
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Exploiting Correlations Among Models
with Application to

Large Vocabulary Speech Recognition
Ronald Rosenfeld Xuedong Huang Merrick Furst

May 1991
CMU-CS-91-148 T

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In a typical speech recognition system, computing the match between an incoming acoustic string
and many competing models is computationally expensive. Once the highest ranking models are
identified, all other match scores are discarded. We propose to make use of all computed scores
by means of statistical inference. We view the match between an incoming acoustic string s and
a model M, as a random variable Y-t. The class-conditional distributions of (Y\,..., YN) can be
studied offline by sampling, and then used in a variety of ways. For example, the means of these
distributions give rise to a natural measure of distance between models.

One of the most useful applications of these distributions is as a basis for a new Bayesian classifier.
The latter can be used to significantly reduce search effort in large vocabularies, and to quickly
obtain a short list of candidate words. An example HMM-based system shows promising results.

This research was supported by the Defense Advanced Research Projects Agency and monitored by the Space
and Naval Warfare Systems Command under Contract N00039-9l-C-0158, ARPA Order No. 7239.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA or the U.S. government.

CZ.hr

° \ \ - 14 8»

Keywords: artificial intelligence, speech recognition, hidden markov models, fast match, large
vocabulary.

http://CZ.hr

1. Motivation and Outline

During the recognition phase of a typical speech recognition system, an incoming speech segment
s is matched against a large number of competing models M\, M 2 , . . . , Af#. The model or models
that score the highest are then selected for further consideration.

There are many variations on this basic idea. The speech model may represent a phoneme, a
syllable or a word. The competing models may represent the entire vocabulary, or only that part of
it allowed by the grammar. The type of models used may vary, together with the matching process.
Template-based models would typically be used with dynamic time warping ([Sakoe & Chiba 78])
and some metric distance defined over frames. In HMM-based systems, a match is typically defined
as the class-conditional log-probability (\ogP(s\Mi)). The models themselves may be trained as
Maximum Likelihood estimators, or else optimized for discrimination ([Bahl et al. 88a]).

Common to all of these scenarios, however, are the following:

1. Computing the match for all the models is computationally expensive. For large vacabularies,
it is prohibitive.

2. Once the best scoring models have been identified, all other match scores are discarded.

These observations suggest that a lot of computation is wasted in this process.

The main idea of this work is to remedy this situation by making use of all the computed scores.
This can be done using statistical inference techniques. In order to be able to use all scores at run
time, though, we must first analyze offline the statistical relationships between the models.

In section 2, we present a framework for such an analysis. Section 3 demonstrates the usefulness
of this framework, by showing how it naturally gives rise to a measure of distance between models.
In section 4 we develop the main application, namely reducing search time in large vocabularies.
Finally, in section 5 we speculate about other possible uses for this framework.

2. Framework

Yi(s) could be any reasonable measure of agreement between a model and an acoustic instance.

Consider the Yfs as random variables. The distribution of Y = f (XUY2,... YN) is determined by
the population from which the s's are taken. Let

Let
Yi(s) = the match between acoustic string s and model Af£. (1)

DjCO = P(Y\s e speech-unit-/).
University Libraries

Carnegie M ^ n u r v ^ ^ t
îttsburgn ^Wr, » ••*»• -1

Yi(s) Y2(s) Yi(s) YN(s)

Di(T2) ... • Di(Yi) Di(YN)
D2

D2(Y2) D2(Yd D2(YN)

Dj DjiYi) Dj(Y2) Dj(Xd ... • Dj<yN)

DN(YX) DN(Y2) DN(Yd DN(YN)

Figure 1: The N 2 distributions Dj(Xi) d= P(Yi\s € speech-unit-/). A row represents distributions
of different Y values based on the same population of acoustic strings. A column represents
distributions of the same Y value under different string populations.

