contains all the information needed to perform 
resolution. 
The first two requirements are met by organizing the log physically on a per-volume basis, but logically 
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on a per-directory basis. The log for a directory is realized as a doubly-linked chain of log entries 
embedded in the volume log. Recording a directory update consists of finding a free entry in the volume 
log, linking it to the end of the directory's log, and filling in the fields of the entry. During resolution, it 
is usually sufficient to examine the log entries of the directory being resolved. Only on rare occasions is 
it necessary to examine the logs of other directories. 

To meet the third requirement, each log entry has to contain the opcode of the corresponding system call, 
names of new Coda objects created by the call, and the low-level unique identifiers (called fids) of all 
Coda objects created, deleted or modified by the call. In addition each entry contains a storeid, which is a 
client-generated tag that uniquely identifies an update in Coda. Figure 1 shows the log entry for a simple 
directory operation in Coda such as file creation. 
typedef struct struct create_log 

{ 
unsigned serverid; common_log cl; /* prefix*/ 
ViceStoreld storeid; /* of this update *l char *name; /* of new child */ 
unsigned opcode; /* of this mutation*/ Vnodeld cvnode; /* fid of new child */ 
Vnodeld dvnode; /* fid of this directory */ }; 
long nextindex; /* directory log link*/ , , v ̂  . r ^ . 

long previndex; i* direct*?, log link •/ (b) Entry for File Creation 
}common_log; 

(a) Prefix of Every Entry 

Figure 1: A Simple Log Entry 

Log entries for deletions are more complex. They contain the state of the object when deleted to 
unambiguously detect remove!update conflicts during resolution. For a deleted file, the final state is 
encoded in its Coda version vector [10]. For a deleted directory, this information consists of a pointer to 
its resolution log, as shown in Figure 2a. 

The most complex log entry, shown in Figure 2b, corresponds to the rename operation. Such an entry is 
created in each of the logs of the two directories affected by the operation. Since a rename may delete 
an existing target, the log entry contains sufficient information to also detect any ensuing remove/update 
conflicts. 

5. The Resolution Algorithm 
Resolution uses the log from each replica to deduce and propagate the set of partitioned updates to all 
replicas. For this purpose, each replica's log is made available to every member of the AVSG. In Section 
5.1, we focus on the actions at a single server. Next, in Section 5.2, we describe how resolution is 
coordinated among multiple servers. Finally, in Section 5.3, we identify a number of complications that 
can arise in resolution and show how they can be handled. 

5.1. Compensation at One Site 
The compensation algorithm is executed at each AVSG member after that server has received the log of 
every other member of the AVSG. For the purpose of this discussion, the server at which the algorithm is 
executing is called the local server, all other AVSG members are called remote servers. The goal of the 
compensation algorithm is to use the logs of all replicas to compute the set of partitioned updates missed 
by the local server and to apply a sequence of updates to compensate for the missed updates. Detection of 
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struct rmdir_log 
{ 
common_log cl; 
char *name; 
Vnodeld cvnode; 
int head; 
int count; 
ViceStoreld csid; 

struct rename_log 
{ 

/* prefix *! 
/* ofdeleted child*/ 
I* fid ofdeleted child*! 
I* pointer to deleted child s log *! 
!* length of deleted child s log*! 
I* storeid of deleted child *! 

cl; 
srctgt; 

!* prefix*! 
I* was I source or target1 s parent?*! 

} ; 
(a) Entry for Directory Deletion 

common_log 
unsigned 
struct 

{/* info about source *! 
char *oldname; 
Vnodeld cvnode; 

} rename__src; 
Vnodeld OtherDirV; !* fid of other parent *! 
struct 

{/* info about target *! 
char *newname; 
int t gt exi s t ed; /* was an old target deleted? *! 
Vnodeld TgtVnode; /* fid of old target *l 
union 

{/* info about old deleted target *! 
ViceVersVec TgtGhostW; I* if it was a file*! 
struct 

{!*ifit was a directory *! 
int head; 
int count; 
} TgtGhostLog; 

} TgtGhost; 
} rename__tgt; 

} ; 

(b) Entry for Rename 

Figure 2: More Complex Log Entries 

conflicts, if any, is a side effect of the algorithm. The algorithm proceeds in three steps as shown in 
Figure 3. 

