
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Data Persistence in Programming Languages 

A Survey 

Stewart M. Clamen 

May 30, 1991 

C M U - C S - 9 1 - 1 5 5 2 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Abstract 

Database systems are primarily concerned with the creation and maintenance of large, long-
lived collections of data , while traditional programming languages have promoted such ideas 
as procedural control and data and functional abstraction. 
While each provides considerable utility in their respective domains, there exists a large 
number of applications that require functionality from both database and programming 
language systems. To this end, there has been serious effort over the past few years at 
developing systems that integrate the basic ideas from the two domains. This paper con
centrates on research developments which have resulted in programming languages incorpo
rating database functionality into their programming models, most importantly, a concept 
of data pers i s tence . 

This research was sponsored in part by the Avionics Lab, Wright Research and Development Center, 
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under 
Contract F33615-90-C-1465, Arpa Order No. 7597; and by the Office of Naval Research under Contract 
N00014-88-K-0641. The views and conclusions contained in this document are those of the authors and 
should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Gov
ernment. 



K e y w o r d s : Programming languages, database systems, da ta persistence 



1 Background 

Database systems are primarily concerned with the creation and maintenance of large, long-
lived collections of data . More specifically, modern database systems are characterized by 
their support of the following features: 

D a t a Pers i s t ence and Rel iabi l i ty: The ability for da ta to outlive the execu
tion of a program, and possibly the lifetime of the program itself. Coupled 
with this feature is the assurance that the da ta in the database is protected 
from hardware and software failures. 

D a t a Sharing: The ability for multiple applications (or instances of the same 
one) to access common data, possibly at the same time. 

Scale of operat ion: The ability to operate on large amounts of da ta in simple 
ways. 

Traditional programming language systems, on the other hand, provide facilities for 
procedural control and da ta and functional abstraction, but lack built-in support for any 
of the above database features. 

While each provides considerable utility in their respective domains, there exist a large 
number of applications tha t require functionality from both database and programming 
language systems. Such applications, often called des ign tasks , are characterized by their 
need to store and retrieve large amounts of shared, structured data . Examples of such 
applications include CAD/CAM systems, office automation facilities, and software engi
neering systems. To this end, there has been serious effort over the past few years at 
developing systems tha t integrate the basic ideas from both domains. This paper concen
trates on research developments that have resulted in programming languages incorporating 
database functionality into their programming models, most importantly, the concept of 
data pers i s tence . 

A pers i s tent p r o g r a m m i n g language is a language tha t provides to its clientele the 
ability to preserve da ta across successive executions of a program, and even allows such 
da ta to be used by many different programs. Data in a persistent programming language 
is independent of any program, able to exist beyond the execution and lifetime of the code 
tha t created it. 

A da tabase p r o g r a m m i n g language is a language tha t integrates some ideas from 
the database programming model with traditional programming language features. Such a 
language is distinguished from a persistent programming language in tha t it incorporates 
features beyond persistence. 

A primer on the features and nomenclature of relational database systems is included 
in an appendix to this paper. 

3 

uiwersny libraries 
Carney <v>e*!en University 

Pittsbuw.. Pennsylvania 15/ i 



1.1 W h y P e r s i s t e n t P r o g r a m m i n g L a n g u a g e s ? 

Researchers working on the development of persistent programming languages have been 
motivated primarily by the following ideas: 

1. The languages provided within existing database systems are not expressive enough, 
and a persistent programming language is the first step towards a fully integrated 
database programming language. 

2. The lack of integration makes the writing of applications that depend on persistent 
da ta access difficult or impossible. 

3. The presence of persistence is a useful addition to a programming environment. 

The rest of this subsection elaborates on these points. 

1.1.1 Towards a D a t a b a s e P r o g r a m m i n g Language 
A well-known shortcoming of relational database systems is the lack of ability to enforce 
some important , general and application-specific qualities at the database level. In an effort 
to remedy this problem, Date has proposed an integr i ty language , which would provide 
a way of enforcing various constraints on record values. Some projects within the database 
research community have at tempted to integrate some of his ideas into existing systems. 
More practical solutions use programs to detect or prevent the creation of illegal database 
states. [Dat81] 

Limitations on the expressive power in traditional database languages is another con
sideration. The query and da ta definition languages associated with database systems are 
usually quite limited in their functionality. One major shortcoming is the lack of ability to 
perform transitive searches over the database. [AU79] 

Many researchers recognize that an integrated programming language and database 
system could solve both of these serious database system deficiencies. 

1.1.2 S o m e appl icat ions need database- l ike funct ional i ty 

Computer applications, such as CAD/CAM systems, multimedia and graphics systems, 
and office automation, would benefit from having access to database features, such as a 
persistent store. Non-integrated approaches to accessing database functionality from within 
programming languages {e.g., using standard operating system file systems as a medium 
for storage of long-lived data) suffer from poor performance.[Mos89] Also, the improved 
functionality and semantics tha t would come with an integrated system would be a positive 
improvement. 

A tk in son [ABC + 83] 1 claims that a significant amount of programming effort (and code 

Reference citations are printed in boldface if they were used as primary sources for the featured persistent 
languages and systems. The reader can locate annotated bibliographic references to these papers using the 
index found at the end of this survey. 

4 



space) is devoted to converting da ta from database or file formats into and out of program-
internal formats. The integration of a persistent store into the language would free the 
programmer from that responsibility. 

1.1.3 D a t a b a s e funct ional i ty in a p r o g r a m m i n g e n v i r o n m e n t is useful 

The addition of a persistent storage facility into a programming language system is a 
useful enhancement to an interactive development environment. Some existing interactive 
languages (LISP, ML[Har90], Smalltalk[GR83]) allow the user to checkpoint the current 
state of the heap for future use. A fully persistent store would free the user from the 
all-or-nothing aspect of this procedure, enabling him to store away specialized objects like 
program libraries or constructs of previously-created data. [AM85] 

Programming environments in general are a class of application that would greatly 
benefit from some sort of persistent storage facility. A number of projects already feature 
research in this direction. [Rei86, HZ87, RWW89, HSS89] 

1.2 A B r i e f H i s t o r y o f D a t a b a s e / P r o g r a m m i n g L a n g u a g e I n t e r a c t i o n 

This section discusses two early efforts at da ta and programming language interaction, and 
why they are not sufficient for many classes of applications. 

1.2.1 E m b e d d e d D a t a b a s e Languages 

Many relational database systems provide the ability to textually insert database operations 
within traditional programming languages, usually COBOL or P L / L The INGRES system 
supports a number of database languages, including SQL and QUEL, and provides the 
ability to embed database language commands within COBOL, FORTRAN, BASIC, Pascal, 
and C programs. Communication is through a set of variables in the host language, and 
forms to commit or abort a t ransact ion 2 are provided. [Dat81, Dat87] 

Although it does provides some useful functionality, the embedded language support is 
rather clumsy. To make effective use of the system, a programmer must be familiar with 
the eccentricities of both languages, as well as the eccentricities of the interface itself. Also, 
the programmer is restrained by the database language, being restricted to the primitive 
database da ta types for persistent storage. Programmers wishing to build applications that 
require database functionality on more advanced da ta types are out of luck. 

1.2.2 P a s c a l / R : A n Early D a t a b a s e P r o g r a m m i n g Language 

The first a t tempt to provide some level of database functionality from within a programming 
language was made by Pascal/R.[Sch77] Unlike the embedded database languages, Pascal/R 
extends the syntax and semantics of the base language to support database operations. 
Interaction with the store is through a pair of new datatypes, r e l a t i o n and d a t a b a s e . 

2 A brief description of transaction systems in included at the end of Appendix B. 

5 



Databases are similar to files: they must be explicitly opened and closed. Unlike the 
regular typed files of Pascal, which can be declared to contain instances of any Pascal type, 
databases are restricted to act as the (exclusive) repositories for r e l a t i o n instances, the 
other new Pascal /R da ta type. Similar to their namesakes found in relational database 
systems; r e l a t i o n s are tuples whose fields are restricted to atomic base types like i n t 
and char, and on whom primary indexes can be defined. An iteration construct, each, 
is provided for operations mapped over entire relations, such as queries or aggregation 
operations. Databases maintain the sets of (persistent) r e l a t i o n types. 

Although well integrated into the base language, the database-inspired da ta types and 
control structures of Pascal /R are not universally applied. Instances of the other, more so
phisticated da ta structures of Pascal are excluded from the persistent store. A programmer 
would be forced to convert his volatile structures into simple r e l a t i o n s , much the same 
way programmers of traditional programming languages must convert da ta into character 
strings before storing them into standard (operating system) files. Also, the aggregate se
mantics defined for relations is not supported for more standard Pascal types like set and 
sequence. (See Section 2.1.5 (p.10) for more on this idea.) 

Pascal /R has other problems. The persistent store is implemented on top of a collection 
of files, and programs can only access one database file at a time, making sharing difficult. 
The transaction system is simplistic as well; entire programs run as single transactions. In 
spite of its shortcomings, however, Pascal /R was an admirable first step in this direction 
of research. 