Dj(Y) is an N-dimensional distribution. It can be estimated by selecting examples of speech unit j
and evaluating them by all the models. This can be done for all N distributions D\ ,D2,... DN.

We may also wish to consider the univariate distribution of each individual 7 t . We define:

Dj(Xd = f P(Yi\s e speech-uniW). (3)

There are N 2 such distributions, which can be estimated in a similar way. Figure 1 depicts these
distributions symbolically. Row j represents the distribution of different Y values under strings s
from population j \ Column i represents the distributions of Yi under different string populations.

For generative models, if M\, M2,..., Ms are good models of speech units 1,2, . . . , N, respec­
tively, then Dj can be approximated by D*, where

D*(Y)d±fP(Y\Mj\ (4)

and similarly for DJ(Yi). D*,£>2>• • • c a n ^ e estimated in the same way as D\,D2,... ,DN,
except that the strings s are now generated by models M\, M2,..., Af#, respectively.

These definitions, and the following analysis, apply to models of any type. For empirical
support, we chose to apply these ideas to a small SCHMM-based system ([Huang et al. 90]) of 48
context-independent English phoneme models, as used in the baseline SPHINX system ([Lee 88]).
We chose SCHMM over the discrete model because distance between acoustic strings is better
modeled in Continuous HMM or SCHMM (since they are not subject to VQ errors). For this
system we define:

YM^^logPisW (5)

2

/ a e / / a x / / a y / /w/ / n g / / g / / s h / / d d /
/ a e / 7.68 5.39 4.53 -1.23 1.28 -1.72 -2.66 0.23
/ a x / -5.25 0.68 -10.35 -6.49 -5.15 -6.94 -10.24 -5.33
/ a y / 6.76 5.13 8.95 0.13 0.80 -1.08 -2.36 -0.38
/w/ -9.55 -4.08 -10.45 1.55 -7.11 -5.99 -12.09 -6.48
/ n g / -3.70 -0.23 -5.93 -3.62 4.25 -1.81 -6.13 -0.37
/ g / -13.96 -9.20 -15.34 -8.71 -9.98 -0.44 -10.73 -2.60
/ s h / -5.53 -3.50 -6.00 -4.91 -3.60 -0.87 7.80 0.21
/ d d / -15.39 -12.41 -16.59 -13.40 -11.28 -8.59 -13.29 -0.19

Table 1: A submatrix of E* °= E» (the means of the DjTQ^O's). The diagonal entries are the row
maxima but not necessarily the column maxima. See the text.

3. Example: Deriving a Measure of Distance Between Models

To illustrate the usefulness of our formalism, we now use it to derive a natural measure of distance
between models.

Consider the means of the Dj(YiYs:

Eji =f E[Dj(Yi)] = JPCy|speech-unit-y) Yg(s) ds (6)

AllN 2 such means can be estimated together in a matrix E =f {Eji}. E* is defined similarly. Table 1
shows a submatrix of E* for our example system. The diagonal elements are the row maxima.
This is to be expected, since they were derived by evaluating strings using the same models that
were used to generate them. Note, however, that this argument does not carry over to the columns;
some diagonal elements are not the column maxima (e.g. D/ax/(Y/ax/)). This reflects the fact that
some models tend to generate more "agreeable" strings than others.

A rough feel for similarity between some phonemes can be gleaned from this data. For example,
columns / a e / and / a y / are similar (compare them to column / g /) , as are rows / a e / and / a y / .
This corresponds to the similarity between these two vowels.

For a more rigorous measure of distance between models, consider how the off-diagonal means
differ from the diagonal element. Let

DIST0*;0 (7)

and similarly for DIST*. Table 2 shows a submatrix of DIST*, derived from E* by a single matrix
operation. The distance between phonemes based on this table seems to be in strong agreement
with our intuition and domain knowledge.

