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Abstract 

Currently, most robot programming is done either by manual programming or by 
the "teach-by-showing" method using a teach pendant. Both of these methods 
have been found to have several drawbacks. 
We propose a novel method to program a robot, the assembly-plan-from-
observation (APO) method. The APO method aims to build a system that has 
the capability of observing a human performing an assembly task, understanding 
the task based on the observation, and generating the robot program to achieve the 
same task. 
In particular, this paper defines assembly relations which serve as the basic repre­
sentation of each assembly task. Then, we verify that such assembly relations can 
be recovered from the observation of human assembly tasks, and that from such 
assembly relations, it is possible to generate robot motion commands to repeat 
the same assembly task. Finally, we demonstrate an APO system based on the 
assembly relations. 
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1 Introduction 
The key characteristic of robots is their versatility. They can be used to perform 
a large variety of tasks without a major re-design of the robot. This versatility is 
due to the generality of the robot's physical structure, but a robot's generality can 
be exploited only if the robot can be easily programmed. 

Several methods to program a robot have been proposed. Such methods 
include: teach-by-showing, teleoperation [17, 12, 3], textual programming[2], 
and automatic programming [6, 9, 7]. In teach-by-showing methods, an engineer 
stores, using a teach pendant in teaching mode, a path along which a robot should 
move repeatedly. In run mode, the robot follows the path it was previously taught. 
This is the most common method to program a robot in industrial applications. 
This method is suitable for programming a robot to repeat simple movements. 
Moreover, this method is excellent because a robot can learn complicated paths 
from a trained engineer. However, this method requires that an engineer is in the 
same environment as the robot. Thus, we cannot use this method in hazardous 
environments such as in nuclear plants, underwater, or in outer space. 

To remedy this problem, teleoperation methods have been proposed. This 
method uses a master manipulator for teaching and a slave manipulator for exe­
cution. An engineer controls the master manipulator in a safe environment while 
monitoring the hazardous environment with a remote TV camera and display. The 
slave manipulator in the hazardous environment executes real operations based on 
control signals from its master manipulator. Since this method does not require an 
operator in the execution environment, it is suitable for the operation in hazardous 
environments. However, by using this method, we can only teach a robot trajec­
tory information. It is difficult to build a flexible robot system able to use force 
control with error recovery capabilities. It is also true that we have to reconstruct 
entire programs, even when a very minor change in the program is desired. 

Textual programming is often used in academic environments. A programmer 
stores a robot command sequence in a computer as a textual program. By using a 
compiler or an interpreter, a command sequence in a textual program is converted 
into a form that the robot can execute. This method is quite flexible because we 
can store any kind of control programs. However, it requires a long development 
period and expert programmers. 

In order to speed up the programming process, automatic programming has 
been proposed. The method tries to develop geometric reasoning systems which 
can generate textual programs to control a robot from geometric information given 
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by geometric models and task specifications. This direction is quite promising, 
however, there are many issues to be addressed before we have a complete auto­
matic programming system. Such issues include: how to generate a sequence of 
operations, how to determine a grasp point for each operation, how to determine 
a global path to move an object while avoiding collisions with other objects. It is 
quite difficult to build a complete automatic programming system, though perhaps 
not impossible. 

We propose a novel method that combines automatic programming and teleop­
eration. We propose to add a vision capability that will observe human operations 
to an automatic programming system (a geometric reasoner). In particular, we 
propose a system that observes a human performing an assembly tasks while a 
geometric reasoner analyzes and recognizes such tasks from observation, and gen­
erates the same assembly sequence for a robot. We will refer to this paradigm as 
Assembly Plan from Observation (APO). 

Due to the geometric reasoning capability, the APO system understands the 
operations that the operator is performing. Thus, the system for example can 
discard unnecessary motions which are often introduced by a human teleoperator. 
The system can also insert error recovery routines into the generated assembly 
plans. In this regard, APO is superior to the teleoperation method. 

Due to the vision capability, the system can solve several otherwise extremely 
difficult problems, such as path planning and determining the optimal assembly 
sequence, by simply observing a human performing the operation. In this regard, 
APO is superior to the automatic programming method. 
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2 Assembly plan from observation 
In an APO system, a human operator performs assembly tasks in front of a video 
camera. From the camera, the system obtains a continuous sequence of images 
recording the assembly tasks. In order for the system to recognize assembly 
tasks from the sequence of images, the system has to perform the following six 
operations (See Figure 1.): 

• Temporal Segmentation - dividing the continuous sequence of images into 
meaningful segments which correspond to separate human assembly tasks, 

• Object Recognition - recognizing objects and determining object configura­
tions in a given image segment. 

