
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Towards an Assembly Plan from Observation:
Task recognition with polyhedral objects

Katsushi Ikeuchi Takashi Suehiro
August 1991

CMU-CS-91-167.,

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by the Avionics Laboratory, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio
45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the U.S.
government.

Keywords: Assembly planning, Robot programming, Teach-by-showing,
Teleoperation, Image understanding, Object recognition, face contact, Task anal­
ysis

Abstract

Currently, most robot programming is done either by manual programming or by
the "teach-by-showing" method using a teach pendant. Both of these methods
have been found to have several drawbacks.
We propose a novel method to program a robot, the assembly-plan-from-
observation (APO) method. The APO method aims to build a system that has
the capability of observing a human performing an assembly task, understanding
the task based on the observation, and generating the robot program to achieve the
same task.
In particular, this paper defines assembly relations which serve as the basic repre­
sentation of each assembly task. Then, we verify that such assembly relations can
be recovered from the observation of human assembly tasks, and that from such
assembly relations, it is possible to generate robot motion commands to repeat
the same assembly task. Finally, we demonstrate an APO system based on the
assembly relations.

iamp*',- V M I Q I " , I : T

Contents
1 Introduction

2 Assembly plan from observation

3 Defining Task Models
3.1 Assembly relation
3.2 Taxonomy for Assembly Relation

3.2.1 Two-dimensional cases
3.2.2 Three-dimensional cases

3.3 Assembly relation transitions
3.4 Procedure tree
3.5 Task models

4 Implementation of APO system
4.1 Temporal Segmentation
4.2 Object Recognition . .
4.3 Task Identification . .
4.4 Task Instantiation . .
4.5 Additional examples .

5 Conclusion

1

1 Introduction
The key characteristic of robots is their versatility. They can be used to perform
a large variety of tasks without a major re-design of the robot. This versatility is
due to the generality of the robot's physical structure, but a robot's generality can
be exploited only if the robot can be easily programmed.

Several methods to program a robot have been proposed. Such methods
include: teach-by-showing, teleoperation [17, 12, 3], textual programming[2],
and automatic programming [6, 9, 7]. In teach-by-showing methods, an engineer
stores, using a teach pendant in teaching mode, a path along which a robot should
move repeatedly. In run mode, the robot follows the path it was previously taught.
This is the most common method to program a robot in industrial applications.
This method is suitable for programming a robot to repeat simple movements.
Moreover, this method is excellent because a robot can learn complicated paths
from a trained engineer. However, this method requires that an engineer is in the
same environment as the robot. Thus, we cannot use this method in hazardous
environments such as in nuclear plants, underwater, or in outer space.

To remedy this problem, teleoperation methods have been proposed. This
method uses a master manipulator for teaching and a slave manipulator for exe­
cution. An engineer controls the master manipulator in a safe environment while
monitoring the hazardous environment with a remote TV camera and display. The
slave manipulator in the hazardous environment executes real operations based on
control signals from its master manipulator. Since this method does not require an
operator in the execution environment, it is suitable for the operation in hazardous
environments. However, by using this method, we can only teach a robot trajec­
tory information. It is difficult to build a flexible robot system able to use force
control with error recovery capabilities. It is also true that we have to reconstruct
entire programs, even when a very minor change in the program is desired.

Textual programming is often used in academic environments. A programmer
stores a robot command sequence in a computer as a textual program. By using a
compiler or an interpreter, a command sequence in a textual program is converted
into a form that the robot can execute. This method is quite flexible because we
can store any kind of control programs. However, it requires a long development
period and expert programmers.

In order to speed up the programming process, automatic programming has
been proposed. The method tries to develop geometric reasoning systems which
can generate textual programs to control a robot from geometric information given

2

by geometric models and task specifications. This direction is quite promising,
however, there are many issues to be addressed before we have a complete auto­
matic programming system. Such issues include: how to generate a sequence of
operations, how to determine a grasp point for each operation, how to determine
a global path to move an object while avoiding collisions with other objects. It is
quite difficult to build a complete automatic programming system, though perhaps
not impossible.

We propose a novel method that combines automatic programming and teleop­
eration. We propose to add a vision capability that will observe human operations
to an automatic programming system (a geometric reasoner). In particular, we
propose a system that observes a human performing an assembly tasks while a
geometric reasoner analyzes and recognizes such tasks from observation, and gen­
erates the same assembly sequence for a robot. We will refer to this paradigm as
Assembly Plan from Observation (APO).

Due to the geometric reasoning capability, the APO system understands the
operations that the operator is performing. Thus, the system for example can
discard unnecessary motions which are often introduced by a human teleoperator.
The system can also insert error recovery routines into the generated assembly
plans. In this regard, APO is superior to the teleoperation method.

Due to the vision capability, the system can solve several otherwise extremely
difficult problems, such as path planning and determining the optimal assembly
sequence, by simply observing a human performing the operation. In this regard,
APO is superior to the automatic programming method.