This measure can be used for clustering of larger speech units. It is superior to phonemic
clustering, which considers phonemes as atomic units. For example, b a t and p a t are much more

3

/ a e / / a x / / a y / /w/ / n g / / g / / s h / / d d /
/ a e / 0.00 2.29 3.15 8.91 6.40 9.40 10.34 7.45
/ a x / 5.94 0.00 11.04 7.17 5.84 7.62 10.92 6.02
/ a y / 2.19 3.82 0.00 8.82 8.15 10.03 11.31 9.33
/w/ 11.10 5.63 12.00 0.00 8.66 7.54 13.64 8.03
/ n g / 7.95 4.48 10.17 7.86 0.00 6.06 10.37 4.61
/ g / 13.52 8.77 14.91 8.28 9.54 0.00 10.29 2.16
/ s h / 13.34 11.30 13.80 12.72 11.41 8.68 0.00 7.59
/ d d / 15.21 12.23 16.40 13.21 11.09 8.41 13.10 0.00

Table 2: A submatrix of DISTjj = f EJj — a derived measure of distance between models.

similar acoustically than phonetically 1 .

Recall that, for our HMM based system, we defined Yfa) d= ^ logP(s\Mi). For simplicity, let

us write Pi(s) for P(s\Md. Then

DIST*(/;;) = f % - E£ (8)

= / j^Pjis) logPj(s)ds - j ±-Pj(s) logPi(s)ds

The last expression is similar to the "Asymmetric Divergence" — a well known measure
of distance between two distributions[Kullback 59] 2 . The difference is in the presence of the
ijt factor. Asymmetric Divergence was proposed as a measure of distance between HMMs by
[Juang & Rabiner 85]. They derived it from information theoretic arguments. [D'ortaet al. 87]
used their measure, with a sampling technique similar to ours, to cluster phonemes. In our
derivation, both the measure and the estimation method naturally "fall out" of the definition of the
Dj(YiYs. In addition, our definition is not limited to HMMs.

4. Main application: reducing search in large vocabularies

4.1. Changing the Classifier System

Given a acoustic string, in the traditional method of classification we ask the question:

Which of the models M\, Af 2 , . . . , MN is the most likely to have produced s? (i.e., find
the i that maximizes Yi(s).)

1 We are grateful to Raj Reddy for this example.
2 To make it symmetric, define DISTf(Pi,P7-) =f DIST*(Pi3Pj) + DIST*(/>,,/>;).

4

0 5

D/eh/(Y/eh/)

10 15
Y/eh/ (s)

-10 -5 0 5

D/eh/(Y/ae/)

10 15
Y/ae/ (s)

-20 -15 -10 -5

D/eh/(Y/g/)

0 5
Y/g/(s)

Figure 2: Histograms of some typical Dj(Yi)\ each based on a sample of 1000 strings generated
from the HMM model Mj.

We now propose to change the question to:

Which of the distributions D i (Y), D2(Y) , . . , , DN(Y) is the most likely to have produced
s? (i.e., find the j that maximizes Dj(Y(s)).)

The distributions D i (Y), Z>2(Y) , . . . , Av(Y) take the place of the models Afi, Af 2,... ,MN as the
Bayesian classifier. We do not necessarily expect the D/s to perform as well as the Mi's. In fact, in
our example system, Since M i , M 2 , . . . , M# were optimized as Maximum Likelihood classifiers and
not as discriminators, we expect a degradation of performance. However, this change of classifiers
is a necessary first step towards reducing the search effort.

Since Dj(Y(s)) is an ^/-dimensional distribution, an unrestricted non-parametric estimation is
impractical for even a large sample. Some assumptions have to be made. There are many ways to
proceed. Here we chose to assume that the individual Dj(Yi)s are independent. This is clearly an
incorrect assumption, as our data (and intuition) indicate. In making this assumption we are merely
choosing to concentrate on the first-order statistics of the Dj(Yi) s, and to ignore for the time being
the second- and higher-order relationships.

