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Abstract 

In a typical speech recognition system, computing the match between an incoming acoustic string 
and many competing models is computationally expensive. Once the highest ranking models are 
identified, all other match scores are discarded. We propose to make use of all computed scores 
by means of statistical inference. We view the match between an incoming acoustic string s and 
a model M, as a random variable Y-t. The class-conditional distributions of (Y\,..., YN) can be 
studied offline by sampling, and then used in a variety of ways. For example, the means of these 
distributions give rise to a natural measure of distance between models. 

One of the most useful applications of these distributions is as a basis for a new Bayesian classifier. 
The latter can be used to significantly reduce search effort in large vocabularies, and to quickly 
obtain a short list of candidate words. An example HMM-based system shows promising results. 
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1. Motivation and Outline 

During the recognition phase of a typical speech recognition system, an incoming speech segment 
s is matched against a large number of competing models M\, M 2 , . . . , Af#. The model or models 
that score the highest are then selected for further consideration. 

There are many variations on this basic idea. The speech model may represent a phoneme, a 
syllable or a word. The competing models may represent the entire vocabulary, or only that part of 
it allowed by the grammar. The type of models used may vary, together with the matching process. 
Template-based models would typically be used with dynamic time warping ([Sakoe & Chiba 78]) 
and some metric distance defined over frames. In HMM-based systems, a match is typically defined 
as the class-conditional log-probability (\ogP(s\Mi)). The models themselves may be trained as 
Maximum Likelihood estimators, or else optimized for discrimination ([Bahl et al. 88a]). 

Common to all of these scenarios, however, are the following: 

1. Computing the match for all the models is computationally expensive. For large vacabularies, 
it is prohibitive. 

2. Once the best scoring models have been identified, all other match scores are discarded. 

These observations suggest that a lot of computation is wasted in this process. 

The main idea of this work is to remedy this situation by making use of all the computed scores. 
This can be done using statistical inference techniques. In order to be able to use all scores at run 
time, though, we must first analyze offline the statistical relationships between the models. 

In section 2, we present a framework for such an analysis. Section 3 demonstrates the usefulness 
of this framework, by showing how it naturally gives rise to a measure of distance between models. 
In section 4 we develop the main application, namely reducing search time in large vocabularies. 
Finally, in section 5 we speculate about other possible uses for this framework. 

2. Framework 

Yi(s) could be any reasonable measure of agreement between a model and an acoustic instance. 

Consider the Yfs as random variables. The distribution of Y = f (XUY2,... YN) is determined by 
the population from which the s's are taken. Let 

Let 
Yi(s) = the match between acoustic string s and model Af£. (1) 

DjCO = P(Y\s e speech-unit-/). 
University Libraries 
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Yi(s) Y2(s) ... . .. ... Yi(s) . ... YN(s) 

Di(T2) ... • Di(Yi) . ... Di(YN) 
D2 

D2(Y2) ... . D2(Yd ... .. . ... D2(YN) 

Dj DjiYi) Dj(Y2) ... . Dj(Xd ... • Dj<yN) 

DN(YX) DN(Y2) ... . DN(Yd ... . DN(YN) 

Figure 1: The N 2 distributions Dj(Xi) d= P(Yi\s € speech-unit-/). A row represents distributions 
of different Y values based on the same population of acoustic strings. A column represents 
distributions of the same Y value under different string populations. 

Dj(Y) is an N-dimensional distribution. It can be estimated by selecting examples of speech unit j 
and evaluating them by all the models. This can be done for all N distributions D\ ,D2,... DN. 

We may also wish to consider the univariate distribution of each individual 7 t . We define: 

Dj(Xd = f P(Yi\s e speech-uniW). (3) 

There are N 2 such distributions, which can be estimated in a similar way. Figure 1 depicts these 
distributions symbolically. Row j represents the distribution of different Y values under strings s 
from population j \ Column i represents the distributions of Yi under different string populations. 