3

2 Assembly plan from observation
In an APO system, a human operator performs assembly tasks in front of a video
camera. From the camera, the system obtains a continuous sequence of images
recording the assembly tasks. In order for the system to recognize assembly
tasks from the sequence of images, the system has to perform the following six
operations (See Figure 1.):

• Temporal Segmentation - dividing the continuous sequence of images into
meaningful segments which correspond to separate human assembly tasks,

• Object Recognition - recognizing objects and determining object configura­
tions in a given image segment.

• Task Recognition - recognizing assembly tasks based on the results of an
object recognition system.

• Grasp Recognition - recognizing where and how the human operator grasps
an object for achieving the assembly task.

• Global Path Recognition - recognizing the path along which the human
operator moves an object while avoiding collision.

• Task Instantiation - collecting necessary parameters from object recognition,
grasp recognition, and global path recognition results for performing the
recognized assembly tasks, and setting up assembly plans to perform the
same task using a robot manipulator.

In this paper, we will concentrate on the task recognition and task instantiation
modules, because these two parts form the main loop for the assembly plan from
observation.

The outline of the modules are as follows:
Our object recognition module identifies each object using the object models

from a given image segment. The module represents the recognition results in a
world model, as shown in Figure 1, by using the geometric modeler, Vantage.

Our task recognition module recognizes object relations in two image segments
and extracts the transition between two object relations from the two segments.
The task recognition system has abstract task models in a data base. Each abstract
task in the data base describes a transition between two different object relations.

4

From the task models in the data base, the system identifies a task model that
describe the transition needed to achieve the observed object relations, as shown
in Figure 1.

Our task instantiation module represents the recognition result as an instan­
tiated task model. An instantiated task model associates a transition with an
action capable of causing the transition. It also includes appropriate parameters
to achieve the action based on the given scenes. Such parameters include object
locations and the grasping locations for the action. The instantiated task model
also includes the global path along which to move an object. The system, then,
inserts the obtained grasp and stack locations into the command sequence. Finally,
the command sequence is sent to the robot.

5

human assembly task

before during after

object recognition

pre-world grasp & path
recognition

post-world
task recognition

relation-l> r r r elation-2

Cmotion^)

instantiated task model

robot assembly task
Figure 1: Task recognition.

6

3 Defining Task Models
In order to develop task models for an APO system, we have to define representa­
tions to describe assembly tasks. In this section, we will define assembly relations
for such representations. Then, we will examine that such assembly relations
satisfy the two requirements.

• recoverability - assembly relations can be extracted from observation,

• inferability - a human assembly task can be inferred from an assembly
relation, and it is possible to generate assembly operations for a manipulator
from the assembly relation.

Finally, we will consider how to define assembly task models using the assembly
relations.

3.1 Assembly relation
In each assembly task, at least one object is manipulated. We will refer to the object
as the manipulated object. The manipulated object is attached to other stationary
objects, which we refer to as environmental objects, so that the manipulated object
achieves a particular relation with environmental objects.

We will define assembly relations with respect to face contacts between a
manipulated object and its stationary environmental objects. The essential goal of
an assembly task is to establish a new face contact between a manipulated object
and environmental objects. For example, the goal of a peg-insertion is to achieve
face contacts at the side and bottom faces of the peg against the side and bottom
faces of the hole. Thus, it is effective to use face contact relations as the central
representation for defining assembly task models.

To make the overall problem manageable, we concentrate on a world of poly­
hedral objects in which only one polyhedron may be moved by one assembly
task. An assembly relation will be defined between a manipulated polyhedron and
several stationary environmental polyhedra. This restriction still leaves a diverse
range of interesting relationships, actions, and resulting assemblies.

Such face contact relations satisfy the recoverability requirement.

• Face contact relations can be obtained by analyzing geometric models. An
object recognition program, such as in [4] can recognize a manipulated

7

object, determine its configuration, and represent the recognition result
in a geometric modeler, as well as the geometric representations of other
stationary environmental objects. By examining each face pair between the
manipulated and environmental objects, new face contact relations can be
determined as they occur.

Face contact relations also satisfy the inferability requirement.

• Each face contact relation constrains possible motions. At contacting faces,
the orientations of surface normals are suffice for characterizing relative
object movement constraints. For example, consider a box resting on a
table. At the contact faces surface normals are parallel and opposing. In
this position the box can only move up or parallel to the table. A more
constraining case is a square bar inserted in a matching shaped hole. The
bar's four faces contact their hole counterparts with opposing normals and
the only possible motion lies along the hole's axis. Thus, from a face
contact relation, it is possible to infer the assembly actions that cause such
face contact relations.

• Face contact relations characterize a control strategy necessary to maintain
such relations. Each face contact relation provides a constraint to motion.
As long as the motion constraint is constant, the same mode of control
is applicable. When the motion constraint changes, a different mode of
control is required. For example, let us consider a box to be placed on a
table and then slide on the table. Position control can be used to lower the
box towards the table while the box is in the air (the box does not have any
face contact.). When the box is about to make contact with the table (about
to have one-face contact), force control is necessary to detect the collision
which ensures that the box is on the table. Combined force and position
control is necessary to slide the box on the table (for maintaining one-face
contact). Face contact relations have been found to characterize required
control strategies [14, 13]. Thus, such face contact relations can be used to
determine a control strategy necessary to achieve such face contact relations
in assembly actions.