1.3 Ef for t s s i n c e P a s c a l / R 

Inspired by both the features and shortcomings of Pascal /R, early integration work focused 
on expanding the pervasion of persistence in the programming language. Later efforts 
moved on to the building of more powerful persistent object systems, with the intention 
of providing support for such advanced database language requirements as collections and 
query processing. At the same time, researchers in the object-oriented community, recog
nizing similarities between the database and object-oriented data models, began the devel
opment of object-oriented database systems to support robust and efficient applications. A 
number of the more representative efforts in each of these areas will be explored in detail 
in later sections of this paper. 

6 



2 Focus 
In this section, I introduce and discuss the language system features tha t represent the focus 
of my survey — presented in the form of questions. In the summaries of the subsequent 
sections, I provide answers to these questions for a number of representative persistent and 
database programming languages. • 

2 .1 P e r s i s t e n c e 

Persistence is one of the primary motivations behind database systems and is an essen
tial feature of any database programming language. It is therefore important to ask the 
following questions for any language I review: 

• Wha t is the view of the persistent store? 

• What da ta types admit persistence? 

• How does one declare/denote persistence? 

• How does one locate (existing) persistent objects in the database? 

• How does one manipulate persistent objects once they have been located? 

• Is there support for the evolution of type definitions? 

• How is persistence implemented by the underlying system? 

The issues behind these questions are not independent; the model of persistent storage 
chosen by a language affects how they can be manipulated, for example. However, the 
answers to these questions do serve as a useful method for describing a language's concept 
of persistent value and binding. 

2.1.1 W h a t is t h e v i e w of t h e pers i s tent s tore? 

Before an application can operate on a persistent store, some initialization procedure must 
be called, i.e., the connection between program and store must be established. The vari
ous languages and systems can be categorized by which of the following three forms this 
initialization takes: 

1. Single D a t a b a s e , implicit database open ing . The most simple and 
transparent model, this scheme has the runtime system automatically es
tablish a connection to the (single) store at s tar tup, freeing the user from 
any initialization responsibility. 

2. Mul t ip le D a t a b a s e s , explicit database open ing . The persistent store 
is partitioned across multiple, independent "files". This scheme forces the 
programmer to assume some of the responsibility of database management, 
requiring the explicit choice of partit ion(s). 

7 



3. Mul t ip l e D a t a b a s e s , implicit database o p e n i n g of a default da tabase . 
A special case of the previous scheme, this plan defines a default partit ion 
of the store, so that programs are free to ignore the issue of initialization 
altogether if they wish. 

There is no semantic advantage to the design of explicitly partitioning the persistent 
store. In systems tha t support this, the partitioning is mostly provided as a means of 
cheaply supporting coarse-grain parallelism or fault tolerance. 

Once the connection to the persistent store has been established, communication be
tween the store and the application can be achieved in a variety of ways. Cardelli and 
MacQueen [CM88] describe three possible models for the store. They are, in order of 
increasing system complexity: 

1. Expl ic i t i m p o r t / e x p o r t . Specific operations are provided in the host 
language to transport (or copy) the object from the persistent to the 
volatile (working) area. 

2. Fully Transparent A c c e s s . Persistent objects are imported from the 
persistent store on demand, much like pages in a virtual memory systems. 
Modified persistent objects are written back to store as appropriate. Al
though the transparency of this approach is attractive, it fails to address 
the issue of concurrent access. 

3. M o s t l y Transparent A c c e s s . Total transparency of access is compro
mised here in favor of a mixed approach, which provides explicit operations 
to effectively handle the potential problems resulting from concurrent ac
cess to the store. 

Amber [Car86a] is representative of the first model, while Galileo [ A C 0 8 5 ] favors the 
fully transparent approach. All of the other languages surveyed here provide automatic 
interning of persistent objects with some explicit control over locking and concurrency. 

The final issue characterizing the sophistication of the communication model concerns 
the mat te r of persistent object identity: Is there a one-to-one mapping between an object 
in the persistent store and its "working copy" in volatile memory when it is manipulated 
at runtime? In other words, is the persistent store preserving persistent objects or just 
persistent values? 

Of the systems reviewed, only Amber's primitive storage model lacks identity-preserving 
semantics, but the issue is worth mentioning nonetheless. In relational database systems, 
the simple structures of the relations make the issue moot, as relations only admit immediate 
values. 

8 



2.1.2 W h a t data t y p e s admit pers i s tence? 

In some persistent languages, persistence is a quality at tr ibutable to only a subset of the 
admissible language da ta types. For example, Pascal /R [Sch77], inspired by relational 
database systems, supports persistence exclusively to instances of type r e l a t i o n , a special 
record type whose elements are restricted to base types like numbers and strings (p.5). 

PS-Algol [ABC+83] promotes the idea that the quality of persistence should be ex
tended to all language da ta types. This approach, termed or thogonal pers i s tence 
[Coc83], has been adopted by a number of systems, including Galileo and OPAL [ B M O + 8 9 ] . 

Some languages view persistence as a property of a da ta type and move to restrict 
persistence to a number of built-in and user-defined data types. This approach is exemplified 
by Amber, E [RC89b], and Ava lon /C++ [ D H W 8 8 ] . 

2 .1 .3 H o w d o e s o n e d e c l a r e / d e n o t e pers i s tence? 

How does the programmer specify tha t a certain object should persist? Most language 
designers have a t tempted to integrate the declaration of persistence with their language's 
type system. Popular approaches include: 

• When orthogonal persistence is used as part of the language model, persis
tence is not a quality attr ibutable to a da ta type, but rather, to instances. 
As a result, the language must provide some runtime method for indicating 
which objects should survive. PS-Algol, with its tagged architecture and 
garbage collector, ensures that any object reachable (via pointer traversal) 
from a special root object will persist. This approach can only work for 
systems possessing some sort of tagging on data values. 

• In E, a statically typed language based on C + + , persistent types are 
declared using a special dbc las s declaration, and instances are created 
similarly to volatile ones. Ava ion /C++ and AVANCE [BB88] are other 
object-oriented languages which provide a special class hierarchy for per
sistent values. 

In some languages systems, like Galileo, any data that is accessible at program termi
nation persists, so there is no distinction between volatile and persistent data . 

Let us compare the costs and benefits of orthogonal persistence against those of a 
persistence-by-typing scheme, as exemplified by languages such as E and A v a l o n / C + + . 
In general terms, orthogonal persistence is more elegant, while the typing scheme is more 
efficient. 

The uniform treatment of objects in a system based on the principle of orthogonal 
persistence is more convenient for the both the programmer and the system. Just as in 
traditional garbage-collected languages, where objects persist as long as they are address
able (or until the program terminates), objects in a language with orthogonal persistence 

9 



survive as long as they are addressable from the persistent root. Galileo takes this idea to 
an extreme, defining the top-level environment as the persistent root. 

However, there is some runtime expense in a system where every pointer reference might 
be addressing a persistent object. The system is required to test if the object must be loaded 
in from the disk-resident database. Also, orthogonal persistence promotes transparency, 
and, as mentioned on p.8, a system with support for sharing among concurrent processes 
cannot be fully transparent . 

Having persistent type instances results in an interesting side-effect. In many strongly-
typed languages, type information is required in the compilation phase, but is superfluous at 
runtime, and thus is discarded. When such a language is extended to support persistence, 
however, the type description must be made persistent along with its instances, so tha t 
type dependencies can be maintained across sessions. [CM88] 

2.1.4 H o w does o n e locate pers i s tent objec t s? 
H o w are pers i s tent o b j e c t s addressed? 

With the large number of objects that any serious persistent language system must be able 
to support , an efficient and simple naming, or addressing, mechanism is a necessity. 

Early approaches to this problem were in line with the way naming is supported in 
traditional programming languages and systems. PS-Algol and OPAL proposed forms of 
hierarchical directory structures, indexed by character strings, similar to file systems or 
Smalltalk environments. [AM84, MS87] Some projects, including E, a t tempted to integrate 
naming as part of the language's module system, binding persistent objects in a way similar 
to how dynamic loaders load procedures out of program libraries. [RC89b] 

The chief strength of relational database systems is their ability to cope with large 
collections of objects uniformly. In such systems, primary keys are the basic addressing 
mechanism, allowing easy access to arbitrary table elements. Recent database program
ming languages a t tempt to solve the addressing problem along this line. Such languages 
typically support unordered, typed collections of (anonymous) instances. Coupled with 
mechanisms for efficient, query-like searches, an efficient and powerful addressing scheme 
can be designed. As an example, restricting elements of an unordered collection of class 
instances to be unique in the values of some of their properties results in an effective naming 
mechanism for each element in tha t collection. 

2.1.5 H o w d o e s o n e manipula te pers is tent ob jec t s o n c e t h e y have b e e n lo
cated? 

The first programming languages to interface with database systems did so by supporting 
the embedding of database query language constructs within a program. Communication 
of da ta values between the database language fragment and the programming language 
is very cumbersome and restrictive. One hopes that a more closely integrated persistent 
programming language would reduce, or totally eliminate this problem, termed i m p e d a n c e 
m i s m a t c h [MS87]. 

