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1. Introduction 

Communicating with machines through natural spoken language has always been a dream of human 

beings. In order to achieve this goal, we need not only an accurate, but also a real-time speech 

recognition system. Speech recognition has been an active research area for quite some time, and 

a good deal of progress has been made in the last couple of decades. In the last three to five 

years, the Hidden Markov Model (HMM) [26, 13, 23 , 34, 43 , 48] has proven to be a popular and 

effective technique for the implementation of speech recognition systems. However, the ultimate 

goal of highly accurate large-vocabulary continuous speech recognition with real-time response is 

hard to achieve without special hardware support because of the large computational and memory 

requirements of the H M M approach. 

In order to speed up the speech recognition process, many special purpose hardware designs have 

emerged for speech recognition systems in the last couple of years. They range from fully custom 

designed machines, to systolic machines, to pipeline machines, to shared memory multiprocessor 

machines, to message passing machines, to distributed multiprocessor machines. Of course, every 

architecture has its own pros and cons. Some architectures are much faster, while some are easy 

to program, easy to expand, cheap to build, or flexible for different kinds of applications, etc. 

This paper attempts to describe those features and provide a survey of some notable systems 

developed recently. We would like this document to serve as a future reference for people who 

may contemplate building new speech architectures or for those who would like to choose among 

the architecture alternatives that are available. 

The paper is organized as follows. Section 2 characterizes the general computation and memory 

requirements for a variety of speech related algorithms , like recognition and training. Section 

3 addresses the general design criteria of hardware architectures for speech recognition systems. 

The paper-and-pencil evaluation and comparison of a variety of notable architectural alternatives 

are presented in Section 4. 

2. General System Requirements for Speech Recognition Systems 

Although this paper focuses on H M M based systems, it doesn't necessarily exclude other ap­

proaches, like knowledge-based systems [52] or neural network based systems [51]. Nevertheless, 

since the H M M has been a predominant approach for continuous speech recognition, almost all 
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of the hardware architecture designs for speech recognition are aimed at H M M based systems. 

Actually, some architectures mentioned in this paper could be extended to non-HMM systems with 

small modifications. 

By looking into the spectrum of the whole speech recognition system, front-end signal processing 

[33,29] for the transformation of the input signal into a form suitable for analysis is of no concern 

from the computational point of view. Although auditory models [14, 32 ,31 ,1 ] suggested by some 

speech researchers require large computation, their superiority in continuous speech recognition 

has not been shown. Commercial digit signal processors can handily generate the two most widely 

used speech signal representations: FFT and LPC [33] in real time. On the other hand, the search 

part requires large computation and therefore becomes the most challenging part of the architecture 

design in order to achieve real-time performance to produce a practical speech recognition system. 

Moreover, although the training process whose responsibility is to build accurate models for 

recognition doesn' t require real-time performance in general, it is still important for the system to 

speed up the training process so as to reduce the time required for model development. 

In the following, we will describe and characterize the general computation memory require­

ments for a variety of speech related algorithms, including Viterbi search, stack decoding and 

training. Since parallel(including pipeline) architecture is used to speed up intense computation 

most frequently, we will pay more attention on parallel implementation of such algorithms. 

2.1. Search 

2.1.1. Viterbi Search 

The Viterbi Search [50] is the most popular search algorithm for continuous speech recognition 

because of its efficiency. It has been successfully applied in many speech recognition systems 

[27, 3 5 , 1 3 , 4 8 , 3 4 , 4 2 ] . The Viterbi Search is a time synchronous search algorithm that completely 

processes all input up to time t before going on to time t + 1 . For time t, each state is updated by 

the best score from states at time t — 1. From this, the most probable state sequence can be found 

by backtracking at the end of the search. 

A full Viterbi search is quite efficient for moderate tasks [7]. However, for large tasks, it can 

be very time consuming. A straightforward way to prune the search space is the beam search 
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[30, 49, 36]. Instead of retaining all candidates at every time frame, a threshold T is used to 

maintain only a group of likely candidates. The use of the beam search alleviates the necessity of 

enumerating all of the states and can lead to substantial savings in computation with little or no 

loss of accuracy. For example, in the implementation of SPHINX [25], they found it is possible to 

prune 80% - 90% of the hypotheses, without any loss in accuracy. 

There are several advantages to using the Viterbi search algorithm. First, if we use a logarithmic 

representation of the H M M probabilities, Viterbi search is extremely efficient because multipli­

cations of probabilities become additions. Second, because of its time-synchronous nature, it is 

very easy to modify the time-synchronous Viterbi algorithm into a beam search and it will also be 

suitable for parallel implementation if necessary. 

Although the actual implementations of the Viterbi search algorithm will vary, it can roughly 

be broken down into the following two modules: 

• The word expansion module performs Viterbi search and finds the probabilities for words 

in the vocabulary matching the speech signal. 

• The grammar expansion module controls the word expansion module by telling it what 

words to process in the next time frame based on grammar constraints. 

The DARPA resource management task (see [25] for a description of this task), which is a 

1,000—word, perplexity 60 task, has been used as a common benchmark task by the speech 

community since 1987. As a result, many architecture designs aimed to achieve this task in 

real-time. We will use the resource management task as our benchmark test to evaluate different 

architecture designs in section 4. In order to do that, we must first analyze the time and space 

requirement for Viterbi search in the resource management task. Let's take SPHINX 'S [27] 

implementation for an example, without loss of generality. In the SPHINX system, allophones 

are described with seven-state models and words are sequences of (on average) six allophones. 