Using such face contact relations as the basic representations, we will de­
scribe an assembly task with a transition between pre-assembly relations and
post-assembly relations. Based on the description, we will build an APO system
in the following steps:

8

• classifying all possible face contact relations (assembly relations) between
manipulated and environmental objects,

• considering what kinds of transitions in assembly relations occur and build­
ing a tree in which each branch corresponds to one possible transition and
each leaf node corresponds to an assembly relation, and

• assigning manipulator motions to achieve such assembly relation transitions
(the completed tree is referred to as a procedure tree).

3.2 Taxonomy for Assembly Relation
For geometric objects in a polyhedral world, our taxonomy identifies all possible
assembly relations based on the directions of contact surface normals. First, we
will analyze a two-dimensional polygonal world and then a three-dimensional
polyhedral world. Some related issues are found in [10].

3.2.1 Two-dimensional cases.

Assembly relations will be considered between polygons (not polyhedra) by using
normal directions at contact edges. Figure 2 shows an assembly relation having
unidirectional contact. Even if polygons have several contact edges with the same
normal direction, they are considered as having unidirectional contact.

Normal direction of an edge can be represented as a point on the Gaussian
circle by translating the unit normal so that its starting point sits at the origin of the
coordinate system. Its tail then lies on the unit circle whose center is the origin.
This mapping is referred to as a Gauss mapping. Equivalently, possible movement
directions of the object polygon can be represented on the Gaussian circle. Points
on the semicircle around the contact direction correspond to the possible movement
directions of the object polygon. Points on the other semicircle correspond to the
prohibited motion directions.

Bidirectional contact has two possible assembly relations as shown in Figure 3.
Assembly relation 2d-b in Figure 3 has two maps located opposite one another on
the circle. This case has two possible movement directions on the Gaussian circle.
Relation 2d-c in Figure 3 has two oblique contact directions on the Gaussian circle.
This case has several possible movement directions corresponding to a small arc.

Tridirectional contact at first seems to have three cases: relation 2d-d, relation
2d-e, and relation 2d-f, as shown in Figure 4. Relation 2d-d has two opposite points

9

and one intermediate point; resulting in only one possible movement direction.
Relation 2d-e has three points whose maximum arc is larger than TT, allowing no
movement of the object at all.

Relation 2d-f has three arbitrary points whose maximum arc is less that n. As
Figure 4(c) illustrates, the middle contact direction does not affect the possible
movement directions on the Gaussian circle. Thus, relation 2d-f is considered
equivalent to relation 2d-c and is not considered an independent relation. When a
relation has more than three directions of contact, it can be mapped to one of the
relations mentioned above.

contact
direction

possible motion
directions

cnvironmeni
prohibited motion

directions

Figure 2: Unidirectional contact.

10

environment

object

/IN

possible motion
directions

possible motion
directions

prohibited motion
directions

(a)

Figure 3: Bidirectional contact: (a) relation 2d-b; (b) relation 2d-c.

environment

prohibited motion
directions

(a) (b)
Figure 4: Tridirectional contact: (a) relation 2d-d; (b) relation 2d-e; (c) relation
2d-f. This is equivalent to relation 2d-c in terms of possible movement directions,
and thus, is not considered an independent relation.

11

3.2.2 Three-dimensional cases.

The same analysis can be applied to 3-D cases. 3-D cases consider the relation­
ship among polyhedra. Table 1 summarizes the analysis of face contacts among
polyhedra. The taxonomy has classes of uni-, bi-, tri-, tetra-, and hexadirectional
contacts. Nine different contact patterns are extracted from this analysis.

We will represent the contact directions and possible movement directions
on the Gaussian sphere as shown in Figure 5. The shaded areas indicate the
prohibited movement directions of the object with respect to the environment.
The non-shaded areas indicate the possible movement directions.

Table 1: 3D assembly relations
Class Relation Explanation
uni 3d-a 3d-a in Figure 5 shows unidirectional contact. The contact direction

is represented as a point on the Gaussian sphere. Let us suppose the
contact direction is mapped to the north pole of the Gaussian sphere. The
possible directions of object motion can be represented as the northern
hemisphere of the Gaussian sphere; the prohibited directions can be
represented as the southern hemisphere.

bi 3d-b
3d-c

Bidirectional contacts have two different relations: 3d-b and 3d-c, de­
pending on whether contact directions are in opposite directions or not.
See Figure 5. Relation 3d-b has possible movements represented as a
great circle on the Gaussian sphere. Relation 3d-c, on the other hand,
has possible movements represented as an area bounded by two great
circles on the Gaussian sphere.