• Task Recognition - recognizing assembly tasks based on the results of an 
object recognition system. 

• Grasp Recognition - recognizing where and how the human operator grasps 
an object for achieving the assembly task. 

• Global Path Recognition - recognizing the path along which the human 
operator moves an object while avoiding collision. 

• Task Instantiation - collecting necessary parameters from object recognition, 
grasp recognition, and global path recognition results for performing the 
recognized assembly tasks, and setting up assembly plans to perform the 
same task using a robot manipulator. 

In this paper, we will concentrate on the task recognition and task instantiation 
modules, because these two parts form the main loop for the assembly plan from 
observation. 

The outline of the modules are as follows: 
Our object recognition module identifies each object using the object models 

from a given image segment. The module represents the recognition results in a 
world model, as shown in Figure 1, by using the geometric modeler, Vantage. 

Our task recognition module recognizes object relations in two image segments 
and extracts the transition between two object relations from the two segments. 
The task recognition system has abstract task models in a data base. Each abstract 
task in the data base describes a transition between two different object relations. 
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From the task models in the data base, the system identifies a task model that 
describe the transition needed to achieve the observed object relations, as shown 
in Figure 1. 

Our task instantiation module represents the recognition result as an instan­
tiated task model. An instantiated task model associates a transition with an 
action capable of causing the transition. It also includes appropriate parameters 
to achieve the action based on the given scenes. Such parameters include object 
locations and the grasping locations for the action. The instantiated task model 
also includes the global path along which to move an object. The system, then, 
inserts the obtained grasp and stack locations into the command sequence. Finally, 
the command sequence is sent to the robot. 
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3 Defining Task Models 
In order to develop task models for an APO system, we have to define representa­
tions to describe assembly tasks. In this section, we will define assembly relations 
for such representations. Then, we will examine that such assembly relations 
satisfy the two requirements. 

• recoverability - assembly relations can be extracted from observation, 

• inferability - a human assembly task can be inferred from an assembly 
relation, and it is possible to generate assembly operations for a manipulator 
from the assembly relation. 

Finally, we will consider how to define assembly task models using the assembly 
relations. 

3.1 Assembly relation 
In each assembly task, at least one object is manipulated. We will refer to the object 
as the manipulated object. The manipulated object is attached to other stationary 
objects, which we refer to as environmental objects, so that the manipulated object 
achieves a particular relation with environmental objects. 

We will define assembly relations with respect to face contacts between a 
manipulated object and its stationary environmental objects. The essential goal of 
an assembly task is to establish a new face contact between a manipulated object 
and environmental objects. For example, the goal of a peg-insertion is to achieve 
face contacts at the side and bottom faces of the peg against the side and bottom 
faces of the hole. Thus, it is effective to use face contact relations as the central 
representation for defining assembly task models. 

To make the overall problem manageable, we concentrate on a world of poly­
hedral objects in which only one polyhedron may be moved by one assembly 
task. An assembly relation will be defined between a manipulated polyhedron and 
several stationary environmental polyhedra. This restriction still leaves a diverse 
range of interesting relationships, actions, and resulting assemblies. 

Such face contact relations satisfy the recoverability requirement. 

• Face contact relations can be obtained by analyzing geometric models. An 
object recognition program, such as in [4] can recognize a manipulated 
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object, determine its configuration, and represent the recognition result 
in a geometric modeler, as well as the geometric representations of other 
stationary environmental objects. By examining each face pair between the 
manipulated and environmental objects, new face contact relations can be 
determined as they occur. 

Face contact relations also satisfy the inferability requirement. 

• Each face contact relation constrains possible motions. At contacting faces, 
the orientations of surface normals are suffice for characterizing relative 
object movement constraints. For example, consider a box resting on a 
table. At the contact faces surface normals are parallel and opposing. In 
this position the box can only move up or parallel to the table. A more 
constraining case is a square bar inserted in a matching shaped hole. The 
bar's four faces contact their hole counterparts with opposing normals and 
the only possible motion lies along the hole's axis. Thus, from a face 
contact relation, it is possible to infer the assembly actions that cause such 
face contact relations. 