Thus we are looking for the j that maximizes HiDj(Yi). This still leaves us with the problem
of estimating the N 2 distributions Dj(Yi). What do these distributions look like? Figure 2 shows
histograms of selected DJ(Xi)\ each based on a sample of 1000 strings, which were generated
from the appropriate model.

The distributions are well characterized by a Normal (Gaussian) curve. This is true for all
the distributions we checked. In retrospect, it is not difficult to see why this happens. Since the
strings were generated from Hidden Markov Models, each frame in each codebook was drawn
independently. Therefore, logP(s\Mi) is a sum of many independent events, hence the Gaussian
curve.

The Normal shape of the distributions is welcome news, because they can be characterized
fairly well with only two parameters each: mean and standard deviation. These can be estimated

5

/ a e / / a x / / a y / N1 / n g / / g / / s h / / d d /

/ a e / 7.7 ± 3.7 5.4 ± 3.2 4.5 ± 6.6 -1.2 ± 3.6 1.3 ± 4.0 -1.7 ± 3.3 -2.7 ± 4.2 0.2 ±3.3
/ a x / -5.3 ± 7.8 0.7 ±3.8 -10.4 ± 8.3 -6.5 ± 4.4 -5.2 ± 4.7 -6.9 ± 4.2 -10.2 ± 4.5 -5.3 ± 4.2
/ a y / 6.8 ± 3.1 5.1 ± 2.5 9.0 ± 3.0 0.1 ± 2.8 0.8 ± 3.1 -1.1 ±2.7 -2.4 ± 3.4 -0.4 ± 2.7
/w/ -9.6 ± 4.2 -4.1 ± 2.9 -10.4 ± 5.2 1.6 ± 2.7 -7.1 ± 3.5 -6.0 ± 2.8 -12.1 ± 3.3 -6.5 ± 2.9
/ n g / -3.7 ± 4.9 -0.2 ± 3.0 -5.9 ± 5.2 -3.6 ± 3.3 4.2 ± 2.8 -1.8 ± 3.0 -6.1 ± 3.3 -0.4 ± 2.7

/ g / 14.0 ± 3.9 -9.2 ± 3.4 -15.3 ± 3.8 -8.7 ± 3.4 -10.0 ± 4.2 -0.4 ± 2.8 -10.7 ± 3.6 -2.6 ±3.1
/ s h / -5.5 ± 4.3 -3.5 ± 3.4 -6.0 ±4.4 -4.9 ± 3.6 -3.6 ± 3.7 -0.9 ± 3.0 7.8 ± 3.4 0.2 ±3.0
/ d d / 15.4 ± 4.8 -12.4 ±6.5 -16.6 ± 4.1 -13.4 ± 5.8 -11.3 ±7.3 -8.6 ± 9.2 -13.3 ± 5.9 -0.2 ± 4.8

Table 3: A submatrix of E* ± a* (the means and standard deviations of the £ > ; (№) .

Top 1 Top 2 Top 3 Top 4 Top 7 Top 10 Top 15 Top 20

Ranking by Pi 24% 37% 46% 54% 70% 79% 88% 94%

Table 4: Performance of the D?,£>;, . . . classifiers, using first-order statistics only. For
example, in 79% of the strings tested, the generating model was ranked among the top 10 contenders
using equation 9.

accurately and reliably from a modest sample. Note that, in other models, if the Dj(YiYs are
not gaussians, accurate characterization may be more difficult. However, the mean and standard
deviation can still be used to derive statistical bounds. The resulted inference is expected to be
weaker, though.

Assuming Dj(Yi) ~ Af(Eji, cr,,), classification can now be done by finding the j that minimizes:

- l o g / M Y l D ^ f ;
¿=1

Where the subscript 4 41" denotes the use of first-order statistics only.

Table 3 shows the estimated E* ± <7* values for a submatrix of our example system. The full
matrix can be kept in main memory, making the computation of equation 9 straightforward and
inexpensive (assuming Y is known).