Therefore, each word requires about 40 states. Resource management used a statistical grammar 

which specifies the legal word pairs. In a regular Viterbi algorithm, the word expansion module 

needs to update all the states at every frame (10 ms), so for the resource management task, this 

would require updating about 40,000 states every 10ms, or about 80,000 transitions, since there 

are, on average, two predecessors for each state. There are about 7 instructions required for each 

transition in the SPHINX system, which used a discrete HMM approach. (For continuous H M M 
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approaches, the number of instructions required is at least one order of magnitude greater than 

that for the discrete H M M approach. Please see section 2.1.3 for details) This is quite a lot of 

computation. Fortunately, because of its time-synchronous nature, the word expansion module can 

be implemented in parallel efficiently. The other way to reduce the computational load is to use 

the beam search described earlier. For example, a beam search could reduce the number of states 

that need to be updated at every frame to about 4,000 (8,000 transitions) instead of 40,000 (80,000 

transitions) in the SPHINX's implementation. On the other hand, the computational requirements 

of the grammar expansion module depend on the complexity of grammar. For example, the 

resource management task with a word-pair grammar of perplexity 60 will need to process 1,000 

* 60 grammar transitions for non-pruned Viterbi search. Of course, the beam search can again 

be used here to reduce the computational requirements. If the Viterbi search algorithm (with or 

without beam pruning) is implemented on a single-processor general-purpose machine, the word 

expansion module generally consumes about 70% to 80% of the total search time(and up to 9 5 % if 

using continuous densities), while the grammar expansion module consumes about 20% to 30%. 

Therefore, most system designs are aimed at speeding up the word expansion module. 

While the speed of commercial general purpose processors continues to improve every year 

(at a rate of two to three times per year), the speed of memory access does not increase at the 

same rate. [20, 39] Unfortunately, the word expansion and grammar expansion modules require 

access to a large amount of memory with a high bandwidth, and therefore the Viterbi search is 

mainly a memory-bound task. Because of the frame-based nature of the Viterbi search, it exhibits 

a very poor cache hit rate. Therefore, memory bandwidth is probably the major bottleneck in 

Viterbi search. For example, The DARPA resource management task requires an average memory 

bandwidth of 40 Mbytes per second for SPHINX [9] if it is executed in real time. This figure could 

even be larger because most systems tend to use more sophisticated models in order to achieve 

better performance. Most commercial bus-based shared memory multi-processor machines are 

not a good solution for Viterbi search because they work well only with algorithms that have a 

high cache hit-rate and the serious memory contention will slow down the processors when a few 

processors (more than 5) running in parallel. 

The other potential problem for parallel implementation of Viterbi search is the substantial 

amount of synchronization because Viterbi algorithm reveals a very small granularity. For example, 

the DARPA resource management task needs about 2 fis between synchronizations even with the 

beam search. Although beam search could substantially reduced computation, it also introduces 

the problem of load-balancing because it retains an unknown pattern of the most promising states 
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and therefore requires more complicated synchronization among processors. 

2.1.2. Stack Decoding 

Stack decoding [3] is a best-first search algorithm for continuous speech recognition. It is derived 

from the A* algorithm [37] used in artificial intelligence. Stack decoding is not time-synchronous, 

but extends paths of different lengths. Stack decoding constructs a search tree from a state graph S 

that is specified by the language model. The states in the graph represent the states in the language, 

and the branches in the search tree are words that cause transition from one language state to 

another. The search begins by adding the initial states of the language with empty hypothesis to the 

OPEN list. Then every time the best hypothesis is popped out from the OPEN list, all paths from it 

are extended, evaluated, and placed back in the OPEN list. This search continues until a complete 

path that is guaranteed to be no worse than all paths in the OPEN list has been found. In selecting 

the best hypothesis, we need an evaluation function that estimates the score of the complete path 

as the sum of the actual score of the partial path and the expected score of the remaining path. If 

the expected score of the remaining path is always an underestimate of the actual score, then the 

solution found will be optimal. This feature is called the admissibility (optimality) feature of the 

A* search. [38] 

Viterbi search is a graph search, and paths cannot be summed because they may have different 

word histories. Stack decoding is a tree search, so each node in OPEN has a unique history, and 

paths can be summed within word hypotheses when a word is extended. Therefore, with stack 

decoding, it is possible to find the optimal word sequence with multiple beginning and ending 

times which is more consistent with the training algorithm [8], than the optimal state sequence. 

Moreover, Viterbi search computes over the entire search space at all times (although beam search 

can reduce the search space), while stack decoding only computes with the best hypothesis in 

each expansion. Since the memory requirement of dynamic expansion is much less than that of 

Viterbi search, stack decoding is likely to be able to deal with very large vocabularies and more 

complicated grammars. 

While the aforementioned properties of stack decoding are very attractive, many implementation 

problems arise for stack decoding. First, it is very hard to compare the probabilities of partial 

paths with different lengths. Direct comparison of probabilities will cause the search to always 

favor shorter paths, resulting in a full breadth-first search. On the other hand, since the acoustic 
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probabilities being compared in Viterbi search are always based on the same partial path, which 

is not the case in stack decoding, stack decoding needs to perform some normalization on the 

probabilities. Unfortunately, there is no easy way to find such a normalization. Second, the 

evaluation function that guarantees the admissibility of the algorithm is difficult to find for speech 

recognition because of uncertainty about the remaining part of speech. A function that is guaranteed 

to underestimate will result in a very large OPEN list, so a heuristic function that may overestimate 

has to be used to evaluate the remaining paths. Of course, this invalidates the admissibility of the 

algorithm. Even with an overestimating evaluation function, the OPEN list will still be too large. 

Therefore, two other types of pruning are used to reduce the search burden: 

1. A fast-match phrase that extends only a small fraction of most promising paths from a partial 

path in order to get a list of most likely following words waiting for detailed matching. [4] 

2. The use of a stack (similar to the beam in Viterbi search) that saves only a fixed number of 

hypotheses in the OPEN list. 

Finally, consideration of multiple beginning and ending time of words is very tricky because it is 

too costly to try all possible beginning and ending times. Some heuristic must be used to determine 

the boundary regions. 

Based on the problems described above, stack decoding is considerably more difficult to im­

plement. Thus, very limited effort has been invested on the stack decoding for continuous speech 

recognition systems [6 ,41] . There are even fewer hardware architectures aimed at stack decoding. 