tri 3d-d
3d-e
3d-f

t h e tridirectional contacts have three different relations: 3d-d, 3d-e,
and 3d-f. Relation 3d-d and relation 3d-e have three coplanar contact
directions. Relation 3d-d has possible movements corresponding to a
great semi circle. Relation 3d-e has possible movements corresponding
to two points. Between relation 3d-e and relation 3d-d, there exists a
relation which has identical possible movement directions as relation 3d-
c. Relation 3d-f has possible movements corresponding to a spherical
area bounded by three great circles.

tetra 3d-g
3d-h

Relation 3d-g has possible movements corresponding to an arc, while
relation 3d-h has one possible movement. Adding one more contact
direction to relation 3d-e gives relation 3d-h.

hexa 3d-i 3d-i in Figure 5 has no possible movement directions.

12

3 d - a A

o J t_ 3 d - c
3 d - b

Sri - e
3 d - d

SH — h
3 d - g

3 d - i

^ #
Figure 5: 3-D assembly relation taxonomy.

13

3.3 Assembly relation transitions
We will consider a sequence of manipulator operations to achieve each assembly
relation from assembly relation 3d-s. Such a sequence of manipulator operations
is grouped into a motion macro, i.e., a template of manipulator operations, which,
when applied to an object, yields the desired assembly relation. This is possible
because each assembly relation is defined so that we can apply the same manipula­
tor control strategy to achieve the relation by changing only controller parameters,
not the strategy.

In order to reduce the number of necessary templates, we will analyze each
assembly relation in an iterative manner. We will analyze simpler relations earlier
and more complicated relations later. Also, instead of considering a template to
directly achieve a complicated relation from 3d-s, we will consider an intermediate
relation, and then try to achieve the complicated relation. First, we try to achieve
an intermediate relation from 3d-s by using the templates already considered. Then
we try to achieve the final relation from the intermediate relation using a newly
considered template.

In order to find an appropriate intermediate relation, for each assembly re­
lation, we consider disassembly actions from the assembly relation, and extract
all possible immediate intermediate assembly relations just prior to the assem­
bly relation. We do this because considering disassembly actions is easier than
considering assembly actions.

Several intermediate relations sometimes occur from the same assembly rela­
tion due to 1) the variation in shapes of contact faces, and 2) the variety of possible
disassembly operations.

In case that due to variations in the shapes of contact faces, we have to analyze
all intermediate relations and assign appropriate motion templates to all transitions
from the intermediate relations to the desired relation.

In case that due to the variety of possible disassembly operations, we can choose
one appropriate intermediate relation among the several intermediate relations. We
choose the one which is achieved by the simplest and most robust operation under
uncertainty in positional information. In order to select such intermediate relation,
we use the following criteria:

1. In the case that a direct detach motion (a motion which immediately breaks
a face-contact) exists, choose it.

2. In the case that a lateral motion (a motion maintain the same contact relation)

14

that would break face-contacts by crossing a certain boundary exist, choose
it.

3. In the case in which several candidate motions satisfy criterion 1 or criterion
2, choose the motion which least reduces the number of face contacts.

By using these criteria, we will analyze each assembly relation, extract all
possible assembly relation transitions, and prune unnecessary relation transitions.

Table 2: Possible assembly relation transitions
Relation Possible immediate simpler relation Transition

3d-a A direct detach motion gives the transition from the assembly relation 3d-a to
3d-s. See Figure 6(a) for an example of the direct detach motion which causes an
assembly relation transition from 3d-a to 3d-s.

s-to-a

3d-b No direct detach motion can be applied to the assembly relation 3d-b.
Lateral motions parallel to the contact faces can be applied. Depending on the
shape of contact faces, it reaches either 3d-s or 3d-a. Since this variation is due to
the shape of the contact face, we have to consider both cases. Figure 6(b) shows
two possible relation transitions.

s-to-b
a-to-b

3d-c By applying direct detach motions, the 3d-c relation becomes either 3d-s or 3d-a.
The two possibilities are not due to the shape of the contact faces; they are due to
motion directions. The relation transition from 3d-c to 3d-s reduces the number of
face-contacts by two, while the relation transition from 3d-c to 3d-a reduces the
number by one. The latter relation transition is chosen as the desirable one by the
criterion 3. Figure 6(c) shows two possible transitions due to motion directions.

a-to-c

3d-d A direct detach motion gives the transition from the assembly relation 3d-d to 3d-b. b-to-d
3d-e No direct detach motions exist in case of 3d-e.

