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Abstract 

We have implemented the Linda model of shared distributed tuple space in a functional 
programming language, Standard ML. We use ML's flexible type system and pattern 
matching facilities to provide ML programmers with the basic Linda operations on tuples. 
No preprocessor is used, and no compiler changes are required. 
We use separate ML modules to implement the Linda interface, operations on tuple space, 
communication of tuples over the network, and replication of tuple spaces. Our approach 
allows different compositions of these modules to be used to configure a system with 
either local or remote access to tuple space, and with either a centralized or distributed 
implementation of tuple space. 
The resulting implementation of Linda in Standard ML offers an attractive way to separate 
the functional and the imperative portions of a distributed system. Individual processes can 
be written in ML in a pure functional style and the Linda shared tuple space can be used to 
interconnect the processes and maintain the state of the system. 
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1 Introduction 

We have constructed a flexible, expressive environment for implementing distributed sys­
tems by combining Standard ML's support for functional programming and flexible type 
system with the Linda model of parallel programming. We have implemented Linda's 
shared distributed tuple space in ML without using a preprocessor or making any compiler 
modifications. We use separate ML modules to implement the Linda interface, operations 
on tuple space, communication of tuples over the network, and replication of tuple spaces. 
Our approach allows different compositions of these modules to be used to configure a 
system with either local or remote access to tuple space, and with either a centralized or dis­
tributed implementation of tuple space. Linda shared distributed tuple space complements 
the functional style of ML by providing a natural mechanism for maintaining shared global 
state; location transparency and all necessary synchronization are provided transparently 
by the Linda system. 

Section 2 provides some background on the various systems used in the implementation 
of ML-Linda. Section 3 discusses some of the relevant design issues. Section 4 examines 
the major interfaces and some of the implementation choices, and the major protocols are 
sketched in Section 5. The status of the system and some directions for future work are 
discussed in Section 6. 

2 Background 

Linda is a set of high-level operations that can be added to a base language to yield a parallel 
dialect of that language [7, 10]. The Linda programming model consists of an associative 
memory called tuple space and a set of operators: out, eval, in, and rd. The unit of 
communication is the tuple, a list of typed fields each of which is either an actual or a 
formal. The out operation adds a tuple to tuple space. The in operation removes from 
tuple space a tuple that matches a specified template, blocking if necessary until a match is 
found, and binding any formal parameters in the template to the corresponding actuals in 
the matching tuple. The rd operation is similar to in, but does not remove the matching 
tuple from tuple space. The predicates inp and rdp are nonblocking versions of in and 
rd. Finally, eval adds an "active" tuple to tuple space: the tuple's fields are computed in 
an independent process, after which it resolves into a conventional "passive" tuple. 

A Linda program selects a tuple by specifying a more general tuple as a template to be 
matched against the contents of tuple space. If tuple space contains more than one matching 
tuple, a nondeterministic selection is made. The matching algorithm is described in detail 
in Section 5.1. 

Standard ML is a strongly typed functional programming language that supports abstract 
and polymorphic types, exception handling, garbage collection, and a powerful module 
system [13]. Its expressivity and type safety combined with its incremental approach to 
constructing large programs make it an attractive candidate for building complex distributed 
or parallel programs. The modular unit in ML is the structure; ML uses signatures to 
describe the functions and types exported by structures. ML structures can be combined 
hierarchically using parameterized modules called functors. 

The ML Threads package [9] provides facilities for creating and synchronizing multiple 
threads of control in a single ML address space. 
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Linda runtime system 

c Tuple Space 

Figure 1: Single local tuple space 

c L i n d a r u n t i m e s y s t e m 

Figure 2: Multiple local tuple spaces 

3 Design Issues 

Our high-level design goal was to build an implementation of Linda in Standard ML that 
could be transparently operated in any of several modes: locally (Figures 1 and 2) , remotely 
with a single tuple space node (Figure 3), or remotely with multiple nodes functioning as 
a distributed tuple space (Figure 4). The result is a distributed Linda system in which 
the client and server processes may reside on separate nodes and communicate via remote 
procedure call. Our design avoids any compiler modifications, and minimizes changes to 
Linda syntax and semantics. 