For generative models, if M\, M2,..., Ms are good models of speech units 1,2, . . . , N, respec­
tively, then Dj can be approximated by D*, where 

D*(Y)d±fP(Y\Mj\ (4) 

and similarly for DJ(Yi). D*,£>2>• • • c a n ^ e estimated in the same way as D\,D2,... ,DN, 
except that the strings s are now generated by models M\, M2,..., Af#, respectively. 

These definitions, and the following analysis, apply to models of any type. For empirical 
support, we chose to apply these ideas to a small SCHMM-based system ([Huang et al. 90]) of 48 
context-independent English phoneme models, as used in the baseline SPHINX system ([Lee 88]). 
We chose SCHMM over the discrete model because distance between acoustic strings is better 
modeled in Continuous HMM or SCHMM (since they are not subject to VQ errors). For this 
system we define: 

YM^^logPisW (5) 
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/ a e / / a x / / a y / /w/ / n g / / g / / s h / / d d / 
/ a e / 7.68 5.39 4.53 -1.23 1.28 -1.72 -2.66 0.23 
/ a x / -5.25 0.68 -10.35 -6.49 -5.15 -6.94 -10.24 -5.33 
/ a y / 6.76 5.13 8.95 0.13 0.80 -1.08 -2.36 -0.38 
/w/ -9.55 -4.08 -10.45 1.55 -7.11 -5.99 -12.09 -6.48 
/ n g / -3.70 -0.23 -5.93 -3.62 4.25 -1.81 -6.13 -0.37 
/ g / -13.96 -9.20 -15.34 -8.71 -9.98 -0.44 -10.73 -2.60 
/ s h / -5.53 -3.50 -6.00 -4.91 -3.60 -0.87 7.80 0.21 
/ d d / -15.39 -12.41 -16.59 -13.40 -11.28 -8.59 -13.29 -0.19 

Table 1: A submatrix of E* °= E» (the means of the DjTQ^O's). The diagonal entries are the row 
maxima but not necessarily the column maxima. See the text. 

3. Example: Deriving a Measure of Distance Between Models 

To illustrate the usefulness of our formalism, we now use it to derive a natural measure of distance 
between models. 

Consider the means of the Dj(YiYs: 

Eji =f E[Dj(Yi)] = JPCy|speech-unit-y) Yg(s) ds (6) 

AllN 2 such means can be estimated together in a matrix E =f {Eji}. E* is defined similarly. Table 1 
shows a submatrix of E* for our example system. The diagonal elements are the row maxima. 
This is to be expected, since they were derived by evaluating strings using the same models that 
were used to generate them. Note, however, that this argument does not carry over to the columns; 
some diagonal elements are not the column maxima (e.g. D/ax/(Y/ax/)). This reflects the fact that 
some models tend to generate more "agreeable" strings than others. 

A rough feel for similarity between some phonemes can be gleaned from this data. For example, 
columns / a e / and / a y / are similar (compare them to column / g / ) , as are rows / a e / and / a y / . 
This corresponds to the similarity between these two vowels. 

For a more rigorous measure of distance between models, consider how the off-diagonal means 
differ from the diagonal element. Let 

DIST0*;0 (7) 

and similarly for DIST*. Table 2 shows a submatrix of DIST*, derived from E* by a single matrix 
operation. The distance between phonemes based on this table seems to be in strong agreement 
with our intuition and domain knowledge. 

This measure can be used for clustering of larger speech units. It is superior to phonemic 
clustering, which considers phonemes as atomic units. For example, b a t and p a t are much more 
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/ a e / / a x / / a y / /w/ / n g / / g / / s h / / d d / 
/ a e / 0.00 2.29 3.15 8.91 6.40 9.40 10.34 7.45 
/ a x / 5.94 0.00 11.04 7.17 5.84 7.62 10.92 6.02 
/ a y / 2.19 3.82 0.00 8.82 8.15 10.03 11.31 9.33 
/w/ 11.10 5.63 12.00 0.00 8.66 7.54 13.64 8.03 
/ n g / 7.95 4.48 10.17 7.86 0.00 6.06 10.37 4.61 
/ g / 13.52 8.77 14.91 8.28 9.54 0.00 10.29 2.16 
/ s h / 13.34 11.30 13.80 12.72 11.41 8.68 0.00 7.59 
/ d d / 15.21 12.23 16.40 13.21 11.09 8.41 13.10 0.00 

Table 2: A submatrix of DISTjj = f EJj — a derived measure of distance between models. 

similar acoustically than phonetically 1 . 