In the first step, the set of all partitioned updates is deduced. This is done by scanning each log 
backwards starting from the last entry and finding the most recent entry that exists in all logs. This is 
called the latest common entry (LCE), and represents the most recent point when all the replicas were 
identical. Resolution relies on the invariant that entries in each log after the LCE correspond to exactly 
the set of partitioned updates. This invariant follows from two observations. First, if entries with the 
same storeid are found in the logs of a set of replicas, it implies that these replicas successfully 
participated in the same update. Second, the Coda update protocol guarantees that updates succeed only 
at replicas that are already identical. Entries prior to the LCE are not used and can be discarded for the 
subsequent steps of this algorithm. 

In the second step, the set of updates missed by the local server are deduced from the set of all partitioned 
updates. The partitioned updates from each replica's log are merged and the duplicate entries removed. 
Then the log entries corresponding to partitioned updates already performed at the local server are 
removed. Due to dependencies between log entries from one server, the merge must maintain their order. 
For example, the entry for rmdir f oo must follow the entry for mkdir f oo because these operations 
do not commute. But log entries from different servers can be merged in any order. 

In the third step the updates missed by the local server are executed. These updates modify permanent 
data structures in RVM and are all performed within a single transaction. If a serious failure such as 
running out of disk space occurs during the transaction, the entire step is aborted and the algorithm fails. 
Updates that invert each others' effects are not executed at all. Before executing each update, the server 
ensures that the resulting state will not violate any semantic invariant If this is not the case, it marks the 
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Sitel Site 2 Site 3 
(Remote) (Locai) (Remote) 

(a) Step 1: Compute LCE 

(b) Step 2: Discard useless entries and merge logs (c) Step 3: Perform operations - Final log state 
This figure shows the steps of the compensation algorithm. The algorithm is being executed at site 2 and the 
directory is replicated at three servers site 1, site 2 and site 3. The shading is different for updates in different 
partitions. The figures shows (a) the logs made available to site 2, (b) how the compensating operations are 
calculated and (c) the log at site 2 just after it executes the compensating operations. 

Figure 3: Steps of the Compensation Algorithm 

object that was to be modified in conflict. As each update is performed, a log record reflecting this 
mutation is spooled to the resolution log. Once the entire list of updates has been applied, the 
encapsulating transaction commits and the compensation algorithm at this site is complete. 

5.2. The Resolution Protocol 
In this section we describe how resolution is coordinated between multiple servers. The resolution 
protocol is coordinator-driven, with one AVSG site acting as coordinator and the others acting as 
subordinates. The resolution protocol proceeds in four phases, as shown in Figure 4. To improve 
performance, the coordinator uses a parallel RPC mechanism [9] to communicate with subordinates. 

The protocol serves two purposes. First, it distributes resolution logs to all AVSG sites so that each can 
execute the compensation algorithm described earlier. Second, it distributes the final result of resolution 
to all AVSG sites. Prior to the execution of the protocol, some of the participating replicas may differ from 
others. At the end of the protocol, either all these replicas are identical and ready for immediate use, or 
have been marked in conflict and are unavailable until manually repaired. 

Our description below describes the events in the absence of failures. If a subordinate fails, the 
coordinator times out and excludes it from subsequent phases of the protocol. If the coordinator fails, the 
client times out and restarts the protocol, nominating another coordinator. In all cases, the atomicity of 
actions at each site is guaranteed by RVM. 
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Phase 1 Phase 2 Phase 3 

. . , Collect . Distr. Log 

hInvoke I L o c k & & 
lesolutiorii l - Ü W I M e r g e

 1 Compensate 

This figure shows the sequence of RPCs during resolution. The client V invokes resolution by nominating server 
SI as coordinator. The four phases of the protocol are executed at three subordinate servers SI, S2 and S3. The 
node labeled SI is shaded when the server is acting as coordinator and unshaded when it is acting as subordinate. 
If a conflict is detected in phase 3, it is distributed via an extra RPC before phase 4. 