10 



To minimize the mismatch, many persistent programming languages provide the ability 
to manipulate persistent da ta in the same manner as volatile data . In a language where 
persistence is applied at the object level, this would mean allowing persistent instances to 
be operated upon using the same functions and constructs as the corresponding volatile 
data . In a language with persistence as a property of a type, this would mean allowing 
users to define routines in the same manner as for a volatile type. 

Other languages [Car86a, CM88] promote a dual dataspace approach, requiring the 
user to explicitly translate the object from persistent into active memory before it can be 
acted upon. Likewise, the user wishing to install an object (new or modified) into the store 
must explicitly write it back. 

2.1.6 Is there support for t h e evolut ion of t y p e definit ions? 
H o w are ins tances of o u t d a t e d t y p e descr ipt ions handled? 

In traditional programming systems, abstract da ta types are often used to reduce the 
amount of dependency between the data type programmer and the da ta type client. If the 
type designer chooses to reimplement a type, clients will not be required to reprogram, so 
long as the abstract interface is preserved. In a language with persistence, however, data 
type clients m a y have already installed instances of the outmoded type in the persistent 
store. Discarding the old type and its instances is hardly prudent, and rather than force the 
programmer and user to contend with old instances indefinitely, a database programming 
language should provide some facility for upgrading the old instances. 

The literature promotes three possible ways of dealing with this problem: 

Emulat ion: All interaction with old instances is via a set of filters, which sup
port all the new-style operations on the old-style da ta format. Under this 
scheme, all of the information associated with the old type is retained, the 
filter functions masking their presence from the programmer. An addi
tional feature here is that old programs can still run (on the old instances) 
without having to be repaired to handle the new type definition. [SZ87] 

Eager Convers ion: Write and execute a one-time program that iterates over 
all the instances of the type in the system, converting them into an instance 
of the new type via some user-specified constructor. For this approach to 
be possible, a system would have to support some method for retrieving all 
instances of a given type. It might also require a considerable "downtime" 
on the part of the database. [BMO+89] 

Lazy Convers ion: Whenever an old instance is found, automatically convert 
it to a new instance (using the same constructor mentioned under Eager 
Conversion). One complication associated with this scheme is whether or 
not to perform the conversion on when the old object is not being modified. 
Conversion of objects at read time would make read operations much more 
expensive. [BH89, B M O + 8 9 ] 

11 



The creators of OPAL use the term screening to refer to both emulation and lazy 
conversion. From their perspective, emulation is a (very) lazy conversion operation, one 
tha t defers the actual conversion indefinitely. 

Relational database systems have a number of characteristics tha t make the evolution 
of types (i.e., the reformatting of tables) relatively easy. First, the structure of their types 
is relatively simple and uniform. Second, the table hierarchy is flat: tables are only defined 
at the top level, and the location of all instances (i.e., relations) is known. As a result, 
table restructuring, or s c h e m a evolut ion , can be performed according to one of the first 
two procedures in a fairly painless manner. 

Database programming languages, on the other hand, are not tha t fortunate. A number 
of common features of database programming languages interfere with the smooth integra
tion of a type evolution scheme. In a statically-typed language, for instance, redefining a 
type will shadow the definition of the former type. Older programs, compiled under the 
previous type definition, will be able to operate on older instances, but will not recognize 
new instances. The converse will be true with programs compiled after the type redefinition. 
Type evolution, an inherently dynamic process, is at odds with the type system. 

If a database programming language wishes to support one of the conversion methods 
outlined above, it will have to contend with another feature of modern programming lan
guages, pointers and the nonuniform structure of data. Any correct conversion procedure 
would have to preserve all references to the object that is being transformed. This is par
ticularly tricky if the conversion procedure results in a change of the (persistent) address 
of the object. 

In spite of these problems, however, a few systems do make an a t tempt to explicitly 
deal with the issue of type evolution. [SZ87, B M O + 8 9 , BH89] 

2,1,7 H o w is per s i s t ence i m p l e m e n t e d b y t h e under ly ing s y s t e m ? 

Rather than describe the implementation of a reviewed system in exact detail, I instead 
discuss any implementation feature that seems particularly clever, is relevant to a signif
icant language-level feature, or provides support for efficiency-related features. Possible 
optimizations tha t the persistent object system might choose to support include: 

Pers i s tent A d d r e s s e s and P a g e Fault ing: Often, an implementation can 
take advantage of the features of the underlying operating system, and 
use hooks into the virtual memory manager to provide (interrupt-driven) 
automatic interning of persistent objects. 

Swizzl ing: Once a persistent object has been interned, (i.e., installed) in 
memory, one would like to minimize the expense of manipulating such 
objects. One such way is to overwrite all references to such objects with 
their (virtual) memory addresses, thereby avoiding future tests to see if 
the persistent object has already been interned. This scheme incurs an 
additional expense when writing objects back to the persistent store, as 
the persistent addresses must be recovered. [RC89b, Mos90] 

12 



Cluster ing: Some efficiency can be achieved by exploiting reference pat terns 
on persistent data . Information about these pat terns can be achieved in 
a number of ways. One method is to provide to the client the ability to 
pass hints about the locality of object references directly to the persistent 
object manager. A client could identify an existing object near which new 
objects should be created. Others methods are less dynamic, arranging the 
persistent da ta according to some basic assumption about access pat terns . 
PS-Algol and E instantiate similarly-typed objects to common disk regions, 
under the assumption that object of the same type are frequently referenced 
together. [ A B C + 8 3 , RC89b] 

Lock Coalescence: The time spent locking shared objects could be reduced if 
the compiler were able to detect locking operations to neighboring objects 
(or parts of the same object) in the program, and lock larger regions of the 
store, instead of smaller regions in succession. This would be especially 
useful in array references, where a single lock on the entire array would be 
more efficient than locking each element in turn. [RC89b] 

Sort ing for special ized query process ing: Often a system might try to op
timize the arrangement of a da ta collection on secondary storage, so as to 
favor potentially common queries, such as searching for the record with 
a minimal at t r ibute value, or locating all entries satisfying some equality 
constraint. [BMO+89] 

I n d e x tables: Specialized tables can be provided in order to support associa
tive access on individual records. This approach is the basis of efficient 
database lookup in commercial relational database systems. [Dat81] 

2 .2 R e l a t e d L a n g u a g e I s s u e s 

Some secondary but nevertheless interesting questions deal with aspects of the languages 
beyond persistence. It is worth investigating what sort of additional support is provided for 
database-type applications, and also, what the programming languages look like in general. 

2.2.1 H o w does support for pers i s tence integrate w i t h t h e rest o f t h e language? 

Most of the database programming languages being developed are based on existing pro
gramming languages. The degree to which the language extensions are smoothly and con
sistently integrated into the base language is noteworthy. 

It has already been mentioned (p.5.) how the database-motivated additions to Pascal in 
Pascal /R are not universally applied. The more modern persistent and database program
ming languages are often subject to similar criticisms. 

13 



2.2.2 W h a t database -or iented t y p e s and cons truct s have b e e n prov ided? 

The inclusion of database-oriented da ta types and control forms in a programming lan
guage offers potential advantages in both the functional and efficiency domains. Rela
tional database systems manage their immense body of da ta with collections of like-typed 
data , providing aggregate and query/select operations and specialized control structures 
to operate over them. Likewise, PASCAL/R provides the each operator for mapping over 
r e l a t i o n s in database files. (See p.5 for details.) 

Commercially available database management systems provide highly efficient execution 
of some popular collection-oriented operations through the use of specialized da ta layouts 
and precomputed element addresses in the form of index tables. These index tables are 
created on demand by the database manager. Some database programming languages at
tempt to implement similar measures with minimal effect on functionality. For example, 
OPAL, rather than provide special da ta types, supports with a similar functionality via the 
use of optional type specifications: a programmer wishing to perform inexpensive searches 
over a collection of objects is encouraged to declare type restrictions on the relevant in
stance variables, allowing the system to produce code to iterate over the instance collection 
uniformly and rapidly. 

2.2.3 Transact ion M a n a g e m e n t 

In a system where the da ta may persist for long periods of time, safeguards must be taken 
to promote the reliability of the store. Transaction systems make da ta more tolerant to 
failure, by grouping a sequence of operations into one atomic action. From the point of 
view of persistent languages, the important aspects of an underlying transaction system 
are: 

• How transparent is the transaction system in the language's computation model? 

• How sophisticated is the transaction model? 

2.2.4 C o n c u r r e n c y and Locking 

Large database systems should support concurrent access, and this applies equally well to 
the persistent programming language domain, language might choose to export some of 
the lock control to its users. Relevant questions include: 

• How transparent is the locking facility from the programmer? 

• Wha t is the granularity of the locks? 

14 



2 . 3 O t h e r Q u e s t i o n s 

I will include answers to the following questions when the authors choose to discuss them. 

• Is there any provision for the security of objects in the persistent store? 
Can one application (or user) modify the da ta of another, without explicit 
permission? [Just as operating systems protect programs from each other 
by partitioning memory, a complete database programming language sys
tem would have to include provision to exclude a malevolent application 
from damaging the store.] 