The design takes a layered approach, achieving transparency by taking advantage of 
ML's strong typing and modular structure. The visible layers are the Linda runtime layer 
and the tuple space storage layer. The communication layer insulates the system from the 
network and provides support for remote procedure call, and the distribution layer manages 
state associated with the multiple nodes of distributed tuple space. 

Transparency and flexibility are achieved by having the communication and distribution 
structures export the same ML signature as the tuple space structure. This transparent 
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Figure 3: Single remote tuple space 
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Figure 4: Multiple remote tuple spaces 
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layered approach allows the ML-Linda system to be configured at link-time with either local 
or remote access and either centralized or distributed tuple space, simply by deciding which 
modules to include in the functor application used to build the system. The specification of 
distributed tuple space nodes, should the configuration require it, is performed at run-time. 
The system can also be trivially expanded to use multiple tuple space environments [11] by 
instantiating the desired number of Linda runtime modules. 

The basic building block in a Linda system is the tuple. Tuples are represented in the ML-
Linda prototype as a list of elements from the discriminated union of INT, STRING, BOOL, 
PAIR, INT_FORMAL, STRING_FORMAL, BOOL_FORMAL, or WILDCARD (collectively 
called l t y p e ) . The constructors INT, STRING, and BOOL take the appropriate arguments, 
the recursive PAIR constructor takes a pair of l t y p e s , and those representing Linda 
formals take none. Using an ML list type allows an arbitrary number of tuple fields. The 
generic WILDCARD formal is an extension of the Linda typed formals. The runtime type 
information provided by the explicit ltype constructors increases the expressive power of 
the ML-Linda operators over the power of those in a purely statically typed scheme, albeit 
at some cost in ease of use. 

The set of primitive types provided in the initial implementation is somewhat limited, 
but the PAIR constructor provides the equivalent of a cons cell and can be used to build 
arbitrary data structures. In fact, tuples could be represented directly by nested applications 
of the PAIR constructor; we chose the list representation instead because it provides a 
simpler syntax for the application programmer. Arbitrarily complex distributed or live data 
structures can also be constructed in tuple space [7]. Such distributed data structures have 
the advantage that the distributed components are themselves tuples; these components are 
automatically available for concurrent access because the Linda runtime system provides 
the necessary synchronization. 

A Linda implementation without compiler modifications requires access to runtime 
type information for the match procedure. Standard ML is statically typechecked and 
does not require the availability of runtime type information. 1 Our implementation gets 
its runtime type information by requiring a slightly modified syntax for Linda calls that 
involves explicitly specifying the field types of any tuple or template arguments, using the 
ltype constructors. 

4 Interfaces and Implementations 

There are two interface specifications in the system: the Linda runtime system interface 
and the tuple space server interface. 

4.1 Linda Runtime 

The Linda runtime structure provides the application level interface to the ML-Linda system. 
Its signature describes the types, exceptions, and operations that can be used by applications. 
All of the tuple space operators are supported except eval. The main function of eval 
is to introduce concurrent processes, and the ability to fork concurrent threads in the ML 
environment provides essentially the same functionality. The Linda runtime signature is 
found in Figure 5; in addition to the basic tuple space operators, it exports the exception 

lA forthcoming version of Standard ML of New Jersey will support dynamic (runtime) types; this may 
allow us to simplify our Linda interface. 

4 



signature LINDA = 
sig 

structure TupleSpace: TUPLESPACE 
exception BadType 

end 

val Init: string list -> unit 
val Out: TupleSpace.ltype list -> unit 
val Rd: TupleSpace.ltype list -> TupleSpace.ltype list 
val In: TupleSpace.ltype list -> TupleSpace.ltype list 
val RdP: TupleSpace.ltype list -> TupleSpace.ltype list 
val InP: TupleSpace.ltype list -> TupleSpace.ltype list 

Figure 5: Linda Runtime Signature 

BadType and indirectly exports the discriminated union type ltype from within the 
TupleSpace substructure (referenced as TupleSpace . ltype). We use capitalized 
operation names such as In and Out because in is a reserved word in ML. 