Lateral motions along the axis parallel to the surrounding contact faces cause
several relations, 3d-s, 3d-a, 3d-b, 3d-c and 3d-d, depending on the shape of
contact faces. We have to consider these five possible relation transitions. We will
refer to the axis as the insertion axis. See Figure 6(d) for the example.

s-to-e
a-to-e
b-to-e
c-to-e
d-to-e

3d-f The assembly relation 3d-f becomes to 3d-s, 3d-a and 3d-c by a detach motion
depending on motion directions. The relation transitions, 3d-f to 3d-s, 3d-f to
3d-a, and 3d-f to 3d-c, reduces the number of face-contacts by three, two, and one,
respectively. Thus, following criterion 3, the relation transition, 3d-f to 3d-c is
chosen as the desirable one.

c-to-f

3d-g Among the two possible relation transitions, 3d-g to 3d-b and 3d-g to 3d-d, The
relation transition 3d-g to 3d-d is chosen by criterion 3

d-to-g

3d-h The assembly relation 3d-h can become to 3d-e by motion along the insertion axis. e-to-h

15

3d-a
(a)

3d-s

3d-b

•
3d-s

(b)

W//////A

Y////////A

3d-a

3d-c
(c)

3d-a

aa
3d-s

Figure 6: Examples of assembly relation transitions

16

3d-d

(d)

Examples of assembly relation transitions (cont)

17

We can represent relation transitions as a tree structure, as shown in Figure 7.
Each node in the tree represents one particular assembly relation, and each arc
represents corresponding assembly relation transitions.

Figure 7: Assembly relation transitions represented as a tree

18

3.4 Procedure tree
A procedure tree (Figure 8) is created by placing a template of manipulator op­
erations (motion macro) at each arc separating the assembly relation nodes of
Figure 7. See Table 9. The manipulator operations chosen are those which can
correctly achieves an assembly relation on one node from the assembly relation
on the other node.

Table 3: Motion macro
Transitic nAssigning motion macro Motion macro
s-to-a The relation transition from 3d-s to 3d-a is realized by an attach

motion which contains a motion component toward the contact
direction. Among several attach motions, pure motion towards
the contact direction until face contact is the easiest. Thus,
we assign the corresponding template of motions to the relation
transition from 3d-s to 3d-a and refer to this template as move-
to-contact motion macro.

move-to-contact

s-to-b In order to cause the relation transition from 3d-s to 3d-b, first
we have to align the configuration of the object so that we can
translate it between the two contact faces. Then, we have to
translate the object parallel to the contact faces. We assign the
corresponding template of motions to the relation transition from
3d-s to 3d-b and refer to this template as insert-between motion
macro.

insert-between

a-to-b In order to cause the relation transition from 3d-a to 3d-b, since
the configuration of the object is already aligned, it is only nec­
essary to translate the object parallel to the two contact faces.
We assign the corresponding template of motions to the relation
transition and refer to this template as move motion macro.

move

a-to-c At 3d-a, one face contact is already achieved. The relation
transition from 3d-a to 3d-c is realized by an attach motion along
the contact face of 3d-a toward another contact face of 3d-c
until two-face contact occurs. Among several such motions,
pure motion perpendicular to the intersection lines between two
contact faces is selected.
We achieve this relation transition by using the same template of
operations for the relation transition from 3d-s to 3d-a, move-to-
contact. Thus, we assign the move-to-contact motion macro to
the relation transition from 3d-a to 3d-c.

move-to-contact

19

Motion template (cont)

Transi­
tion

Assigning motion macros Motion macro

b-to-d The relation transition from 3d-b to 3d-d is realized by an attach
motion parallel to the two opposite contact faces. Among several
attach motions, as is the case in 3d-a to 3d-c, pure motion is
selected. For this relation transition we use the same macro
move-to-contact.

move-to-contact

s-to-e For the relation transition from 3d-s to 3d-e, first we have to align
the configuration of the object so that it can be translated along
the insert axis. Then, we have to translate the object along the
axis. We assign the corresponding template of motions to the
relation transition from 3d-s to 3d-e and refer to this template as
insert-into macro.
Note that the insert-between macro only aligns the object parallel
to a pair of contact faces. The macro allows the rotation and
translation freedom along the contact faces. On the other hand,
the insert-into macro does not allow such freedom; it only allows
the object to translate along the insert axis.

insert-into

a-to-e For the relation transitions from 3d-a to 3d-e, the object con­
figuration is already constrained on one contact direction in the
previous 3d-a relation. Thus, by using the insert-between motion
macro, we align the object along the insert axis and translate it
into the hole.

insert-between

b-to-e ditto insert-between
c-to-e For the relation transitions from 3d-c to 3d-e, the motion of the

object is already constrained; the object is only movable along
the insert axis. We use the move macro to make the relation
transitions.

move

d-to-e ditto move
c-to-f The relation transition from 3d-c to 3d-f is realized by an attach

motion along the intersection line of the two contact faces of 3d-c
until tridirectional contact occurs. For this relation transition, we
use the same macro move-to-contact.

move-to-contact

d-to-g At 3d-d, the object can only translate along intersection lines
among contact faces. By using the move-to-contact macro, we
achieve the tetradirectional contact.

move-to-contact

e-to-h The relation transition from 3d-e to 3d-h is achieved by the move-
to-contact macro along the insert axis until the tetradirectional
contact occurs.

move-to-contact

20

From this analysis in Table 3, the following four motion macros are extracted:

• move - a motion sequence for this macro is realized by translating a manip­
ulated object from the starting configuration to the ending configuration.