• What are the motivations behind the development of the language? What 
sort of applications are the authors trying to support? [Usual responses are 
CAD/CAM, programming environments, graphic systems, and traditional 
database applications.] 

• What shortcomings are there in the language/system? [If the authors cite 
any problems with their resulting language or system, it would be beneficial 
to repeat them.] 

• Does the system run? What do the users think? [This is typically a 
hard question to answer, as clients do not regularly publish testimonials 
in journals, but sometimes some hints present themselves. For commercial 
systems, it is possible to find out something.] 

2 . 4 S t r u c t u r e o f t h e R e m a i n i n g S e c t i o n s 

Surveys of selected persistent programming languages follow in the remaining sections. The 
languages were selected according to present to the reader the variety of efforts in the field, 
with particular concentration on the variety of model of computation and persistence, base 
language, and focus. 

At the end of each section, I include a short, annotated bibliography of the research pa
pers published by the designers and implementation of the system being discussed. Papers 
are divided into four lists, as follows: 

P r i m a r y Sources : Papers primary used in researching the survey. Readers interested in 
further information about the system are encouraged to refer to them. (References 
to these sources are cited in boldface in this paper.) 

Secondary Sources: Papers read and found to contribute little information that cannot 
be found among the primary sources. 

Other References : Papers that either focused on tangential aspects of the system (i.e., 
not on persistence) or that I have failed to acquire and read. 

Der ivat ive P a p e r s : Papers describing work derived from the featured system that might 
interest the reader. 

15 



3 PS-Algol and Napier 
PS-Algol, an extension of S-Algol [Mor79, Col82], was designed and built by Atkinson 
et. al. between 1982 and '85 as part of the Persistent Programming Research Groupys 
(PPRG) effort in Scotland. Its primary improvement over previous designs/systems was 
the notion of or thogona l pers i s tence . It is generally acknowledged as the first persistent 
programming language. 

The successor to PS-Algol, Napier, adopts the same principles as PS-Algol, but attempts 
to reduce the prominence of dynamic type-checking in the language. 

The two languages are very similar in their treatment of persistence. The following 
survey will focus on PS-Algol, while noting any distinguishing features of Napier, as relevant. 

3 . 1 I s s u e s 

M o d e l 

The persistent store in PS-Algol is modeled as a collection of database files. These 
abstract files are opened explicitly, but while a database file is open, access to any 
persistent object stored in tha t file is transparent. 

Multiple files can be opened for reading, but a program can only modify one database 
file at a time, so tha t the resident database file for new persistent da ta can be inferred. 
Modified and newly created objects are automatically moved back to the database at 
program completion, or at the explicit closing of the file by the user. 

Pervas ion and Dec larat ion 

PS-Algol was the first implementation of a language based on the principle of or thog
onal pers i s tence , which dictates that persistence is characteristic of a da ta value 
and not of its particular type. As a result, any object in PS-Algol can persist. The 
object returned by the Open-database routine is the root of the database, which, via 
successive pointer references, reaches all objects stored in that particular file. Simi
larly, any object reachable from this persistent root when the program completes (or 
when the database is explicitly closed) is written into the database file. 

A d d r e s s i n g 

PS-Algol supplies a new data type, the t a b l e , tha t supports associative access on 
objects based on keys of strings or integers. Each database is rooted at a t a b l e 
object, in order to make searching more amenable, but the user is free to use other 
composite da ta structures to arrange the database as he wishes. A uniform top level 
object allows different programs that share the database file to construct their own 
paths to objects. 

In Napier, the t a b l e is replaced by the environment, which is a cross between a 
table and the static block, common to Algol-like languages. Like the table, entries 

16 



(bindings) can be added or removed from the environment. However, like the static 
block, procedures can be closed under environments. All bindings to environment 
variables are resolved statically at closure time. Thus, procedures can be protected 
against operations tha t result in changes to the closing environment 's bindings. 

Manipula t ion 

Following one of the designers' driving principles, persistent type instances are of the 
same type as their volatile cousins, and can thus be operated on by the same methods. 

I m p l e m e n t a t i o n 

The automatic importing of objects from the persistent store is handled by the runtime 
system, which detects references to objects in the store (based on the sign bit of the 
address) at pointer de-reference time and copies the referenced object into active 
memory. Pointers to persistent objects that have been interned are swizzled, that 
is, overwritten with the local address, to reduce further trapping. Local addresses are 
converted back into persistent addresses when the da ta is written back to store. 

In an effort to reduce the size of the working set, objects are arranged in the store 
according to their type. This way, programs iterating over homogeneous collections 
(a common operation for database applications) would touch fewer pages. 

PS-Algol's specialized type for indexing, the t a b l e , is implemented using B-trees, for 
fast lookup and updating. 

Integrat ion 

A major feature of the base language's type system is exploited to a significant degree 
by PS-Algol. In S-Algol, all user-defined da ta types are represented as tagged tuples, 
referenced by an untyped pointer. In order to verify type consistency, type checking 
is performed as part of the pointer dereference at runtime. PS-Algol takes advantage 
of this tagged architecture by extending it directly into persistent storage. Tagging of 
persistent da ta is essential for PS-Algol's implementation of orthogonal persistence, 
because it allows the system to automatically trace all references to persistent objects 
at transaction completion. 

The dynamic type checking associated with this scheme is exploited at both the 
language and implementation levels. Persistent objects can only be referenced by 
untyped pointers, making the implementation of automatic persistent object interning 
easier (c./. , previous section). However, this also means that the type check must be 
performed repeatedly throughout a computation. The authors point out that a certain 
amount of dynamic behavior in a persistent language is essential, because of the long
time, evolving nature of programming in a persistent environment. In Napier, the 
dynamic type-checking is localized by allowing programs to close over environments 
at runtime as well as at compile time. Strong type-checking is not sacrificed under 

17 



this scheme, and static type-checking is employed everywhere else in the language. 
[Dea89] 
The authors describe how the first-class procedures of S-Algol can be used to im
plement procedure libraries, modules, and abstract da ta types. This functionality 
has additional utility when combined with persistence. The act of importing an ab
stract da ta type from the persistent store and dynamically binding it into a program 
is equivalent to module Unking in more traditional languages. The authors express 
excitement over the idea of integrating major portions of the program development 
cycle into the language system. 

Napier features the addition of first-class processes. It is interesting to note tha t , 
in accordance with the property of orthogonal persistence, Napier processes can be 
preserved in the persistent store. A process in the store remains active; any application 
can export it and communicate with it. In this way, processes provide a convenient 
medium of communication for concurrent Napier applications. 

T y p e Evo lut ion 

As theirs was early research, the authors of PS-Algol and Napier did not a t tempt to 
deal with type evolution. However, the PS-Algol implementation, in order to insure 
that the type information is available at runtime (for the dynamic check), stores 
the type description with the persistent object. This means that in the event of 
a type redefinition, instances of the old type will type-check correctly, and can be 
manipulated as before. 

D a t a b a s e - o r i e n t e d t y p e s 

In PS-Algol, a set of functions is provided that can be used to apply some procedure 
over each entry in the t a b l e . No mention of a similar functionality is found in the 
Napier li terature. 

Transact ions 

The transaction model presented by PS-Algol is very simple. The act of opening a 
database file for writing begins a transaction, and the act of closing the file (either 
explicitly or by program termination) commits it. Routines to explicitly commit or 
abort the transaction are provided as well. 

Concurrency and Sharing 

Locking in PS-Algol and Napier is restricted to implicit, exclusive write locks on 
entire database files. More than one database can be opened for reading, but only 
one can be opened for writing. There is an additional restriction tha t a program can 
only reopened if it had not been written to by another program in the intervening 
time. This is so there are no inconsistencies between the database and any objects the 
program may have imported from the database when it had been previously opened. 

18 



The authors note that even a persistent store with such limited concurrency has uses. 
They cite as examples — CAD systems, where coarse locking granularity is not a 
problem, and for personal databases, where sharing is not necessary at all. 

In Napier, the authors have included a notion of persistent process, which can be 
used to control concurrent access to persistent data , and to model more sophisticated 
transaction systems. 

The most serious deficiency of PS-Algol relates to its locking behavior, which restricts a 
program to exclusive write access on a single database file at a time (i.e., per transaction). 
So, while the coarse locking granularity would tend to encourage users to distribute their 
data across a large number of small database files (to increase concurrency), the lack of 
the ability to lock (and write to) more than one database per transaction promotes large 
database files. 

The utility of multiple database files is also hampered by the transparent nature in 
which objects are updated in the persistent databases. Even if it were possible to write 
to more than one database file simultaneously, cross-database references are not allowed. 
Unless that deficiency is repaired as well, it would remain impossible for an object to be 
shared among objects residing in different database files. 

Napier's method of supporting both static typing and a restricted form of dynamic 
typing and binding is interesting. It reduces the amount of dynamic checking to a minimum, 
and does not sacrifice strong typing. 