4.2. Performance of the New Classifier

How good is our new classifier? Since we made many simplifying assumptions, and since
M i , M 2 , . . . ,MN were derived as Maximum Likelihood models and not as discriminators, we do
not expect the performance of D\ , D 2 , . . . , Av to be nearly as good as that of the original classifier.
However, it is still instructive to gauge it. Table 4 lists one possible measure of performance..
The 24% figure under "Top 1" means that in 24% of the strings tested, the generating models was
correctly given the highest P\ value by our new classifier. In 37% of the cases, it was ranked
among the top 2 contenders, and so on (the percentages are cumulative).

lOg <Tji +
2o}

(9)

6

Top 1 Top 2 Top3 Top 4 Top 7 Top 10 Top 15 Top 20
Pi Ranking 24% 37% 46% 54% 70% 79% 88% 94%
Normalized/*! Ranking 66% 80% 87% 9 1 % 96% 98% 99.5% 99.8%

Table 5: Performance of the Z3J,Z3J,... ,D% classifiers, using first-order statistics only, for unnor-
malized and normalized strings.

Although these results are interesting, they are clearly not sufficient for decision making. How
can they be improved? The accuracy and reliability of any Bayesian classifier depends crucially
on how well separated the class distributions are. In our context, this translates into the ratio of
between-string variability to between-model variability.

A close look at our data reveals very significant between-string variability. Some strings
receive good scores from all the models, while others receive bad scores. There is very significant
correlation between the various scores given to the same string. In fact, we found the pairwise
correlation coefficients to lie in the range 0.93-0.99, regardless of the distribution from which the
strings came, or the pair of models used for evaluation. This "global correlation" among the 7 t 's
of the same string means that some strings are "better acoustic segments" than others. This may
be because some speech frames are further away from the codeword centers, resulting in weak
matches with all models alike.

To get rid of most of this "global correlation", we normalize the scores by subtracting, from
each Yi(s), the average Y(s) of Y\(s), Y2(s),..., YN(S). By subtracting the average, we eliminate that
portion of the correlation that is due to the intrinsic "goodness" of the string. Of course, the E ± a
table needs to be modified similarly. Our new results are listed in table 5. The improvement is
indeed very significant. Our new classifier can now be used in the following manner: if we desire,
say, a 96% confidence in the classification decision, we restrict our attention to the models that
were ranked 1-7 by our new classifier, and choose the one with the highest Yi(s) among them.

Of course, so far we did not reduce the computational requirements, because in order to compute
logPi(Y\Mj) according to equation 9, we must first know Y(s) =f Yx(s), Y2(s),..., YN(s). In the
next section we discuss how to overcome this problem.

4.3. Estimating the Scores

In order to avoid computing all N scores Y\(s), Y2(s),..., YN(s), we estimate logP\(Y(s)\Mj) using
only a subset of the 7, values. We view this subset as a sample of the entire model population.
Since this is just an estimate, some degradation of performance is likely. We expect performance
to get worse as the size of the sample decreases. Table 6 shows performance of the estimated
classifier, with different sample sizes. All samples were drawn randomly and independently for
every test string. As we expected, there is a clear trade-off between sample size and performance.

There is one more problem. We mentioned that the data is normalized by subtracting Y(s)'s
average. But in order to know that average, we must again compute all of Yu Y2,..., YN. We

7

Normalized Pi Ranking
T o p i Top 2 Top3 Top 4 Top 7
66% 80% 87% 9 1 % 96% 98%

lop 10 Top 15
99.5%

Top 20
99.8%

Estimating P\
sample size = 24 62% 77% 85% 89% 95% 98%
sample size = 16 59% 75% 83% 88% 94% 97%
sample size = 10 53% 70% 79% 85% 93% 97%

sample size = 8 50% 67% 77% 83% 92% 96%
sample size = 6 44% 62% 72% 79% 90% 95%
sample size = 4 37% 54% 65% 72% 86% 92%

