
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Implementing Distributed Linda in Standard ML

Ellen H. Siegel and Eric C. Cooper
October 1991

C M U - C S - 9 1 - 1 5 1 ^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We have implemented the Linda model of shared distributed tuple space in a functional
programming language, Standard ML. We use ML's flexible type system and pattern
matching facilities to provide ML programmers with the basic Linda operations on tuples.
No preprocessor is used, and no compiler changes are required.
We use separate ML modules to implement the Linda interface, operations on tuple space,
communication of tuples over the network, and replication of tuple spaces. Our approach
allows different compositions of these modules to be used to configure a system with
either local or remote access to tuple space, and with either a centralized or distributed
implementation of tuple space.
The resulting implementation of Linda in Standard ML offers an attractive way to separate
the functional and the imperative portions of a distributed system. Individual processes can
be written in ML in a pure functional style and the Linda shared tuple space can be used to
interconnect the processes and maintain the state of the system.

This research was sponsored by the Defense Advanced Research Projects Agency and monitored by the
Air Force Systems Command under Contract F19628-91-C-0128.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

Keywords: programming languages, parallel and distributed systems, Linda, Standard ML

1 Introduction

We have constructed a flexible, expressive environment for implementing distributed sys­
tems by combining Standard ML's support for functional programming and flexible type
system with the Linda model of parallel programming. We have implemented Linda's
shared distributed tuple space in ML without using a preprocessor or making any compiler
modifications. We use separate ML modules to implement the Linda interface, operations
on tuple space, communication of tuples over the network, and replication of tuple spaces.
Our approach allows different compositions of these modules to be used to configure a
system with either local or remote access to tuple space, and with either a centralized or dis­
tributed implementation of tuple space. Linda shared distributed tuple space complements
the functional style of ML by providing a natural mechanism for maintaining shared global
state; location transparency and all necessary synchronization are provided transparently
by the Linda system.

Section 2 provides some background on the various systems used in the implementation
of ML-Linda. Section 3 discusses some of the relevant design issues. Section 4 examines
the major interfaces and some of the implementation choices, and the major protocols are
sketched in Section 5. The status of the system and some directions for future work are
discussed in Section 6.

2 Background

Linda is a set of high-level operations that can be added to a base language to yield a parallel
dialect of that language [7, 10]. The Linda programming model consists of an associative
memory called tuple space and a set of operators: out, eval, in, and rd. The unit of
communication is the tuple, a list of typed fields each of which is either an actual or a
formal. The out operation adds a tuple to tuple space. The in operation removes from
tuple space a tuple that matches a specified template, blocking if necessary until a match is
found, and binding any formal parameters in the template to the corresponding actuals in
the matching tuple. The rd operation is similar to in, but does not remove the matching
tuple from tuple space. The predicates inp and rdp are nonblocking versions of in and
rd. Finally, eval adds an "active" tuple to tuple space: the tuple's fields are computed in
an independent process, after which it resolves into a conventional "passive" tuple.

A Linda program selects a tuple by specifying a more general tuple as a template to be
matched against the contents of tuple space. If tuple space contains more than one matching
tuple, a nondeterministic selection is made. The matching algorithm is described in detail
in Section 5.1.

Standard ML is a strongly typed functional programming language that supports abstract
and polymorphic types, exception handling, garbage collection, and a powerful module
system [13]. Its expressivity and type safety combined with its incremental approach to
constructing large programs make it an attractive candidate for building complex distributed
or parallel programs. The modular unit in ML is the structure; ML uses signatures to
describe the functions and types exported by structures. ML structures can be combined
hierarchically using parameterized modules called functors.

The ML Threads package [9] provides facilities for creating and synchronizing multiple
threads of control in a single ML address space.

1 Cameg* MPMO.' university

PWsbwrgh, Pwsv^-ama 2521?

Linda runtime system

c Tuple Space

Figure 1: Single local tuple space

c L i n d a r u n t i m e s y s t e m

Figure 2: Multiple local tuple spaces

3 Design Issues

Our high-level design goal was to build an implementation of Linda in Standard ML that
could be transparently operated in any of several modes: locally (Figures 1 and 2) , remotely
with a single tuple space node (Figure 3), or remotely with multiple nodes functioning as
a distributed tuple space (Figure 4). The result is a distributed Linda system in which
the client and server processes may reside on separate nodes and communicate via remote
procedure call. Our design avoids any compiler modifications, and minimizes changes to
Linda syntax and semantics.