Although all speech architectures mentioned in this paper are aimed at Viterbi search, we would 

also like to analyze the possibility of exploring stack decoding. In order to do this, let's now try to 

characterize the potential system requirements of stack decoding. 

Unlike Viterbi search, a parallel implementation of stack decoding is not so straightforward since 

it is not time-synchronous. One obvious parallel implementation could be performed by popping 

N-best hypotheses from the stack and sending each to different processors. Once each processor 

completes one level of expansion(from one language state to another language state), the new 

hypotheses will be inserted back into the stack or merged with existing states if necessary. Since 

stack decoding is a best-first search, some early actions taken by executing non-best hypotheses in 

parallel might be proven to be unnecessary later and therefore it might be a waste of time to explore 

the less promising hypotheses. Based on simulation results [40], the best complete path usually 

comes from the 10-best hypotheses. From such a point of view, this kind of decomposition seems 
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not to be suitable for massive parallel implementations. The second type of parallel decomposition 

could be done when performing the search on the best hypotheses. In general, there are many 

language transitions for a language state depending on the perplexity of the grammar. For example, 

there are on the average 60 grammar transitions per language state for a grammar of perplexity 60. 

It is ideal to have a master processor popping out the best hypothesis and handing out the different 

word evaluations to different slave processors according to the grammar transitions. After the 

slave processors finish word evaluation, the new hypotheses along with the score information are 

sent back to the master processor and the master processor will finish the bookkeeping, merging 

and finally inserting the new hypotheses back into the stack. This decomposition allows not 

only for massive parallelism, but also for medium granularity because there are time-synchronous 

constraints. On the other hand, hypotheses are extended one word at a time instead of being 

extended one frame at a time in stack decoding, and different words tend to have different lengths, 

so processors are not likely to terminate at the same time when running word evaluation in 

parallel. Therefore dynamic load balancing is very crucial to implement stack decoding in parallel 

efficiently. Moreover, the communication between processors is more complicated than Viterbi 

search because it happens almost everywhere and is no longer time-synchronous. Fortunately, 

the memory bandwidth issue seems to be a less serious problem for stack decoding. Since stack 

decoders do word-based evaluation instead of frame-based evaluation, in stack decoding, it is not 

necessary to deal with the whole search space that Viterbi is always likely to access. Processors 

would have a relatively good temporal and spatial locality and therefore stack decoding would 

achieve a much higher cache hit-rate than Viterbi search. 

The other related issue in stack decoding is the use of fast match. Since stack decoding doesn't 

have the ability to prune unpromising word hypotheses until the completion of the whole word 

evaluation, it becomes increasingly important to find a short list of promising candidate words 

quickly and cheaply (fast match) before performing slow and expensive detailed matches, as the 

vocabulary increases in size. Because it must be quick and cheap, a parallel implementation is 

ideal for fast match. Like implementing the word evaluation in parallel, this parallelism tends to 

have medium granularity and high cache hit-rate. In addition, we could have detailed acoustic 

matching for the most promising hypothesis and use fast match to find the short list of words for 

the second most promising hypothesis to do detailed matching next running in parallel, and so on. 

However, the cost of complex synchronization is the inevitable price to pay for doing this kind of 

hybrid parallelism. 
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2.1.3. Continuous vs. Discrete Density 

The other important feature which would affect the design of speech architecture is the type of 

density functions embedded in the H M M representation. One is the discrete density function [46] 

which models the output probability for each output symbol explicitly. In association with discrete 

density HMMs, each frame of speech must be represented by a symbol from a finite alphabet through 

vector quantization (VQ) [29]. VQ is a data compression technique that first identifies a set of 

prototype vectors from training data. Then speech input is converted from a multi-dimensional 

real feature vector of, say FFT or LPC coefficients, to a symbol that represents the best-matching 

prototype vector. The other is the continuous density function. By pre-assuming certain properties 

of the output distributions, the output probability of observed speech can be attained according to 

the distribution formulas. The most frequently used continuous density is the multivariate Gaussian 

density [46]. With the multivariate Gaussian density, the output probability density function (pdf) 

is described by a mean vector and a covariance matrix. To reduce computation, the covariance 

matrix is sometimes assumed to be diagonal (all the off-diagonal terms are zeros). Moreover, 

mixture densities [47] are often used to improve the modeling because a single-mixture diagonal 

Gaussian density function does not adequately represent certain speech parameters [47]. 

The use of continuous HMMs requires heavy computation. By using discrete HMMs, computing 

the output probability of an observed speech frame during the search is merely vector quantization 

and table-lookup. On the other hand, by using the continuous HMMs, more memory accesses 

and many more instructions are required for every transition even with the simplest single-mixture 

diagonal Gaussian density function. For example, every single-mixture diagonal Gaussian density 

function in the AT&T system requires more than 72 multiplications and 36 additions. The use of 

multiple-mixture or full covariance would definitely further increase the computational requirement 

of speech recognition with continuous HMMs. 

In order to compare the computation requirement of discrete and continuous densities, two 

pseudo codes for computing observation probabilities from discrete and continuous densities 

are given as follows. The pseudo code for discrete densities is based on the implementation 

in SPHINX and that for continuous densities is based on the semi-continuous SPHINX system 

[22] which resembles a 4-mixture multivariate diagonal Gaussian density function. Logarithmic 

probabilities are used in both cases. Suppose there are 3 different codebooks and the size for 

each one is 256. As we can see in the first part (quantization), continuous densities need about 

twice as many multiplications and additions as the discrete ones. However, in the second part 
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(output probability generation), while discrete densities only need 3 additions for each distribution, 

continuous densities need 3 * 4 * 2 more additions, 3 * 4 more exponentiations and 3 more 

logarithms which are very expensive for each distribution. Be aware that the computation for 

discrete densities is fixed when the number of the codebooks and the sizes of codebooks remain 

unchanged. On the other hand, the computation for continuous densities could be increased by 

using more mixtures or more Gaussian densities even when the number of codebooks and the 

sizes of the codebooks remain unchanged. For example, the AT&T system [24], which uses more 

mixtures (more than 60) and more Gaussian densities (more than 9,000), could potentially require 

much more computation. 