Figure 4: Phases of the Resolution Protocol 

Phase 4 
. Return 

- Unlock 1—From 
Resolution 

5.2.1. Phase 1: Locking 
Resolution begins with the coordinator requesting each VSG site to lock its replica of the volume 
containing the directory being resolved. The sites that respond to this request become the subordinates of 
the resolution protocol; other sites are ignored in the rest of the protocol. All responding sites must 
indicate successful lock acquisition; otherwise the protocol is aborted and an error code returned to the 
triggering client. 

A resolution lock excludes all other mutations on a replica, including those from normal updates, manual 
repairs or any other instances of directory resolution in that volume. But non-mutating operations such as 
reading a file or listing a directory in the volume are permitted. Although locking at finer granularity 
would improve concurrency, it would be more complex to implement. Our experience so far suggests 
that this complexity is not warranted. 

The resolution lock is held for the entire duration of the protocol, and times out in the event of a 
coordinator crash or network failure. The value of this timeout has to be greater than the longest expected 
resolution time, and is set conservatively to 10 minutes in our implementation. 

5.2.2. Phase 2: Log Collection and Merging 
In this phase, the log entries needed for resolution are collected by the coordinator. Each subordinate first 
extracts the log of the directory being resolved from its volume log. It then scans the extracted log, 
composes a list of other objects whose logs might also be needed, and extracts those logs recursively. For 
example, if a subtree is deleted during a partition, the logs of all the directories in the subtree are needed 
to resolve its parent. The coordinator merges the logs received from all the subordinates into a linear data 
structure that preserves the identification of each log. 
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5.2.3. Phase 3: Log Distribution and Compensation 
This phase begins with the coordinator sending the merged logs to subordinates. At this point, each 
subordinate has logs from every accessible replica, and can perform the compensation algorithm 
described in Section 5.1. Each subordinate returns a list of conflicts, if any, that arose during this phase. 

Although resolution may be successful at a subordinate, the fate of resolution at other sites is still 
unknown. As a precaution against premature termination of the protocol due to failures, each subordinate 
marks its replica with a unique storeid. This ensures that any future comparison involving the replica in 
its current state will trigger resolution again. 

Having each subordinate compute its own compensating operations exploits the parallelism inherent in 
this task. This opportunity would have been lost, had we chosen the alternative strategy of having the 
coordinator compute the compensating operations for each subordinate. But the latter approach would 
have involved less data transfer, since the coordinator would have shipped compensation lists rather than 
the larger merged logs. 

5 2 A . Phase 4: Unlocking 
In the normal case, phase 3 succeeds at all subordinates. The coordinator sends out a new storeid in phase 
4, thus marking all the replicas as equal. The subordinates release their resolution locks, and the 
coordinator returns to the client. 

If the return code to phase 3 from any subordinate indicates conflict, the coordinator executes an 
additional step in the protocol to distribute conflict information to all subordinates. Phase 4 then merely 
consists of releasing resolution locks, and returning control to the client with an error indicating a conflict. 

5.3. Complications 

53.1. Coping with Finite Logs 
Our discussion so far has ignored the fact that log space is finite. Coda keeps log lengths to a minimum 
by discarding, at the earliest opportunity, portions of logs that will never be needed in future resolutions. 
Once an update has been reflected at all replicas, its log entry will become the LCE for any future 
resolutions. Hence older entries can be discarded, resulting in a log with just a single entry. 
Confirmation that an update has been propagated to all replicas is available from two sources. In normal 
operation, the COP2 phase of the update protocol distributes this information. During resolution, the 
coordinator distributes this information in Phase 4. Logs grow only when some replicas are inaccessible, 
as reported by either of these sources. 

What does a server do when a log becomes full? One approach would be to disallow updates to that 
volume until resolution is done. The other approach, used in Coda, is to allow updates to continue by 
overwriting entries at the head of the log. This causes the LCE to be lost, a condition that will be detected 
by the compensation algorithm of any future resolution and reported as a conflict. The Coda strategy 
enhances update availability and provides an easily-understood tradeoff between resource usage and 
usability: the larger a log, the lower the likelihood of having to resort to manual repair. However, it 
would be a simple matter to make the choice between disallowing updates and overwriting log entries a 
volume-specific parameter. 
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53.2. Resolving with Partial VSG 
When resolution proceeds without all VSG members, partitioned updates must be repropagated when other 
members become accessible. To prevent a site from performing the same operation twice, Coda logs 
updates during resolution with the storeid of the original update. The log entry contains the same 
information as the original update's entry to ensure correctness of future resolutions even if the site where 
the original update was performed becomes inaccessible. 

Log entries spooled during resolution do not provide the same guarantee as that provided by entries for 
client initiated updates: if two replicas' logs have the same log entry, the replicas need not have been 
identical at that point Therefore, step 1 of the compensation algorithm that computes the LCE ignores 
log records spooled during resolution. To make these two kinds of entries distinguishable, log entries 
spooled during resolution use special opcodes. 

5.3.3. Manual Repairs and Resolution 
Manual repairs allow the user to perform arbitrary operations at each replica. Once a replica is repaired, 
its log is truncated and a log entry reflecting the repair is spooled. The storeid for this entry will be the 
LCE in future resolutions. If a repair is performed when some VSG members are missing, future 
resolutions triggered by the recovery of missing VSG members will fail because no LCE will be found. 
Hence the user will have to manually repair the object again. Only a repair performed when all VSG 
members are up will restore the ability to perform transparent resolution. 

5.3.4. Cross-Directory Renames 
A rename operation may involve directories far apart in the naming hierarchy. It is necessary to resolve 
both the source and target parents simultaneously because each may be dependent on other partitioned 
renames. To correctly handle these cascaded dependencies, the transitive closure of all directories 
affected by a sequence of renames must be resolved together. 

Analysis of file system traces from our environment shows that less than 3% of all directory updates are 
cross-directory renames. In the light of their relatively rare occurrence, we have chosen not to address 
transparent resolution of cross-directory renames in our current implementatioa But we do guarantee 
detection of such renames, and mark both parents in conflict. The next version of our system will support 
this missing functionality. 

6. Evaluation 
A log-based approach to directory resolution incurs time and space overheads. The time overhead occurs 
mainly during resolution, with logging being an almost negligible contributor in our implementation. The 
space overhead arises from the need to maintain logs at servers. The rest of this section answers the two 
obvious questions that follow from these observations: 

• How well does resolution perform? 

• How fast does the log grow during partition? 
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6.1. Performance of Resolution 

6.1.1. Metric 
A fair estimate of the overhead due to resolution must account for the fact that resolution will take longer 
when there are more partitioned updates to resolve. Hence the metric we use in our evaluation is the ratio 
of two times: resolution time and work time. Resolution time is the elapsed time between detection of a 
partitioned update and return of control to the client after successful resolution. Work time is the sum of 
the elapsed times for performing the original set of partitioned updates. 

Resolution time is perceptible to the first user to access a directory after the end of a network failure that 
resulted in resolvable partitioned updates. The elapsed time for failed resolution is less important, since it 
is swamped by the time for manual resolution. 

An increase in partitioned activity lengthens phases 2 and 3 of the resolution protocol. Phase 2 takes 
longer because larger logs are shipped to the coordinator. Phase 3 takes longer because of an increase in 
the transmission time to ship a larger merged log to the subordinates, and because of an increase in the 
times at the subordinates for computing and applying compensating operations. An increase in the 
number of replicas also increases resolution time because communication overheads are higher, and the 
computing of compensating operations by subordinates takes longer. 

6.1.2. Experiment Design 
To quantify the above effects, we conducted a series of carefully controlled experiments using a synthetic 
benchmark. One instance of the benchmark, referred to as a work unit, consists of 104 directory updates. 
The execution of a work unit proceeds in three steps: 

• creation of 20 new objects, consisting of 14 files, 4 subdirectories, 1 link and 1 symbolic link. 
These numbers approximate the observed composition of typical user directories in our 
environment 

• simulation of editor activity on the newly-created files. This is done by creating, then 
removing, a checkpoint file for each. 

• simulation of C++ compiler activity on the newly-created files. For each such filcfoo.c, a 
file foo.x is created; next, a file/oa.o is created, then renamed to foo.o; finally foo.x is 
removed. 

An experiment consists of first measuring the work time for performing a variable number of work units 
on each of n partitioned replicas of a directory. Then the partitions between the replicas are healed, 
resolution is triggered, and the resolution time is measured. 

We performed two sets of experiments, one involving partitioned work only at one replica, and the other 
involving partitioned work at all replicas. In each set, we examined configurations involving 2, 3 and 4 
replicas. For each configuration, we varied the load from 1 to 10 work units. 

6.1.3. Results 
Table 1 and 2 present the means and standard deviations of work and resolution times observed in three 
trials of each experiment They also indicate the contributions of individual phases to total resolution 
time. The tables indicate that resolution time increases primarily with load, and secondarily with the 
replication factor. 
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Rep Load Work Time 
Resolution Time (seconds) Res Time Rep Load Work Time 

Phase 2 Phase 3 tforFflme 
Factor (seconds) Total Phases 1+4 Phase 2 Phase 3 tforFflme 

2 1 31.39 (1.61) 243 (0.09) 0.18 (0.01) 0.24(0.00) 201 (0.09) 7.74% 

2 63.47 (3.07) 5.05 (0.32) 0.29 (0.02) 0.50 (0.15) 4.26 (0.16) 7.96% 

3 96.24 (299) 8.02(0.50) 0.45 (0.02) 0.68 (0.12) 6.88 (0.54) 8.33% 

5 155.55 (2.70) 13.91 (1.00) 0.96 (0.60) 1.63(0.38) 11.32(0.13) 8.94% 
7 223.81 (1.40) 24.50 (3.96) 1.19 (0.35) 3.67 (222) 19.63 (1.44) 10.95% 
10 320.21 (4.63) 47.37 (4.59) 222(0.22) 5.94 (243) 39.20 (237) 14.79% 

3 1 30.41 (0.22) 283(0.17) 0.24 (0.03) 0.31 (0.03) 228 (0.17) 9.31% 

2 59.82(0.05) 5.23 (0.17) 0.34 (0.02) 0.49 (0.12) 4.39 (0.20) 8.74% 
3 89.84 (0.69) 8.06 (0.28) 0.54 (0.09) 0.68 (0.12) 6.83 (0.34) 8.97% 

5 161.62(260) 15.45 (1.14) 0.77 (0.06) 1.59 (0.49) 13.08 (0.63) 9.56% 

7 227.52 (3.77) 25.20(1.56) 1.27(0.49) 3.05 (1.24) 20.88 (0.16) 11.08% 

10 331.98 (7.00) 50.68 (1.57) 285 (0.42) 8.58 (1.78) 39.25(2.11) 15.27% 

4 1 31.33 (282) 2.93 (0.36) 0.25 (0.06) 0.27 (0.03) 240 (0.32) 9.35% 

2 59.61 (1.37) 5.47 (0.14) 0.34 (0.01) 0.43 (0.00) 4.70 (0.14) 9.18% 
3 90.82 (0.83) 8.18(0.11) 0.54 (0.01) 0.63 (0.01) 7.01 (0.12) 9.01% 

5 171.01 (28.92) 17.92(293) 0.79(0.11) 3.78 (2.37) 13.35 (0.93) 10.48% 

7 264.35 (38.88) 28.04 (217) 1.68(0.19) 3.57(1.78) 2279 (0.80) 10.61% 
10 344.80 (31.19) 51.54 (1.50) 3.78 (0.46) 6.68 (0.99) 41.08(214) 14.95% 

This data was obtained using a Decstation 3100 with 16MB of memory as client, and IBM APC-RTs with 12MB 
of memory as servers communicating over an Ethernet. The numbers presented here are mean values from three 
trials of each experiment. Figures in parentheses are standard deviations. 

Table 1: Resolution Time After Work at One Replica 

Rep Load 
Resolution Time (seconds) Res Time Rep Load Work Time Phase 2 Phase 3 tforferime 

Factor (seconds) Total Phases 1+4 Phase 2 Phase 3 tforferime 

2 1 61.64 (1.18) 5.35 (0.06) 0.27 (0.03) 237 (0.03) 270 (0.08) 8.68% 

2 123.56 (0.48) 8.78 (0.44) 0.59 (0.08) 2.64 (0.07) 5.55 (0.46) 7.11% 

3 183.57 (5.18) 15.55 (1.89) 0.90 (0.21) 3.56 (0.85) 11.08 (1.22) 8.47% 
5 321.16(10.36) 31.32 (0.44) 1.96(0.17) 7.61 (2.79) 21.75 (2.24) 9.75% 

7 437.46 (6.04) 58.85 (1.58) 5.04 (0.55) 15.70(0.35) 38.11 (1.97) 13.45% 

10 594.86 (4.24) 8200 (6.35) 6.38 (1.33) 17.09 (6.72) 58.52 (4.12) 13.78% 

3 1 96.73 (1.87) 8.62(0.59) 0.42(0.02) 2.68 (0.10) 5.52(0.58) 8.91% 

2 188.51 (0.87) 15.20 (0.96) 0.66 (0.01) 3.57 (1.10) 10.97 (0.15) 8.06% 

3 292.87 (3.68) 29.04 (3.42) 1.61 (0.60) 4.92(1.39) 2251 (2.92) 9.92% 
5 478.54 (13.61) 67.74 (281) 2.53 (0.46) 9.19(1.33) 56.02 (3.77) 14.16% 
7 67299 (8.08) 12228 (10.07) 8.87 (1.64) 18.26 (3.73) 95.12(5.34) 18.17% 

10 990.83 (24.28) 260.53 (20.06) 18.55 (5.36) 40.38 (8.81) 201.54(14.89) 26.29% 

4 1 122.32(1.37) 11.14(0.42) 0.53 (0.02) 280 (0.12) 7.81 (0.36) 9.11% 

2 251.61 (1.41) 27.43 (0.57) 1.89 (1.35) 5.81 (1.41) 19.73 (1.15) 10.90% 
3 387.06 (5.13) 54.93 (0.18) 3.92(1.99) 11.09 (0.95) 39.91 (1.22) 14.19% 

5 661.29(7.47) 144.86 (7.80) 9.35 (2.37) 19.69 (5.95) 115.80 (6.51) 21.91% 

This data was obtained from experiments using the same hardware configuration as for Table 1. The numbers 
presented here are the mean values from three trials of each experiment. Figures in parentheses are standard 
deviations. 

Table 2: Resolution Time After Work at All Replicas 

The primary conclusion to be drawn from this data is that a log-based strategy for directory resolution is 
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quite efficient, roughly taking about 10% of the work time. Although the ratio of resolution to work time 
does rise at higher loads and replication factors, it remains below 15% in all but three of the cases. The 
highest overhead of about 26% occurs at a workload of 10 at each of 3 replicas. This corresponds to over 
1000 updates being performed on each of 3 replicas of a directory. 

The tables show that phases 1 and 4 contribute very little to the overall resolution time. Since these 
phases merely do locking and unlocking, the time for them should be independent of load. But, as a 
sanity check in our current implementation, the coordinator collects the replicas to verify equality before 
unlocking in Phase 4. This accounts for the dependence of this phase on load and replication factor in our 
experiments. 

Phase 2 consists of extraction and shipping of logs by subordinates. The time for this is dependent on the 
total lengths of the logs, which is only related to the total amount of work. This is most apparent in Table 
1 where the time for phase 2 increases noticeably with load but hardly varies with increased replication. 
This observation can also be made indirectly from Table 2. For example, the phase 2 time of 3.56 
seconds for a replication factor of 2 and a load of 3 is virtually identical to the time of 3.57 seconds for a 
replication factor of 3 and a load of 2. Similarly, the phase 2 time of 17.09 seconds for a replication 
factor of 2 and a load of 10 comes within the bounds of experimental error to the time of 19.69 seconds 
for a replication factor of 4 and a load of 5. 

Phase 3 is the dominant contributor to the total time for resolution. This is not surprising, since the bulk 
of work for resolution occurs here. This includes the shipping of merged logs, computation of 
compensating operations, and application of these operations. More detailed measurements (not 
presented here) indicate that the last of these is the most significant component of phase 3 time. This 
component can be viewed as the cost of replaying missing updates. 

The effect of performing resolution in parallel at subordinates can be seen by considering two ways of 
performing a total amount of partitioned work, WN. When this work is generated at a single replica, WN 
missing updates must be replayed at each of the other N-l replicas. But when the same work is generated 
by N replicas each performing work W, only W(N-l) missing updates must be replayed at each replica. 
Since N is typically small, and since the replay occurs in parallel at all replicas, the time for phase 3 after 
work at all sites will be lower. If this decrease dominates the increase in time for the rest of the protocol, 
the total resolution time will also be lower. Figure 5 confirms that this is indeed the case. 

6.2. Size of Log 
Since a log grows linearly with work done during partition, any realistic estimate of log size has to be 
derived from empirical data. Our analysis is based on about 4GB of file reference traces obtained over a 
period of 10 weeks from 20 Coda workstations. The usage profile captured in these traces is typical of 
research and educational environments. 

These traces were used as input to a simulation of the logging component of the resolution subsystem. 
The simulator assumes that all activity in a trace occurs while partitioned, and maintains a history of log 
growth at 15-minute intervals for each volume in the system. For each directory update in the trace, the 
simulator increments the corresponding volume's log length by the size of the log record that would have 
been generated by a Coda server. At the end of simulation, the average and peak log growth rates for 
each volume can be obtained from its history. 
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For given amounts of total work, this graph compares the ratio of resolution time to work time for two cases. In 
the first case, work is done only at one site. In the second case, the work is shared equally at all sites. The data 
points in the upper curve are from Table 1. The X coordinates of a point on this curve correspond directly to its 
value in the column labeled "Work Load" in the table. The data points in the lower curve are from Table 2. On 
this curve, the X coordinate of a point is the product of its values in the columns labeled "Rep Factor" and "Work 
Load" in the table. 

Figure 5: Resolving Work Done at One Site versus Work Done at All Sites 

Table 3 shows the distribution of long-term average rate of log growth over all the volumes encountered 
in our traces. This average is computed by dividing the final log size for a volume by the time between 
the first and last updates on it. It is clear from Table 3 that long-term log growth is relatively low, 
averaging about 94 bytes per hour. 

Bytes per Hour Percentage of Volumes 

0 to 100 65.91% 

100 to 200 20.45% 

200 to 300 4.55% 

300 to 400 6.82% 

400 to 500 2.27% 

>500 0.00% 

This data was obtained by trace-based simulation and shows the distribution of long-term average growth rates 
for 44 volumes over a period of 10 weeks. 

Table 3: Observed Distribution of Long-Term Average Log Growth Rates 
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Focusing only on long-term average log growth rate can be misleading, since user activity is often bursty. 
A few hours of intense activity during a partition can generate much longer logs than that predicted by 
Table 3. To estimate the log length induced by peak activity, we examined the statistical distribution of 
hourly log growth rates for all volumes in our simulation. Figure 6 shows this distributioa Over 94% of 
all data points are less than 1KB, and over 99.5% are less than 10KB. The highest value observed was 
141KB, but this occurred only once. 
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80000 100000 120000 140000 160000 

Bytes per Hour 
This histogram shows the distribution of log growth rates for each hour for each volume. Since 44 AFS and Coda 
volumes were traced over a 10 week period, there are nearly 74,000 data points in this histogram. The width of 
each histogram bar is 1KB. Note that the scale on the vertical axis is logarithmic. 

Figure 6: Observed Distribution of Hourly Log Growth 

A worst-case design would have to cope with the highest growth rate during the longest partition. A more 
realistic design would use a log adequate for a large fraction of the anticipated scenarios. Since hourly 
growth is less than 10KB in 99.5% of our data points, and since an hour-long partition could have 
straddled two consecutive hours of peak activity, we infer that a 20KB log will be adequate for most 
hour-long partitions in our environment. More generally, a partition of N hours could have straddled N+l 
consecutive hours of peak activity. Hence a log of 10(N+1) KB would be necessary. If a Coda server 
were to hold 100 volumes (a typical number at AFS installations), the total log space needed on the server 
would be (N+l) MB. 
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7. Status and Future Work 
Today, Coda runs on IBM RTs, Decstation 3100s and 5000s, and 386-based laptops such as the Toshiba 
5200 and IBM PS/2-LX40. A small user community has been using Coda on a daily basis as its primary 
data repository since April 1990. All development work on Coda is done in Coda itself. As of December 
1991 there was nearly 1GB of triply-replicated data in Coda. 

A prototype of the resolution subsystem described in this paper has been operational since May 1991. 
Since RVM was still under development when we began our implementation the resolution logs in the 
prototype exist only in virtual memory. This also simplifies recovering from bugs in the logging code. 
Moving the resolution logs into RVM will not invalidate our performance analysis because only the 
amount of log data spooled during transaction commit will increase, not the number of commits. As a 
result, we expect the work time as well as the resolution time to increase slightly, but the load dependent 
behavior to be unchanged. 

Our immediate plans are to move the resolution logs from virtual memory to RVM. We also plan to 
provide support for transparent resolution of cross-directory renames, as discussed in Section 5.3.4. In 
the longer term, we plan to explore the use of rule-based heuristics for directory resolution. Such 
heuristics can be exploited by sophisticated applications and end users to customize the resolution of 
conflicting partitioned directory updates. 

8. Related Work 
The use of optimistic replication for high availability was explored by a number of researchers in the 
early 1980s, including Garcia-Molina [4], Blaustein [1], and Davidson [2]. Their work is summarized in 
the excellent survey by Davidson et al [3]. Most of this work was done in the context of a distributed 
transactional model, and does not directly apply to Unix file systems. 

Locus [13] was the first distributed file system to use optimistic replication and to recognize that Unix 
semantics could be used for directory resolution. But the proposed ideas were not successfully 
implemented in the original system. More recently, Guy [6] has developed an implementation of 
directory resolution in the context of Ficus, a descendant of Locus. 

The Coda approach of logging directory updates is conceptually simpler than the Ficus approach of 
inferring these updates from the final states of replicas. The two approaches also differ in their 
implications for resolution performance. In Coda, performance depends only on the amount of 
partitioned activity. In Ficus, it also depends on the original size of the directory. 

Like Coda, Ficus preserves information about deleted objects in order to detect remove/update conflicts. 
But the systems differ markedly in their approach to reclaiming space pertaining to these objects. Ficus 
uses a complex distributed garbage collection algorithm whose scalability is open to question. Coda, in 
contrast, uses the much simpler strategy of allowing each site to unilaterally reclaim resources via log 
wrap-around. This provides a clearly-defined trade-off between usability and resource usage, one we 
believe is essential in any practical system. Finally, we believe that the presence of an explicit log will 
make it easier to separate policy and mechanism in resolution, thereby simplifying the implementation of 
heuristic-based resolution. 
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9. Conclusion 
Although conceptually simple, log-based directory resolution has turned out to be more complex to 
implement than we originally expected. One source of complexity is the need to consider many 
pathological situations during the computing of compensating operations. Another source is the need to 
ensure that all steps of the resolution protocol are robust in the face of failures. We have achieved this by 
making the protocol idempotent. An alternative strategy would have been to use distributed transactions. 
However, that approach would have required us to run the risk of blocking in case of coordinator failure. 
It would have also been counter to Coda's general philosophy of using optimistic strategies whenever 
possible, to improve transparency from the user's perspective. 

Our experience with log-based resolution has been highly positive. Our initial concerns about excessive 
space usage for logging have proved baseless. The speed of resolution is excellent, and is rarely 
noticeable in normal operation. Overall, we believe that a log-based strategy is indeed appropriate for 
directory resolution in a distributed file system that supports optimistic replication. 
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