99.5%
99.3%
99.0%
99.0%
98.5%
97%

99.9%
99.8%
99.7%
99.7%
99.6%
99.0%

Table 6: Performance of the estimated D* classifiers,
(non-estimated) ranking is included for comparison.

using first-order statistics only. Exact

Top 1 Top 2 Top 3 Top 4 Top 7 Top 10 Top 15 Top 20
Normalized P\ Ranking 66% 80% 87% 9 1 % 96% 98% 99.5% 99.8%

Estimating P\ & F
sample size = 16
sample size = 10

sample size = 8

54% 7 1 % 79% 84% 92% 96% 98.6% 99.5%
43% 59% 69% 75% 86% 9 1 % 96% 98.0%
37% 53% 62% 69% 81% 88% 94% 97%

Table 7: Performance of the estimated D* classifiers, where the normalization stage too was based
on an estimated average. Exact (non-estimated) ranking is included for comparison.

solve this problem by again estimating the average Y from a sample. We use the same independent
random sample to estimate both F and the P\(Y)'s. Table 7 summarizes our results.

As expected, there is further degradation, but this time there are no more hurdles. We now have
a probabilistic algorithm for finding the Maximum Likelihood model, which will give the correct
answer with any desired confidence level. The algorithm saves us some work over computing all
N score values. The savings are not dramatic, but there are good reasons why they should increase
considerably when our classifier is applied to real-world, large vocabulary systems:

1. For a given level of accuracy and confidence, the necessary sample size does not depend on
the size of the population — it is only a function of the variance of the data. The latter can
be expected to remain fixed as the vocabulary increases, because the dynamic range of the
estimated values remains the same. A sample of size 20 is large relative to a vocabulary of
size 48, but the same sample size represents significant savings for a vocabulary of 1,000 or
more items.

2. When the models are longer (words as opposed to phonemes), they are more distinct, and
therefore the between-model variance is greater, resulting in better classification rate.

On the other hand, it is yet to be seen whether our approach will work on real speech and large
vocabularies. Some possible problems are:

8

Pi Ranking: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
String 1:
String 2:
String 3:
String 4:
String 5:
String 6:
String 7:
String 8:
String 9:

String 10:

01 03 02 04 05
03 01 04 02 09
01 02 03 16 04
01 03 04 02 06
02 03 01 10 16
01 07 13 09 02
03 10 01 11 12
01 19 46 32 11
01 19 20 28 31
01 35 19 17 11

11 10 14
05 31 08
07 08 12
11 10 09
04 09 06
08 10 06
08 02 05
16 48 29
12 16 33
08 05 16

12 07 06
29 21 07
09 05 32
05 13 17
12 11 05
11 17 16
21 06 13
06 30 08
25 24 26
20 47 14

08 09 19 18
18 36 10 06
13 10 06 15
16 07 08 18
14 21 18 13
03 04 12 18
15 04 14 20
05 20 38 23
22 11 04 06
21 28 23 13

15 16 31 24 38
30 13 15 27 11
19 11 22 23 31
14 22 21 19 12
07 19 27 20 23
05 31 25 24 30
07 09 16 18 40
25 15 14 03 33
29 21 23 18 27
06 02 38 15 09

Table 8: The "true" (ML) ranking of the 20 models which were ranked highest by the new classifier,
for ten randomly selected acoustic strings.

1. Real speech is different from the synthetic frames we generated for the experiment above.
The distributions A are different from the D* 's, and may be more difficult to characterize or
to separate.

2. In a large vocabulary, a given entry is on the average confusable with more other entries than
in our small test system.

We plan to test all of these assumption when we implement our approach on the 1,000 word
Resource Management database.