The design takes a layered approach, achieving transparency by taking advantage of
ML's strong typing and modular structure. The visible layers are the Linda runtime layer
and the tuple space storage layer. The communication layer insulates the system from the
network and provides support for remote procedure call, and the distribution layer manages
state associated with the multiple nodes of distributed tuple space.

Transparency and flexibility are achieved by having the communication and distribution
structures export the same ML signature as the tuple space structure. This transparent

2

C ^ ^ ^ ^ runt ime sys tem

Commun ica t ion

Communica t ion

c Tuple Space

Figure 3: Single remote tuple space

Linda runtime system

Figure 4: Multiple remote tuple spaces

3

layered approach allows the ML-Linda system to be configured at link-time with either local
or remote access and either centralized or distributed tuple space, simply by deciding which
modules to include in the functor application used to build the system. The specification of
distributed tuple space nodes, should the configuration require it, is performed at run-time.
The system can also be trivially expanded to use multiple tuple space environments [11] by
instantiating the desired number of Linda runtime modules.

The basic building block in a Linda system is the tuple. Tuples are represented in the ML-
Linda prototype as a list of elements from the discriminated union of INT, STRING, BOOL,
PAIR, INT_FORMAL, STRING_FORMAL, BOOL_FORMAL, or WILDCARD (collectively
called l t y p e) . The constructors INT, STRING, and BOOL take the appropriate arguments,
the recursive PAIR constructor takes a pair of l t y p e s , and those representing Linda
formals take none. Using an ML list type allows an arbitrary number of tuple fields. The
generic WILDCARD formal is an extension of the Linda typed formals. The runtime type
information provided by the explicit ltype constructors increases the expressive power of
the ML-Linda operators over the power of those in a purely statically typed scheme, albeit
at some cost in ease of use.

The set of primitive types provided in the initial implementation is somewhat limited,
but the PAIR constructor provides the equivalent of a cons cell and can be used to build
arbitrary data structures. In fact, tuples could be represented directly by nested applications
of the PAIR constructor; we chose the list representation instead because it provides a
simpler syntax for the application programmer. Arbitrarily complex distributed or live data
structures can also be constructed in tuple space [7]. Such distributed data structures have
the advantage that the distributed components are themselves tuples; these components are
automatically available for concurrent access because the Linda runtime system provides
the necessary synchronization.

A Linda implementation without compiler modifications requires access to runtime
type information for the match procedure. Standard ML is statically typechecked and
does not require the availability of runtime type information. 1 Our implementation gets
its runtime type information by requiring a slightly modified syntax for Linda calls that
involves explicitly specifying the field types of any tuple or template arguments, using the
ltype constructors.

4 Interfaces and Implementations

There are two interface specifications in the system: the Linda runtime system interface
and the tuple space server interface.

4.1 Linda Runtime

The Linda runtime structure provides the application level interface to the ML-Linda system.
Its signature describes the types, exceptions, and operations that can be used by applications.
All of the tuple space operators are supported except eval. The main function of eval
is to introduce concurrent processes, and the ability to fork concurrent threads in the ML
environment provides essentially the same functionality. The Linda runtime signature is
found in Figure 5; in addition to the basic tuple space operators, it exports the exception

lA forthcoming version of Standard ML of New Jersey will support dynamic (runtime) types; this may
allow us to simplify our Linda interface.

4

signature LINDA =
sig

structure TupleSpace: TUPLESPACE
exception BadType

end

val Init: string list -> unit
val Out: TupleSpace.ltype list -> unit
val Rd: TupleSpace.ltype list -> TupleSpace.ltype list
val In: TupleSpace.ltype list -> TupleSpace.ltype list
val RdP: TupleSpace.ltype list -> TupleSpace.ltype list
val InP: TupleSpace.ltype list -> TupleSpace.ltype list

Figure 5: Linda Runtime Signature

BadType and indirectly exports the discriminated union type ltype from within the
TupleSpace substructure (referenced as TupleSpace . ltype). We use capitalized
operation names such as In and Out because in is a reserved word in ML.