• move-to-contact - a motion sequence for this motion macro is realized by
translating a manipulated object until it contacts a face of an environmental
object, then fitting a manipulated object face to the contact environmental
face.
If we have precise configurations, we can achieve the contact and fitting
operations by using such configurations. Otherwise, these operations require
some sensory feedback to detect the occurrence of contact and fitting. See
[14] for a detailed implementation of the macro as a skill in a force feedback
type manipulator.

• insert-between - a motion sequence for this motion macro is realized by
first aligning a manipulated object between a pair of contact environmental
faces, and then translating it between the pair of contact faces to the ending
configuration.
If we have precise configurations, we can achieve align motion and transla­
tion motion using the configurations. Otherwise, the align motion requires
some sensory feedback. See [14].

• insert-into - a motion sequence for this motion macro is realized by aligning
a manipulated object along the insert axis, and then translating along the
axis to the ending configuration.

If we have precise configurations, we can achieve align motion and transla­
tion motion using the configurations. Otherwise, the align motion requires
some sensory feedback. See [14].

Figure 8 represents a completed procedure tree.

21

Figure 8: Procedure tree.

22

3-5 Task models
A task model consists of an assembly relation transition, a motion macro, and
the necessary parameters required to expand the motion macro into a sequence
of manipulator commands. For example, Figure 9 shows the task model corre­
sponding to the transition from 3d-s to 3d-a. The starting and end relation slots
contain 3d-s and 3d-a, respectively. The action slot contains the move-to-contact
motion macro. In order to achieve the motion, it is necessary to know the previous
configuration and end configuration of the manipulated object. The corresponding
parameters are prepared as task parameters. The values corresponding to these
parameters are obtained by the task instantiation module at run time.

Thirteen task models corresponding to all arcs in the tree are prepared. They
are attached to the procedure tree.

Figure 9: The task model corresponding to the assembly relation transition from
3d-s to 3d-a

parameters

object start configuratoin
object approach configuration
object approach direction
gripper start configuration
gripper approach configuration
gripper approach direction

23

4 Implementation of APO system
How are task models used to recover human assembly tasks in the APO system?
The task recognition mechanism will be explained in the following examples. The
example system consists of three classes of objects, (any of which can appear in
the scene): castle, block, and stick (Figure 10).

Figure 10: Castle, block and stick.

24

4.1 Temporal Segmentation
The system assumes that at the beginning of each assembly task human intervention
occurs in the scene and at end of the assembly task the human disappears from the
scene. By using this assumption, the APO system segments a continuous image
sequence given by a TV camera from the scene into a finite number of meaningful
chunks.

By using the level change in the brightness difference, the system can detect
human intervention. Figure 11 shows a continuous image sequence of a scene
given by a TV camera, while the human operator is putting a castle on the ta­
ble. Before human intervention, the scene consists of only still objects, thus the
difference between two consecutive images is at the quite level. When human
intervention occurs, the brightness difference is large due to the motion of human
and manipulated object in the scene. This disturbance continues until the end of
the assembly operation. After the human hand disappears, the scene consists of
only still objects. Thus, the brightness difference returns to the quite level.

We have been using this method for detection for several live demos repeated
continuously for several days, and the method never failed.

4.2 Object Recognition
Objects in the scene are recognized from range data. In our current implementation,
b/w images are used only for detecting the completion of one assembly task. More
reliable range data are used for analyzing the scene. After a certain period after
the detection of the completion of one assembly task, the APO system invokes
the range finder and measures range information in the scene. The APO system
then generates a difference image between the range image from the previous step
(before the assembly task) and the range image from the current step (after the
assembly task).

The system applies a segmentation program to the difference image and obtains
any newly appearing regions. These new regions correspond to the faces of the
manipulated object by the assembly task. See Figure 12

An object recognition program is applied to the new regions. After recognizing
a manipulated object from the regions by fitting a geometric model to range data on
the regions, the program determines the configuration of the manipulated object.

The system maintains the configurations of other environmental objects. The
system represents these manipulated and environmental objects in the Vantage

25

image sequence

Figure 11: The system detects human intervention from the change in brightness
values

26

S c e n e

N Di f ference

R a n g e I m a g e

Figure 12: The difference in range data

geometric modeler [1] as shown in Figure 13.

R a n g e I m a g e Geometr i c R e p r e s e n t a t i o n

R e c o g n i t i o n P r o g r a m

Figure 13: Object recognition: a recognition program is applied only to any
newly appearing regions, and recognizes only manipulated object. The recognition
results are represented by Vantage.

28

4.3 Task Identification
By using the transformation from body coordinate systems to face coordinate
systems, (available from the Vantage geometric modeler), the configurations of
the faces of the manipulated and environmental objects are obtained.

The system extracts contacting face pairs from the face configurations. Here,
a contacting face pair is a face from the manipulated objects and a face from
an environmental object, which have the same face equations and whose surface
normals are opposite to each other.