4.4. Other Measures of Performance

The performance measure discussed above is but one way of measuring the usefulness of our
method. It is appropriate, for example, in isolated word recognition systems, where the classifier
is used to help decode a given, isolated word. In other contexts, other measures of performance
may be more appropriate. In continuous speech systems, for example, a lattice of word hypotheses
is often generated by the recognizer, and used by higher level processes. Many possible measures
may be used to gauge the performance of a classifier with regard to this goal. The correct measure
depends on the way the lattice will be used. Here we chose not to commit to a specific numerical
measure. Instead, we merely display a few typical results. Each row in table 8 displays the "true"
(i.e. Maximum Likelihood) ranking of 20 of the 48 models. These are the models ranked highest
by our P\ classifier, sorted in descending order of P\ value. (For example, in the first string, the
model which was ranked 8 * by the new classifier turned out to have the 1 4 * highest Y score.) For
most inputs, all of the top 10 ML models were included by the new classifier in its top 20 list.

9

4.5. Potential Improvements

The results discussed above are preliminary. The following can be used to try to achieve further
improvement:

Judicious choice of the sample: In the experiments described in the previous subsection, we chose
a new sample randomly for every string. Undoubtedly this is not optimal. We can use
statistical analysis (e.g. multiple regression) to choose the subset that best predicts Pi and
F. This has the added advantage of allowing us to keep in memory only those columns
of the [E, a] table that correspond to that subset. For large vocabularies, this represents a
significant saving in memory requirements.

Using higher-order statistics: So far we discussed and exploited only the first-order behavior
of the distributions Dj(Y). Higher-order statistics can also be employed. Much more
information can be gleaned from even the second-order behavior alone. If two models are
similar, than a string scoring well (badly) on one is likely to score well (badly) on the other.
For two very different models, a good score on one implies a bad score on the other. These
deductions are based on a generalized form of the Triangle Inequality, although they do not
require that the distance between the models be a metric. An elimination algorithm similar
to that reported in [Vidal et al. 88] can then be used to implement Fast Search.

Better normalization: The normalization we used in order to reduce the global correlation is an
ad-hoc subtraction of the string's average score. Better methods may be possible, leading to
lower within-string variance, and hence to better performance 3.

Better modeling of the Dj(Y)'s: This may be particularly useful when the distributions are esti­
mated from real speech samples (D 1 . D 2 , . . . ,Av) and not from strings generated by the
models (D^D^... ,£>N)- We expect the former to match the Gaussian curve less well than
the latter do.

Other statistics ofs: We can view Y(s) as a set of statistics of the acoustic string s, which reduce
its dimensionality to a reasonable level. There is no reason why Y should not include other
statistics of s as well. One plausible candidate is the string's length, namely the number of
speech frames it has. Other statistics can be suggested.

5. Speculations on other uses

In section 2 we developed a general formalism for exploiting dependencies among competing mod­
els. The most obvious application of this formalism, namely reducing search in large vocabularies,
was discussed extensively above. In this section we speculate about other possible uses for this
framework. We are motivated here by the observation that Y(s) is a source of information about

3 We did try, unsuccessfully, to use the length of the strings (number of frames) to normalize the scores. We found
very little correlation between the two.

10

the incoming string that is made available to us at no extra cost during a traditional recognition
phase. This information has always been around, but to the best of our knowledge has never been
used.

Improving on the maximum likelihood classifier: The "correct" measure relative to which all clas­
sifiers should be judged is P(s\s € speech-unit-./). The traditional maximum-likelihood
classification can be viewed as an approximation of this measure. The same goes for our
method, which attempts to model the above measure using the Z)7(Y)'s. Neither model is
perfect, and it is conceivable that under some circumstances, our classifier may be superior.
This may happen, for instance, if we modify it to weigh the Yfs differently. The traditional
ML method can then be seen as a special case where Yj has a weight of 1, and all the others
a weight of 0. It is possible that other weight vectors will perform better.

Helping detect a low-confidence classification: Currently, SPHINX'S misclassifications are diffi­
cult to detect automatically. The distance between the best and second-best match scores is
apparently not a good indicator of successful classification. It is possible that the additional
information provided by the F/'s will improve our ability to attach a level of confidence to
the recognizer's output. One possible way of doing that is through a "confusion matrix"
derived from the Dj(Y) 's.