The syntax seen by the programmer differs slightly from other Linda dialects. A Linda
tuple is represented in ML by a list of ltypes. Invocation of Linda operations in ML
requires on-the-fly construction of the ltype list from the desired tuple parameters and
deconstruction of the result tuple; the result is returned as an ltype list rather than via
direct binding of the formal parameters to values as in C-Linda [8]. To illustrate the
differences, Figure 6 compares the syntax of ML-Linda with that of C-Linda. Each of the
two program fragments invokes three Linda operations, out, in, and rd. Since C-Linda
uses a preprocessor to extract type information, the arguments to the out call need not
specify types as long as they have been previously declared in the program. In contrast,
the same call in ML-Linda is explicitly represented as a list (denoted by the square bracket
delimiters), and each list element (tuple field) is tagged with the appropriate constructor.

The Linda runtime structure exports the application level interface, maintains state
by generating hash strings and unique IDs, and translates the runtime operations into the
appropriate calls to tuple space.

An example of a small application program using Linda is shown in Figure 7. The
program exports two functions: one repeatedly writes a tuple with the string "ping" and
reads one with the string "pong"; the other reads a tuple with the string "ping" and writes
one with the string "pong". Using the ML Threads package, these functions can be forked
as concurrently executing threads; this portion of the code is not shown.

An ML-Linda solution of the classic Dining Philosophers problem is shown in Figure 8.
The code to create the five philosopher threads is not shown.

4.2 Tuple Space

The tuple space interface (Figure 9) is exported by the tuple space server and also by any
additional layers between it and the Linda runtime system. These additional layers thus
"virtualize" the tuple space interface. The operations correspond roughly to those in the
runtime interface, although some of the high-level Linda operations have been broken down
into parts in the tuple space interface. The in and inp operations have been broken down
into two phases, the rmv and purge/restore phases, and the blocking rd operation
l ikewise has a second phase (rd__done). The second phases of these operations are
required to clean up state and undo any side effects of the initial operations. The two phase

5

C-Linda:

int i = 3;
char s[32] = "myprog";
int j;

struct pair { char str[32]; int flag; } p;

out (s, i, 7) ;
/* C-Linda uses the ? operator to label formals */
in ("myprog", ? j) ;
rd (? p) ;
/* j and p can be used here */

ML-Linda:

let val i = 3
val s = "myprog"

in
Out [STRING s, INT i, INT 7];
let val [_, INT j] = In [STRING "myprog", INT_FORMAL]

val template = [PAIR (STRING_FORMAL, INT_FORMAL)]
val [PAIR (STRING str, INT flag)] = Rd template

in
(* j, str, and*flag can be used here *)

end
end

Figure 6: Syntax of ML-Linda and C-Linda

local open L:
in

fun ping
(Out
In

fun pong
(In
Out

end

nda TupleSpace

0 =

[STRING "ping"];
[STRING "pong"];

0 =
[STRING "ping"];
[STRING "pong"];

print "ping ";
ping ())

print "pong ";
pong ())

Figure 7: A Simple Example

6

local open Linda TupleSpace
in

val num = 5

val room_ticket = [STRING "room ticket"]
fun left_chopstick i = [STRING "chopstick", INT i]
fun right_chopstick i = [STRING "chopstick", INT ((i+1) mod num)]

fun philosopher i =
((* THINK *)
In room_ticket;
In (left_chopstick i); In (right_chopstick i);
(* EAT *)
Out (left_chopstick i); Out (right_chopstick i);
Out room_ticket;
philosopher i)

end

Figure 8: Dining Philosophers in ML-Linda

approach is not necessary for a nondistributed tuple space, but the implementation does not
distinguish between the distributed and nondistributed cases in order to keep distribution
transparent to the Linda runtime system.

Tuple space is represented by a data structure that maps hash strings to tuples. The
data structure is implemented as an array of linked bucket structures. Since a tuple space
module can have multiple clients and may be multithreaded, the implementation must
provide appropriate synchronization and locking on shared data structures. Each array slot
has a corresponding lock. Array slots are locked for add and rmv operations, but not
for l o o k u p . This serializes all o u t and i n operations, but each modification involves
updating the value in the array slot because the bucket structures are immutable.