• Face contact relations characterize a control strategy necessary to maintain 
such relations. Each face contact relation provides a constraint to motion. 
As long as the motion constraint is constant, the same mode of control 
is applicable. When the motion constraint changes, a different mode of 
control is required. For example, let us consider a box to be placed on a 
table and then slide on the table. Position control can be used to lower the 
box towards the table while the box is in the air (the box does not have any 
face contact.). When the box is about to make contact with the table (about 
to have one-face contact), force control is necessary to detect the collision 
which ensures that the box is on the table. Combined force and position 
control is necessary to slide the box on the table (for maintaining one-face 
contact). Face contact relations have been found to characterize required 
control strategies [14, 13]. Thus, such face contact relations can be used to 
determine a control strategy necessary to achieve such face contact relations 
in assembly actions. 

Using such face contact relations as the basic representations, we will de­
scribe an assembly task with a transition between pre-assembly relations and 
post-assembly relations. Based on the description, we will build an APO system 
in the following steps: 

8 



• classifying all possible face contact relations (assembly relations) between 
manipulated and environmental objects, 

• considering what kinds of transitions in assembly relations occur and build­
ing a tree in which each branch corresponds to one possible transition and 
each leaf node corresponds to an assembly relation, and 

• assigning manipulator motions to achieve such assembly relation transitions 
(the completed tree is referred to as a procedure tree). 

3.2 Taxonomy for Assembly Relation 
For geometric objects in a polyhedral world, our taxonomy identifies all possible 
assembly relations based on the directions of contact surface normals. First, we 
will analyze a two-dimensional polygonal world and then a three-dimensional 
polyhedral world. Some related issues are found in [10]. 

3.2.1 Two-dimensional cases. 

Assembly relations will be considered between polygons (not polyhedra) by using 
normal directions at contact edges. Figure 2 shows an assembly relation having 
unidirectional contact. Even if polygons have several contact edges with the same 
normal direction, they are considered as having unidirectional contact. 

Normal direction of an edge can be represented as a point on the Gaussian 
circle by translating the unit normal so that its starting point sits at the origin of the 
coordinate system. Its tail then lies on the unit circle whose center is the origin. 
This mapping is referred to as a Gauss mapping. Equivalently, possible movement 
directions of the object polygon can be represented on the Gaussian circle. Points 
on the semicircle around the contact direction correspond to the possible movement 
directions of the object polygon. Points on the other semicircle correspond to the 
prohibited motion directions. 

Bidirectional contact has two possible assembly relations as shown in Figure 3. 
Assembly relation 2d-b in Figure 3 has two maps located opposite one another on 
the circle. This case has two possible movement directions on the Gaussian circle. 
Relation 2d-c in Figure 3 has two oblique contact directions on the Gaussian circle. 
This case has several possible movement directions corresponding to a small arc. 

Tridirectional contact at first seems to have three cases: relation 2d-d, relation 
2d-e, and relation 2d-f, as shown in Figure 4. Relation 2d-d has two opposite points 
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and one intermediate point; resulting in only one possible movement direction. 
Relation 2d-e has three points whose maximum arc is larger than TT, allowing no 
movement of the object at all. 

Relation 2d-f has three arbitrary points whose maximum arc is less that n. As 
Figure 4(c) illustrates, the middle contact direction does not affect the possible 
movement directions on the Gaussian circle. Thus, relation 2d-f is considered 
equivalent to relation 2d-c and is not considered an independent relation. When a 
relation has more than three directions of contact, it can be mapped to one of the 
relations mentioned above. 

contact 
direction 

possible motion 
directions 

cnvironmeni 
prohibited motion 

directions 

Figure 2: Unidirectional contact. 
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Figure 3: Bidirectional contact: (a) relation 2d-b; (b) relation 2d-c. 

environment 

prohibited motion 
directions 

(a) (b) 
Figure 4: Tridirectional contact: (a) relation 2d-d; (b) relation 2d-e; (c) relation 
2d-f. This is equivalent to relation 2d-c in terms of possible movement directions, 
and thus, is not considered an independent relation. 
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3.2.2 Three-dimensional cases. 

The same analysis can be applied to 3-D cases. 3-D cases consider the relation­
ship among polyhedra. Table 1 summarizes the analysis of face contacts among 
polyhedra. The taxonomy has classes of uni-, bi-, tri-, tetra-, and hexadirectional 
contacts. Nine different contact patterns are extracted from this analysis. 

We will represent the contact directions and possible movement directions 
on the Gaussian sphere as shown in Figure 5. The shaded areas indicate the 
prohibited movement directions of the object with respect to the environment. 
The non-shaded areas indicate the possible movement directions. 