3 . 2 S o u r c e s 

[ABC+83] M.P. Atkinson, P.J. Bailey, K.J. Chisolm, W.P. Cockshott, and R. Morrison. 
An approach to persistent programming. Computer Journal, 26(4):360-365, 
1983. Reprinted in ZdonikMaier90-Readings[ZM90]. 

A presentation of the PS-Algol language model, and touches on some of 
the issues of implementing persistence (issues which are elaborated elsewhere 
[ACCM83, ACC83, CAC+84]j. 

[AM85] Malcolm P. Atkinson and Ronald Morrison. Procedures as persistent da ta ob
jects. ACM Transactions on Programming Languages and Systems, 7(4):539-
559, October 1985. 

Atkinson and Morrison discover that having first-class procedures within PS-
Algol's persistence facility (as discussed in [ABC+83] ) provides the pro
grammer with considerable power, including some higher-order programming 
language concepts, and perhaps enough even power to encompass the entire 
programming cycle within the PS-Algol language system. 

19 



[Dea89] Alan Dearie. Environments: A flexible binding mechanism to support system 
evolution. In Shriver [Shr89], pages 46-55. 

Focuses on the Napier data type envi ronment , a new type in Napier that is 
used to implement restricted dynamic binding. 

[MBC+88] R. Morrison, A.L. Brown, R. Carrick, R. Conner, and A. Dearie. On the 
integration of object-oriented and process-oriented computation in persistent 
environments. In Dittrich [Dit88], pages 334-339. 

While providing a brief description of Napier, this paper emphasizes one new 
and interesting feature of Napier: the introduction of first-class processes. 

Secondary Sources 

[ACC82] Malcolm Atkinson, Ken Chilsholm, and Paul Cockshott. PS-Algol: An Algol 
with a persistent heap. ACM SIGPLAN Notices, 17(7):24-31, July 1982. 

The canonical PS-Algol reference, this paper introduces PS-Algol. Much of its 
contents are restated or improved in [ABC+83] . 

[AM84] Malcolm P. Atkinson and Ronald Morrison. Persistent first class procedures 
are enough. In Proceedings of the Fourth Conference of Software Technology 
and Theoretical Computer Science, volume 181 of Lecture Notes in Computer 
Science, pages 223-240. Springer-Verlag, Berlin, December 1984. 

Describes how having first-class procedures and an embedded compiler can be 
used to implement abstract data types, data protection, and separate compi
lation. An early version of the information later presented in [AM85] . 

[CAC+84] W.P. Cockshott, M.P. Atkinson, K.J. Chilsholm, P.J. Bailey, and Morrison R. 
Persistent objected management system. Software - Practice and Experience, 
14:49-71, 1984. Reprinted in ZdonikMaier90-Readings[ZM90]. 

Discusses the most recent implementation for the PS-Algol persistent object 
manager. Concentration on how shadow pages are used to implement (simple) 
atomic transactions; how structure instances are managed by type under the 
assumption that like instances are more often referred to by common transac
tions. 

20 



[MBC + 89a] R. Morrison, A. Brown, R. Carrick, R. Connor, A. Dearie, and M.P. Atkinson. 
The napier type system. In Rosenberg [Ros89], pages 253-269. 

Discusses the Napier type system, and its reliance on restricted dynamic bind
ing to aid in construction and modification of persistent programming appli
cations. 

Other References 

[ACC83] M.P. Atkinson, K.J. Chilsholm, and W.P. Cockshott. CMS — a chunk man
agement system. Software - Practice and Experience, 13:273-285, 1983. 

Outlines the first implementation of the underlying persistent object manager 
for PS-Algol. Replaced by the system featured in [CAC+84]. 

[ACCM83] M.P. Atkinson, K.J. Chilsholm, W.P. Cockshott, and R.M. Marshall. Algo
rithms for a persistent heap. Software - Practice and Experience, 13:259-271, 
1983. 

An even more ancient implementation paper for PS-Algol. Only useful infor
mation is the admission that the implementors first thought about persistence 
as a way of running large processes on their small-memory computer. 

[AM87] Malcolm P. Atkinson and Ronald Morrison. Polymorphic names, types, con
stancy and magic in a type secure persistent object store. In Carrick and 
Cooper [CC87], pages 1-12. Persistent Programming Research Report 44. 

Outlines outmoded design of first-class environments and naming in Napier. 
Rendered obsolete by [Dea89], 

[MBC+89b] R. Morrison, A.L. Brown, R. Carrick, R. Connor, A. Dearie, M.J. Livesey, C.J. 
Barter, and A.J. Hurst. Language-design issues in supporting process-oriented 
computation in persistent environments. In Shriver [Shr89], pages 736-744. 

Features a discussion of addressing and first-class processes in a distributed 
Napier system. 

21 



3.2.1 Der ivat ive P a p e r s 

I found a number of other papers which discussed work that used the PS-Algol system as 
a research platform. Cooper [CADA87] describes how traditional database systems can be 
written in PS-Algol. Dearie and Browne [DB88] illustrate how a type-safe object browser 
can be constructed using dynamic typing and a built-in compiler. Philbrow [Phi87] replaces 
the PS-Algol t a b l e object with a more powerful indexed structure, derived from traditional 
database systems. Wai [Wai87, Wai89] extends the PS-Algol implementation to support 
distributed access, retaining the computation model as much as possible. 

22 



4 Amber 

Amber is a language developed for the Macintosh by Cardelli. An acknowledged ML spin
off, it includes support for graphics, concurrency, and persistence. Amber promotes a very 
simple view of the persistent store, and makes use of the d y n a m i c type [ACPP89] to 
interact with it. 

4 .1 I s s u e s 

M o d e l 

Amber offers a very simple model of persistence, viewing the persistent store as no 
more than an archival storage medium for objects. The store is no more part of the 
language than the file system. The export routine takes a value and a string name, 
saving the value for later retrieval under the string. The import routine, given a 
string, retrieves the value stored under that name. 

These operations are sophisticated enough to support sharing of sub-objects within 
an object, so any internal references are preserved. However, the sharing of references 
among persistent values (or even successive imports of the same object) is not sup
ported. This lack of identity between volatile and persistent representations is the 
essence of Amber's simplicity with respect to persistence. 

Pervas ion and Dec larat ion 

In Amber, any object can be converted into an instance of the Dynamic type, which 
combines the value and type parts of the object. A Dynamic instance can be later 
coerced back into a copy of the original object, given its original type as an argument. 
The operation is perfectly type-safe, as the coerce operation performs the required 
type-checking at runtime, signalling an error if the value being coerced is not of the 
supplied type. The semantics of Dynamic are similar to the CLU [LAB+81] f orce 
type generator. Cardelli et. al. describe the d y n a m i c da ta type more formally in a 
recent paper. [ACPP89] 

Only objects of type Dynamic can be written to store, but since all types are coercible 
to and from Dynamic, there is effectively no restriction on what types of values can 
persist. 

Persistence in Amber is not a property that can be declared, but rather, a user must 
explicitly write a value out into the store for it to persist. 

A d d r e s s i n g and Manipulat ion 

Persistent values are uniquely identified with the string they are stored with. Import 
takes a string as its argument, so one can "refer" to a persistent object via its (string) 
filename. 

23 



Amber provides no support for the direct manipulation of persistent values. Such 
values must first be read and coerced into volatile, typed objects before any compu
tat ion can be performed. The actual changes that are performed on these objects will 
not persist unless explicitly written back to store. 

T y p e Evolut ion 
Neither paper discusses the problem of type evolution, but the following conclusion 
can be made based on Amber's characteristics: in order to coerce a dynamic instance 
back into original type, one requires the type. As part of the coercion operation, 
the type provided is compared with the type description tha t was encoded with the 
instance value when the dynamic value was first created. As a result, if a type is 
redefined, all its former instances in the persistent store, while still accessible, are no 
long usable, since they cannot be converted from their dynamic representations. 

I m p l e m e n t a t i o n 
The persistent store is implemented directly on top of the underlying file system. 
The string required by the read and write operations are used to generate a file 
name, under which the value's "persistent" representation is saved. A new file is 
generated for each object, and reusing a file name overwrites the previous persistent 
value contained there. A special representation for Dynamic instances in ASCII (!) is 
defined, with the import and export routines converting between the external and 
internal representations. 

Addi t iona l C o m m e n t s 
Amber was designed to run in a single-user environment, and thus has no support for 
the sharing of persistent data . It also makes no effort to support database integrity 
at the system level. 

Dynamic type checking on objects in the persistent store is done explicitly as a result 
of the Dynamic instance coercion. This avoids the problem experienced by PS-Algol, which 
was subjected to pervasive dynamic type checking. However, the lack of identity between 
persistent and volatile versions of an object presents an nonetheless primitive model of 
persistence. Having been designed for a (single-user) Macintosh, Amber offers no support 
for concurrent access or locking. 

24 



4 .2 S o u r c e s 

[Car86a] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard 
Robinet, editors, Combinators and Functional Programming Languages, vol
ume 242 of Lecture Notes in Computer Science, pages 48-70. Springer-Verlag, 
Berlin, 1986. 

This paper presents an overview of the Amber system. 