Each node of distributed tuple space maintains its own version of the tuple space data
structure. Tuple field types are restricted to those that can be expressed with constructors
of the l t y p e discriminated union exported by the tuple space structure. Within each
table, tuple matching is based on the types, values, and order of tuple fields. The initial
implementation takes a naive approach and hashes on a string constructed from substrings
representing the type of each field in the order of its appearance in the tuple, although this
will tend to result in an unbalanced table with all tuples of the same type grouped together.
We implement a slightly modified version of the Linda matching algorithm in which tuples
with formal fields are allowed only as template parameters, and do not reside in tuple space.
The details of the matching protocol are described in Section 5.1.

4.3 Distributed Tuple Space

Distributed tuple space is a single logical associative memory that is implemented as a set
of distinct tuple space servers distributed over a collection of physically separate nodes.
The tuple storage and matching systems are replicated on each node of distributed tuple
space, although the stored contents are not replicated. Each node of a distributed tuple
space manages its own resources and exports all of the Linda functionality. All of the logic
involved in combining the individual nodes into a single logical tuple space is located in
the distribution module, which is layered transparently between the Linda runtime and its
communication layer.

7

signature TUPLESPACE =
sig

datatype ltype =
INT of int I STRING of string I BOOL of bool

I INT_FORMAL | STRING_FORMAL I BOOL_FORMAL
I PAIR of ltype * ltype
I WILDCARD

exception NotFound

val init : string list -> unit

(* add is used by out *)
val add : string * ltype list -> unit

(* lookup is used in phase 1 of rd/rdp *)
val lookup : string * string * ltype list * bool -> ltype lisu

(* rd_done is used in phase 2 of rd/rdp *)
val rd_done : string -> unit

(* rmv is used in phase 1 of in/inp *)
val rmv : string * string * ltype list * bool -> unit

(* purge and restore are used in phase 2 of in/inp *)
val purge : string * bool -> ltype list
val restore : string -> unit

end

Figure 9: Tuple Space Signature

8

An important goal of the distributed Linda implementation is transparency. The client
application should depend only on the interface to tuple space, not on any implementation-
specific aspects having to do with communication, distribution, or physical location. This
means that the distribution of tuples in distributed tuple space must be independent of
implementation choices such as the hashing algorithm. Tuples may reside on any valid
node of distributed tuple space (see Figure 10), but the client application sees only a single
unified v iew of tuple space. Ideally, the tuples end up distributed over the available nodes
in such a way as to optimize both the necessary network traffic and balance the loads on the
relevant nodes. However, the initial implementation takes a simple approach and selects
destination nodes by cycling through the tuple space nodes.

A general approach to managing consistency and availability of data in a distributed
system involves using replication with appropriate read and write quorums [12]. To ensure
that valid data is always available, accesses are made from read quorums and updates to
write quorums. The sum of the read and write quorums must be greater than the total
number of nodes in the system, ensuring that the two quorums must overlap by at least one
node.

Although a replication scheme can normally use any legal combination of read and
write quorums, a Linda implementation can only safely use read-one-write-all or read-all-
write-one quorums without compromising the location transparency of the system. 2 This
peculiarity is due to the ambiguity of the rd operation. Rather than reading a single
logical o%bject, the rd operation returns any member of an arbitrarily large set of possible
matching tuples. Since a set of n replies is not guaranteed to include n copies of the same
object, an arbitrary read quorum would not necessarily provide the required overlap with
the corresponding write quorum.

Our ML-Linda distribution layer uses a read-all-write-one approach to communicate
with distributed tuple space. This means that out sends a tuple to a single tuple space node,
while i n and rd request matches from all nodes. We simulate multicast communication
by using multiple threads to make the remote procedure calls in parallel. We chose read-
all-write-one semantics over read-one-write-all in order to minimize the amount of data
transmitted: only one tuple needs to be transmitted for each operation. 3 Although rd and
i n are sent to all tuple space nodes, only one match is chosen; furthermore, it is likely
that only one version of tuple space will be modified since requests are likely to target a
specific tuple. If we used a read-one-write-all scheme, the in/inp operation would be too
expensive: although the lookup operation would be performed on a single node, all of the
remaining nodes would have to be involved in order to delete the tuple from tuple space.

In our distributed tuple space, with read-all-write-one semantics, an application can
receive several different tuples in response to an in/inp or a rd operation. The rmv
phase of the in operation must tentatively remove the matched tuple from tuple space,
to make it unavailable to any subsequent match requests. Since in/inp is a destructive
operation, only one match can be accepted; the tentative removals associated with any other
responses must be undone. In addition to restoring unwanted matches, it is also necessary
to terminate any remote threads that are still blocked at the end of an operation. The details

^ h e n x n processor grid discussed by Bjornson et al. [5] allows a valid intermediate quorum assignment
that depends on the physical configuration of the system. For this configuration, the write quorum for node i
consists of the n nodes in z's row, and the read quorum consists of the n nodes in -I'S column.

3 We actually have rd return the matching tuple as an optimization, since we generally expect only a single
match and rd does not require a second phase for any nodes returning NotFound. This is discussed in more
detail in Section 5.4.

9

of managing distributed tuple space are discussed in greater detail in Section 5.

4.4 Communication

Our implementation of distributed Linda requires typesafe, transparent communication of
complex objects from one node to another. A rd or in operation binds the fields of
the appropriate matching tuple to a set of local variables that can then be modified or
referenced at will. In order to transmit an opaque type it would be necessary to provide
the communication system with information about the implementation that is not available
in the signature; this effectively makes the type explicit, and requires a new mechanism
such as a preprocessor to extract the relevant type information and make it available to
the communication system. Complex types whose implementations are included in the
signature are already explicit, and can be readily transmitted. Given the constraints of the
ML type system, it is impractical to use abstract (opaque) types in tuple fields. In order to
use Linda's shared tuple space, the concrete representations must be visible.

The ML-Linda implementation follows a client-server model, with one or more indi­
vidual tuple space nodes acting as remote servers to the local Linda client application. The
communication support provides client and server stub structures that hide the communica­
tion details from the application code. The stub structures provide routines for marshaling
and unmarshaling each of the relevant argument and result types, as well as control struc­
tures for making remote procedure calls. The server communication layer also provides a
listener loop that waits for incoming requests from the network and forks threads to service
them. The communication structures appear transparent to the application and server code
because they export the same interface as the tuple space structure.

For a distributed version of tuple space, an additional stub layer is added to hide the
distribution (see Figure 2). A client application will therefore see the same tuple space
abstraction regardless of whether the tuple space structure is local, remote, or distributed.
Ideally the distribution module would be able to use multicast for some of its operations, but
support for multicast is not yet available. The current implementation therefore simulates
multicast with multiple threads performing calls in parallel.

5 Protocols

This section describes the Linda tuple matching algorithm and presents the protocols we
use to implement distributed tuple space, using the read-all-write-one scheme described in
Section 4.3.

5.1 Tuple Matching

All communication and synchronization in the Linda model is accomplished by tuples
moving into and out of tuple space. The Linda tuple matching algorithm is defined as
follows [14]. Call the tuple defined by the fields in an in or rd operation a template. A
template fi matches a tuple r in tuple space if all of the following conditions hold:

• jj, and r have the same number of fields.

• Corresponding fields have the same types.

• Each pair of corresponding fields and FT match as follows:

10

- If both and FT are actuals, they match if and only if their respective values
are equal, where equality is defined by the base language for objects of this
type.

- If F^ is a formal and FT is an actual, they match; the value of FT may eventually
be assigned to some variable. No assignment takes place unless all the fields
match, however.

- If JFm is an actual and FT is a formal, they match unconditionally. The value of
F,j, is discarded.

- If both F M and FT are formals, they never match.

5.2 State Information
The protocol for in/inp is discussed in detail from both the runtime system and tuple
space points of view. Protocols are sketched for the rd/rdp and o u t operations from the
runtime system's point of view. All operations begin with the construction of a hash string
based on the template or tuple argument at the Linda runtime system level (see Figure 11).

[STRING "hello", INT 5, BOOL true]
= > "string int bool 11

[STRING "hello", PAIR (INT_FORMAL, BOOL_FORMAL), WILDCARD
=> "string pair int_formal bool_formal wildcard "

Figure 11: Hash String Construction

The distribution structure maintains a set of data structures that are used to record the
state of the match for each tuple space node participating in phase one of in, inp, and rd.
Each data structure includes:

• A use indicator, either empty or a string that uniquely identifies the operation using
the structure.

• A pointer to the connection supplying the chosen match.

• A tuple space status variable for each tuple space node.

The tuple space status is indicated via a discriminated union of NULL, MATCH, and
NOTFOUND; the state is reset to NULL at the end of each operation; at any other time NULL
indicates a thread that hasn't yet returned (in our no-failure model, this is equivalent to a
blocked thread). Synchronization is achieved by locking the use indicators. A process must
acquire a lock in order to modify a use field, and a field must be set to a null value before it
can be used. Once a process sets a use field to its unique ID value, the corresponding data
structure is reserved until it resets the use field.

Each tuple space implements a data structure that maintains the state required for the
two-phase operations in, inp, and rd. The data structure maps a unique ID supplied
by the Linda runtime system into either a match record consisting of a unique ID, hash
string, and tuple; or a kill record consisting of the unique ID. The data structure is currently
implemented as an array of linked structures; there is a lock on each array slot to ensure
that access by threads with the same unique ID is always serialized.

11

The Linda runtime module is responsible for generating hash strings for each of the
tuple space operations as well as the unique ID for the in, inp, and rd operations.
The operation hash strings are constructed by simply concatenating together the strings
representing the type of each tuple or template field. The unique ID is a concatenation
of the string representations of a sequence number (incremented after each use), the host
name, the process ID, and the hash string.

5.3 The in and inp operations

The in operation is a two-phase operation implemented by two sequential remote calls (see
Figure 12). The first phase is the rmv operation, which involves all n tuple space nodes.
The second phase, which can be either a purge or restore operation, must be invoked
on each node participating in the rmv phase. To connect the two phases of the operation,
the Linda runtime assigns a unique ID that is sent as an argument along with each remote
call. To emulate a multicast operation, the calls in each phase are made concurrently by
forking one thread for each tuple space node.

Linda Runtime/Distribution Tuplespace Server

multicast templates

Figure 12: Protocol for in operation

On the application side, the distribution layer reserves a status structure by writing its
unique ID into the use field. It then emulates a multicast operation, concurrently sending
the unique ID, request template, and hash string from the Linda runtime module to all tuple
space nodes. As each thread returns, it records the appropriate status in the status structure;
the first thread with a match may modify the match connection variable. Once a match is
found, the call may be terminated. This is done by making a purge request to the tuple
space node specified by the match connection variable and making restore requests to
each of the remaining tuple space nodes; this will undo any tuple space modifications and
kill any blocked threads remaining from the rmv request. The purge and restore
requests use the unique ID to access the tuple and hash string information stored in the

12

state array. The purge operation returns the matched tuple, which is then returned to the
application process.

The rmv phase of the blocking in operation may leave blocked threads on some of the
tuple space nodes after the application has already chosen a tuple. These threads must be
located and terminated as part of the cleanup for the operation. Since the remote threads
are running concurrently it is also possible that a remote match can be found on a particular
tuple space node at the same time that the restore request is running. These conditions
create the need for communication and synchronization, which is filled by the tuple space
state structure. The application provides both phases with the same unique ID, one that is
unique per operation per application. This hash table holds either a match record from the
lookup phase, or a kill record from the restore phase; the latter indicates that the lookup
thread should terminate itself. Each thread acquires the appropriate lock before executing
to ensure that the blocked thread can never return a match once a kill command has been
issued.

The remote server thread executes the rmv operation as a loop. At the top of the loop,
it immediately acquires a lock on the part of the state structure corresponding to its unique
ID. It then checks for a kill command from a restore operation; if one exists, the thread
clears the command from the state array, releases the lock, and exits. If no record of a
restore operation is found, the thread searches tuple space for a match. If a match is found,
the matching tuple and hash string are recorded in the state array along with the operation
unique ID. The thread then releases its lock and returns. If no match is found, the lock is
released and the thread blocks. All blocked threads are awakened each time a tuple is added
or restored to tuple space. When a blocked thread is awakened it continues execution at the
top of the loop.

The second phase of the in operation consists of a single purge invocation on the
node that provided the chosen match, and invocations of restore on the remaining tuple
space nodes. Each remote thread executing restore acquires the lock on the part of the
state array corresponding to its unique ID and checks the state array to see whether the
thread from the rmv phase has found a matching tuple. If it has, the restore thread
clears the entry from the state array, uses the recorded information to restore the appropriate
tuple to tuple space, releases the lock and returns. If no matching tuple has been found, the
remote thread records a kill command for the blocked thread to find when it next awakens,
releases the lock, and returns.

A purge operation is similar to the restore operation, but simpler. The remote
thread acquires the lock on the appropriate part of the state structure, clears the existing
entry from the state array, releases the lock and returns. A purge request is only issued
for a node that has already returned a match, so the thread from phase one will always have
left a record in the status array and exited.

The differences between the blocking in and nonblocking inp operations are relatively
minor. Tuple space threads executing inp that fail to find a match return Not Found
exceptions to the distribution module rather than blocking until a matching tuple appears.
If all threads return NotFound, the inp call will relay the exception to the application.
For the second phase, the nonblocking version need not issue restore requests to remote
nodes that raised the NotFound exception, since they will not have left any state on the
remote tuple space. Otherwise, the protocol is the same as for in.

13

5.4 The rd and out operations

The r d operation is similar to the rmv phase of the in operation except that it has no side
effects on tuple space. The Linda runtime system multicasts the template argument and
the hash string to all nodes of distributed tuple space. The blocking rd call also includes
a unique ID so that a status record may be written if a match is found. The status record
is unnecessary for the nonblocking rdp call since all remote threads exit and there is no
need to clean up any remote state. For the blocking rd, the threads involved in the call
(both local and remote) remain blocked until a match is found. Once the first response
tuple is received, any outstanding requests to other nodes are canceled with a rd_done
operation, and the tuple is returned to the application. For rdp, which is nonblocking,
each tuple space node searches its database only once and either returns the tuple match or
raises a NotFound exception. The Linda runtime simply returns the first matching tuple,
or reraises the NotFound exception if no node finds a match.

Since out is a write operation, the runtime system forwards the tuple argument with the
constructed hash string to one node of the distributed tuple space. Assuming a reasonable
distribution of processes, it might be optimal to write the tuple to the local node if it is a
tuple space node. The current implementation simply rotates through the list of tuple space
nodes to provide a wider distribution of tuples. The addition of the new tuple to each tuple
space causes any blocked threads to be awakened so that they can try to match against the
new tuple.

6 Discussion

Distributed Linda can be implemented using either replication [2, 6, 14] or hashing [4],
Some designs also include the notion of dynamic migration: if a set of tuples is being
consumed on a particular node, it is more efficient if they are stored directly on that node.

The hash-based approach implements tuple space as a distributed hash table in which
one or more buckets map to each node. Tuples are categorized into disjoint sets, and a
hash function is provided which ensures that all tuples with common characteristics hash
to the same bucket (node). All tuple stores and match requests are then directed to the node
specified by the hash function, localizing the search area.

The replicated approach makes it easier to add new types of tuples to the system, or
migrate existing tuples from one node to another. Depending on the relative frequency
of the different operations, the replicated approach may also require less network traffic
(assuming that multicast or broadcast is available). The overall performance of the two
approaches is likely to depend significantly on the pattern of communication among the
active processes.

6,1 Fault Tolerance

Although it is an unrealistic assumption for a production system, the ML-Linda prototype
does not guarantee consistency or correctness in the presence of failures. The correctness
of the Linda communication model is threatened by failures such as crashes and partitions.
Unlike more conventional systems, communication in Linda is not from process to process
or node to node; since the Linda model constrains neither the locations of processes nor
the lifetime of data in tuple space, there is no external way to tell if data are absent because
the producer process died, because one or more of the relevant nodes have crashed or are

14

partitioned, or because the data have not yet been produced. Furthermore, some operations
require participation by all nodes in the distributed tuple space, making the system highly
vulnerable to node or communication failure.

Replicated multi-phase operations are particularly difficult to implement correctly in
the presence of failures. A fault tolerant implementation would require the support of
persistent storage and a transaction system to ensure correctness, and even so leaves open
the possibility of indefinitely long blocking at multiple stages in the protocol.

6.2 Status

The prototype ML-Linda system is implemented with the Standard ML of New Jersey
compiler [3] running on the Mach operating system [1]. It consists of roughly 700 lines
of ML, implementing three functors: Linda runtime, distribution, and tuple space. The
communication subsystem, which is generated from the tuple space signature by an RPC
stub generator, is not included in this tally. The system runs on VAX, MIPS, and Sun
machines. An earlier version implemented the blocking in and r d operations by repeatedly
polling tuple space from the Linda runtime layer; the current version uses blocking threads
as described in Sections 5.3 and 5.4, but the ML thread scheduler has not yet been integrated
with the Mach communication facilities.

6.3 Performance

The current system would require some tuning and enhancements before it could be used as
a production system. Some of these are straightforward, but some require an understanding
of typical application behavior in order to identify bottlenecks and other stresses on the
system. One important direction for future work is to implement different types of Linda
applications, and monitor the distribution and frequency of each of the Linda operations
and the reference patterns and average lifetimes of tuples. It would also be useful to
compare the performance of several different heuristics for choosing tuple space nodes
for the o u t operation, and possibly for dynamic migration. Dynamic migration might be
useful for systems with many more rd than in operations. Both types of heuristics might
be integrated with dynamic tuple space resizing as part of an attempt to keep the distribution
of tuples properly balanced. Designing a better hashing algorithm would also help to keep
tuples evenly distributed within the tuple space of a single node.

7 Conclusion

The prototype implementation of ML-Linda demonstrates the feasibility of combining
ML's functional approach with the Linda model of parallel programming in distributed
tuple space; The ease of decomposing the Linda system into ML modules reinforces the
suitability of ML for constructing complex distributed programs. The addition of Linda
shared tuple space complements ML's functional style and provides a flexible environment
with the benefits of both programming models for the development of distributed systems.

15

References
[I] Michael J. Accetta, Robert V. Baron, William Bolosky, David B. Golub, Richard F. Rashid,

Avadis Tevanian, Jr., and Michael W. Young. Mach: A new kernel foundation for UNIX
development. In Proceedings of the Summer 1986 USENIX Conference, pages 93-113, July
1986.

[21 Sudhir Ahuja, Nicholas J. Carriero, David H. Gelernter, and Venkatesh Krishnaswamy.
Matching language and hardware for parallel computation in the Linda machine. IEEE
Transactions on Computers, C-37(8):921-929, August 1988.

[3] Andrew W. Appel and David B. MacQueen. A Standard ML compiler. In Functional
Programming Languages and Computer Architecture, pages 301-324. Springer-Verlag,
1987. Volume 274 of Lecture Notes in Computer Science.

[4] Robert Bjornson. Experience with Linda on the iPSC/2. Research Report 698, Department
of Computer Science, Yale University, March 1989.

[5] Robert Bjornson, Nicholas Carriero, David Gelernter, and Jerrold Leichter. Linda, the
portable parallel. Research Report 520, Department of Computer Science, Yale University,
February 1987.

[6] Nicholas Carriero and David Gelernter. The S/Net's Linda kernel. ACM Transactions on
Computer Systems, 4(2): 110-129, May 1986.

[7] Nicholas Carriero and David Gelernter. How to write parallel programs: A guide to the
perplexed. ACM Computing Surveys, 21(3):323-357, September 1989.

[8] Nicholas Carriero and David Gelernter. Linda in context. Communications of the ACM,
32(4):444-458, April 1989.

[9] Eric C. Cooper and J. Gregory Morrisett. Adding threads to Standard ML. Technical Report
CMU-CS-90-186, School of Computer Science, Carnegie Mellon University, December
1990.

[10] David Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80-112, January 1985.

[II] David Gelernter. Multiple tuple spaces in Linda. In PARLE 89, volume 366 of Lecture
Notes in Computer Science, pages 20-27. Springer-Verlag, June 1989.

[12] David K. Gifford. Weighted voting for replicated data. In Proceedings of the 7 th Symposium
on Operating Systems Principles, pages 150-162, December 1979. Published as Operating
Systems Review, 13(5).

[13] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
1990.

[14] Robert A. Whiteside and Jerrold S. Leichter. Using Linda for supercomputing on a local
area network. In Proceedings of Supercomputing, pages 192-199, November 1988.

16