The syntax seen by the programmer differs slightly from other Linda dialects. A Linda 
tuple is represented in ML by a list of ltypes. Invocation of Linda operations in ML 
requires on-the-fly construction of the ltype list from the desired tuple parameters and 
deconstruction of the result tuple; the result is returned as an ltype list rather than via 
direct binding of the formal parameters to values as in C-Linda [8]. To illustrate the 
differences, Figure 6 compares the syntax of ML-Linda with that of C-Linda. Each of the 
two program fragments invokes three Linda operations, out, in, and rd. Since C-Linda 
uses a preprocessor to extract type information, the arguments to the out call need not 
specify types as long as they have been previously declared in the program. In contrast, 
the same call in ML-Linda is explicitly represented as a list (denoted by the square bracket 
delimiters), and each list element (tuple field) is tagged with the appropriate constructor. 

The Linda runtime structure exports the application level interface, maintains state 
by generating hash strings and unique IDs, and translates the runtime operations into the 
appropriate calls to tuple space. 

An example of a small application program using Linda is shown in Figure 7. The 
program exports two functions: one repeatedly writes a tuple with the string "ping" and 
reads one with the string "pong"; the other reads a tuple with the string "ping" and writes 
one with the string "pong". Using the ML Threads package, these functions can be forked 
as concurrently executing threads; this portion of the code is not shown. 

An ML-Linda solution of the classic Dining Philosophers problem is shown in Figure 8. 
The code to create the five philosopher threads is not shown. 

4.2 Tuple Space 

The tuple space interface (Figure 9) is exported by the tuple space server and also by any 
additional layers between it and the Linda runtime system. These additional layers thus 
"virtualize" the tuple space interface. The operations correspond roughly to those in the 
runtime interface, although some of the high-level Linda operations have been broken down 
into parts in the tuple space interface. The in and inp operations have been broken down 
into two phases, the rmv and purge/restore phases, and the blocking rd operation 
l ikewise has a second phase (rd__done). The second phases of these operations are 
required to clean up state and undo any side effects of the initial operations. The two phase 
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C-Linda: 

int i = 3; 
char s[32] = "myprog"; 
int j; 

struct pair { char str[32]; int flag; } p; 

out (s, i, 7) ; 
/* C-Linda uses the ? operator to label formals */ 
in ("myprog", ? j) ; 
rd (? p ) ; 
/* j and p can be used here */ 

ML-Linda: 

let val i = 3 
val s = "myprog" 

in 
Out [STRING s, INT i, INT 7]; 
let val [_, INT j] = In [STRING "myprog", INT_FORMAL] 

val template = [PAIR (STRING_FORMAL, INT_FORMAL)] 
val [PAIR (STRING str, INT flag)] = Rd template 

in 
(* j, str, and*flag can be used here *) 

end 
end 

Figure 6: Syntax of ML-Linda and C-Linda 

local open L: 
in 

fun ping 
(Out 
In 

fun pong 
(In 
Out 

end 

nda TupleSpace 

0 = 

[STRING "ping"]; 
[STRING "pong"]; 

0 = 
[STRING "ping"]; 
[STRING "pong"]; 

print "ping "; 
ping ()) 

print "pong "; 
pong () ) 

Figure 7: A Simple Example 
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local open Linda TupleSpace 
in 

val num = 5 

val room_ticket = [STRING "room ticket"] 
fun left_chopstick i = [STRING "chopstick", INT i] 
fun right_chopstick i = [STRING "chopstick", INT ((i+1) mod num)] 

fun philosopher i = 
((* THINK *) 
In room_ticket; 
In (left_chopstick i); In (right_chopstick i); 
(* EAT *) 
Out (left_chopstick i); Out (right_chopstick i); 
Out room_ticket; 
philosopher i) 

end 

Figure 8: Dining Philosophers in ML-Linda 

approach is not necessary for a nondistributed tuple space, but the implementation does not 
distinguish between the distributed and nondistributed cases in order to keep distribution 
transparent to the Linda runtime system. 