Recall that, for our HMM based system, we defined Yfa) d= ^ logP(s\Mi). For simplicity, let 

us write Pi(s) for P(s\Md. Then 

DIST*(/;;) = f % - E£ (8) 

= / j^Pjis) logPj(s)ds - j ±-Pj(s) logPi(s)ds 

The last expression is similar to the "Asymmetric Divergence" — a well known measure 
of distance between two distributions[Kullback 59] 2 . The difference is in the presence of the 
ijt factor. Asymmetric Divergence was proposed as a measure of distance between HMMs by 
[Juang & Rabiner 85]. They derived it from information theoretic arguments. [D'ortaet al. 87] 
used their measure, with a sampling technique similar to ours, to cluster phonemes. In our 
derivation, both the measure and the estimation method naturally "fall out" of the definition of the 
Dj(YiYs. In addition, our definition is not limited to HMMs. 

4. Main application: reducing search in large vocabularies 

4.1. Changing the Classifier System 

Given a acoustic string, in the traditional method of classification we ask the question: 

Which of the models M\, Af 2 , . . . , MN is the most likely to have produced s? (i.e., find 
the i that maximizes Yi(s).) 

1 We are grateful to Raj Reddy for this example. 
2 To make it symmetric, define DISTf(Pi,P7-) =f DIST*(Pi3Pj) + DIST*(/>,,/>;). 
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Figure 2: Histograms of some typical Dj(Yi)\ each based on a sample of 1000 strings generated 
from the HMM model Mj. 

We now propose to change the question to: 

Which of the distributions D i (Y), D2( Y ) , . . , , DN( Y) is the most likely to have produced 
s? (i.e., find the j that maximizes Dj(Y(s)).) 

The distributions D i (Y), Z>2( Y ) , . . . , Av(Y) take the place of the models Afi, Af 2,... ,MN as the 
Bayesian classifier. We do not necessarily expect the D/s to perform as well as the Mi's. In fact, in 
our example system, Since M i , M 2 , . . . , M# were optimized as Maximum Likelihood classifiers and 
not as discriminators, we expect a degradation of performance. However, this change of classifiers 
is a necessary first step towards reducing the search effort. 

Since Dj(Y(s)) is an ^/-dimensional distribution, an unrestricted non-parametric estimation is 
impractical for even a large sample. Some assumptions have to be made. There are many ways to 
proceed. Here we chose to assume that the individual Dj(Yi)s are independent. This is clearly an 
incorrect assumption, as our data (and intuition) indicate. In making this assumption we are merely 
choosing to concentrate on the first-order statistics of the Dj(Yi) s, and to ignore for the time being 
the second- and higher-order relationships. 

Thus we are looking for the j that maximizes HiDj(Yi). This still leaves us with the problem 
of estimating the N 2 distributions Dj(Yi). What do these distributions look like? Figure 2 shows 
histograms of selected DJ(Xi)\ each based on a sample of 1000 strings, which were generated 
from the appropriate model. 

The distributions are well characterized by a Normal (Gaussian) curve. This is true for all 
the distributions we checked. In retrospect, it is not difficult to see why this happens. Since the 
strings were generated from Hidden Markov Models, each frame in each codebook was drawn 
independently. Therefore, logP(s\Mi) is a sum of many independent events, hence the Gaussian 
curve. 