Table 1: 3D assembly relations 
Class Relation Explanation 
uni 3d-a 3d-a in Figure 5 shows unidirectional contact. The contact direction 

is represented as a point on the Gaussian sphere. Let us suppose the 
contact direction is mapped to the north pole of the Gaussian sphere. The 
possible directions of object motion can be represented as the northern 
hemisphere of the Gaussian sphere; the prohibited directions can be 
represented as the southern hemisphere. 

bi 3d-b 
3d-c 

Bidirectional contacts have two different relations: 3d-b and 3d-c, de­
pending on whether contact directions are in opposite directions or not. 
See Figure 5. Relation 3d-b has possible movements represented as a 
great circle on the Gaussian sphere. Relation 3d-c, on the other hand, 
has possible movements represented as an area bounded by two great 
circles on the Gaussian sphere. 

tri 3d-d 
3d-e 
3d-f 

t h e tridirectional contacts have three different relations: 3d-d, 3d-e, 
and 3d-f. Relation 3d-d and relation 3d-e have three coplanar contact 
directions. Relation 3d-d has possible movements corresponding to a 
great semi circle. Relation 3d-e has possible movements corresponding 
to two points. Between relation 3d-e and relation 3d-d, there exists a 
relation which has identical possible movement directions as relation 3d-
c. Relation 3d-f has possible movements corresponding to a spherical 
area bounded by three great circles. 

tetra 3d-g 
3d-h 

Relation 3d-g has possible movements corresponding to an arc, while 
relation 3d-h has one possible movement. Adding one more contact 
direction to relation 3d-e gives relation 3d-h. 

hexa 3d-i 3d-i in Figure 5 has no possible movement directions. 
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Figure 5: 3-D assembly relation taxonomy. 
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3.3 Assembly relation transitions 
We will consider a sequence of manipulator operations to achieve each assembly 
relation from assembly relation 3d-s. Such a sequence of manipulator operations 
is grouped into a motion macro, i.e., a template of manipulator operations, which, 
when applied to an object, yields the desired assembly relation. This is possible 
because each assembly relation is defined so that we can apply the same manipula­
tor control strategy to achieve the relation by changing only controller parameters, 
not the strategy. 

In order to reduce the number of necessary templates, we will analyze each 
assembly relation in an iterative manner. We will analyze simpler relations earlier 
and more complicated relations later. Also, instead of considering a template to 
directly achieve a complicated relation from 3d-s, we will consider an intermediate 
relation, and then try to achieve the complicated relation. First, we try to achieve 
an intermediate relation from 3d-s by using the templates already considered. Then 
we try to achieve the final relation from the intermediate relation using a newly 
considered template. 

In order to find an appropriate intermediate relation, for each assembly re­
lation, we consider disassembly actions from the assembly relation, and extract 
all possible immediate intermediate assembly relations just prior to the assem­
bly relation. We do this because considering disassembly actions is easier than 
considering assembly actions. 

Several intermediate relations sometimes occur from the same assembly rela­
tion due to 1) the variation in shapes of contact faces, and 2) the variety of possible 
disassembly operations. 

In case that due to variations in the shapes of contact faces, we have to analyze 
all intermediate relations and assign appropriate motion templates to all transitions 
from the intermediate relations to the desired relation. 

In case that due to the variety of possible disassembly operations, we can choose 
one appropriate intermediate relation among the several intermediate relations. We 
choose the one which is achieved by the simplest and most robust operation under 
uncertainty in positional information. In order to select such intermediate relation, 
we use the following criteria: 

1. In the case that a direct detach motion (a motion which immediately breaks 
a face-contact) exists, choose it. 

2. In the case that a lateral motion (a motion maintain the same contact relation) 
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that would break face-contacts by crossing a certain boundary exist, choose 
it. 

3. In the case in which several candidate motions satisfy criterion 1 or criterion 
2, choose the motion which least reduces the number of face contacts. 

By using these criteria, we will analyze each assembly relation, extract all 
possible assembly relation transitions, and prune unnecessary relation transitions. 