Tuple space is represented by a data structure that maps hash strings to tuples. The 
data structure is implemented as an array of linked bucket structures. Since a tuple space 
module can have multiple clients and may be multithreaded, the implementation must 
provide appropriate synchronization and locking on shared data structures. Each array slot 
has a corresponding lock. Array slots are locked for add and rmv operations, but not 
for l o o k u p . This serializes all o u t and i n operations, but each modification involves 
updating the value in the array slot because the bucket structures are immutable. 

Each node of distributed tuple space maintains its own version of the tuple space data 
structure. Tuple field types are restricted to those that can be expressed with constructors 
of the l t y p e discriminated union exported by the tuple space structure. Within each 
table, tuple matching is based on the types, values, and order of tuple fields. The initial 
implementation takes a naive approach and hashes on a string constructed from substrings 
representing the type of each field in the order of its appearance in the tuple, although this 
will tend to result in an unbalanced table with all tuples of the same type grouped together. 
We implement a slightly modified version of the Linda matching algorithm in which tuples 
with formal fields are allowed only as template parameters, and do not reside in tuple space. 
The details of the matching protocol are described in Section 5.1. 

4.3 Distributed Tuple Space 

Distributed tuple space is a single logical associative memory that is implemented as a set 
of distinct tuple space servers distributed over a collection of physically separate nodes. 
The tuple storage and matching systems are replicated on each node of distributed tuple 
space, although the stored contents are not replicated. Each node of a distributed tuple 
space manages its own resources and exports all of the Linda functionality. All of the logic 
involved in combining the individual nodes into a single logical tuple space is located in 
the distribution module, which is layered transparently between the Linda runtime and its 
communication layer. 
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signature TUPLESPACE = 
sig 

datatype ltype = 
INT of int I STRING of string I BOOL of bool 

I INT_FORMAL | STRING_FORMAL I BOOL_FORMAL 
I PAIR of ltype * ltype 
I WILDCARD 

exception NotFound 

val init : string list -> unit 

(* add is used by out *) 
val add : string * ltype list -> unit 

(* lookup is used in phase 1 of rd/rdp *) 
val lookup : string * string * ltype list * bool -> ltype lisu 

(* rd_done is used in phase 2 of rd/rdp *) 
val rd_done : string -> unit 

(* rmv is used in phase 1 of in/inp *) 
val rmv : string * string * ltype list * bool -> unit 

(* purge and restore are used in phase 2 of in/inp *) 
val purge : string * bool -> ltype list 
val restore : string -> unit 

end 

Figure 9: Tuple Space Signature 
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An important goal of the distributed Linda implementation is transparency. The client 
application should depend only on the interface to tuple space, not on any implementation-
specific aspects having to do with communication, distribution, or physical location. This 
means that the distribution of tuples in distributed tuple space must be independent of 
implementation choices such as the hashing algorithm. Tuples may reside on any valid 
node of distributed tuple space (see Figure 10), but the client application sees only a single 
unified v iew of tuple space. Ideally, the tuples end up distributed over the available nodes 
in such a way as to optimize both the necessary network traffic and balance the loads on the 
relevant nodes. However, the initial implementation takes a simple approach and selects 
destination nodes by cycling through the tuple space nodes. 

A general approach to managing consistency and availability of data in a distributed 
system involves using replication with appropriate read and write quorums [12]. To ensure 
that valid data is always available, accesses are made from read quorums and updates to 
write quorums. The sum of the read and write quorums must be greater than the total 
number of nodes in the system, ensuring that the two quorums must overlap by at least one 
node. 

Although a replication scheme can normally use any legal combination of read and 
write quorums, a Linda implementation can only safely use read-one-write-all or read-all-
write-one quorums without compromising the location transparency of the system. 2 This 
peculiarity is due to the ambiguity of the rd operation. Rather than reading a single 
logical o%bject, the rd operation returns any member of an arbitrarily large set of possible 
matching tuples. Since a set of n replies is not guaranteed to include n copies of the same 
object, an arbitrary read quorum would not necessarily provide the required overlap with 
the corresponding write quorum. 