[Car86b] Luca Cardelli. The Amber machine. In Guy Cousineau, Pierre-Louis Curien, 
and Bernard Robinet, editors, Combinators and Functional Programming 
Languages, volume 242 of Lecture Notes in Computer Science, pages 1-27. 
Springer-Verlag, Berlin, 1986. 

This paper defines the abstract Amber Machine. In addition to providing a 
description of all the Amber Machine operations, a number of implementation 
issues relevant to persistence are mentioned. 

25 



5 Galileo 
Galileo, an interactive programming language for database applications, was designed by 
Albano and Orsini (and Cardelli) at the University of Pisa. Influenced by previous work in 
persistent programming languages, notably PS-Algol [ABC+83] and efforts in the database 
world [BZ81, MK84], it was specifically designed to support both progressive database 
modeling and the abstraction mechanisms of current programming languages. Galileo's 
most interesting feature is its type system, which provides specialized features for database
like operations while remaining useful under traditional programming language paradigms. 

5 .1 I s s u e s 

M o d e l , Pervas ion and Dec larat ion 
In Galileo, all objects persist indefinitely; objects tha t are not referenced are removed 
by the built-in garbage collector. This results in a model which presents the entire 
persistent store as an active heap. Objects are swapped into active memory and back 
out to the store as required, much like a virtual memory system. In fact, the authors 
imply that while they have no interest in adapting a virtual memory system to handle 
the Galileo store, tha t course is likely the preferable way to accomplish their goal. 

A d d r e s s i n g 
The facilities for naming and associating objects in the Galileo store are drawn from 
the two domains tha t inspired the language. Similar to traditional programming lan
guages, Galileo provides the envi ronment , a statically-scoped block mapping names 
to objects. From the database (and perhaps object-oriented) world, Galileo provides 
aggregate da ta structures. Programmers have the option of associating with any of 
their class definitions a sequence that is defined to contain all the (existing) instances 
of tha t class. Various kinds of database-like queries can be performed on these instance 
collections, resulting in an effective addressing mechanism for the class instances. 

T y p e Evo lut ion 
Galileo does not address the issue of type evolution. As it is a statically-typed lan
guage, old instances can be manipulated by functions if they were compiled when the 
instances' type definition was accessible by name. 

I m p l e m e n t a t i o n 
Unlike PS-Algol, which converts persistent addresses into local ones when the refer
enced object is fetched from the store, the Galileo implementation maintains persistent 
addresses throughout. This at t i tude enforces the analogy between virtual memory and 
the Galileo persistent store. 

The implementation does include one significant optimization with respect to per
sistent address translation. Taking advantage of its generational garbage collection, 

26 



the implementation ensures that the youngest GC generat ion is always in active 
memory, and that within it, the persistent (virtual) address corresponds directly to 
the local (physical) address. This strategy relies on the notion tha t newly-created 
da ta is short-lived. The authors note that this is not likely to be true for functional 
data , and provide no method for coping with that property. 

D a t a b a s e - O r i e n t e d T y p e s 

The instance collections for classes, mentioned previously (c.f., Address ing) , are but 
one example of the database-like support provided by Galileo. Other useful charac
teristics of class definition that are inspired by existing database language facilities 
are: 

K e y At tr ibute s : A special key can be declared to force the values of a subset of an 
instance's attr ibutes to be unique among its co-instances. [This would allow an 
implementation to support indexing over the class, using the key attributes as 
effective keys, similar to the facilities common to relational database systems.] 

D e r i v e d At tr ibute s : An at t r ibute value tha t is recomputed from primitive values 
every time it is referred to. [While functionally similar to a function of no 
arguments, derived attributes can be read as regular attributes. Some database 
systems enhance this feature by allowing an inverse function to be defined, so as 
to support assignment. ] 

Subtyp ing: The ability to define subclasses of a class. Instances appear in the 
instance sequences of both class and superclass. 

Transact ions 

Galileo is an interactive system. Any expression evaluated at the top-level is executed 
as a simple transaction. Compound transactions can be performed by using the 
t r a n s a c t i o n and end- transact ion forms, which identify a sequence of commands 
to be performed atomically. 

The only way to abort a transaction is to raise an exception. The exception handling 
system can be used to perform cleanup operations at abort time. Exceptions are 
distinguished by string names. 

Transactions can be nested by simply composing operations. Each function call is run 
as a nested transaction, and any exceptions can be caught locally. If the top-level call 
raises an exception, the effects of the entire series of nested transactions are undone. 

Concurrency and Sharing 

The authors are suspiciously quiet about Galileo's locking facilities, leading me to 
conclude that there is no support for concurrent database access. 

27 



In spite of the current design of the system which ignores the issue of concurrent access, 
it is possible to extend the language description to provide such support. In keeping with 
the feature of total transparency of persistent data access, such an extension should avoid 
explicit locking operations. However, implicit locking at the granularity of objects could 
be provided, with conflicts and deadlocks resolved by automatically generated transaction 
aborts. 

5.2 S o u r c e s 

[AC085] Antonio Albano, Luca Cardelli, and Renzo Orsini. Galileo: A strongly-typed, 
interactive conceptual language. ACM Transactions on Database Systems, 
10(2):230-260, June 1985. Reprinted in ZdonikMaier90-Readings[ZM90]. 

Introduces Galileo, and provides an overview of its interesting type system, 
and of its first-class environments. 

[AGOP88] A. Albano, F . Giannotti , R. Orsini, and D Pedreschi. The type system of 
Galileo. In Atkinson and Buneman [AB88], chapter 8, pages 101-199. Based 
on the proceedings of the First Appin Workshop, which appeared as PPRG 
Persistent Programming Research Report 16. 

Similar in focus to [ A C 0 8 5 ] , but with a heavier concentration on the seman
tics of its types. 

Other References 

[Ghe85] G. Ghelli. La gestione della persistenza dei valori nel linguaggio Galileo. 
Scienze delVInformazione, 1985. 

A detailed explanation of Galileo's persistent Garbage Collector, apparently 
in Italian. 

28 



6 E X O D U S and E 

EXODUS, a DBMS project from the University of Wisconsin, sets out to design a platform 
on which database programmers can quickly design and create fast, application-specific, 
database systems. Central to the system are the Storage Manager, which implements an 
efficient (albeit primitive) persistent store, and the programming language E, which provides 
application programmers a high-level interface to persistence data management. While its 
primary goal is not to provide a programming language for database, E is interesting enough 
to be presented here as a persistent programming language. E is one of many object-oriented 
database language efforts that are prevalent today. OPAL (c.f., Section 7) is another. 

E is an upwardly-compatible extension to C + + [Str86], supporting parameterized data 
type constructors and iterators, as in CLU [LAB+81], and persistent type instances. It is 
designed to be used by database system implementors for database systems programming. 

6-1 I s s u e s 

M o d e l , Pervas ion and Dec larat ion 

From the perspective of E applications, the persistent store is an extension of the 
C + + dataspace. Interaction with the store is transparent, except for the following, 
important characteristic. In the interests of preserving upward compatibility with 
C + + , and in order to reduce the expense of manipulating volatile objects, the de
signers of E opt to sacrifice orthogonal persistence. Instead, two sets of types and 
type constructors are provided. Persistent types are declared and defined using the 
dbc las s form. While instances of regular C + + types can reside only in local memory, 
instances of dbc las s definitions can reside in either local memory and the store. In 
this way, the system can avoid having to test for the residency of an object if it is of 
volatile type. The authors note that it is possible to write E programs where all types 
are persistent (using only the persistent base classes and declaring all new classes as 
persistent), but warn of the serious runtime expense involved. 

A d d r e s s i n g 

Persistent bindings are handled rather elegantly. E provides a new variable declara
tion, p e r s i s t e n t , which resembles a traditional C s t a t i c binding, with the extension 
that the binding survives program executions in addition to successive procedure calls. 
[See Integrat ion section below for some associated problems.] Typed aggregates of 
objects, called c o l l e c t i o n s , can also be created to contain dynamically created in
stances of persistent types. 

Manipu la t ion 

Once in active memory, persistent objects can be manipulated similarly to their 
volatile cousins. But since they are members of a different class hierarchy, distinct 

29 



though analogous methods must be defined for them. Users can operate over elements 
of a persistent c o l l e c t i o n using iterators. 

T y p e Evolut ion 
No solution for the problem of schema evolution (c./., Section 2.1.6) is provided. 
Emulation is rejected by the authors, who claim that the addition of a layer between 
the EXODUS Storage Manager and the E program would seriously reduce efficiency. 
Automatic conversion, whether lazy or eager, is also rejected, as it does not mesh 
well with the C + + da ta layout. To implement immediate references to other classes 
and structures, C + + embeds class and structure instances within its referent. The 
resulting change in the size of the object might invalidate remote pointer references. 