Acknowledgments

We received helpful comments and encouragement from Raj Reddy, Kai-Fu Lee and Fil Alleva.
Much appreciated feedback was also provided by Rich Stern and Sunil Kumar. Dan Julin generously
shared with us his expertise in various software areas. We are grateful to all of them. This work
was done in partial fulfillment of the first author's AQ requirements.

11

References

[Aubert 89] Aubert, X. "Fast Look-Ahead Pruning Strategies in Continuous Speech Recognition".
Proc. ICASSP89, pp. 659-662, Glasgow, Scotland, May 1989.

[Bahl et al. 88a] Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L., "A New Algorithm
for the Estimation of Hidden Markov Parameters". ICASSP 88, pp. 493-496, April 1988.

[Bahl et al. 88b] Bahl, L., Bakis, R., de Souze, P., and Mercer, R. "Obtaining Candidate Words by
Polling in a Large Vocabulary Speech Recognition System". Proc. ICASSP 88, pp. 489-492,
New-York, NY, April 1988.

[Bahl et al. 89a] Bahl, L., Gopalakrishnan, P.S., Kanevsky, D., and Nahamoo, D, "Matrix Fast
Match: A Fast Method for Identifying a Short List of Candidate Words for Decoding". Proc
ICASSP 89, pp. 345-347, Glasgow, Scotland, May 1989.

[Bahl et al. 89b] Bahl, L., de Souze, P., Gopalakrishnan, P.S., Kanevsky, D., and Nahamoo, D.
"Constructing Groups of Acoustically Confusable Words Candidate Words for Decoding".
Proc. ICASSP 89, pp. 345-347, Glasgow, Scotland, May 1989.

[Casacuberta et al. 87] Casacuberta, F., Vidal, E., and Rulot, H. "On the Metric Properties of
Dynamic Time Warping". IEEE Trans. AcousL, Speech, Signal Processing, vol. ASSP-35,
pp. 1631-1633, November 1987.

[D'ortaet al. 87] D'orta, P., Ferretti, M., and Scarci, S., "Phoneme Classification for Real Time
Speech Recognition of Italian". Proc. ICASSP 87, pp. 81-84, Dallas, TX, 1987.

[Huang et al. 90] Huang, X., Lee, K., and Hon, H. "On Semi-Continuous Hidden Markov Models".
ICASSP 90, pp. 689-692,1990.

[Juang & Rabiner 85] Jaung, B. H., and Rabiner, L. R., (1985). "A Probabilistic Distance Measure
for Hidden Markov Models". AT&T Technical Journal 64(2).

[Kaneko & Dixon 83] Kaneko, T., and Dixon, N. "A Hierarchical Decision Approach to Large-
Vocabulary Discrete Utterance Recognition". IEEE Trans. Acoust, Speech, Signal Process­
ing, vol. ASSP-31, pp. 1061-1066, October 1983.

[Kullback 59] Kullback, S. Information Theory and Statistics. New York, Wiley, 1959.

[Lee 88] Lee, K.F. Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The
SPHINX System. PhD thesis, Computer Science Department, Carnegie Mellon University,
April 1988.

[Sakoe & Chiba 78] Sakoe, H., and Chiba, S., "Dynamic programming algorithm optimization
for spoken word recognition." IEEE Trans. Acoust, Speech, Signal Processing, vol. ASSP-
26(l):43-49, February 1978.

12

[Vidal et al. 88] Vidal, E., Rulot, H., Casacuberta, E , and Benedi', J. M. "On the Use of Metric-
Space Search Algorithm (AESA) for Fast DTW-Based Recognition of Isolated Words". IEEE
Trans. Acoust, Speech, Signal Processing, vol. ASSP-36, pp. 651-656, May 1988.

13