The Normal shape of the distributions is welcome news, because they can be characterized 
fairly well with only two parameters each: mean and standard deviation. These can be estimated 
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/ a e / / a x / / a y / N1 / n g / / g / / s h / / d d / 

/ a e / 7.7 ± 3.7 5.4 ± 3.2 4.5 ± 6.6 -1.2 ± 3.6 1.3 ± 4.0 -1.7 ± 3.3 -2.7 ± 4.2 0.2 ±3.3 
/ a x / -5.3 ± 7.8 0.7 ±3.8 -10.4 ± 8.3 -6.5 ± 4.4 -5.2 ± 4.7 -6.9 ± 4.2 -10.2 ± 4.5 -5.3 ± 4.2 
/ a y / 6.8 ± 3.1 5.1 ± 2.5 9.0 ± 3.0 0.1 ± 2.8 0.8 ± 3.1 -1.1 ±2.7 -2.4 ± 3.4 -0.4 ± 2.7 
/w/ -9.6 ± 4.2 -4.1 ± 2.9 -10.4 ± 5.2 1.6 ± 2.7 -7.1 ± 3.5 -6.0 ± 2.8 -12.1 ± 3.3 -6.5 ± 2.9 
/ n g / -3.7 ± 4.9 -0.2 ± 3.0 -5.9 ± 5.2 -3.6 ± 3.3 4.2 ± 2.8 -1.8 ± 3.0 -6.1 ± 3.3 -0.4 ± 2.7 

/ g / 14.0 ± 3.9 -9.2 ± 3.4 -15.3 ± 3.8 -8.7 ± 3.4 -10.0 ± 4.2 -0.4 ± 2.8 -10.7 ± 3.6 -2.6 ±3.1 
/ s h / -5.5 ± 4.3 -3.5 ± 3.4 -6.0 ±4.4 -4.9 ± 3.6 -3.6 ± 3.7 -0.9 ± 3.0 7.8 ± 3.4 0.2 ±3.0 
/ d d / 15.4 ± 4.8 -12.4 ±6.5 -16.6 ± 4.1 -13.4 ± 5.8 -11.3 ±7.3 -8.6 ± 9.2 -13.3 ± 5.9 -0.2 ± 4.8 

Table 3: A submatrix of E* ± a* (the means and standard deviations of the £ > ; ( № ) . 

Top 1 Top 2 Top 3 Top 4 Top 7 Top 10 Top 15 Top 20 

Ranking by Pi 24% 37% 46% 54% 70% 79% 88% 94% 

Table 4: Performance of the D?,£>;, . . . classifiers, using first-order statistics only. For 
example, in 79% of the strings tested, the generating model was ranked among the top 10 contenders 
using equation 9. 

accurately and reliably from a modest sample. Note that, in other models, if the Dj(YiYs are 
not gaussians, accurate characterization may be more difficult. However, the mean and standard 
deviation can still be used to derive statistical bounds. The resulted inference is expected to be 
weaker, though. 

Assuming Dj(Yi) ~ Af(Eji, cr,,), classification can now be done by finding the j that minimizes: 

- l o g / M Y l D ^ f ; 
¿=1 

Where the subscript 4 41" denotes the use of first-order statistics only. 

Table 3 shows the estimated E* ± <7* values for a submatrix of our example system. The full 
matrix can be kept in main memory, making the computation of equation 9 straightforward and 
inexpensive (assuming Y is known). 

4.2. Performance of the New Classifier 

How good is our new classifier? Since we made many simplifying assumptions, and since 
M i , M 2 , . . . ,MN were derived as Maximum Likelihood models and not as discriminators, we do 
not expect the performance of D\ , D 2 , . . . , Av to be nearly as good as that of the original classifier. 
However, it is still instructive to gauge it. Table 4 lists one possible measure of performance.. 
The 24% figure under "Top 1" means that in 24% of the strings tested, the generating models was 
correctly given the highest P\ value by our new classifier. In 37% of the cases, it was ranked 
among the top 2 contenders, and so on (the percentages are cumulative). 

lOg <Tji + 
2o} 

(9) 
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Top 1 Top 2 Top3 Top 4 Top 7 Top 10 Top 15 Top 20 
Pi Ranking 24% 37% 46% 54% 70% 79% 88% 94% 
Normalized/*! Ranking 66% 80% 87% 9 1 % 96% 98% 99.5% 99.8% 

Table 5: Performance of the Z3J,Z3J,... ,D% classifiers, using first-order statistics only, for unnor-
malized and normalized strings. 