The system determines the assembly relation based on the contacting face
pairs by analyzing the contact directions of pairs. Here, the contact direction is
defined as the normal direction from the environment faces to the manipulated
object faces as previously defined. The contact pairs are grouped into a set of
contact directional groups so that each group has face pairs with the same contact
direction. By examining the occurrence of directions, we can determine which
assembly relation occurs by the assembly task.

The system recognizes the contact faces and contact directions as shown in
Figure 14. From the contact faces in Figure 14, the system determines that the
current assembly relation is 3d-a.

Before the assembly task, the castle does not exist in the scene. Thus, before
the assembly task, the assembly relation between the castle and the table was 3d-s.
After performance of the assembly task, the manipulated castle established a 3d-a
assembly relation with the environmental object, the table.

From this observation, the system recognizes that the assembly relation transi­
tion, 3d-s to 3d-a, occurs due to the assembly task. The corresponding task mode
3d-s to 3d-a is extracted from the corresponding arc along the procedure tree.

29

Figure 14: Extracted contact faces and assembly relation.

30

4.4 Task Instantiation
In this example, at the previous step, the castle was stored on the warehouse table.
Thus, the assembly relation transitions during the entire assembly task are

• 3d-a to 3d-s: detach the castle from the warehouse table to the departure
configuration.

• 3d-s to 3d-s: bring the castle from the departure configuration to the ap­
proach configuration in free space.

• 3d-s to 3d-a: move-to-contact the castle to the working table from the
approach configuration.

Thus, the corresponding three task models are instantiated: a-to-s, s-to-s, and
s-to-a.

The following procedure is executed to instantiate a task model:

• obtain an abstract task model from the data base,

• obtain necessary parameters for the motion-macro (i.e. motion direction
and translation distance) derived from the object recognition results.

• obtain the necessary motion macro (a sequence of manipulator motions) by
consulting the action slot of the task model,

The instantiation of task models occurs in the reverse order, s-to-a, s-to-s, and
a-to-s.

The s-to-a task model has a move-to-contact motion macro in the action slot.
The task model examines each object model and determines grasp configurations,
how to grasp the object with respect to the body coordinate system, and the
specified grasping method. In the current implementation, each object model has
predetermined grasping configurations. The task model chooses an appropriate
grasping configuration and recalculates it based on the current body configurations.
The task model determines the grasping configuration of the castle based on
the observed castle configuration. The task model also determines the stack
configuration of the castle on the table in a similar manner. The system then
inserts these parameters to the corresponding slots in the instantiated task model.

The global motion is also implemented as a task model, s-to-s. This task model
has a motion macro, move. The current implementation does not consider collision

31

between the manipulated object and environmental objects. It assumes that space
above a certain level of height is free space. The task model incorporates the path
from the departure configuration to the high position, the high position to another
high position above the approach configuration, and the second high position to
the approach configuration. These configurations are obtained from the old and
new configurations of the manipulated objects. These values are inserted into their
slots in the instantiated task model.

The disassembly task is also implemented as a task model. The current
implementation does not observe the warehouse table due to the field of view
of the range finder. Thus, the assembly relation transition, 3d-a to 3d-s, which
occurs at the warehouse table, is given to the system as a priori knowledge. The
system instantiates a disassembly task model, a-to-s. This task model has a motion
macro, moVe in the action slot. The grasp configuration for the disassembly task
is obtained from the geometric model in a similar manner to the assembly task
model. This value is stored in the corresponding slot in the instantiated task model.

The system finally performs the operations given by the three task models
sequentially: a-to-s, s-to-s, and s-to-a. Figure 15 shows the final move-to-contact
operation by a manipulator.

32

Figure 15: Put a block on the table with a manipulator.

33

4.5 Additional examples
Figure 16(a) shows a human operation for inserting a stick in a hole of the block.
The system recognizes the contact faces (Figure 16(b)). From the normal direction
of contact faces, the system generates tetra directional contact. By examining
the directions of the contacts, the system determines that the observed assembly
relation is 3d-e.

Currently, the vision system cannot detect intermediate relation transitions
such as from 3d-b to 3d-e due to our temporal segmentation method. It can only
detect the relation transition from 3d-s to 3d-e. Thus, the system explores all the
possible paths in the procedure tree between 3d-s and 3d-e. Then, by examining
the shape of contact pairs, the system infers which path occurs.

More precisely, the relation transition from 3d-s to 3d-e corresponds to five
paths; direct path, via 3d-b, via 3d-a and 3d-b, via 3d-a and via 3d-a and 3d-c All
the arcs to the 3d-e, however, have the same assembly action (and disassembly
action), translation along the axis. In Vantage, the disassembly action is applied
to the current geometric representation of the manipulated and the environment
objects to find the previous assembly relation. The system examines the vertex co­
ordinates of all the contact faces, projects them to a plane parallel to the translation
directions, and determines which assembly relation occurs due to this translation
action. In this example, the system finds that all the boundary edge vertices on
the contact faces have the same coordinate system along the translation directions.
From this, it concludes that the 3d-s to 3d-e relation transition occurs.