I m p l e m e n t a t i o n 
One feature of the E implementation that distinguishes it from other systems de
scribed in this paper is how persistent objects are maintained and addressed. Like 
the PS-Algol implementation, E has two pointer types, one for its C + + type instances, 
and one for its persistent types. Unlike PS-Algol, the persistent pointer is represented 
as a pair of values: a persistent object id (similar to the persistent addresses we have 
seen in other systems), and an offset pointer. In this way, pointers into the middle of 
objects (a common occurrence in C idiom) is possible. Volatile instances of persistent 
types are represented by a special persistent id and an offset corresponding to the 
object's main memory address. 

An early decision in the design of the E implementation was to use the C storage 
model for both volatile and persistent data , so as to avoid any format conversion. 
This was done for additional efficiency, but has resulted in a serious problem. Unlike 
other systems, such as PS-Algol, which used pointer swizzling to reduce demand on 
the store (c./. , p . 17), the E compiler might generate code that would repeatedly lock 
and intern an object from the store. The implementors hope that an adaptat ion of 
register allocation techniques to this problem will alleviate its affects in future releases. 

A second side-effect of using the same storage model for volatile and persistent da ta 
relates to object deallocation. E provides no garbage collection operation on the 
persistent store, exposing the programmer to a familiar pair of potential bugs. Any 
garbage generated through missing deallocation operations will persist indefinitely. 
Likewise, objects might be accidently deleted prematurely, resulting in a corrupt 
database. 

The underlying persistent object manager has some optimization features as well. At 
object creation, the EXODUS object manager allows the client to specify an existing 
object near which the new object should be created (if possible). This operation is a 
way of enforcing locality at the database design level. 

In order to efficiency support E's c o l l e c t i o n s , EXODUS provides a da ta structure 
known as the file objec t , which is designed to operate effectively under both direct 

30 



and sequential access pat terns. 

Integrat ion 

E has yet to resolve some problems related to the management of its persistent names
pace, mostly resulting from the fact that compiled E programs reside outside of the 
persistent store. The most serious problems involve the execution of destructors on 
(static) p e r s i s t e n t instances, and the handling of virtual functions. In the current 
system, a special and clumsy utility program is provided to allow programmers to 
delete p e r s i s t e n t bindings when an associated program module was being retired. 
And in a world where each compiled program has different addresses for a dbclass's 
virtual functions, the dispatch table must be a volatile object. Both of these problems 
will be avoided in the future implementation, which will see programs and program 
modules inserted into the persistent store at compilation. 

Database -or i en ted t y p e s 

The principal database-oriented type provided by E is the c o l l e c t i o n , which has 
been mentioned previously. Operations on instances residing in the c o l l e c t i o n s 
can be performed using the specially provided i t e r a t o r control form. However, as 
EXODUS does not support any form of indexing on c o l l e c t i o n s , their elements can 
only be operated upon sequentially. 

Transact ions 

Currently, there is no explicit transaction facility; each program runs as its own, 
simple transaction. Future implementations will support some level of programmer 
control over transactions via a language-level, t r a n s a c t i o n block. 

E is unique among the languages featured in this survey in that it extends a language 
that lacks a tagged data architecture. In this environment, previous approaches to type 
evolution are no longer applicable, and the language's creators have yet to propose a solution 
of their own. Another trait of an untagged architecture is the lack of a garbage collector for 
the persistent store. This forces the programmer to manage allocation and deallocation of 
persistent object explicitly, and subjects the store to a number of errors that can damage 
its integrity. 

The current implementation of E requires the presence of an external utility to help 
manage the relationship between persistent bindings and module implementations. This 
lack of integration is clumsy, but future implementations will have code reside in the store, 
removing the need for external manipulation of the database. 

The lacks of transactions is another shortcoming of the current implementation, but the 
creators express a desire to incorporate a transaction system in their next implementation. 

31 



6.2 S o u r c e s 

[RC89b] Joel E. Richardson and Michael J. Carey. Persistence in the E language: Issues 
and implementation. Software - Practice and Experience, 19(12):1115-1150, 
December 1989. 

A discussion the database programming language E, constructed as part of the 
EXODUS Extensible DBMS Project. It concerns itself solely with the design 
and implementation features of persistence in E. 

Secondary Source 

[CDRS86] Michael J. Carey, David J. DeWitt , Joel E. Richardson, and Eugene J. Skekita. 
Object and file management in the EXODUS extensible database system. In 
Yahiko Kambayash, editor, Proceedings of the Twelveth International Con
ference on Very Large Data Bases, pages 91-100, Kyoto, August 1986. Very 
Large Da ta Base Endowment. 

A description of the design of the EXODUS Storage Manager. In order to 
support a large variety of database applications, the manager was designed to 
be as simple and flexible as possible. 

Other References 

[RCDS87] J .E. Richardson, M.J. Carey, Dewitt D.J., and D.T. Schuh. Persistence in EX
ODUS. In Carrick and Cooper [CC87], pages 96-113. Persistent Programming 
Research Report 44. 

At the Second Appin Conference, the EXODUS group presented their language 
model for persistence, briefly describing the Storage Manager and introducing 
E, the persistent programming language. Most of the issues presented here 
reappear in later papers, notably [RC89b]. 

[RC87] Joel E. Richardson and Michael J. Carey. Programming constructs for 
database system implementation in EXODUS. In U. Dayal and I. Traiger, ed
itors, Proceedings of the SIGMOD International Conference on Management 
of Data, pages 208-219, San Francisco, CA, May 1987. 

Similar in subject to [RCDS87], but from the point-of-view of a database imple-
mentor. Focuses on the problems facing the designer of a database application, 
and how the facilities of E assume much of the burden. 

32 



[CDV88] 

[CDG+90] 

[RC89a] 

Michael J. Carey, David J. DeWitt , and Scott L. Vandenberg. A da ta model 
and query language for EXODUS. In Proceedings of the SIGMOD Interna
tional Conference on Management of Data, pages 413-423, Chicago, IL, June 
1988. Also available as WISC-CS-TR 734. 

A presentation of a data model (named EXTRA) and a query language (called 
EXCESS), built on top of E, explicitly to illustrate how database models can 
be easily constructed on top of EXODUS. 

Michael J. Carey, David J. DeWitt , Goetz Graefe, David M. Haight, Joel E. 
Richardson, Daniel T. Schuh, Eugene J. Skekita, and Scott L. Vandenberg. 
The EXODUS extensible DBMS project: An overview. In Zdonik and Maier 
[ZM90]. Also available as WISC-CS-TR 808. 

A formal overview of the entire EXODUS project, describing in summary the 
major aspects of the project (including the Object Manager, E, the sample 
data model presented in [CDV88], and a query optimization system. 

Joel E. Richardson and Michael J. Carey. Implementing persistence in e. In 
Rosenberg [Ros89], pages 302-319. Republished as part of [RC89b]. 

A presentation of the current implementation of the E compiler. Republished 
as part of [RC89b]. 

33 



7 GemStone and OPAL 
The GemStone system is a commercial implementation of an distributed, object-oriented 
database system developed at Servio Logic Corp. The system consists of the GemStone 
Object Server (an object-oriented database server), the OPAL programming language (a 
Smalltalk-80 extension) for writing database applications, and restricted server interfaces 
for C and PASCAL, which are used for user-interface application construction. This survey 
concentrates on OPAL. 

The GemStone system is implemented as a distributed system: a single, central database 
server surrounded by both smart (i.e., workstation) and dumb (i.e., IBM-PCs) clients. The 
central server runs the persistent object manager (Stone) and the session manager (Gem) 
if the client is not powerful enough to run it itself. 

7.1 I s s u e s 

M o d e l , Pervas ion , and Dec larat ion 
OPAL presents a single persistent store to the user, and access to persistent objects 
can be transparent . However, programmers interested in dealing with concurrency, 
security and integrity issues are provided (explicit) facilities to do so. (See Addi t iona l 
C o m m e n t s heading, below.) 
OPAL extends the Smalltalk heap into the persistent store. All types and instances 
persist indefinitely; an object persists as long as a reference to it exists. A special 
garbage collection scheme is used to manage the store. 

A d d r e s s i n g 
Naming in OPAL is provided at two levels. Similar to the s tandard Smalltalk run
time environment, each user maintains his own (persistent) namespace for resolving 
bindings. In addition, OPAL supports collections of class instances and primitive 
operations on them, similar to Galileo classes, but under explicit user control. (More 
on these collections below.) 

T y p e Evolut ion 
The authors reject the emulation scheme and the lazy conversion approach as previ
ously outlined. Instead, they favor a mixed strategy, which involves lazy conversion 
until the next garbage collection, at which point all remaining old instances are up
graded. (Their current implementation, however, does not yet support this feature 
— the conversion being done eagerly for the time being.) They identify a list of con
straints which must be preserved across modification to type descriptions and to the 
inheritance hierarchy. The authors then proceed to enumerate a number of categories 
of object updates tha t are permitted, and what changes to the dependent instances 
and subclasses must be performed in order to maintain the integrity of the database 
(i.e., to preserve the above constraints). 

34 



Integrat ion 

OPAL allows type restrictions to be assigned to instance variables. In addition to 
enforcing integrity within the database, such c lass-kind declarations can be used to 
identify optimizable slot references, called pa th express ions . 