Although these results are interesting, they are clearly not sufficient for decision making. How 
can they be improved? The accuracy and reliability of any Bayesian classifier depends crucially 
on how well separated the class distributions are. In our context, this translates into the ratio of 
between-string variability to between-model variability. 

A close look at our data reveals very significant between-string variability. Some strings 
receive good scores from all the models, while others receive bad scores. There is very significant 
correlation between the various scores given to the same string. In fact, we found the pairwise 
correlation coefficients to lie in the range 0.93-0.99, regardless of the distribution from which the 
strings came, or the pair of models used for evaluation. This "global correlation" among the 7 t 's 
of the same string means that some strings are "better acoustic segments" than others. This may 
be because some speech frames are further away from the codeword centers, resulting in weak 
matches with all models alike. 

To get rid of most of this "global correlation", we normalize the scores by subtracting, from 
each Yi(s), the average Y(s) of Y\(s), Y2(s),..., YN(S). By subtracting the average, we eliminate that 
portion of the correlation that is due to the intrinsic "goodness" of the string. Of course, the E ± a 
table needs to be modified similarly. Our new results are listed in table 5. The improvement is 
indeed very significant. Our new classifier can now be used in the following manner: if we desire, 
say, a 96% confidence in the classification decision, we restrict our attention to the models that 
were ranked 1-7 by our new classifier, and choose the one with the highest Yi(s) among them. 

Of course, so far we did not reduce the computational requirements, because in order to compute 
logPi(Y\Mj) according to equation 9, we must first know Y(s) =f Yx(s), Y2(s),..., YN(s). In the 
next section we discuss how to overcome this problem. 

4.3. Estimating the Scores 

In order to avoid computing all N scores Y\(s), Y2(s),..., YN(s), we estimate logP\(Y(s)\Mj) using 
only a subset of the 7, values. We view this subset as a sample of the entire model population. 
Since this is just an estimate, some degradation of performance is likely. We expect performance 
to get worse as the size of the sample decreases. Table 6 shows performance of the estimated 
classifier, with different sample sizes. All samples were drawn randomly and independently for 
every test string. As we expected, there is a clear trade-off between sample size and performance. 

There is one more problem. We mentioned that the data is normalized by subtracting Y(s)'s 
average. But in order to know that average, we must again compute all of Yu Y2,..., YN. We 

7 



Normalized Pi Ranking 
T o p i Top 2 Top3 Top 4 Top 7 
66% 80% 87% 9 1 % 96% 98% 

lop 10 Top 15 
99.5% 

Top 20 
99.8% 

Estimating P\ 
sample size = 24 62% 77% 85% 89% 95% 98% 
sample size = 16 59% 75% 83% 88% 94% 97% 
sample size = 10 53% 70% 79% 85% 93% 97% 

sample size = 8 50% 67% 77% 83% 92% 96% 
sample size = 6 44% 62% 72% 79% 90% 95% 
sample size = 4 37% 54% 65% 72% 86% 92% 

99.5% 
99.3% 
99.0% 
99.0% 
98.5% 
97% 

99.9% 
99.8% 
99.7% 
99.7% 
99.6% 
99.0% 

Table 6: Performance of the estimated D* classifiers, 
(non-estimated) ranking is included for comparison. 

using first-order statistics only. Exact 

Top 1 Top 2 Top 3 Top 4 Top 7 Top 10 Top 15 Top 20 
Normalized P\ Ranking 66% 80% 87% 9 1 % 96% 98% 99.5% 99.8% 

Estimating P\ & F 
sample size = 16 
sample size = 10 

sample size = 8 

54% 7 1 % 79% 84% 92% 96% 98.6% 99.5% 
43% 59% 69% 75% 86% 9 1 % 96% 98.0% 
37% 53% 62% 69% 81% 88% 94% 97% 

Table 7: Performance of the estimated D* classifiers, where the normalization stage too was based 
on an estimated average. Exact (non-estimated) ranking is included for comparison. 

solve this problem by again estimating the average Y from a sample. We use the same independent 
random sample to estimate both F and the P\(Y)'s. Table 7 summarizes our results. 

As expected, there is further degradation, but this time there are no more hurdles. We now have 
a probabilistic algorithm for finding the Maximum Likelihood model, which will give the correct 
answer with any desired confidence level. The algorithm saves us some work over computing all 
N score values. The savings are not dramatic, but there are good reasons why they should increase 
considerably when our classifier is applied to real-world, large vocabulary systems: 

1. For a given level of accuracy and confidence, the necessary sample size does not depend on 
the size of the population — it is only a function of the variance of the data. The latter can 
be expected to remain fixed as the vocabulary increases, because the dynamic range of the 
estimated values remains the same. A sample of size 20 is large relative to a vocabulary of 
size 48, but the same sample size represents significant savings for a vocabulary of 1,000 or 
more items. 

2. When the models are longer (words as opposed to phonemes), they are more distinct, and 
therefore the between-model variance is greater, resulting in better classification rate. 

On the other hand, it is yet to be seen whether our approach will work on real speech and large 
vocabularies. Some possible problems are: 
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Pi Ranking: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
String 1: 
String 2: 
String 3: 
String 4: 
String 5: 
String 6: 
String 7: 
String 8: 
String 9: 

String 10: 

01 03 02 04 05 
03 01 04 02 09 
01 02 03 16 04 
01 03 04 02 06 
02 03 01 10 16 
01 07 13 09 02 
03 10 01 11 12 
01 19 46 32 11 
01 19 20 28 31 
01 35 19 17 11 

11 10 14 
05 31 08 
07 08 12 
11 10 09 
04 09 06 
08 10 06 
08 02 05 
16 48 29 
12 16 33 
08 05 16 

12 07 06 
29 21 07 
09 05 32 
05 13 17 
12 11 05 
11 17 16 
21 06 13 
06 30 08 
25 24 26 
20 47 14 

08 09 19 18 
18 36 10 06 
13 10 06 15 
16 07 08 18 
14 21 18 13 
03 04 12 18 
15 04 14 20 
05 20 38 23 
22 11 04 06 
21 28 23 13 

15 16 31 24 38 
30 13 15 27 11 
19 11 22 23 31 
14 22 21 19 12 
07 19 27 20 23 
05 31 25 24 30 
07 09 16 18 40 
25 15 14 03 33 
29 21 23 18 27 
06 02 38 15 09 

Table 8: The "true" (ML) ranking of the 20 models which were ranked highest by the new classifier, 
for ten randomly selected acoustic strings. 

1. Real speech is different from the synthetic frames we generated for the experiment above. 
The distributions A are different from the D* 's, and may be more difficult to characterize or 
to separate. 

2. In a large vocabulary, a given entry is on the average confusable with more other entries than 
in our small test system. 

We plan to test all of these assumption when we implement our approach on the 1,000 word 
Resource Management database. 

4.4. Other Measures of Performance 

The performance measure discussed above is but one way of measuring the usefulness of our 
method. It is appropriate, for example, in isolated word recognition systems, where the classifier 
is used to help decode a given, isolated word. In other contexts, other measures of performance 
may be more appropriate. In continuous speech systems, for example, a lattice of word hypotheses 
is often generated by the recognizer, and used by higher level processes. Many possible measures 
may be used to gauge the performance of a classifier with regard to this goal. The correct measure 
depends on the way the lattice will be used. Here we chose not to commit to a specific numerical 
measure. Instead, we merely display a few typical results. Each row in table 8 displays the "true" 
(i.e. Maximum Likelihood) ranking of 20 of the 48 models. These are the models ranked highest 
by our P\ classifier, sorted in descending order of P\ value. (For example, in the first string, the 
model which was ranked 8 * by the new classifier turned out to have the 1 4 * highest Y score.) For 
most inputs, all of the top 10 ML models were included by the new classifier in its top 20 list. 
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4.5. Potential Improvements 

The results discussed above are preliminary. The following can be used to try to achieve further 
improvement: 

Judicious choice of the sample: In the experiments described in the previous subsection, we chose 
a new sample randomly for every string. Undoubtedly this is not optimal. We can use 
statistical analysis (e.g. multiple regression) to choose the subset that best predicts Pi and 
F. This has the added advantage of allowing us to keep in memory only those columns 
of the [E, a] table that correspond to that subset. For large vocabularies, this represents a 
significant saving in memory requirements. 

Using higher-order statistics: So far we discussed and exploited only the first-order behavior 
of the distributions Dj(Y). Higher-order statistics can also be employed. Much more 
information can be gleaned from even the second-order behavior alone. If two models are 
similar, than a string scoring well (badly) on one is likely to score well (badly) on the other. 
For two very different models, a good score on one implies a bad score on the other. These 
deductions are based on a generalized form of the Triangle Inequality, although they do not 
require that the distance between the models be a metric. An elimination algorithm similar 
to that reported in [Vidal et al. 88] can then be used to implement Fast Search. 

Better normalization: The normalization we used in order to reduce the global correlation is an 
ad-hoc subtraction of the string's average score. Better methods may be possible, leading to 
lower within-string variance, and hence to better performance 3. 

Better modeling of the Dj(Y)'s: This may be particularly useful when the distributions are esti­
mated from real speech samples ( D 1 . D 2 , . . . ,Av) and not from strings generated by the 
models (D^D^... ,£>N)- We expect the former to match the Gaussian curve less well than 
the latter do. 

Other statistics ofs: We can view Y(s) as a set of statistics of the acoustic string s, which reduce 
its dimensionality to a reasonable level. There is no reason why Y should not include other 
statistics of s as well. One plausible candidate is the string's length, namely the number of 
speech frames it has. Other statistics can be suggested. 

5. Speculations on other uses 

In section 2 we developed a general formalism for exploiting dependencies among competing mod­
els. The most obvious application of this formalism, namely reducing search in large vocabularies, 
was discussed extensively above. In this section we speculate about other possible uses for this 
framework. We are motivated here by the observation that Y(s) is a source of information about 

3 We did try, unsuccessfully, to use the length of the strings (number of frames) to normalize the scores. We found 
very little correlation between the two. 
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the incoming string that is made available to us at no extra cost during a traditional recognition 
phase. This information has always been around, but to the best of our knowledge has never been 
used. 

Improving on the maximum likelihood classifier: The "correct" measure relative to which all clas­
sifiers should be judged is P(s\s € speech-unit-./). The traditional maximum-likelihood 
classification can be viewed as an approximation of this measure. The same goes for our 
method, which attempts to model the above measure using the Z)7(Y)'s. Neither model is 
perfect, and it is conceivable that under some circumstances, our classifier may be superior. 
This may happen, for instance, if we modify it to weigh the Yfs differently. The traditional 
ML method can then be seen as a special case where Yj has a weight of 1, and all the others 
a weight of 0. It is possible that other weight vectors will perform better. 

Helping detect a low-confidence classification: Currently, SPHINX'S misclassifications are diffi­
cult to detect automatically. The distance between the best and second-best match scores is 
apparently not a good indicator of successful classification. It is possible that the additional 
information provided by the F/'s will improve our ability to attach a level of confidence to 
the recognizer's output. One possible way of doing that is through a "confusion matrix" 
derived from the Dj(Y) 's. 