Discrete Density: 

for each frame { 

for each codebook K{ { 

min = 0; B{ = 0; 

for each code Cj in K{ { 

dist = 0; 

for each dimension k in Cj { 

dist = dist + (cep[k] - Cj[k})2\ 

/* cep[] is the cepstra vector and Cj[] is the centroid vector for Cj */ 

} 
if (dist < min) { 

B{ — j \ min = dist; 

} 
} 

} 

for each distribution i { 

Probi = 0; 

for each codebook j { 

Probi = Probi + OuUj[Bj\, 

} 
} 

} 
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Continuous Density: 

for each frame { 

for each codebook K{ { 

for each code Cj in K{ { 

Gaussij.prob = 0; Gaussij.code = j ; 

for each dimension k in Cj { 

Gaussij.prob = Gaussij.prob — (cep[fc] — Cj[k])2 * Var^fc]; 

/* cep[] is the cepstra vector, Cj[] is the mean vector and Varj[] is the covariance vector of Cj 

} 
Gaussij.prob = Gaussij.prob + Detij; 

/* D e t j is the determinant of Gaussian pdf Gaussi,j */ 

} 
} 

for each codebook K{ 

SORT Gauss[i, 1. .sizeJOj.codebook J<i] according to field prob 

for each distribution i { 

Probi = 0; 

for each codebook j { 

temp = 1; 

for each mixture k { 

temp = t e m p + exp(Outiyj[Gaussj,k-code] + Gaussj^.prob); 

/* Outij[] is the mixture weight vector for distribution i, codebook j */ 

} 
Probi = Pro&i + log(temp); 

} 
} 

} 

In spite of the heavy computational requirements of continuous HMMs, it doesn' t necessarily 

present as tough a problem as we might have thought at first glance. First of all, thanks to 

advanced VLSI technology, multiplication can be executed as fast as addition; the exponentiation 
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and logarithm could also be executed effectively by mathematic co-processors. Second, the 

computation of observation probabilities could be logically separated from the search part, so they 

can be executed in parallel and the search part only needs to access the observation probability 

result buffer filled by the observation probability generator. This functional separation could also 

be used to speed up large vocabulary Viterbi search on a single processor machine. For example, 

while there are about 2,000 distributions in the SPHINX system, it needs to update about 8,000 

transitions at every frame (see Section 2.1.1). Therefore, without functional separation, it will 

need to compute 8,000 distributions instead of 2,000 and many of them are actually re-computed 

several times. The recent SPHINX system [22] used a semi-continuous density function which 

resembles a 4-mixture multivariate Gaussian density function and resulted in only a 3-5 times 

slower recognition performance than the discrete SPHINX, while the performance is about 3 times 

slower without the functional separation. Moreover, the observation probability generator is a 

sequence of vector-style operations which could be implemented in parallel and involve almost 

no synchronization and load-balancing. The vector-style observation probability generator could 

even be accelerated by vector processing machines like the CRAY and Alliance. 

2.2. Training 

In comparison with recognition, training is a much less serious problem because the paths to 

search in training are always known. A good implementation on a commercial single processor 

workstations (SUNs, DEC Stations, NEXT) could easily perform the job in real-time. However, 

the size of the training database normally consists thousands of utterances constituting hours of 

speech. For example, the D ARPA speaker-independent resource management training database[44] 

consists of about 4,000 utterances and CMU's general English training database consists of more 

than 20,000 utterances [21]. The training could also consists of several iterations and several 

phases, such as mono-phone training and triphone training. Besides, the discriminative training 

schemes (such as Maximum Mutual Information training, corrective training) [11,5] could add a lot 

of phases to the training process. Therefore, it would be nice for the speech hardware architecture 

to accelerate the training process as well. 

As mentioned before, training on one utterance is basically a one-path parametric re-estimation 

and thus is a sequential behavior which could not benefit from a parallel implementation. However, 

since the training database contains many utterances, it is possible to train different utterances in 

parallel. This decomposition is very easy and requires only a small amount of synchronization (the 
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granularity is relatively large, only 1-2 seconds between synchronization). 

Although the memory bandwidth requirement for training is much less than that for recognition, 

the total memory needed for training could be much more because training normally needs several 

copies of the HMM's . Since the training on different utterances would require accessing different 

models, the visibility of all the models for training processor would be essential for speed-up. If 

the primary memory can ' t hold all the spaces needed for training, disk swapping would be fatal 

to the training process. Fortunately, swapping between disks and primary memory, and between 

primary memory and cache only happens when completing the training on the current utterance 

and beginning to train on the next utterances. We could arrange the training database so that the 

differences between consecutive utterances are minimized, therefore requiring less page-in's and 

page-out's. The other possibility is to create one process to pre-fetch the required data for the next 

utterances when training on the current utterance [2]. Even if the pre-fetch requires page-in or 

page-out, the fetch operation would not affect the training on the current utterance since the CPU 

operation and IO operation are interleaved. 

3. Design Criteria of Speech Hardware Architectures 

In this section, we would like to give some of the desired criteria for speech hardware architecture 

designs. A good architecture design doesn' t necessarily need to cover all the criteria we state 

because different architecture designs have their own goals. However, we would like to list some 

criteria which many systems try to achieve based on the requirements of a speech recognition 

system. 

• Speed - First of all, speed is the main motivation for designing and building a special purpose 

hardware architecture for a speech recognition system when general purpose machines can 

not perform the task effectively. Since the ultimate goal of automatic speech recognition is 

to communicate with machines through natural spoken language, real-time performance is 

essential for success. 