Table 2: Possible assembly relation transitions 
Relation Possible immediate simpler relation Transition 

3d-a A direct detach motion gives the transition from the assembly relation 3d-a to 
3d-s. See Figure 6(a) for an example of the direct detach motion which causes an 
assembly relation transition from 3d-a to 3d-s. 

s-to-a 

3d-b No direct detach motion can be applied to the assembly relation 3d-b. 
Lateral motions parallel to the contact faces can be applied. Depending on the 
shape of contact faces, it reaches either 3d-s or 3d-a. Since this variation is due to 
the shape of the contact face, we have to consider both cases. Figure 6(b) shows 
two possible relation transitions. 

s-to-b 
a-to-b 

3d-c By applying direct detach motions, the 3d-c relation becomes either 3d-s or 3d-a. 
The two possibilities are not due to the shape of the contact faces; they are due to 
motion directions. The relation transition from 3d-c to 3d-s reduces the number of 
face-contacts by two, while the relation transition from 3d-c to 3d-a reduces the 
number by one. The latter relation transition is chosen as the desirable one by the 
criterion 3. Figure 6(c) shows two possible transitions due to motion directions. 

a-to-c 

3d-d A direct detach motion gives the transition from the assembly relation 3d-d to 3d-b. b-to-d 
3d-e No direct detach motions exist in case of 3d-e. 

Lateral motions along the axis parallel to the surrounding contact faces cause 
several relations, 3d-s, 3d-a, 3d-b, 3d-c and 3d-d, depending on the shape of 
contact faces. We have to consider these five possible relation transitions. We will 
refer to the axis as the insertion axis. See Figure 6(d) for the example. 

s-to-e 
a-to-e 
b-to-e 
c-to-e 
d-to-e 

3d-f The assembly relation 3d-f becomes to 3d-s, 3d-a and 3d-c by a detach motion 
depending on motion directions. The relation transitions, 3d-f to 3d-s, 3d-f to 
3d-a, and 3d-f to 3d-c, reduces the number of face-contacts by three, two, and one, 
respectively. Thus, following criterion 3, the relation transition, 3d-f to 3d-c is 
chosen as the desirable one. 

c-to-f 

3d-g Among the two possible relation transitions, 3d-g to 3d-b and 3d-g to 3d-d, The 
relation transition 3d-g to 3d-d is chosen by criterion 3 

d-to-g 

3d-h The assembly relation 3d-h can become to 3d-e by motion along the insertion axis. e-to-h 
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Figure 6: Examples of assembly relation transitions 
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3d-d 

( d ) 

Examples of assembly relation transitions (cont) 
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We can represent relation transitions as a tree structure, as shown in Figure 7. 
Each node in the tree represents one particular assembly relation, and each arc 
represents corresponding assembly relation transitions. 

Figure 7: Assembly relation transitions represented as a tree 
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3.4 Procedure tree 
A procedure tree (Figure 8) is created by placing a template of manipulator op­
erations (motion macro) at each arc separating the assembly relation nodes of 
Figure 7. See Table 9. The manipulator operations chosen are those which can 
correctly achieves an assembly relation on one node from the assembly relation 
on the other node. 

Table 3: Motion macro 
Transitic nAssigning motion macro Motion macro 
s-to-a The relation transition from 3d-s to 3d-a is realized by an attach 

motion which contains a motion component toward the contact 
direction. Among several attach motions, pure motion towards 
the contact direction until face contact is the easiest. Thus, 
we assign the corresponding template of motions to the relation 
transition from 3d-s to 3d-a and refer to this template as move-
to-contact motion macro. 

move-to-contact 

s-to-b In order to cause the relation transition from 3d-s to 3d-b, first 
we have to align the configuration of the object so that we can 
translate it between the two contact faces. Then, we have to 
translate the object parallel to the contact faces. We assign the 
corresponding template of motions to the relation transition from 
3d-s to 3d-b and refer to this template as insert-between motion 
macro. 

insert-between 

a-to-b In order to cause the relation transition from 3d-a to 3d-b, since 
the configuration of the object is already aligned, it is only nec­
essary to translate the object parallel to the two contact faces. 
We assign the corresponding template of motions to the relation 
transition and refer to this template as move motion macro. 

move 

a-to-c At 3d-a, one face contact is already achieved. The relation 
transition from 3d-a to 3d-c is realized by an attach motion along 
the contact face of 3d-a toward another contact face of 3d-c 
until two-face contact occurs. Among several such motions, 
pure motion perpendicular to the intersection lines between two 
contact faces is selected. 
We achieve this relation transition by using the same template of 
operations for the relation transition from 3d-s to 3d-a, move-to-
contact. Thus, we assign the move-to-contact motion macro to 
the relation transition from 3d-a to 3d-c. 

move-to-contact 
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Motion template (cont) 

Transi­
tion 

Assigning motion macros Motion macro 

b-to-d The relation transition from 3d-b to 3d-d is realized by an attach 
motion parallel to the two opposite contact faces. Among several 
attach motions, as is the case in 3d-a to 3d-c, pure motion is 
selected. For this relation transition we use the same macro 
move-to-contact. 

move-to-contact 

s-to-e For the relation transition from 3d-s to 3d-e, first we have to align 
the configuration of the object so that it can be translated along 
the insert axis. Then, we have to translate the object along the 
axis. We assign the corresponding template of motions to the 
relation transition from 3d-s to 3d-e and refer to this template as 
insert-into macro. 
Note that the insert-between macro only aligns the object parallel 
to a pair of contact faces. The macro allows the rotation and 
translation freedom along the contact faces. On the other hand, 
the insert-into macro does not allow such freedom; it only allows 
the object to translate along the insert axis. 

insert-into 

a-to-e For the relation transitions from 3d-a to 3d-e, the object con­
figuration is already constrained on one contact direction in the 
previous 3d-a relation. Thus, by using the insert-between motion 
macro, we align the object along the insert axis and translate it 
into the hole. 

insert-between 

b-to-e ditto insert-between 
c-to-e For the relation transitions from 3d-c to 3d-e, the motion of the 

object is already constrained; the object is only movable along 
the insert axis. We use the move macro to make the relation 
transitions. 

move 

d-to-e ditto move 
c-to-f The relation transition from 3d-c to 3d-f is realized by an attach 

motion along the intersection line of the two contact faces of 3d-c 
until tridirectional contact occurs. For this relation transition, we 
use the same macro move-to-contact. 

move-to-contact 

d-to-g At 3d-d, the object can only translate along intersection lines 
among contact faces. By using the move-to-contact macro, we 
achieve the tetradirectional contact. 

move-to-contact 

e-to-h The relation transition from 3d-e to 3d-h is achieved by the move-
to-contact macro along the insert axis until the tetradirectional 
contact occurs. 

move-to-contact 
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From this analysis in Table 3, the following four motion macros are extracted: 

• move - a motion sequence for this macro is realized by translating a manip­
ulated object from the starting configuration to the ending configuration. 

• move-to-contact - a motion sequence for this motion macro is realized by 
translating a manipulated object until it contacts a face of an environmental 
object, then fitting a manipulated object face to the contact environmental 
face. 
If we have precise configurations, we can achieve the contact and fitting 
operations by using such configurations. Otherwise, these operations require 
some sensory feedback to detect the occurrence of contact and fitting. See 
[14] for a detailed implementation of the macro as a skill in a force feedback 
type manipulator. 

• insert-between - a motion sequence for this motion macro is realized by 
first aligning a manipulated object between a pair of contact environmental 
faces, and then translating it between the pair of contact faces to the ending 
configuration. 
If we have precise configurations, we can achieve align motion and transla­
tion motion using the configurations. Otherwise, the align motion requires 
some sensory feedback. See [14]. 

• insert-into - a motion sequence for this motion macro is realized by aligning 
a manipulated object along the insert axis, and then translating along the 
axis to the ending configuration. 

If we have precise configurations, we can achieve align motion and transla­
tion motion using the configurations. Otherwise, the align motion requires 
some sensory feedback. See [14]. 

Figure 8 represents a completed procedure tree. 
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Figure 8: Procedure tree. 
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3-5 Task models 
A task model consists of an assembly relation transition, a motion macro, and 
the necessary parameters required to expand the motion macro into a sequence 
of manipulator commands. For example, Figure 9 shows the task model corre­
sponding to the transition from 3d-s to 3d-a. The starting and end relation slots 
contain 3d-s and 3d-a, respectively. The action slot contains the move-to-contact 
motion macro. In order to achieve the motion, it is necessary to know the previous 
configuration and end configuration of the manipulated object. The corresponding 
parameters are prepared as task parameters. The values corresponding to these 
parameters are obtained by the task instantiation module at run time. 

Thirteen task models corresponding to all arcs in the tree are prepared. They 
are attached to the procedure tree. 

Figure 9: The task model corresponding to the assembly relation transition from 
3d-s to 3d-a 

parameters 

object start configuratoin 
object approach configuration 
object approach direction 
gripper start configuration 
gripper approach configuration 
gripper approach direction 
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4 Implementation of APO system 
How are task models used to recover human assembly tasks in the APO system? 
The task recognition mechanism will be explained in the following examples. The 
example system consists of three classes of objects, (any of which can appear in 
the scene): castle, block, and stick (Figure 10). 

Figure 10: Castle, block and stick. 
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4.1 Temporal Segmentation 
The system assumes that at the beginning of each assembly task human intervention 
occurs in the scene and at end of the assembly task the human disappears from the 
scene. By using this assumption, the APO system segments a continuous image 
sequence given by a TV camera from the scene into a finite number of meaningful 
chunks. 

By using the level change in the brightness difference, the system can detect 
human intervention. Figure 11 shows a continuous image sequence of a scene 
given by a TV camera, while the human operator is putting a castle on the ta­
ble. Before human intervention, the scene consists of only still objects, thus the 
difference between two consecutive images is at the quite level. When human 
intervention occurs, the brightness difference is large due to the motion of human 
and manipulated object in the scene. This disturbance continues until the end of 
the assembly operation. After the human hand disappears, the scene consists of 
only still objects. Thus, the brightness difference returns to the quite level. 

We have been using this method for detection for several live demos repeated 
continuously for several days, and the method never failed. 

4.2 Object Recognition 
Objects in the scene are recognized from range data. In our current implementation, 
b/w images are used only for detecting the completion of one assembly task. More 
reliable range data are used for analyzing the scene. After a certain period after 
the detection of the completion of one assembly task, the APO system invokes 
the range finder and measures range information in the scene. The APO system 
then generates a difference image between the range image from the previous step 
(before the assembly task) and the range image from the current step (after the 
assembly task). 

The system applies a segmentation program to the difference image and obtains 
any newly appearing regions. These new regions correspond to the faces of the 
manipulated object by the assembly task. See Figure 12 

An object recognition program is applied to the new regions. After recognizing 
a manipulated object from the regions by fitting a geometric model to range data on 
the regions, the program determines the configuration of the manipulated object. 

The system maintains the configurations of other environmental objects. The 
system represents these manipulated and environmental objects in the Vantage 
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image sequence 

Figure 11: The system detects human intervention from the change in brightness 
values 
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S c e n e 

N Di f ference 

R a n g e I m a g e 

Figure 12: The difference in range data 



geometric modeler [1] as shown in Figure 13. 

R a n g e I m a g e Geometr i c R e p r e s e n t a t i o n 

R e c o g n i t i o n P r o g r a m 

Figure 13: Object recognition: a recognition program is applied only to any 
newly appearing regions, and recognizes only manipulated object. The recognition 
results are represented by Vantage. 
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4.3 Task Identification 
By using the transformation from body coordinate systems to face coordinate 
systems, (available from the Vantage geometric modeler), the configurations of 
the faces of the manipulated and environmental objects are obtained. 

The system extracts contacting face pairs from the face configurations. Here, 
a contacting face pair is a face from the manipulated objects and a face from 
an environmental object, which have the same face equations and whose surface 
normals are opposite to each other. 

The system determines the assembly relation based on the contacting face 
pairs by analyzing the contact directions of pairs. Here, the contact direction is 
defined as the normal direction from the environment faces to the manipulated 
object faces as previously defined. The contact pairs are grouped into a set of 
contact directional groups so that each group has face pairs with the same contact 
direction. By examining the occurrence of directions, we can determine which 
assembly relation occurs by the assembly task. 

The system recognizes the contact faces and contact directions as shown in 
Figure 14. From the contact faces in Figure 14, the system determines that the 
current assembly relation is 3d-a. 

Before the assembly task, the castle does not exist in the scene. Thus, before 
the assembly task, the assembly relation between the castle and the table was 3d-s. 
After performance of the assembly task, the manipulated castle established a 3d-a 
assembly relation with the environmental object, the table. 

From this observation, the system recognizes that the assembly relation transi­
tion, 3d-s to 3d-a, occurs due to the assembly task. The corresponding task mode 
3d-s to 3d-a is extracted from the corresponding arc along the procedure tree. 
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Figure 14: Extracted contact faces and assembly relation. 
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4.4 Task Instantiation 
In this example, at the previous step, the castle was stored on the warehouse table. 
Thus, the assembly relation transitions during the entire assembly task are 

• 3d-a to 3d-s: detach the castle from the warehouse table to the departure 
configuration. 

• 3d-s to 3d-s: bring the castle from the departure configuration to the ap­
proach configuration in free space. 

• 3d-s to 3d-a: move-to-contact the castle to the working table from the 
approach configuration. 

Thus, the corresponding three task models are instantiated: a-to-s, s-to-s, and 
s-to-a. 

The following procedure is executed to instantiate a task model: 

• obtain an abstract task model from the data base, 

• obtain necessary parameters for the motion-macro (i.e. motion direction 
and translation distance) derived from the object recognition results. 

• obtain the necessary motion macro (a sequence of manipulator motions) by 
consulting the action slot of the task model, 

The instantiation of task models occurs in the reverse order, s-to-a, s-to-s, and 
a-to-s. 

The s-to-a task model has a move-to-contact motion macro in the action slot. 
The task model examines each object model and determines grasp configurations, 
how to grasp the object with respect to the body coordinate system, and the 
specified grasping method. In the current implementation, each object model has 
predetermined grasping configurations. The task model chooses an appropriate 
grasping configuration and recalculates it based on the current body configurations. 
The task model determines the grasping configuration of the castle based on 
the observed castle configuration. The task model also determines the stack 
configuration of the castle on the table in a similar manner. The system then 
inserts these parameters to the corresponding slots in the instantiated task model. 

The global motion is also implemented as a task model, s-to-s. This task model 
has a motion macro, move. The current implementation does not consider collision 
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between the manipulated object and environmental objects. It assumes that space 
above a certain level of height is free space. The task model incorporates the path 
from the departure configuration to the high position, the high position to another 
high position above the approach configuration, and the second high position to 
the approach configuration. These configurations are obtained from the old and 
new configurations of the manipulated objects. These values are inserted into their 
slots in the instantiated task model. 

The disassembly task is also implemented as a task model. The current 
implementation does not observe the warehouse table due to the field of view 
of the range finder. Thus, the assembly relation transition, 3d-a to 3d-s, which 
occurs at the warehouse table, is given to the system as a priori knowledge. The 
system instantiates a disassembly task model, a-to-s. This task model has a motion 
macro, moVe in the action slot. The grasp configuration for the disassembly task 
is obtained from the geometric model in a similar manner to the assembly task 
model. This value is stored in the corresponding slot in the instantiated task model. 

The system finally performs the operations given by the three task models 
sequentially: a-to-s, s-to-s, and s-to-a. Figure 15 shows the final move-to-contact 
operation by a manipulator. 
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Figure 15: Put a block on the table with a manipulator. 
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4.5 Additional examples 
Figure 16(a) shows a human operation for inserting a stick in a hole of the block. 
The system recognizes the contact faces (Figure 16(b)). From the normal direction 
of contact faces, the system generates tetra directional contact. By examining 
the directions of the contacts, the system determines that the observed assembly 
relation is 3d-e. 

Currently, the vision system cannot detect intermediate relation transitions 
such as from 3d-b to 3d-e due to our temporal segmentation method. It can only 
detect the relation transition from 3d-s to 3d-e. Thus, the system explores all the 
possible paths in the procedure tree between 3d-s and 3d-e. Then, by examining 
the shape of contact pairs, the system infers which path occurs. 

More precisely, the relation transition from 3d-s to 3d-e corresponds to five 
paths; direct path, via 3d-b, via 3d-a and 3d-b, via 3d-a and via 3d-a and 3d-c All 
the arcs to the 3d-e, however, have the same assembly action (and disassembly 
action), translation along the axis. In Vantage, the disassembly action is applied 
to the current geometric representation of the manipulated and the environment 
objects to find the previous assembly relation. The system examines the vertex co­
ordinates of all the contact faces, projects them to a plane parallel to the translation 
directions, and determines which assembly relation occurs due to this translation 
action. In this example, the system finds that all the boundary edge vertices on 
the contact faces have the same coordinate system along the translation directions. 
From this, it concludes that the 3d-s to 3d-e relation transition occurs. 

The s-to-e task model has a motion macro, insert-into in the action slot. Using 
the predetermined grasp configuration and the observed stick position, the system 
performs the insert operation as shown in Figure 16(c). 

Figure 17 shows other examples constructed successfully by the system. 
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5 Conclusion 
We have described an Assembly-Plan-from-Observation (APO) system that can 
observe an assembly task performed by a human, recognize scene objects, relations 
among those objects, and actions on them, and produce corresponding operational 
plans for a robot. Our work will open a new domain of object recognition 
applications and provide a revolutionary way of programming robots. 

The current system analyzes human operation and generates the fine motion 
plan from observation among polyhedral objects. Future directions include how 
to generate grasp plans and global motion plans from observation. 
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