Acknowledgments 

We received helpful comments and encouragement from Raj Reddy, Kai-Fu Lee and Fil Alleva. 
Much appreciated feedback was also provided by Rich Stern and Sunil Kumar. Dan Julin generously 
shared with us his expertise in various software areas. We are grateful to all of them. This work 
was done in partial fulfillment of the first author's AQ requirements. 

11 



References 

[Aubert 89] Aubert, X. "Fast Look-Ahead Pruning Strategies in Continuous Speech Recognition". 
Proc. ICASSP89, pp. 659-662, Glasgow, Scotland, May 1989. 

[Bahl et al. 88a] Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L., "A New Algorithm 
for the Estimation of Hidden Markov Parameters". ICASSP 88, pp. 493-496, April 1988. 

[Bahl et al. 88b] Bahl, L., Bakis, R., de Souze, P., and Mercer, R. "Obtaining Candidate Words by 
Polling in a Large Vocabulary Speech Recognition System". Proc. ICASSP 88, pp. 489-492, 
New-York, NY, April 1988. 

[Bahl et al. 89a] Bahl, L., Gopalakrishnan, P.S., Kanevsky, D., and Nahamoo, D, "Matrix Fast 
Match: A Fast Method for Identifying a Short List of Candidate Words for Decoding". Proc 
ICASSP 89, pp. 345-347, Glasgow, Scotland, May 1989. 

[Bahl et al. 89b] Bahl, L., de Souze, P., Gopalakrishnan, P.S., Kanevsky, D., and Nahamoo, D. 
"Constructing Groups of Acoustically Confusable Words Candidate Words for Decoding". 
Proc. ICASSP 89, pp. 345-347, Glasgow, Scotland, May 1989. 

[Casacuberta et al. 87] Casacuberta, F., Vidal, E., and Rulot, H. "On the Metric Properties of 
Dynamic Time Warping". IEEE Trans. AcousL, Speech, Signal Processing, vol. ASSP-35, 
pp. 1631-1633, November 1987. 

[D'ortaet al. 87] D'orta, P., Ferretti, M., and Scarci, S., "Phoneme Classification for Real Time 
Speech Recognition of Italian". Proc. ICASSP 87, pp. 81-84, Dallas, TX, 1987. 

[Huang et al. 90] Huang, X., Lee, K., and Hon, H. "On Semi-Continuous Hidden Markov Models". 
ICASSP 90, pp. 689-692,1990. 

[Juang & Rabiner 85] Jaung, B. H., and Rabiner, L. R., (1985). "A Probabilistic Distance Measure 
for Hidden Markov Models". AT&T Technical Journal 64(2). 

[Kaneko & Dixon 83] Kaneko, T., and Dixon, N. "A Hierarchical Decision Approach to Large-
Vocabulary Discrete Utterance Recognition". IEEE Trans. Acoust, Speech, Signal Process­
ing, vol. ASSP-31, pp. 1061-1066, October 1983. 

[Kullback 59] Kullback, S. Information Theory and Statistics. New York, Wiley, 1959. 

[Lee 88] Lee, K.F. Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The 
SPHINX System. PhD thesis, Computer Science Department, Carnegie Mellon University, 
April 1988. 

[Sakoe & Chiba 78] Sakoe, H., and Chiba, S., "Dynamic programming algorithm optimization 
for spoken word recognition." IEEE Trans. Acoust, Speech, Signal Processing, vol. ASSP-
26(l):43-49, February 1978. 

12 



[Vidal et al. 88] Vidal, E., Rulot, H., Casacuberta, E , and Benedi', J. M. "On the Use of Metric-
Space Search Algorithm (AESA) for Fast DTW-Based Recognition of Isolated Words". IEEE 
Trans. Acoust, Speech, Signal Processing, vol. ASSP-36, pp. 651-656, May 1988. 

13 