• Scalability - Although most system designs have some specific task in mind (such as a 

resource management task), it would be desirable for the system to be extensible. Because 

of the continuous development of speech technology, we are able to handle more and more 

difficult tasks. An extensible system would be a more useful tool for speech researchers than 

12 



a stand-alone system for some limited applications. The first way to enhance the performance 

of a system is to use a faster processor or clock, but this is a very limited approach and not 

trivial to implement. The other is to use more processors in parallel systems. However, this 

is not so straightforward because speech search is a memory bound algorithm. Using more 

processors might saturate the bandwidth of system very soon and therefore might degrade the 

system instead. For example, the SPHINX system cannot take advantage of more than five 

Encore Multimax processors (Encore is a commercial bus-based shared-memory machine) 

because the memory bus bandwidth is exhausted with only a few (5 or 6) processors. 

Flexibility - There are many different configurations of speech models (continuous vs. 

discrete density) and different search algorithms ( Viterbi vs. stack decoding). Although 

a few mixed comparisons have been done, the superiority of one over the other is still an 

open question. Therefore, a good hardware design might need to accommodate different 

configurations and different algorithms. In order to make the special purpose hardware 

helpful for speech researchers as development machines, it must also be feasible for all the 

related speech algorithms, such as training and natural language processing. Unfortunately, 

those speech algorithms are quite different, though they share some fundamental operations. 

Flexibility will remain a big challenge for speech architecture design because it is well known 

that flexibility and speed are two tradeoff factors in hardware design. 

Programming Environment - The other important issue to make the special-purpose hard­

ware more useful for speech researchers is the programming environment. General purpose 

languages are favored over microprogramming languages. Systems that require separate 

programming languages for different parts, like a signal processing subsystem, a word ex­

pansion module, a grammar expansion module, etc, would prevent people from using them 

regularly. Since most system designs are based on parallelism, the other important issue 

in programming environments are the parallel programming and debugging tools. Writing 

correct parallel programs is never easy. Therefore, the tool that enables the users to execute 

and debug their parallel programs on the host machine or single processor machine will be 

extremely helpful in reducing the development time. 

Development Cost - While the speed of computers continues to increase, the price of 

computers is decreasing. A simple speech task (with a small vocabulary or highly constrained 

grammar) could be handled in real time by a commercial general purpose machine. Therefore, 

custom machines are adequate only if their cost is not so astonishing in comparison with 

the cost of general purpose machines. On the other hand, general purpose machines are 

continuing to improve at a very high rate (2-3 times per year) and eventually will perform the 
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same task sufficiently (the fate of all architectures). Moreover, speech modeling techniques 

keep changing, so the development of special hardware architectures is meaningful only 

when it is developed fast enough to catch up with the current hardware technology and 

speech modeling techniques. 

• Miniaturization - Since the development of VLSI techniques, a new criterion has arisen for 

custom architecture design, namely miniaturization. For some applications, requirements 

are stated not in MegaFLOPS, but in MegaFLOPS per cubic foot. Therefore, a good 

architecture design should also take into account the suitability of miniaturization via VLSI 

and packaging. 

4. Survey of Some Notable Systems 

4.1. AT&T's Graph Search Machine 

AT&T's Graph Search Machine (GSM) [17] is a custom designed VLSI chip that is aimed at 

speeding up the kernel functions used in dynamic programming (or Viterbi search). The architecture 

is designed around a fast accumulate-minimum selector function that complements the classical 

multiply-accumulate function in many signal processing devices. The function is optimized by 

special design of the datapath to allow a pipeline configuration. Also like many DSP architectures, 

the GSM uses both on-chip and off-chip memories to increase performance. While on-chip memory 

(32 * 32 bits) is used as a program "cache", off-chip memory ( 6 4 K * 16 bits) is used to hold data 

as well as programs. Although the 68-pin GSM chip runs at a clock speed of 8 MHz, the GSM can 

search 500 templates in real time when using dynamic programming on word template matching. 

It is several times faster than typical microprocessors. 

To use the GSM for continuous speech recognition by the H M M approach, the limitation is 

on the local memory, but not on the processor. For example, the SPHINX system has roughly 

600 HMM's and each H M M occupies approximately 10 Kbytes [25] for the DRAPA resource 

management task, so the local memory of each GSM can hold at most 12 HMM's . Therefore, one 

must have at least 50 GSM's running in parallel in order to achieve the resource management task 

in real time. Since the single-bus connection among the GSM's and no shared memory support 

prevent it from executing complicated communication and dynamic load balancing, a beam search 

can not help in this case. 
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The GSM could indeed be a component of every architecture design because one could take 

advantage of fast execution of the kernel function of Viterbi search. As indicated earlier, the 

bottlenecks for the GSM are the memory and communication requirements. When using the GSM 

in a parallel mode for larger tasks, the real performance will mostly depend on the architecture built 

on top of it because there is no support for any synchronization or shared memory management. 

Moreover, its superiority is limited to Viterbi-like algorithms. For example, the kernel function 

of stack decoding and training, which is a summation of all the possible paths instead of the 

selection of the minimum path, would not be able to take advantage of the GSM. Considering 

natural language processing, the GSM is only good for finite state type grammars, but not for most 

other parser type grammars. 

On the other hand, to take full advantage of the GSM, one must program it in the G S M microcode 

in order to execute up to 11 instructions in parallel. It would actually increase the burden for users 

unless there is such a good compiler for the GSM that will generate the nice parallel stage code for 

application programs. Therefore, from the user's point of view, custom designed search processors 

are attractive only when the speed of them is much faster than general-purpose processors. 

4.2. SRI-Berkeley's Speech Search Machine 

SRI-Berkeley's speech search machine [45] represents a fully custom-designed machine for speech 

recognition. The system is functionally decomposed into three separate modules : a front-end 

module, a word-processor module and a grammar module. The system is partitioned in this way 

to meet the different processing needs of the different modules. The front-end module is of no 

concern because of its simplicity. The word-processor is implemented with a more complex single-

processor pipelined architecture that has several memory inputs operating concurrently to avoid 

the memory contention problem of parallel design. With the help of prefetching required data into 

on-chip memory and three concurrent data paths, it can execute a one-state Viterbi evaluation in a 

single clock cycle. On the other hand, the grammar module that requires many simple computations 

is implemented with a set of concurrent processors. With the help of partitioning the whole data 

memory space into different sections supported by different processors, the grammar module is 

able to cope with the memory bottleneck and therefore, it can process one grammatical transition 

every clock cycle. 

The obvious advantage of this system is the speed. With a 10 Mhz clock and a four-processor 
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grammar module, SRI-Berkeley's search machine can perform a full Viterbi search without pruning 

in real time on a 5,000-word, perplexity 80 task which is larger than the Resource Management 

task (1,000 words, perplexity 60). By projection, it can execute the Resource Management task in 

real time with only a 5 Mhz clock and a two-processor grammar module. 

The SRI-Berkeley search machine suffers from the inflexibility of a custom-designed archi­

tecture. For example, it would need major architecture changes in both the word-processor and 

the grammar modules to incorporate beam pruning. In the word-processor module, its pipelined 

feature heavily relies on the uniform data paths of predecessor probabilities and H M M parameters. 

Beam pruning would definitely interrupt those data paths making their performance unpredictable. 

Finally, beam pruning also presents the problem of dynamic load balancing among the grammar 

processors which were previously balanced in the non-pruned Viterbi search through static data 

partition. Other inflexibilities of this system include : 

• It is hard to change the topology and configuration of H M M models. For example, the 

topology with more than three predecessors for a state will require more than one cycle to 

update the state. Moreover, The system handles only up to four discrete output densities. 

The use of more discrete output densities or continuous densities will force re-design of the 

word-processor module. 

• It can only accept a statistical grammar, such as bigram, trigram, etc. The use of other types 

of grammars would require re-design of the grammar module. 

• It is almost impossible to execute other types of speech algorithms, such as stack decoding, 

natural language processing, etc, because all the design decisions are tailored to Viterbi 

search. For example, stack decoding, and parsing type natural language processing are 

definitely not suitable for pipeline design because they don ' t have a time-synchronous nature. 

However, SRI-Bekeley's search machine would be suitable for training with only a few 

changes because the basic difference between the forward-backward training and Viterbi 

search is the summation vs. selection. 

The SRI-Berkeley's search machine seems not to be scalable because the word-processor module 

is not a parallel design although the grammar module could be scalable. The only possible scalable 

scheme is to use fast chips or clocks. However, it is very limited and might need some re-design 

because of the a relatively slow memory access rate. However, scalability might not present a 

serious problem for it because it can handle relatively larger task than most other system already. 
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Like most custom-design systems, the SRI-Berkeley system would need a considerably longer 

development time and therefore could be more expensive than other architectures. Finally, since 

the designs of the 3 modules are different, it could make the programming environment more 

complicated. One might expect that different programming languages are necessary for different 

modules and result in long system developing and debugging stages. 

In conclusion, SRI-Berkeley's system demonstrates that a fully custom-designed machine can 

perform a Viterbi search one or two orders of magnitude better than the state-of-the-art general 

purpose machines. Although it might lose flexibility and be expensive, its ability to handle 

relatively large and difficult tasks would hopefully overshadow those disadvantages. 

4.3. AT&T's ASPEN Tree-Machine 

AT&T's ASPEN (AT&T's Systolic Processing Ensemble) [ 19,18] is a medium grain tree-structured 

parallel architecture, scalable to thousands of processing elements (PE's). Each PE has one parent 

and two children, and consists of a semi-general purpose processor (8-MFLOP AT&T DSP32) and 

64 Kbytes of local memory. A board-level module comprises 8 PE's on an 8"x l3" board. These 

boards are interconnected to form a larger binary tree according to Leiserson's expansion scheme. 

[28] To apply Viterbi search to ASPEN, the HMM's are distributed among the PE's first. For each 

time frame, the host receives the speech vector and broadcasts them and the initial Viterbi scores 

from the previous frames to all the PE's , and a within-model Viterbi search is then executed within 

the PE's . Finally, the between-model Viterbi search and the initial scores for the next frame is done 

via resolve/report/broadcast functions which are cooperated by the host and PE's . 

For the benchmark test, AT&T reported that a 127-PE (16 boards), 1,000-MFLOP configuration 

was needed for DARPA resource management task, if the 7-state and 3-Gaussian-mixture whole-

word models were used. Although this figure is required by the continuous H M M approach, the 

less computation-loaded discrete H M M approach would not reduce the requirement. Since the 

local memory for each PE is only 64 Kbytes and a discrete H M M occupies about 10K (in the 

SPHINX system), the discrete H M M approach with 600 models would indeed require about 100 

PE's in order to distribute all the models across PE's unless one uses less complicated models. 

A tree-machine is an attractive architecture for Viterbi search because of its great scalability 

characteristics. The PE's remain the same as the tree grows. The interconnection overhead is 

small because the communicate on complexity grows only as log N, where N is the number of 
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PE's in the tree-machine. Therefore, as the task becomes larger, the number of processors can be 

increased by adding more PE's to the binary tree. Moreover, the inter-processor communications 

within the tree controlled by the host are independent of the size of the tree and each PE basically 

runs the same code. Therefore, the source codes for an application are essentially unchanged when 

additional PE's are added. This software scalability make a tree machine easy to program. Because 

of both hardware and software scalability, one can take big advantage of the computation power of 

many PE's . For example, AT&T used the computation power of ASPEN to deal with continuous 

densities with many Gaussian mixtures. 

While the tree-machine has a relatively small communication time, it has a fixed and limited 

communication bandwidth among PE's which prevents it from performing complicated inter-

processor communication. Moreover, the tree interconnection can only be effective for a tree 

communication pattern because there is no routing hardware. Unfortunately, the Viterbi search has 

no such communication pattern. This is why it must use level-pruning (a kind of beam pruning) [ 15] 

to reduce the communicate on requirements of the grammar expansion module in order to execute 

the resource management task in real time. It almost shows the opposite. Most systems use 

beam pruning to reduce the computation requirement of the word expansion module because the 

grammar expansion module is generally much less computation-loaded than the word expansion 

module. In ASPEN, the communication time is still about 4 0 % of the total search time even with 

level-pruning [15]in comparison with 10% - 20% in other system. Therefore, the tree-machine is 

not suitable for either stack decoding or natural language processing which requires complicated 

synchronization (communication) and cannot take great advantage of massive parallelism (more 

than 10) in general. Because of the limited communication bandwidth and no shared memory 

scheme of ASPEN, the memory (mainly HMMs) distribution among PE's must be static. This 

makes dynamic load-balancing almost impossible on ASPEN when incorporating any kind of 

pruning strategy and therefore, the processor utilization would be poor. The training process which 

generally needs to access different HMMs during one-sentence training also does not fit in the 

tree-machine for the same reason. 

Using more than 100 processors (or 1,000 MFLOPS) to achieve the DARPA resource manage­

ment task in real time might be very expensive at first glance, but the great software and hardware 

scalability helps to reduce the development cost and time of ASPEN. Moreover, the binary tree 

architecture of ASPEN makes the pinouts of the PE's small and constant and thus makes ASPEN 

well-suited for miniaturization via VLSI and advanced packaging. It could also potentially reduce 

the cost of ASPEN. 
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4.4. MARS 

MARS (Microprogrammable Accelerator for Rapid Simulation) [12] is a programmable pipeline 

multiprocessor machine which was originally designed for speed up VLSI circuit simulations. The 

MARS hardware is organized in three level: System, Cluster, and Processing Element (PE). The PE 

is a 16-bit custom designed microprogrammed VLSI processor with special features for message 

passing. Each PE has its own local memory (64K * lóbits). 15 PE's are then connected by a 

crossbar to form a cluster. The crossbar switch operates at 10 MHz and is dynamically configured 

at every clock cycle. A complete MARS system consists of up to 256 clusters connected by a 

binary n-cube communication network. 

The implementation of Viterbi search on MARS is to partition the problem data space across the 

clusters (if necessary) and partition the algorithm over the PE's within a cluster. The local memory 

of each PE exclusively contains the data structures required by the part of algorithm executed in 

the PE. The PE's communicate by passing messages through a crossbar switch to form a pipeline. 

The algorithm partitioning is done carefully so that the processing load is evenly distributed among 

the PE's and the communication among them is minimized. For the benchmark test, they reported 

MARS can execute the resource management task in real time with a startup latency of about 25 

^sec. 

The use of pipeline in MARS to reduce the requirement of memory bandwidth is similar to SRI-

Berkeley's search machine. However, the pipeline is programmable in MARS. This gives MARS 

some flexibility. For example, one can simply develop a continuous output distribution module 

and replace the discrete output distribution module in the pipeline with it (One might dedicate more 

PEs for a continuous output distribution module because of its complexity) in order to incorporate 

it with continuous densities. In contrast to the SRI-Berkeley's search machine, MARS is scalable 

because it can be expanded by adding more clusters. 

Although a programmable pipeline structure is attractive, users needs to program very carefully 

to balance the load of every pipeline stage, so the slowest stage would not become the bottleneck of 

the entire system. However, no shared memory support would make such attempts more difficult 

because every PE can only access an equal limited amount of memory and some stages might 

need to access a large amount of memory. Since PE's in MARS are custom VLSI chips, users 

are forced to use MARS's microprogramming language which might prevent people from using 

MARS for development of speech algorithms. Moreover, since the clusters are connected by 
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a communication network, the long communication latency among clusters disallows MARS to 

perform complicated communication among clusters. Therefore, the partitioning of problem data 

space across the clusters must be static and this makes dynamic load balancing almost impossible. 

The long communication latency also make MARS unsuitable for algorithms that require frequent 

synchronization, like stack decoding and natural language processing. Even within the same 

cluster, MARS is still not suitable for algorithms that are hard to pipeline, like stack decoding and 

natural language processing. Although the training process can also be pipelined, the inability of 

PE's to access the whole data space would make MARS unsuitable for training. 

MARS might not be as fast as the special purpose speech machines and it might not be easy to 

use for speech related algorithms. It still demonstrates how a flexible special purpose machine can 

be applied to other domains without re-design, though the machine is built for a different domain. 

4.5. CMU's BEAM accelerator 

CMU's B E A M [9] is a shared memory multi-processor hardware accelerator which is built on 

general-purpose processors. Three Weitek 8032 processors (10 mips) share an 8-Mbyte memory. 

Each of them also has a 32-Kbyte program memory and a 256-Kbyte local memory. The shared 

memory is the most popular architecture for parallel machines because of the visibility of the 

whole memory space, but they work only with algorithms with a high cache hit rate. The Viterbi 

algorithm reveals a poor cache hit rate and therefore requires a large memory bandwidth with 

respect to the number of instructions executed. BEAM use a dual-bank shared memory and local 

memories to increase memory bandwidth. The shared memory architecture also enables BEAM 

to perform synchronization effectively with the help of a one-bit-per-word flag which is managed 

directly by the hardware and is visible at the instruction level through special-read and special-write 

operations. 

Due to the shared memory architecture, all processors can access all the HMM's . Therefore, 

the load balancing mechanism can be implemented very efficiently by using the synchronization 

flags without relocating the HMM's . This enables BEAM to incorporate beam search easily in 

comparison with the multi-processor architectures without shared memory. As a result, BEAM is 

able to execute the resource management task in real time with only three processors. 

The big advantage of BEAM is the ease of development and the flexibility of the system. 

Since BEAM does not use any custom integrated circuits, it was developed quickly and cheaply. 
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In fact, the cost of BEAM is mainly bound to the cost of memory. In comparison with other 

architectures, BEAM is the cheapest in terms of the cost of architecture and development. The use 

of general-purpose processors also allows BEAM to take advantage of state-of-art processors and 

make BEAM easy to program (in the programming language C). In addition, the shared-memory 

structure makes BEAM feasible for almost all the speech applications. For example, BEAM will 

be ideal for training because of the ability of processors to access the whole memory space though 

the shared memory must be able to hold all the space required for training. Stack decoding and 

natural language processing can also be implemented on BEAM effectively because the hardware 

supported synchronization flag allows for complicated communication between processors. 

However, like most other shared memory architectures, the memory bandwidth will be ex­

hausted, even with a dual-bank shared memory when more processors are added to the system. 

Therefore, BEAM is not scalable. Although BEAM probably cannot handle a much larger task, 

it can indeed handle some tasks which require heavy computation with little change because of 

its flexibility. For example, to deal with continuous densities, one can add more processors (ei­

ther the same processor or some floating point processors) which are dedicated to computing the 

output probabilities. The addition of those new processors will not result in memory contention 

because the memory for computing output probabilities could be totally separated from the memory 

describing the HMMs and therefore both parts can be executed simultaneously without interfering. 

Although the speed of BEAM is still slower than the custom machines, like the SRI-Bekerley 

search machine, BEAM represents a good example of the trade-off between general purpose 

systems, which do not have the necessary speed, and custom systems, which take too much time 

and money to build. One might argue the special purpose hardware would be useless once the 

improvement of technology enables the general-purpose, single-processor machine to perform the 

task sufficiently. BEAM remains a good example of how general purpose technology can be used 

to build systems that are substantially faster than general purpose systems quickly and cheaply. 

4.6. CMU's PLUS 

Based on the pros and cons of the BEAM accelerator, CMU proposed a much more compli­

cated multi-processor architecture, PLUS [10]. Shared memory is one of the most popular parallel 

processing models because of the simplicity of the programming model. However, bus-based 

shared-memory systems, like BEAM, do not perform well with a large number of processors 
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because of memory contention. Thus, PLUS attempts to use a physically distributed, but logi­

cally shared memory system to reduce the bandwidth requirements of a multiprocessor system. 

Difficulties with this approach include : 

• Memory coherence in distributed memory systems is much more complicated than systems 

with a single memory. 

• The communication latency results in intolerable delay for remote memory access and 

synchronization which could degrade the whole system performance. 

Therefore, PLUS implements a software controlled, non-demand caching of replicated data to 

reduce remote access latency. The memory coherence is insured by a hardware supported coherence 

protocol mechanism (Coherence Manager). PLUS also supports a set of complex synchronization 

primitives and delayed synchronization techniques to reduce the overhead of synchronization. 

The current implementation of PLUS uses a general purpose Motorola 88000 processor (25 

MHz) with 32 Kbytes of cache and 8 or 32 Mbytes of two interleaved main memory at each node. 

Nodes are interconnected by a network implemented with Caltech's MOSIS router [16]. Each 

node can directly address the memory of any other node. Global memory mapping, coherence 

management are performed by a hardware module that is implemented with Xilinx PLD's and 

PAL's. PLUS can be connected to a workstation with either VME or NuBus. For the benchmark 

test, a two-node configuration can perform resource management task in real time. 

From the users ' points of view, PLUS inherits the superiority of BEAM, flexibility. Therefore, 

PLUS would be applicable for stack decoding, natural language processing and training because 

those applications require access to the whole problem space and need substantial synchronization 

in general. It is even possible to execute both speech recognition and natural language processing 

on the same PLUS machine and communicate with each other and therefore establish a complete 

spoken language system on a single PLUS machine. If the speech recognition component and the 

natural language component are implemented in different machines and interfaced by a local area 

network (LAN), the arbitrary delays between these two components would degrade the performance 

of the spoken language system in real applications. PLUS would prevent such arbitrary delays and 

allow the natural language component to closely control the search if necessary. On the other hand, 

its distributed memory structure enables it to execute programs locally and communicate through 

its shared memory scheme if necessary and prevent from saturating the memory bandwidth when 
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more nodes added to the PLUS system. Thus, the scalability of PLUS would be far better than 

BEAM, though the overhead of coherence management will still limit the range of scalability (less 

than 100). PLUS also supports a multi-threaded shared memory environment that is the same as 

Mach. This good programming environment enables users to develop and debug their programs 

on a single-processor or multiprocessor Mach host. This could substantially speed up the system 

development process. 

Since PLUS is built on general purpose processors, it could take the advantage of the state-

of-the-art general purpose processors. However, the custom integrated circuits and software to 

support complicated coherence management, data replication, synchronization primitives and delay 

synchronization would all increase the cost and efforts to build PLUS. Finally, the optimization of 

PLUS really depends on the data replication and delay synchronization. Data replication is very 

hard to optimize because the access pattern of application is unknown in general. One might use 

the access pattern of one test run to optimally re-allocate data space in subsequent runs, though the 

access pattern is very likely data-dependent. Like the delay branching issue in pipeline architecture, 

the power of delay synchronization relies highly on a good compiler; otherwise it would require 

careful low-level microprogramming skill of the users in order to take advantage of it. 

PLUS represents a specific tradeoff in the space of distributed memory architectures that range 

from large-granularity, LAN-based machines, to message-passing machines, to bus-based shared-

memory machines. Software development (including coherence management, data replication, 

delay synchronization and multi-threaded shared memory programming environment) play a very 

essential role in the real success of the system design. It indicate that better software development 

methodologies will have a substantial impact on the development time of such machines. It also 

reveals how software efforts could be incorporated into special purpose hardware design to further 

improve the performance of speech applications. 
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