Our ML-Linda distribution layer uses a read-all-write-one approach to communicate 
with distributed tuple space. This means that out sends a tuple to a single tuple space node, 
while i n and rd request matches from all nodes. We simulate multicast communication 
by using multiple threads to make the remote procedure calls in parallel. We chose read-
all-write-one semantics over read-one-write-all in order to minimize the amount of data 
transmitted: only one tuple needs to be transmitted for each operation. 3 Although rd and 
i n are sent to all tuple space nodes, only one match is chosen; furthermore, it is likely 
that only one version of tuple space will be modified since requests are likely to target a 
specific tuple. If we used a read-one-write-all scheme, the in/inp operation would be too 
expensive: although the lookup operation would be performed on a single node, all of the 
remaining nodes would have to be involved in order to delete the tuple from tuple space. 

In our distributed tuple space, with read-all-write-one semantics, an application can 
receive several different tuples in response to an in/inp or a rd operation. The rmv 
phase of the in operation must tentatively remove the matched tuple from tuple space, 
to make it unavailable to any subsequent match requests. Since in/inp is a destructive 
operation, only one match can be accepted; the tentative removals associated with any other 
responses must be undone. In addition to restoring unwanted matches, it is also necessary 
to terminate any remote threads that are still blocked at the end of an operation. The details 

^ h e n x n processor grid discussed by Bjornson et al. [5] allows a valid intermediate quorum assignment 
that depends on the physical configuration of the system. For this configuration, the write quorum for node i 
consists of the n nodes in z's row, and the read quorum consists of the n nodes in -I'S column. 

3 We actually have rd return the matching tuple as an optimization, since we generally expect only a single 
match and rd does not require a second phase for any nodes returning NotFound. This is discussed in more 
detail in Section 5.4. 
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of managing distributed tuple space are discussed in greater detail in Section 5. 

4.4 Communication 

Our implementation of distributed Linda requires typesafe, transparent communication of 
complex objects from one node to another. A rd or in operation binds the fields of 
the appropriate matching tuple to a set of local variables that can then be modified or 
referenced at will. In order to transmit an opaque type it would be necessary to provide 
the communication system with information about the implementation that is not available 
in the signature; this effectively makes the type explicit, and requires a new mechanism 
such as a preprocessor to extract the relevant type information and make it available to 
the communication system. Complex types whose implementations are included in the 
signature are already explicit, and can be readily transmitted. Given the constraints of the 
ML type system, it is impractical to use abstract (opaque) types in tuple fields. In order to 
use Linda's shared tuple space, the concrete representations must be visible. 

The ML-Linda implementation follows a client-server model, with one or more indi­
vidual tuple space nodes acting as remote servers to the local Linda client application. The 
communication support provides client and server stub structures that hide the communica­
tion details from the application code. The stub structures provide routines for marshaling 
and unmarshaling each of the relevant argument and result types, as well as control struc­
tures for making remote procedure calls. The server communication layer also provides a 
listener loop that waits for incoming requests from the network and forks threads to service 
them. The communication structures appear transparent to the application and server code 
because they export the same interface as the tuple space structure. 

For a distributed version of tuple space, an additional stub layer is added to hide the 
distribution (see Figure 2). A client application will therefore see the same tuple space 
abstraction regardless of whether the tuple space structure is local, remote, or distributed. 
Ideally the distribution module would be able to use multicast for some of its operations, but 
support for multicast is not yet available. The current implementation therefore simulates 
multicast with multiple threads performing calls in parallel. 

5 Protocols 

This section describes the Linda tuple matching algorithm and presents the protocols we 
use to implement distributed tuple space, using the read-all-write-one scheme described in 
Section 4.3. 