Three types of composite types are provided by OPAL: indexed arrays, named records, 
and unordered collections, represented by the built-in types: Set and Bag. The 
Array class supports insertion and deletion of elements, and (numerically) indexed 
lookup. Record fields are fixed in number, but are addressed by name. The unordered 
collection classes support the standard set operations, and an optimized form of query 
processing (described below). Each of these three types of composite object is essential 
to an object-oriented database programming language, which requires structures that 
are suitable to both the database and programming language paradigms. (Smalltalk 
only supports arrays and records, while database languages typically support only 
records and unordered collections.) 

Database -or i en ted t y p e s 

OPAL supports indexed access on the values of path expressions over unordered, 
homogeneous collections of instances. Because of the class-kind restrictions, the op
eration to access the slot value is uniform over all the instances in the collection. [In 
this way, OPAL supports the query operation with relative efficiency, and follows a 
procedure that is consistent with the base language.] 

This query optimization scheme is made even more useful by the presence of subclasses 
in the language. Instances of a subclass can appear wherever a' class instance is 
required, and class-kind restrictions on inherited instance variables can be refined. 
However, the types of tests in the queries are restricted to identity and the so-called 
equal i ty operations ( = , < , > , etc.) that are defined for that instance type. 

Transact ions , Concurrency and Sharing 

The GemStone designers recognized the need for supporting both optimistic and pes
simistic concurrency control. Pessimistic locking is preferred for long-lived transac
tions, while optimistic locking is desirable in most other cases, as it favors readers over 
writers, and is (mostly) transparent to users. The authors note that since pessimistic 
control can easily be built on top of an optimistic scheme, it is bet ter to implement 
the optimistic locks at the primitive level, and to support pessimistic control on top. 
For each transaction, a list of objects that have been read or written is maintained. At 
commit-time, the list is compared with the list of objects that have been modified since 
the transaction began. If there are no conflicts, the transaction can commit, otherwise 
it aborts . All this occurs automatically; there is no need for user intervention. 

35 



Addi t iona l C o m m e n t s 

The persistent store is partitioned into s e g m e n t s , which are units of ownership and 
authorization. Users can create any number of segments, and can grant read or write 
permissions to them on a user or group basis. 

Objects can refer to other objects across segment boundaries. So, even though a user 
might be able to access an object, he might not have the same permissions on its as
sociated values and methods. This facility can be used to the database programmer's 
advantage to provide restricted views of objects to users and applications. 

While providing a useful form of query optimization, OPAL's scheme is far from com
plete, and, in fact contains some of the restrictions characteristic of the database systems 
it attempts to replace. The restrictions on the types of tests possible within the queries 
(equality and ordering operations) appear to exist in order to allow the system to presort 
the collection according to the ordering relations. It would be better, however, if the system 
could be extended to support arbitrary predicates as filters for the query. While hardly as 
efficient as the preordering implied by the equality operations, there would still be some 
expected performance improvement resulting from the uniform data access paths. 

7 .2 S o u r c e s 

[BMO+89] Robert Bretl, David Maier, Allen Otis, Jason Penney, Bruce Schuchardt, Ja
cob Stein, E. Harold Williams, and Monty Williams. • The GemStone da ta 
management system. In Kim and Lochovsky [KL89], chapter 12. 

A general discussion of GemStone design issues, with particular focus on how 
to maintain database integrity in the presence of schema evolution of class 
descriptions. 

Secondary Sources 

[MS87] David Maier and Jacob Stein. Development and implementation of an object-
oriented DBMS. In Shriver and Wegner [SW87], pages 355-392. 

Discussion of GemStone implementation issues, most of which are repeated 
in the later paper [BMO+89] . An early version of this paper appeared as 
[MSOP86]. 

[PSM87b] Alan Purdy, Bruce Schuchardt, and David Maier. Integrating an object server 
with other worlds. ACM Transactions on Office Information Systems, 5(1):27-
47, January 1987. 

36 



Explains how client programs for the Smalltalk-based system can be written 
in Pascal and C on IBM-PCs. Illustrates the heterogeneity of the GemStone 
system. 

[PS87] D. Jason Penney and Jacob Stein. Class modification in the GemStone object-
oriented DBMS. In OOPSLA87 [OOP87], pages 111-117. 

Earlier version of [BMO+89] . Contains most of the same points, with some 
problems left unresolved until the later paper. 

Other References 

[PSM87a] D. J. Penney, J. Stein, and D. Maier. Is the disk half full or half empty? 
combining optimistic and pessimistic concurrency mechanisms in a shared per
sistent object base. In Carrick and Cooper [CC87], pages 337-345. Persistent 
Programming Research Report 44. 

Explains implementation strategy employed by GemStone group for support
ing both optimistic and pessimistic locking protocols, for short- and long-term 
locks, respectively. 

[MS86] David Maier and Jacob Stein. Indexing in an object-oriented DBMS. In 
Klaus R. Dittrich and Umeshwar. Dayal, editors, Proceedings of the 1986 In
ternational Workshop on Object-Oriented Database Systems, pages 444-452, 
Pacific Grove, CA, September 1986. Insti tute of Electrical and Electronic En
gineers. 

[MSOP86] David Maier, Jacob Stein, Allen Otis, and Alan Purdy. Development of an 
object-oriented DBMS. In OOPSLA86 [OOP86], pages 472-482. 

An early version of [MS87]. 

37 



8 A v a l o n / C + + 
Avalon/C++ is a language system providing support for distributed, fault-tolerant appli
cations. A limited form of data persistence is achieved as part of the system's support for 
recovery in the presence of failure. Avalon/C++ (as well as Avalon/Common Lisp, fea
tured below), makes use of the locally available Camelot transaction system [SBD+86] for 
underlying system support, and a number of the language design decisions are motivated 
by the Camelot semantics. 

Like E (p.29), A v a l o n / C + + uses C + + as its base language. However, while E is mostly 
concerned with persistence, Ava lon /C++ is primarily concerned with distribution and 
fault-tolerance. So, while many similarities exist between the two systems, some differ
ences are noteworthy as well. 

8 .1 I s s u e s 

M o d e l 

Ava lon /C++ ' s principle extension to C + + is the s erver form. Nearly identical 
syntactically to C + + ' s c l a s s , a s erver declaration establishes the interface to a 
server, an independent process running in its own address space, possibly on a different 
processor. Communication is via a remote procedure call interface to the servers 
exported functions. These functions are called normally, but their arguments (and 
return value) are passed under a copy semantics: only copies of their values are 
t ransmit ted. 

A v a l o n / C + + servers, once started, can persist indefinitely. Support is provided by 
the underlying system to restart the server process and restore relevant portions 
of its s tate in the event of a failure. This functionality provides the programmer 
with a limited model of persistence, allowing da ta to survive so long as the server is 
existent and its internal da ta organization remains constant. Another restriction, not 
characteristic of other systems we have seen, is that the persistent objects cannot be 
shared among multiple applications. While many different clients to the server can 
be written, those clients cannot get direct access to the data , which is protected by 
the server. 

The "persistent store" in Ava lon /C++ can be viewed as being distributed across 
multiple servers. The system requires clients to explicitly connect to the servers before 
a t tempting communication with them. Clients have the power to initiate execution 
of servers as well. 

Pervas ion , Dec larat ion , Manipu la t ion and N a m i n g 

A built-in persistent da ta type, recoverable , is provided. Programmers can cre
ate persistent types by defining classes that inherit from recoverable . This scheme 

38 



establishes a dual hierarchy of volatile and persistent classes, similar to the one pro
moted by E. Instances of such persistent types aan only be created by a server 
process. 

Bindings of variable names to persistent values is achieved using the s t a b l e declara
tion. This is identical to E's p e r s i s t e n t form, except that the s t a b l e declaration is 
restricted to the private members of servers . 

As in E, persistent objects are members of their own class hierarchy, and can be 
manipulated by methods for those classes. 

I m p l e m e n t a t i o n 

A v a l o n / C + + uses the Camelot system to provide support for da ta persistence and 
distributed transaction management. Camelot provides a simple, uniform view of 
the persistent store (contiguous sequences of bytes), so no special da ta organization 
optimizations are possible. 

Database -or i en ted t y p e s 

No built-in database-oriented types or constructs are provided. E-style iterators could 
be built out of underlying C + + [Str86, p. 183], but there would no performance im
provement, since there is no underlying primitive system support for that operation. 

T y p e Evolut ion 

A v a i o n / C + + makes no accommodation for the redefinition of persistent da ta types 
in the server. Moreover, various characteristics of the language system make modifi
cations to type (and server) definitions quite inconvenient. When the signature of a 
server is modified, for example, it is important to recompile both the client and the 
server. Regrettably, this constraint cannot be enforced by the language system itself. 

Since persistent da ta is associated with the active server process, it is not possible to 
install a new version of the server (i.e., code and type definitions) and preserve the 
associated (persistent) da ta of the replaced version. 

Transact ions 

Camelot supports a number of advanced transaction features, including nested and 
distributed transactions. This functionality is exported to A v a l o n / C + + users. Syn
tactic forms are provided to create, commit, and abort nested and top-level transac
tions. