
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Log-Based Directory Resolution
in the Coda File System

Puneet Kumar
M. Satyanarayanan

December 14,1991
CMU-CS-91-164 ?

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Optimistic replication is an important technique for achieving high availability
in distributed file systems. A key problem in optimistic replication is using
semantic knowledge of objects to resolve concurrent updates from multiple
partitions. In this paper, we describe how the Coda File System resolves
partitioned updates to directories. The central result of our work is that logging
of updates is a simple yet efficient and powerful technique for directory
resolution in Unix file systems. Measurements from our implementation show
that the time for resolution is typically within 10% of the time for performing
the original set of partitioned updates. Analysis based on file traces from our
environment indicate that a log size of 2 MB per hour of partition should be
ample for typical servers.

This work was sponsored by the Avionics Laboratory, Wright Research and Development Center, Aeronautical Systems Division
(AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597,
the National Science Foundation PYI Award No. CCR 8657907 and NSF Grant No. ECD 8907068, an IBM Corporation
Research Initiation Grant, a Digital Equipment Corporation External Research Project Grant, a Bellcore Information Networking
Research Grant and the General Electric Company.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of DARPA, the NSF, the IBM Corporation, the Digital Equipment Corporation,
Bellcore, General Electric Company, or the U.S. government.

5 1 0 . 7 8 0 8

j •

Keywords: Optimistic replication, conflicts, network partition, directory resolution, Unix file systems,
performance, logging, RVM, file reference traces.

1

1. Introduction
Optimistic replication is an effective technique for attaining high availability in distributed file
systems [3]. The term "optimistic" refers to the fact that concurrent updates are allowed in multiple
network partitions. A pessimistic scheme, in contrast, allows updates in atmost one partition. An
optimistic strategy provides higher data availability but cannot guarantee data consistency across
partitions. Therefore optimistic replication is preferable when closely-spaced sequential write-sharing is
rare, and when coping with it is less onerous than being denied update access during network failures.
There is substantial evidence to suggest that this combination of circumstances is often present in
distributed Unix1 file systems [7].

A key problem in optimistic replication is detecting when an object has been updated concurrently in
multiple partitions, and determining whether those updates can be transparently merged without violating
semantic constraints. Concurrent updates that can be merged are called benign. Other updates are called
conflicting. Without semantic knowledge all concurrent partitioned updates to an object must be treated
as conflicting, and merged manually by the user. Manual resolution is undesirable because it reduces the
overall usability of the system.

An extremely important object, with known semantics, in Unix file systems is a directory. We refer to
the process of examining replicas of a directory, deducing the set of partitioned updates and merging them
using Unix semantics as directory resolution. It has two important side-effects. First, benign updates are
propagated to all replicas, thus making them identical. Second, directories with conflicting updates are
marked unusable and preserved for future manual repair.

In this paper we describe how the Coda File System [10,11] exploits Unix directory semantics to
effectively support optimistic replication. The central result of our work is that logging of directory
updates is a simple yet efficient and powerful technique for directory resolution. An implementation of
directory resolution is complete, and is used on a daily basis by a small user community. Measurements
from our implementation show that the time for resolution is approximately 10% of the time for
performing the original set of partitioned updates. Analysis based on file traces from our environment
indicate that a log size of 2 MB per hour of partition should be ample for typical servers.

2. Coda File System
Coda is designed for a typical research and development environment and is intended for applications like
electronic mail, bulletin boards, document preparation and program development It is not intended to be
used for applications like databases that exhibit high degrees of fine-grain write-sharing. Coda consists of
a large collection of untrusted Unix clients and a much smaller number of trusted Unix file servers. Each
client has a local disk and can communicate with the servers over a high bandwidth network. At certain
times, a client may be temporarily unable to communicate with some or all of the servers due to a server
or network failure.

Clients view Coda as a single, location-transparent shared Unix file system. The Coda namespace is
mapped to individual file servers at the granularity of subtrees called volumes. At each client, a cache
manager (Venus) dynamically obtains and caches volume mappings.

~ University Libraries
Unix is a trademark of AT&T. C a r n e g j e M e | | o n University

Pittsburgh, Pennsylvania 15213

2

Coda uses two distinct, but complementary, mechanisms to achieve high availability. The first
mechanism, server replication, allows volumes to have read-write replicas at more than one server. This
reduces the probability of an object becoming unavailable due to failures. The second mechanism,
disconnected operation, takes effect when no server is accessible. While disconnected, Venus services
file requests by relying solely on the contents of its cache. When disconnection ends, Venus propagates
modifications and reverts to server replication.

2.1. Replica Control Algorithm
The set of replication sites for a volume is its volume storage group (VSG). The subset of a VSG that is
currently accessible is a client's accessible VSG (AVSG). File system requests are serviced by Venus
from its cache. If the cache does not contain the latest copy of an object Venus contacts the AVSG. The
protocol for accessing objects from the servers is read-status-all-data-one I write-all. Since this protocol
has been described in detail earlier [10], we only present a summary here

Read accesses return the latest accessible copy of an object. To service a cache miss, Venus nominates
one server from the object's AVSG as the preferred server and obtains both data and status information
from i t In parallel it obtains status information from other AVSG members. The system call that caused
the cache miss returns successfully only if the version information from all AVSG sites is identical.
Otherwise the object needs resolution. Validity of the cached objects is maintained by callbacks.

The update protocol, which is executed when a directory is modified or a file is closed after being written,
propagates changes in parallel to all accessible replicas. It consists of two phases, COPl and COP2, where
COP stands for Coda optimistic protocol. COPl performs the semantic part of the operation at each AVSG
member, such as transferring file contents, making a directory entry, or changing an access list. COP2
distributes a data structure called the update set, which summarizes the client's knowledge of who
performed the COPl operation successfully. The update set is used to maintain the version information
used during resolution.

2.2. Directory Updates
Coda directories consist of a series of name-identifier pairs that map names to specific objects in the
system. Coda supports the Unix interface for creating, removing and changing directory entries as well as
modifying individual objects. Directory entries can be inserted via the creat, link or mkdir system
calls, removed via the unlink or rmdir system calls, and changed via the rename system call.
Unlike Unix, Coda allows hard links only within a directory. Consequently, the Coda naming hierarchy
is constrained to be a strict tree rather than an acyclic graph.

Directory updates are independent of one another as long as they do not reference the same object A set
of independent updates can be executed in any order resulting in the same final directory state. For
example, operations "mkdir f oo" and "mkdir bar" in a directory baz commute with one another
and result in the directory baz containing two new names f oo and bar. By definition, independent
directory updates are benign since we are only interested in write-write conflicts.

3

Directory updates that are not independent are also benign unless they correspond to one of the following
situations:

• NamelName conflicts: Two different objects with the same name are inserted in a directory in
different partitions.

• Remove/Update conflicts: An entry is removed from a directory in one partition but the
corresponding object or its descendants are updated in another partition.

• Update/Update conflicts: A directory's meta data, such as its access list, is updated in two or
more partitions.

• Rename!Rename conflicts: An object is moved into different directories in two partitions.

The first three cases were first identified by Guy in the context of the Locus file system [5]. The fourth
category does not exist in Guy's classification because his model does not restrict the naming hierarchy to
be a tree.

3. Overview of Directory Resolution
Partitioned updates on an object are detected the first time it is accessed after two or more partitions
reconnect. If Venus detects a version mismatch amongst the replicas while servicing a cache miss, it
alerts the preferred server to perform resolution and pauses. If resolution is successful, Venus retries
servicing the cache miss. In this case, resolution is completely transparent to applications and users. The
only noticeable effect is a slight delay in the servicing of the system call. If resolution is unsuccessful,
Venus returns an error as the result of the system call that generated the cache miss.

Directory resolution is performed entirely on servers, with clients being responsible only for its activation.
This dichotomy is crucial to meeting Coda's goal of scalability without compromising security. Relying
on clients to detect partitioned updates eliminates the need for elaborate machinery on servers to keep
track of the state of connectivity of other servers. Such machinery has to be present on clients anyway to
guarantee coherence. This is consistent with our strategy of enhancing scalability by using client
resources rather than server resources wherever possible [12].

A logical extension of this strategy would make clients rather than servers perform resolution.
Unfortunately, this would compromise security because the process of resolution may require
examination and modification of regions of the file system for which the user at the client performing the
resolution has no access privileges. Our assumption that a client is only as trustworthy as its user requires
us to perform such operations on servers.

Coda performs resolution lazily: although there may be many partitioned updates in a volume, the system
only resolves those objects needed to satisfy the triggering system call. An aggressive approach to
resolution would, in contrast, strive to eliminate all unresolved partitioned updates as soon as partitions
reconnect. Our strategy minimizes the latency of systems calls that trigger resolution. It also reduces the
peak demands made on servers immediately after recovery from a crash or network partition. Its main
drawback is that unresolved partitioned updates may persist until a further crash or partition, thus
increasing the chances of stale data being used or a conflicting update being made. A compromise would
be to perform resolution lazily when triggered by a client, but to conduct aggressive resolution in the
background during periods of low server load. Our usage experience so far with Coda has not indicated
the need for such a hybrid policy.

4

The resolution subsystem is responsible for classifying partitioned updates, propagating benign updates,
and preserving evidence from conflicting updates. To perform this function, the subsystem maintains
data structures at each server and executes a resolution protocol involving the AVSG of the object being
resolved. We describe the design of the data structures, their use during resolution and the resolution
protocol in the following sections.

4. The Resolution Log
Every replica of a volume in Coda is associated with a data structure known as its resolution log.
Conceptually, a resolution log contains the entire list of directory mutating operations on a replica since
its creation. In practice, of course, logs are of finite length and only the tail is preserved. The size of the
log is specified when creating a volume, but can be later adjusted by a system administrator.

4.1. Log Storage
Resolution requires log modifications to be made in a fault-tolerant manner. Each modification should be
permanent as well as atomic with respect to the directory update it reflects. We achieve this by placing
both the resolution log and directory contents in recoverable virtual memory and modifying them within
the same transaction. This is implemented using a lightweight transactional package called RVM [8].

RVM is a Unix library that supports local, non-nested transactions on data structures mapped into a
process' virtual memory. It provides the basic transactional properties of atomicity and permanence by
using a NO-UNDO/REDO write-ahead value log that records committed updates to recoverable virtual
memory. Periodically, the modifications represented by the log records are applied to the committed
image of virtual memory on disk to reclaim space used by those records. By placing the resolution log in
RVM, we combine the well-known strengths of operation logging and value logging.

Our decision to associate resolution logs with volumes was motivated by a number of considerations.
First, a per-volume log achieves a reasonable balance between resource usage and efficiency. A single
log per server would have achieved better utilization of RVM, but would have given us no control over the
usage of RVM by individual users. At the other extreme, a per-directory log would have been more
efficient since irrelevant entries would not have to be examined during resolution. But that approach
would have resulted in much greater internal fragmentation of RVM. A second consideration is that a
per-volume log is consistent with Coda's policy of associating disk quotas with volumes. A final
consideration is that the operands of system calls in Coda may span directories but not a volume
boundary. Consequently, a volume is the smallest encapsulating unit whose log is guaranteed to contain
all the information needed to resolve an update.

4.2. Log Format
The organization of the resolution log meets three requirements. First, it makes efficient use of log
storage. Second, it supports efficient recording of updates during normal operation, as well as efficient
traversal of log entries during resolution. Third, it contains all the information needed to perform
resolution.
The first two requirements are met by organizing the log physically on a per-volume basis, but logically

5

on a per-directory basis. The log for a directory is realized as a doubly-linked chain of log entries
embedded in the volume log. Recording a directory update consists of finding a free entry in the volume
log, linking it to the end of the directory's log, and filling in the fields of the entry. During resolution, it
is usually sufficient to examine the log entries of the directory being resolved. Only on rare occasions is
it necessary to examine the logs of other directories.

To meet the third requirement, each log entry has to contain the opcode of the corresponding system call,
names of new Coda objects created by the call, and the low-level unique identifiers (called fids) of all
Coda objects created, deleted or modified by the call. In addition each entry contains a storeid, which is a
client-generated tag that uniquely identifies an update in Coda. Figure 1 shows the log entry for a simple
directory operation in Coda such as file creation.
typedef struct struct create_log

{
unsigned serverid; common_log cl; /* prefix*/
ViceStoreld storeid; /* of this update *l char *name; /* of new child */
unsigned opcode; /* of this mutation*/ Vnodeld cvnode; /* fid of new child */
Vnodeld dvnode; /* fid of this directory */ };
long nextindex; /* directory log link*/ , , v ̂ . r ^ .

long previndex; i* direct*?, log link •/ (b) Entry for File Creation
}common_log;

(a) Prefix of Every Entry

Figure 1: A Simple Log Entry

Log entries for deletions are more complex. They contain the state of the object when deleted to
unambiguously detect remove!update conflicts during resolution. For a deleted file, the final state is
encoded in its Coda version vector [10]. For a deleted directory, this information consists of a pointer to
its resolution log, as shown in Figure 2a.

The most complex log entry, shown in Figure 2b, corresponds to the rename operation. Such an entry is
created in each of the logs of the two directories affected by the operation. Since a rename may delete
an existing target, the log entry contains sufficient information to also detect any ensuing remove/update
conflicts.

5. The Resolution Algorithm
Resolution uses the log from each replica to deduce and propagate the set of partitioned updates to all
replicas. For this purpose, each replica's log is made available to every member of the AVSG. In Section
5.1, we focus on the actions at a single server. Next, in Section 5.2, we describe how resolution is
coordinated among multiple servers. Finally, in Section 5.3, we identify a number of complications that
can arise in resolution and show how they can be handled.

5.1. Compensation at One Site
The compensation algorithm is executed at each AVSG member after that server has received the log of
every other member of the AVSG. For the purpose of this discussion, the server at which the algorithm is
executing is called the local server, all other AVSG members are called remote servers. The goal of the
compensation algorithm is to use the logs of all replicas to compute the set of partitioned updates missed
by the local server and to apply a sequence of updates to compensate for the missed updates. Detection of

6

struct rmdir_log
{
common_log cl;
char *name;
Vnodeld cvnode;
int head;
int count;
ViceStoreld csid;

struct rename_log
{

/* prefix *!
/* ofdeleted child*/
I* fid ofdeleted child*!
I* pointer to deleted child s log *!
!* length of deleted child s log*!
I* storeid of deleted child *!

cl;
srctgt;

!* prefix*!
I* was I source or target1 s parent?*!

} ;
(a) Entry for Directory Deletion

common_log
unsigned
struct

{/* info about source *!
char *oldname;
Vnodeld cvnode;

} rename__src;
Vnodeld OtherDirV; !* fid of other parent *!
struct

{/* info about target *!
char *newname;
int t gt exi s t ed; /* was an old target deleted? *!
Vnodeld TgtVnode; /* fid of old target *l
union

{/* info about old deleted target *!
ViceVersVec TgtGhostW; I* if it was a file*!
struct

{!*ifit was a directory *!
int head;
int count;
} TgtGhostLog;

} TgtGhost;
} rename__tgt;

} ;

(b) Entry for Rename

Figure 2: More Complex Log Entries

conflicts, if any, is a side effect of the algorithm. The algorithm proceeds in three steps as shown in
Figure 3.

In the first step, the set of all partitioned updates is deduced. This is done by scanning each log
backwards starting from the last entry and finding the most recent entry that exists in all logs. This is
called the latest common entry (LCE), and represents the most recent point when all the replicas were
identical. Resolution relies on the invariant that entries in each log after the LCE correspond to exactly
the set of partitioned updates. This invariant follows from two observations. First, if entries with the
same storeid are found in the logs of a set of replicas, it implies that these replicas successfully
participated in the same update. Second, the Coda update protocol guarantees that updates succeed only
at replicas that are already identical. Entries prior to the LCE are not used and can be discarded for the
subsequent steps of this algorithm.

In the second step, the set of updates missed by the local server are deduced from the set of all partitioned
updates. The partitioned updates from each replica's log are merged and the duplicate entries removed.
Then the log entries corresponding to partitioned updates already performed at the local server are
removed. Due to dependencies between log entries from one server, the merge must maintain their order.
For example, the entry for rmdir f oo must follow the entry for mkdir f oo because these operations
do not commute. But log entries from different servers can be merged in any order.

In the third step the updates missed by the local server are executed. These updates modify permanent
data structures in RVM and are all performed within a single transaction. If a serious failure such as
running out of disk space occurs during the transaction, the entire step is aborted and the algorithm fails.
Updates that invert each others' effects are not executed at all. Before executing each update, the server
ensures that the resulting state will not violate any semantic invariant If this is not the case, it marks the

7

Sitel Site 2 Site 3
(Remote) (Locai) (Remote)

(a) Step 1: Compute LCE

(b) Step 2: Discard useless entries and merge logs (c) Step 3: Perform operations - Final log state
This figure shows the steps of the compensation algorithm. The algorithm is being executed at site 2 and the
directory is replicated at three servers site 1, site 2 and site 3. The shading is different for updates in different
partitions. The figures shows (a) the logs made available to site 2, (b) how the compensating operations are
calculated and (c) the log at site 2 just after it executes the compensating operations.

Figure 3: Steps of the Compensation Algorithm

object that was to be modified in conflict. As each update is performed, a log record reflecting this
mutation is spooled to the resolution log. Once the entire list of updates has been applied, the
encapsulating transaction commits and the compensation algorithm at this site is complete.

5.2. The Resolution Protocol
In this section we describe how resolution is coordinated between multiple servers. The resolution
protocol is coordinator-driven, with one AVSG site acting as coordinator and the others acting as
subordinates. The resolution protocol proceeds in four phases, as shown in Figure 4. To improve
performance, the coordinator uses a parallel RPC mechanism [9] to communicate with subordinates.

The protocol serves two purposes. First, it distributes resolution logs to all AVSG sites so that each can
execute the compensation algorithm described earlier. Second, it distributes the final result of resolution
to all AVSG sites. Prior to the execution of the protocol, some of the participating replicas may differ from
others. At the end of the protocol, either all these replicas are identical and ready for immediate use, or
have been marked in conflict and are unavailable until manually repaired.

Our description below describes the events in the absence of failures. If a subordinate fails, the
coordinator times out and excludes it from subsequent phases of the protocol. If the coordinator fails, the
client times out and restarts the protocol, nominating another coordinator. In all cases, the atomicity of
actions at each site is guaranteed by RVM.

8

Phase 1 Phase 2 Phase 3

. . , Collect . Distr. Log

hInvoke I L o c k & &
lesolutiorii l - Ü W I M e r g e

 1 Compensate

This figure shows the sequence of RPCs during resolution. The client V invokes resolution by nominating server
SI as coordinator. The four phases of the protocol are executed at three subordinate servers SI, S2 and S3. The
node labeled SI is shaded when the server is acting as coordinator and unshaded when it is acting as subordinate.
If a conflict is detected in phase 3, it is distributed via an extra RPC before phase 4.

Figure 4: Phases of the Resolution Protocol

Phase 4
. Return

- Unlock 1—From
Resolution

5.2.1. Phase 1: Locking
Resolution begins with the coordinator requesting each VSG site to lock its replica of the volume
containing the directory being resolved. The sites that respond to this request become the subordinates of
the resolution protocol; other sites are ignored in the rest of the protocol. All responding sites must
indicate successful lock acquisition; otherwise the protocol is aborted and an error code returned to the
triggering client.

A resolution lock excludes all other mutations on a replica, including those from normal updates, manual
repairs or any other instances of directory resolution in that volume. But non-mutating operations such as
reading a file or listing a directory in the volume are permitted. Although locking at finer granularity
would improve concurrency, it would be more complex to implement. Our experience so far suggests
that this complexity is not warranted.

The resolution lock is held for the entire duration of the protocol, and times out in the event of a
coordinator crash or network failure. The value of this timeout has to be greater than the longest expected
resolution time, and is set conservatively to 10 minutes in our implementation.

5.2.2. Phase 2: Log Collection and Merging
In this phase, the log entries needed for resolution are collected by the coordinator. Each subordinate first
extracts the log of the directory being resolved from its volume log. It then scans the extracted log,
composes a list of other objects whose logs might also be needed, and extracts those logs recursively. For
example, if a subtree is deleted during a partition, the logs of all the directories in the subtree are needed
to resolve its parent. The coordinator merges the logs received from all the subordinates into a linear data
structure that preserves the identification of each log.

9

5.2.3. Phase 3: Log Distribution and Compensation
This phase begins with the coordinator sending the merged logs to subordinates. At this point, each
subordinate has logs from every accessible replica, and can perform the compensation algorithm
described in Section 5.1. Each subordinate returns a list of conflicts, if any, that arose during this phase.

Although resolution may be successful at a subordinate, the fate of resolution at other sites is still
unknown. As a precaution against premature termination of the protocol due to failures, each subordinate
marks its replica with a unique storeid. This ensures that any future comparison involving the replica in
its current state will trigger resolution again.

Having each subordinate compute its own compensating operations exploits the parallelism inherent in
this task. This opportunity would have been lost, had we chosen the alternative strategy of having the
coordinator compute the compensating operations for each subordinate. But the latter approach would
have involved less data transfer, since the coordinator would have shipped compensation lists rather than
the larger merged logs.

5 2 A . Phase 4: Unlocking
In the normal case, phase 3 succeeds at all subordinates. The coordinator sends out a new storeid in phase
4, thus marking all the replicas as equal. The subordinates release their resolution locks, and the
coordinator returns to the client.

If the return code to phase 3 from any subordinate indicates conflict, the coordinator executes an
additional step in the protocol to distribute conflict information to all subordinates. Phase 4 then merely
consists of releasing resolution locks, and returning control to the client with an error indicating a conflict.

5.3. Complications

53.1. Coping with Finite Logs
Our discussion so far has ignored the fact that log space is finite. Coda keeps log lengths to a minimum
by discarding, at the earliest opportunity, portions of logs that will never be needed in future resolutions.
Once an update has been reflected at all replicas, its log entry will become the LCE for any future
resolutions. Hence older entries can be discarded, resulting in a log with just a single entry.
Confirmation that an update has been propagated to all replicas is available from two sources. In normal
operation, the COP2 phase of the update protocol distributes this information. During resolution, the
coordinator distributes this information in Phase 4. Logs grow only when some replicas are inaccessible,
as reported by either of these sources.