The s-to-e task model has a motion macro, insert-into in the action slot. Using
the predetermined grasp configuration and the observed stick position, the system
performs the insert operation as shown in Figure 16(c).

Figure 17 shows other examples constructed successfully by the system.

34

5 Conclusion
We have described an Assembly-Plan-from-Observation (APO) system that can
observe an assembly task performed by a human, recognize scene objects, relations
among those objects, and actions on them, and produce corresponding operational
plans for a robot. Our work will open a new domain of object recognition
applications and provide a revolutionary way of programming robots.

The current system analyzes human operation and generates the fine motion
plan from observation among polyhedral objects. Future directions include how
to generate grasp plans and global motion plans from observation.

Acknowledgement
Raj Reddy and Takeo Kanade provided useful comments and encouragements.
Bradley Nelson proofread the draft of this manuscript and provided useful com­
ments.

Takashi Suehiro was on leave of absence from Electrotechnical Laboratory,
Tsukuba, Japan.

37

References
[1] P. Balakumar, J .C Robert, R. Hoffman, K. Ikeuchi, and T. Kanade. Vantage:

A frame-based geometric/sensor modeling system - programmer/user's man­
ual vl.O. Technical report, Carnegie Mellon University, Robotics Institute,
1989.

[2] R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman. Al, a programming
system for automation. Technical Report AIM-177, Stanford University,
Artificial Intelligence Laboratory, Stanford, CA, 1974.

[3] S. Hirai and Sato. T. Motion understanding for world model management
of telerobot. In IEEE Intern. Conf. on Intelligent Robots and Systems, pages
124-131,1989.

[4] K. Ikeuchi and K. S. Hong. Determining linear shape change: Toward
automatic generation of object recognition programs. Computer Vision,
Graphics, and Image Processing: Image Understanding, 53(2), March 1991.
a longer version, containing programs, is avaiable as CMU-CS-88-188.

[5] Y. Kuniyoshi, H. Inoue, and M. Inaba. Design and implementation of a
system that generates assembly programs from visual recognition of human
action sequences. In Proc. of IEEE Intern. Workshop on Intelligent Robots
and Systems, pages 567-574, August 1990.

[6] L.I. Lieberman and M.A. Wesley. Autopass: an automatic programming
system for computer controlled mechanical assembly. IBM Journal of Res.
Develop., 21(4):321-333,1977.

[7] T. Lozano-Perez. Automatic planning of manipulator transfer movements.
IEEE Trans. System Man and Cybernetics, SMC-1l(10):681-689,1981.

[8] T. Lozano-Perez, M.T. Mason, and R.H. Taylor. Automatic synthesis of
fine-motion strategies for robots. In M. Brady and R. Paul, editors, Robotics
Research 1, pages 65-96. MIT Press, Cambridge, MA, 1984.

[9] T. Lozano-Perez and PH. Winston. Lama: a language for automatic mechan­
ical assembly. In Proc. of 5th Intern. Joint Conf. on Artificial Intelligence,
pages 710-716, 1977.

38

[10] L.S.H. Mello and A.C. Sanderson. A correct and complete algorithm for
the generation of mechanical assembly sequences. In Proc. of IEEE Intern.
Conf. on Robotics and Automation, pages 56-61, 1989.

[11] RJ . Popplestone, A.P. Ambler, and I. Bellos. An interpreter for a language
for describing assemblies. Artificial Intelligence, 14(1):79-107,1980.

[12] N.O. Sliwa and R.W. Will. A flexible telerobotic system for space operations.
In Proc. Space Telerobotics Workshop, pages 285-292, Pasadena, 1987.

[13] T. Suehiro and K. Takase. Representation and control of motion in contact
and its application to assembly tasks. In Proc. of Intern. Symposuim of
Robotics Reseach, pages 367-374, Tokyo, Japan, August 1989.

[14] T. Suehiro and K. Takase. Skill based manipulation system. Journal of the
Robotics Society of Japan, 8(5):47-58, October 1990. (in Japanese).

[15] R. Thibadeau. Artificial perception of actions. Cognitive Science, 10(2): 117-
149, 1986.

[16] S. Tsuji, A. Morizono, and S. Kuroda. Understanding a simple cartoon film
by a computer vision system. In Proc. of 5th Intern. Joint Conf. on Artificial
Intelligence, pages 609-610, 1977.

[17] D.E. Whitney. State space models of remote manipulation tasks. In Proc. of
1st Intern. Conf Artificial Intelligence, pages 495-507, 1969.

[18] PH. Winston. The mit robot. In Machine Intelligence 7, editor, Meltzer, B.
andMichie, DM. Edinburgh Univ. Press, Edinburgh, U.K., 1972.

[19] P.H. Winston. Learning structural descriptions from examples. In PH.
Winston, editor, The Psychology of Computer Vision. McGraw-Hill, New
York, 1975.

39