5.1 Tuple Matching 

All communication and synchronization in the Linda model is accomplished by tuples 
moving into and out of tuple space. The Linda tuple matching algorithm is defined as 
follows [14]. Call the tuple defined by the fields in an in or rd operation a template. A 
template fi matches a tuple r in tuple space if all of the following conditions hold: 

• jj, and r have the same number of fields. 

• Corresponding fields have the same types. 

• Each pair of corresponding fields and FT match as follows: 
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- If both and FT are actuals, they match if and only if their respective values 
are equal, where equality is defined by the base language for objects of this 
type. 

- If F^ is a formal and FT is an actual, they match; the value of FT may eventually 
be assigned to some variable. No assignment takes place unless all the fields 
match, however. 

- If JFm is an actual and FT is a formal, they match unconditionally. The value of 
F,j, is discarded. 

- If both F M and FT are formals, they never match. 

5.2 State Information 
The protocol for in/inp is discussed in detail from both the runtime system and tuple 
space points of view. Protocols are sketched for the rd/rdp and o u t operations from the 
runtime system's point of view. All operations begin with the construction of a hash string 
based on the template or tuple argument at the Linda runtime system level (see Figure 11). 

[STRING "hello", INT 5, BOOL true] 
= > "string int bool 11 

[STRING "hello", PAIR (INT_FORMAL, BOOL_FORMAL), WILDCARD 
=> "string pair int_formal bool_formal wildcard " 

Figure 11: Hash String Construction 

The distribution structure maintains a set of data structures that are used to record the 
state of the match for each tuple space node participating in phase one of in, inp, and rd. 
Each data structure includes: 

• A use indicator, either empty or a string that uniquely identifies the operation using 
the structure. 

• A pointer to the connection supplying the chosen match. 

• A tuple space status variable for each tuple space node. 

The tuple space status is indicated via a discriminated union of NULL, MATCH, and 
NOTFOUND; the state is reset to NULL at the end of each operation; at any other time NULL 
indicates a thread that hasn't yet returned (in our no-failure model, this is equivalent to a 
blocked thread). Synchronization is achieved by locking the use indicators. A process must 
acquire a lock in order to modify a use field, and a field must be set to a null value before it 
can be used. Once a process sets a use field to its unique ID value, the corresponding data 
structure is reserved until it resets the use field. 

Each tuple space implements a data structure that maintains the state required for the 
two-phase operations in, inp, and rd. The data structure maps a unique ID supplied 
by the Linda runtime system into either a match record consisting of a unique ID, hash 
string, and tuple; or a kill record consisting of the unique ID. The data structure is currently 
implemented as an array of linked structures; there is a lock on each array slot to ensure 
that access by threads with the same unique ID is always serialized. 
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The Linda runtime module is responsible for generating hash strings for each of the 
tuple space operations as well as the unique ID for the in, inp, and rd operations. 
The operation hash strings are constructed by simply concatenating together the strings 
representing the type of each tuple or template field. The unique ID is a concatenation 
of the string representations of a sequence number (incremented after each use), the host 
name, the process ID, and the hash string. 

5.3 The in and inp operations 

The in operation is a two-phase operation implemented by two sequential remote calls (see 
Figure 12). The first phase is the rmv operation, which involves all n tuple space nodes. 
The second phase, which can be either a purge or restore operation, must be invoked 
on each node participating in the rmv phase. To connect the two phases of the operation, 
the Linda runtime assigns a unique ID that is sent as an argument along with each remote 
call. To emulate a multicast operation, the calls in each phase are made concurrently by 
forking one thread for each tuple space node. 

Linda Runtime/Distribution Tuplespace Server 

multicast templates 

Figure 12: Protocol for in operation 

On the application side, the distribution layer reserves a status structure by writing its 
unique ID into the use field. It then emulates a multicast operation, concurrently sending 
the unique ID, request template, and hash string from the Linda runtime module to all tuple 
space nodes. As each thread returns, it records the appropriate status in the status structure; 
the first thread with a match may modify the match connection variable. Once a match is 
found, the call may be terminated. This is done by making a purge request to the tuple 
space node specified by the match connection variable and making restore requests to 
each of the remaining tuple space nodes; this will undo any tuple space modifications and 
kill any blocked threads remaining from the rmv request. The purge and restore 
requests use the unique ID to access the tuple and hash string information stored in the 
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state array. The purge operation returns the matched tuple, which is then returned to the 
application process. 

The rmv phase of the blocking in operation may leave blocked threads on some of the 
tuple space nodes after the application has already chosen a tuple. These threads must be 
located and terminated as part of the cleanup for the operation. Since the remote threads 
are running concurrently it is also possible that a remote match can be found on a particular 
tuple space node at the same time that the restore request is running. These conditions 
create the need for communication and synchronization, which is filled by the tuple space 
state structure. The application provides both phases with the same unique ID, one that is 
unique per operation per application. This hash table holds either a match record from the 
lookup phase, or a kill record from the restore phase; the latter indicates that the lookup 
thread should terminate itself. Each thread acquires the appropriate lock before executing 
to ensure that the blocked thread can never return a match once a kill command has been 
issued. 

The remote server thread executes the rmv operation as a loop. At the top of the loop, 
it immediately acquires a lock on the part of the state structure corresponding to its unique 
ID. It then checks for a kill command from a restore operation; if one exists, the thread 
clears the command from the state array, releases the lock, and exits. If no record of a 
restore operation is found, the thread searches tuple space for a match. If a match is found, 
the matching tuple and hash string are recorded in the state array along with the operation 
unique ID. The thread then releases its lock and returns. If no match is found, the lock is 
released and the thread blocks. All blocked threads are awakened each time a tuple is added 
or restored to tuple space. When a blocked thread is awakened it continues execution at the 
top of the loop. 

The second phase of the in operation consists of a single purge invocation on the 
node that provided the chosen match, and invocations of restore on the remaining tuple 
space nodes. Each remote thread executing restore acquires the lock on the part of the 
state array corresponding to its unique ID and checks the state array to see whether the 
thread from the rmv phase has found a matching tuple. If it has, the restore thread 
clears the entry from the state array, uses the recorded information to restore the appropriate 
tuple to tuple space, releases the lock and returns. If no matching tuple has been found, the 
remote thread records a kill command for the blocked thread to find when it next awakens, 
releases the lock, and returns. 

A purge operation is similar to the restore operation, but simpler. The remote 
thread acquires the lock on the appropriate part of the state structure, clears the existing 
entry from the state array, releases the lock and returns. A purge request is only issued 
for a node that has already returned a match, so the thread from phase one will always have 
left a record in the status array and exited. 

The differences between the blocking in and nonblocking inp operations are relatively 
minor. Tuple space threads executing inp that fail to find a match return Not Found 
exceptions to the distribution module rather than blocking until a matching tuple appears. 
If all threads return NotFound, the inp call will relay the exception to the application. 
For the second phase, the nonblocking version need not issue restore requests to remote 
nodes that raised the NotFound exception, since they will not have left any state on the 
remote tuple space. Otherwise, the protocol is the same as for in. 
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5.4 The rd and out operations 

The r d operation is similar to the rmv phase of the in operation except that it has no side 
effects on tuple space. The Linda runtime system multicasts the template argument and 
the hash string to all nodes of distributed tuple space. The blocking rd call also includes 
a unique ID so that a status record may be written if a match is found. The status record 
is unnecessary for the nonblocking rdp call since all remote threads exit and there is no 
need to clean up any remote state. For the blocking rd, the threads involved in the call 
(both local and remote) remain blocked until a match is found. Once the first response 
tuple is received, any outstanding requests to other nodes are canceled with a rd_done 
operation, and the tuple is returned to the application. For rdp, which is nonblocking, 
each tuple space node searches its database only once and either returns the tuple match or 
raises a NotFound exception. The Linda runtime simply returns the first matching tuple, 
or reraises the NotFound exception if no node finds a match. 

Since out is a write operation, the runtime system forwards the tuple argument with the 
constructed hash string to one node of the distributed tuple space. Assuming a reasonable 
distribution of processes, it might be optimal to write the tuple to the local node if it is a 
tuple space node. The current implementation simply rotates through the list of tuple space 
nodes to provide a wider distribution of tuples. The addition of the new tuple to each tuple 
space causes any blocked threads to be awakened so that they can try to match against the 
new tuple. 

6 Discussion 

Distributed Linda can be implemented using either replication [2, 6, 14] or hashing [4], 
Some designs also include the notion of dynamic migration: if a set of tuples is being 
consumed on a particular node, it is more efficient if they are stored directly on that node. 

The hash-based approach implements tuple space as a distributed hash table in which 
one or more buckets map to each node. Tuples are categorized into disjoint sets, and a 
hash function is provided which ensures that all tuples with common characteristics hash 
to the same bucket (node). All tuple stores and match requests are then directed to the node 
specified by the hash function, localizing the search area. 

The replicated approach makes it easier to add new types of tuples to the system, or 
migrate existing tuples from one node to another. Depending on the relative frequency 
of the different operations, the replicated approach may also require less network traffic 
(assuming that multicast or broadcast is available). The overall performance of the two 
approaches is likely to depend significantly on the pattern of communication among the 
active processes. 

6,1 Fault Tolerance 

Although it is an unrealistic assumption for a production system, the ML-Linda prototype 
does not guarantee consistency or correctness in the presence of failures. The correctness 
of the Linda communication model is threatened by failures such as crashes and partitions. 
Unlike more conventional systems, communication in Linda is not from process to process 
or node to node; since the Linda model constrains neither the locations of processes nor 
the lifetime of data in tuple space, there is no external way to tell if data are absent because 
the producer process died, because one or more of the relevant nodes have crashed or are 
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partitioned, or because the data have not yet been produced. Furthermore, some operations 
require participation by all nodes in the distributed tuple space, making the system highly 
vulnerable to node or communication failure. 

Replicated multi-phase operations are particularly difficult to implement correctly in 
the presence of failures. A fault tolerant implementation would require the support of 
persistent storage and a transaction system to ensure correctness, and even so leaves open 
the possibility of indefinitely long blocking at multiple stages in the protocol. 

6.2 Status 

The prototype ML-Linda system is implemented with the Standard ML of New Jersey 
compiler [3] running on the Mach operating system [1]. It consists of roughly 700 lines 
of ML, implementing three functors: Linda runtime, distribution, and tuple space. The 
communication subsystem, which is generated from the tuple space signature by an RPC 
stub generator, is not included in this tally. The system runs on VAX, MIPS, and Sun 
machines. An earlier version implemented the blocking in and r d operations by repeatedly 
polling tuple space from the Linda runtime layer; the current version uses blocking threads 
as described in Sections 5.3 and 5.4, but the ML thread scheduler has not yet been integrated 
with the Mach communication facilities. 

6.3 Performance 

The current system would require some tuning and enhancements before it could be used as 
a production system. Some of these are straightforward, but some require an understanding 
of typical application behavior in order to identify bottlenecks and other stresses on the 
system. One important direction for future work is to implement different types of Linda 
applications, and monitor the distribution and frequency of each of the Linda operations 
and the reference patterns and average lifetimes of tuples. It would also be useful to 
compare the performance of several different heuristics for choosing tuple space nodes 
for the o u t operation, and possibly for dynamic migration. Dynamic migration might be 
useful for systems with many more rd than in operations. Both types of heuristics might 
be integrated with dynamic tuple space resizing as part of an attempt to keep the distribution 
of tuples properly balanced. Designing a better hashing algorithm would also help to keep 
tuples evenly distributed within the tuple space of a single node. 

7 Conclusion 

The prototype implementation of ML-Linda demonstrates the feasibility of combining 
ML's functional approach with the Linda model of parallel programming in distributed 
tuple space; The ease of decomposing the Linda system into ML modules reinforces the 
suitability of ML for constructing complex distributed programs. The addition of Linda 
shared tuple space complements ML's functional style and provides a flexible environment 
with the benefits of both programming models for the development of distributed systems. 
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