What does a server do when a log becomes full? One approach would be to disallow updates to that
volume until resolution is done. The other approach, used in Coda, is to allow updates to continue by
overwriting entries at the head of the log. This causes the LCE to be lost, a condition that will be detected
by the compensation algorithm of any future resolution and reported as a conflict. The Coda strategy
enhances update availability and provides an easily-understood tradeoff between resource usage and
usability: the larger a log, the lower the likelihood of having to resort to manual repair. However, it
would be a simple matter to make the choice between disallowing updates and overwriting log entries a
volume-specific parameter.

10

53.2. Resolving with Partial VSG
When resolution proceeds without all VSG members, partitioned updates must be repropagated when other
members become accessible. To prevent a site from performing the same operation twice, Coda logs
updates during resolution with the storeid of the original update. The log entry contains the same
information as the original update's entry to ensure correctness of future resolutions even if the site where
the original update was performed becomes inaccessible.

Log entries spooled during resolution do not provide the same guarantee as that provided by entries for
client initiated updates: if two replicas' logs have the same log entry, the replicas need not have been
identical at that point Therefore, step 1 of the compensation algorithm that computes the LCE ignores
log records spooled during resolution. To make these two kinds of entries distinguishable, log entries
spooled during resolution use special opcodes.

5.3.3. Manual Repairs and Resolution
Manual repairs allow the user to perform arbitrary operations at each replica. Once a replica is repaired,
its log is truncated and a log entry reflecting the repair is spooled. The storeid for this entry will be the
LCE in future resolutions. If a repair is performed when some VSG members are missing, future
resolutions triggered by the recovery of missing VSG members will fail because no LCE will be found.
Hence the user will have to manually repair the object again. Only a repair performed when all VSG
members are up will restore the ability to perform transparent resolution.

5.3.4. Cross-Directory Renames
A rename operation may involve directories far apart in the naming hierarchy. It is necessary to resolve
both the source and target parents simultaneously because each may be dependent on other partitioned
renames. To correctly handle these cascaded dependencies, the transitive closure of all directories
affected by a sequence of renames must be resolved together.

Analysis of file system traces from our environment shows that less than 3% of all directory updates are
cross-directory renames. In the light of their relatively rare occurrence, we have chosen not to address
transparent resolution of cross-directory renames in our current implementatioa But we do guarantee
detection of such renames, and mark both parents in conflict. The next version of our system will support
this missing functionality.

6. Evaluation
A log-based approach to directory resolution incurs time and space overheads. The time overhead occurs
mainly during resolution, with logging being an almost negligible contributor in our implementation. The
space overhead arises from the need to maintain logs at servers. The rest of this section answers the two
obvious questions that follow from these observations:

• How well does resolution perform?

• How fast does the log grow during partition?

11

6.1. Performance of Resolution

6.1.1. Metric
A fair estimate of the overhead due to resolution must account for the fact that resolution will take longer
when there are more partitioned updates to resolve. Hence the metric we use in our evaluation is the ratio
of two times: resolution time and work time. Resolution time is the elapsed time between detection of a
partitioned update and return of control to the client after successful resolution. Work time is the sum of
the elapsed times for performing the original set of partitioned updates.

Resolution time is perceptible to the first user to access a directory after the end of a network failure that
resulted in resolvable partitioned updates. The elapsed time for failed resolution is less important, since it
is swamped by the time for manual resolution.

An increase in partitioned activity lengthens phases 2 and 3 of the resolution protocol. Phase 2 takes
longer because larger logs are shipped to the coordinator. Phase 3 takes longer because of an increase in
the transmission time to ship a larger merged log to the subordinates, and because of an increase in the
times at the subordinates for computing and applying compensating operations. An increase in the
number of replicas also increases resolution time because communication overheads are higher, and the
computing of compensating operations by subordinates takes longer.

6.1.2. Experiment Design
To quantify the above effects, we conducted a series of carefully controlled experiments using a synthetic
benchmark. One instance of the benchmark, referred to as a work unit, consists of 104 directory updates.
The execution of a work unit proceeds in three steps:

• creation of 20 new objects, consisting of 14 files, 4 subdirectories, 1 link and 1 symbolic link.
These numbers approximate the observed composition of typical user directories in our
environment

• simulation of editor activity on the newly-created files. This is done by creating, then
removing, a checkpoint file for each.

• simulation of C++ compiler activity on the newly-created files. For each such filcfoo.c, a
file foo.x is created; next, a file/oa.o is created, then renamed to foo.o; finally foo.x is
removed.

An experiment consists of first measuring the work time for performing a variable number of work units
on each of n partitioned replicas of a directory. Then the partitions between the replicas are healed,
resolution is triggered, and the resolution time is measured.

We performed two sets of experiments, one involving partitioned work only at one replica, and the other
involving partitioned work at all replicas. In each set, we examined configurations involving 2, 3 and 4
replicas. For each configuration, we varied the load from 1 to 10 work units.

6.1.3. Results
Table 1 and 2 present the means and standard deviations of work and resolution times observed in three
trials of each experiment They also indicate the contributions of individual phases to total resolution
time. The tables indicate that resolution time increases primarily with load, and secondarily with the
replication factor.

12

Rep Load Work Time
Resolution Time (seconds) Res Time Rep Load Work Time

Phase 2 Phase 3 tforFflme
Factor (seconds) Total Phases 1+4 Phase 2 Phase 3 tforFflme

2 1 31.39 (1.61) 243 (0.09) 0.18 (0.01) 0.24(0.00) 201 (0.09) 7.74%

2 63.47 (3.07) 5.05 (0.32) 0.29 (0.02) 0.50 (0.15) 4.26 (0.16) 7.96%

3 96.24 (299) 8.02(0.50) 0.45 (0.02) 0.68 (0.12) 6.88 (0.54) 8.33%

5 155.55 (2.70) 13.91 (1.00) 0.96 (0.60) 1.63(0.38) 11.32(0.13) 8.94%
7 223.81 (1.40) 24.50 (3.96) 1.19 (0.35) 3.67 (222) 19.63 (1.44) 10.95%
10 320.21 (4.63) 47.37 (4.59) 222(0.22) 5.94 (243) 39.20 (237) 14.79%

3 1 30.41 (0.22) 283(0.17) 0.24 (0.03) 0.31 (0.03) 228 (0.17) 9.31%

2 59.82(0.05) 5.23 (0.17) 0.34 (0.02) 0.49 (0.12) 4.39 (0.20) 8.74%
3 89.84 (0.69) 8.06 (0.28) 0.54 (0.09) 0.68 (0.12) 6.83 (0.34) 8.97%

5 161.62(260) 15.45 (1.14) 0.77 (0.06) 1.59 (0.49) 13.08 (0.63) 9.56%

7 227.52 (3.77) 25.20(1.56) 1.27(0.49) 3.05 (1.24) 20.88 (0.16) 11.08%

10 331.98 (7.00) 50.68 (1.57) 285 (0.42) 8.58 (1.78) 39.25(2.11) 15.27%

4 1 31.33 (282) 2.93 (0.36) 0.25 (0.06) 0.27 (0.03) 240 (0.32) 9.35%

2 59.61 (1.37) 5.47 (0.14) 0.34 (0.01) 0.43 (0.00) 4.70 (0.14) 9.18%
3 90.82 (0.83) 8.18(0.11) 0.54 (0.01) 0.63 (0.01) 7.01 (0.12) 9.01%

5 171.01 (28.92) 17.92(293) 0.79(0.11) 3.78 (2.37) 13.35 (0.93) 10.48%

7 264.35 (38.88) 28.04 (217) 1.68(0.19) 3.57(1.78) 2279 (0.80) 10.61%
10 344.80 (31.19) 51.54 (1.50) 3.78 (0.46) 6.68 (0.99) 41.08(214) 14.95%

This data was obtained using a Decstation 3100 with 16MB of memory as client, and IBM APC-RTs with 12MB
of memory as servers communicating over an Ethernet. The numbers presented here are mean values from three
trials of each experiment. Figures in parentheses are standard deviations.

Table 1: Resolution Time After Work at One Replica

Rep Load
Resolution Time (seconds) Res Time Rep Load Work Time Phase 2 Phase 3 tforferime

Factor (seconds) Total Phases 1+4 Phase 2 Phase 3 tforferime

2 1 61.64 (1.18) 5.35 (0.06) 0.27 (0.03) 237 (0.03) 270 (0.08) 8.68%

2 123.56 (0.48) 8.78 (0.44) 0.59 (0.08) 2.64 (0.07) 5.55 (0.46) 7.11%

3 183.57 (5.18) 15.55 (1.89) 0.90 (0.21) 3.56 (0.85) 11.08 (1.22) 8.47%
5 321.16(10.36) 31.32 (0.44) 1.96(0.17) 7.61 (2.79) 21.75 (2.24) 9.75%

7 437.46 (6.04) 58.85 (1.58) 5.04 (0.55) 15.70(0.35) 38.11 (1.97) 13.45%

10 594.86 (4.24) 8200 (6.35) 6.38 (1.33) 17.09 (6.72) 58.52 (4.12) 13.78%

3 1 96.73 (1.87) 8.62(0.59) 0.42(0.02) 2.68 (0.10) 5.52(0.58) 8.91%

2 188.51 (0.87) 15.20 (0.96) 0.66 (0.01) 3.57 (1.10) 10.97 (0.15) 8.06%

3 292.87 (3.68) 29.04 (3.42) 1.61 (0.60) 4.92(1.39) 2251 (2.92) 9.92%
5 478.54 (13.61) 67.74 (281) 2.53 (0.46) 9.19(1.33) 56.02 (3.77) 14.16%
7 67299 (8.08) 12228 (10.07) 8.87 (1.64) 18.26 (3.73) 95.12(5.34) 18.17%

10 990.83 (24.28) 260.53 (20.06) 18.55 (5.36) 40.38 (8.81) 201.54(14.89) 26.29%

4 1 122.32(1.37) 11.14(0.42) 0.53 (0.02) 280 (0.12) 7.81 (0.36) 9.11%

2 251.61 (1.41) 27.43 (0.57) 1.89 (1.35) 5.81 (1.41) 19.73 (1.15) 10.90%
3 387.06 (5.13) 54.93 (0.18) 3.92(1.99) 11.09 (0.95) 39.91 (1.22) 14.19%

5 661.29(7.47) 144.86 (7.80) 9.35 (2.37) 19.69 (5.95) 115.80 (6.51) 21.91%

This data was obtained from experiments using the same hardware configuration as for Table 1. The numbers
presented here are the mean values from three trials of each experiment. Figures in parentheses are standard
deviations.

Table 2: Resolution Time After Work at All Replicas

The primary conclusion to be drawn from this data is that a log-based strategy for directory resolution is

13

quite efficient, roughly taking about 10% of the work time. Although the ratio of resolution to work time
does rise at higher loads and replication factors, it remains below 15% in all but three of the cases. The
highest overhead of about 26% occurs at a workload of 10 at each of 3 replicas. This corresponds to over
1000 updates being performed on each of 3 replicas of a directory.

The tables show that phases 1 and 4 contribute very little to the overall resolution time. Since these
phases merely do locking and unlocking, the time for them should be independent of load. But, as a
sanity check in our current implementation, the coordinator collects the replicas to verify equality before
unlocking in Phase 4. This accounts for the dependence of this phase on load and replication factor in our
experiments.

Phase 2 consists of extraction and shipping of logs by subordinates. The time for this is dependent on the
total lengths of the logs, which is only related to the total amount of work. This is most apparent in Table
1 where the time for phase 2 increases noticeably with load but hardly varies with increased replication.
This observation can also be made indirectly from Table 2. For example, the phase 2 time of 3.56
seconds for a replication factor of 2 and a load of 3 is virtually identical to the time of 3.57 seconds for a
replication factor of 3 and a load of 2. Similarly, the phase 2 time of 17.09 seconds for a replication
factor of 2 and a load of 10 comes within the bounds of experimental error to the time of 19.69 seconds
for a replication factor of 4 and a load of 5.

Phase 3 is the dominant contributor to the total time for resolution. This is not surprising, since the bulk
of work for resolution occurs here. This includes the shipping of merged logs, computation of
compensating operations, and application of these operations. More detailed measurements (not
presented here) indicate that the last of these is the most significant component of phase 3 time. This
component can be viewed as the cost of replaying missing updates.

The effect of performing resolution in parallel at subordinates can be seen by considering two ways of
performing a total amount of partitioned work, WN. When this work is generated at a single replica, WN
missing updates must be replayed at each of the other N-l replicas. But when the same work is generated
by N replicas each performing work W, only W(N-l) missing updates must be replayed at each replica.
Since N is typically small, and since the replay occurs in parallel at all replicas, the time for phase 3 after
work at all sites will be lower. If this decrease dominates the increase in time for the rest of the protocol,
the total resolution time will also be lower. Figure 5 confirms that this is indeed the case.

6.2. Size of Log
Since a log grows linearly with work done during partition, any realistic estimate of log size has to be
derived from empirical data. Our analysis is based on about 4GB of file reference traces obtained over a
period of 10 weeks from 20 Coda workstations. The usage profile captured in these traces is typical of
research and educational environments.

These traces were used as input to a simulation of the logging component of the resolution subsystem.
The simulator assumes that all activity in a trace occurs while partitioned, and maintains a history of log
growth at 15-minute intervals for each volume in the system. For each directory update in the trace, the
simulator increments the corresponding volume's log length by the size of the log record that would have
been generated by a Coda server. At the end of simulation, the average and peak log growth rates for
each volume can be obtained from its history.

14

10 15 20 25 30
Work Units

For given amounts of total work, this graph compares the ratio of resolution time to work time for two cases. In
the first case, work is done only at one site. In the second case, the work is shared equally at all sites. The data
points in the upper curve are from Table 1. The X coordinates of a point on this curve correspond directly to its
value in the column labeled "Work Load" in the table. The data points in the lower curve are from Table 2. On
this curve, the X coordinate of a point is the product of its values in the columns labeled "Rep Factor" and "Work
Load" in the table.

Figure 5: Resolving Work Done at One Site versus Work Done at All Sites

Table 3 shows the distribution of long-term average rate of log growth over all the volumes encountered
in our traces. This average is computed by dividing the final log size for a volume by the time between
the first and last updates on it. It is clear from Table 3 that long-term log growth is relatively low,
averaging about 94 bytes per hour.

Bytes per Hour Percentage of Volumes

0 to 100 65.91%

100 to 200 20.45%

200 to 300 4.55%

300 to 400 6.82%

400 to 500 2.27%

>500 0.00%

This data was obtained by trace-based simulation and shows the distribution of long-term average growth rates
for 44 volumes over a period of 10 weeks.

Table 3: Observed Distribution of Long-Term Average Log Growth Rates

15

Focusing only on long-term average log growth rate can be misleading, since user activity is often bursty.
A few hours of intense activity during a partition can generate much longer logs than that predicted by
Table 3. To estimate the log length induced by peak activity, we examined the statistical distribution of
hourly log growth rates for all volumes in our simulation. Figure 6 shows this distributioa Over 94% of
all data points are less than 1KB, and over 99.5% are less than 10KB. The highest value observed was
141KB, but this occurred only once.

1 100 .0%

I
10.0%

20000 40000 60000

1.0%

0 . 1 %

0 . 0 1 %

— 1 0 . 0 0 1 %
80000 100000 120000 140000 160000

Bytes per Hour
This histogram shows the distribution of log growth rates for each hour for each volume. Since 44 AFS and Coda
volumes were traced over a 10 week period, there are nearly 74,000 data points in this histogram. The width of
each histogram bar is 1KB. Note that the scale on the vertical axis is logarithmic.

Figure 6: Observed Distribution of Hourly Log Growth

A worst-case design would have to cope with the highest growth rate during the longest partition. A more
realistic design would use a log adequate for a large fraction of the anticipated scenarios. Since hourly
growth is less than 10KB in 99.5% of our data points, and since an hour-long partition could have
straddled two consecutive hours of peak activity, we infer that a 20KB log will be adequate for most
hour-long partitions in our environment. More generally, a partition of N hours could have straddled N+l
consecutive hours of peak activity. Hence a log of 10(N+1) KB would be necessary. If a Coda server
were to hold 100 volumes (a typical number at AFS installations), the total log space needed on the server
would be (N+l) MB.

16

7. Status and Future Work
Today, Coda runs on IBM RTs, Decstation 3100s and 5000s, and 386-based laptops such as the Toshiba
5200 and IBM PS/2-LX40. A small user community has been using Coda on a daily basis as its primary
data repository since April 1990. All development work on Coda is done in Coda itself. As of December
1991 there was nearly 1GB of triply-replicated data in Coda.

A prototype of the resolution subsystem described in this paper has been operational since May 1991.
Since RVM was still under development when we began our implementation the resolution logs in the
prototype exist only in virtual memory. This also simplifies recovering from bugs in the logging code.
Moving the resolution logs into RVM will not invalidate our performance analysis because only the
amount of log data spooled during transaction commit will increase, not the number of commits. As a
result, we expect the work time as well as the resolution time to increase slightly, but the load dependent
behavior to be unchanged.

Our immediate plans are to move the resolution logs from virtual memory to RVM. We also plan to
provide support for transparent resolution of cross-directory renames, as discussed in Section 5.3.4. In
the longer term, we plan to explore the use of rule-based heuristics for directory resolution. Such
heuristics can be exploited by sophisticated applications and end users to customize the resolution of
conflicting partitioned directory updates.

8. Related Work
The use of optimistic replication for high availability was explored by a number of researchers in the
early 1980s, including Garcia-Molina [4], Blaustein [1], and Davidson [2]. Their work is summarized in
the excellent survey by Davidson et al [3]. Most of this work was done in the context of a distributed
transactional model, and does not directly apply to Unix file systems.

Locus [13] was the first distributed file system to use optimistic replication and to recognize that Unix
semantics could be used for directory resolution. But the proposed ideas were not successfully
implemented in the original system. More recently, Guy [6] has developed an implementation of
directory resolution in the context of Ficus, a descendant of Locus.

The Coda approach of logging directory updates is conceptually simpler than the Ficus approach of
inferring these updates from the final states of replicas. The two approaches also differ in their
implications for resolution performance. In Coda, performance depends only on the amount of
partitioned activity. In Ficus, it also depends on the original size of the directory.

Like Coda, Ficus preserves information about deleted objects in order to detect remove/update conflicts.
But the systems differ markedly in their approach to reclaiming space pertaining to these objects. Ficus
uses a complex distributed garbage collection algorithm whose scalability is open to question. Coda, in
contrast, uses the much simpler strategy of allowing each site to unilaterally reclaim resources via log
wrap-around. This provides a clearly-defined trade-off between usability and resource usage, one we
believe is essential in any practical system. Finally, we believe that the presence of an explicit log will
make it easier to separate policy and mechanism in resolution, thereby simplifying the implementation of
heuristic-based resolution.

17

9. Conclusion
Although conceptually simple, log-based directory resolution has turned out to be more complex to
implement than we originally expected. One source of complexity is the need to consider many
pathological situations during the computing of compensating operations. Another source is the need to
ensure that all steps of the resolution protocol are robust in the face of failures. We have achieved this by
making the protocol idempotent. An alternative strategy would have been to use distributed transactions.
However, that approach would have required us to run the risk of blocking in case of coordinator failure.
It would have also been counter to Coda's general philosophy of using optimistic strategies whenever
possible, to improve transparency from the user's perspective.

Our experience with log-based resolution has been highly positive. Our initial concerns about excessive
space usage for logging have proved baseless. The speed of resolution is excellent, and is rarely
noticeable in normal operation. Overall, we believe that a log-based strategy is indeed appropriate for
directory resolution in a distributed file system that supports optimistic replication.

Acknowledgements
The possibility of using logging for directory resolution was first suggested by James Kistler. We are indebted to
Lily Mummert for the file reference traces used in Section 6.2, and to Maria Okasaki for the AFS file size statistics
used in our directory resolution benchmark. We also wish to express our appreciation to the other members of the
Coda project: Hank Mashburn, Gowthami Rajendran, and David Steere.

References
[1] Blaustein, B., Garcia, H., Ries, D.R., Chilenskas, R.M., Kaufman, C.W.

Maintaining Replicated Databases Even in the Presence of Network Partitions.
In Proceedings of the IEEE 16th Electrical and Aerospace Systems Conference. September, 1983.

[2] Davidson, S.B.
An Optimistic Protocol for Partitioned Distributed Database Systems.
PhD thesis, Department of Electrical Engineering and Computer Science, Princeton University, 1982.

[3] Davidson, S.B., Garcia-Molina, H., Skeen, D.
Consistency in Partitioned Networks.
ACM Computing Surveys 17(3), September, 1985.

[4] Garcia, H., Allen, T., Blaustein, B., Chilenskas, R.M., Ries, DR.
Data-Patch: Integrating Inconsistent Copies of a Database After a Partition.
In Proceedings of the 3rd IEEE Symposium on Reliability in Distributed Software and Database Systems.

October, 1983.
[5] Guy, R.G.Ü.

A Replicated Filesystem Design for a Distributed Unix System.
Master's thesis, Department of Computer Science, University of California, Los Angeles, 1987.

[6] Guy,R.G.,Popek,G.J.
Reconciling partially replicated name spaces.
Technical Report CSD-900010, University of California, Los Angeles, April, 1990.

[7] Kistler, J.J., Satyanarayanan, M.
Disconnected Operation in the Coda File System.
ACM Transactions on Computer Systems 10(1), February, 1992.

18

[8] Mashburn, H., Satyanarayanan, M.
RVM: Recoverable Virtual Memory User Manual
School of Computer Science, Carnegie Mellon University, 1991.

[9] Satyanarayanan, M., Siegel, E.H.
Parallel Communication in a Large Distributed Environment
IEEE Transactions on Computers 39(3), March, 1990.

[10] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M JE., Siegel, E.H., Steere, D.C.
Coda: A Highly Available File System for a Distributed Workstation Environment
IEEE Transactions on Computers 39(4), April, 1990.

[11] Satyanarayanan, M.
Scalable, Secure, and Highly Available Distributed File Access.
IEEE Computer 23(5), May, 1990.

[12] Satyanarayanan, M.
The Influence of Scale on Distributed File System Design.
IEEE Transactions on Software Engineering 18(1), January, 1992.

[13] Walker, B., Popek, G., English, R., Kline, C , Thiel, G.
The LOCUS Distributed Operating System.
In Proceedings of the 9th ACM Symposium on Operating System Principles. October, 1983.

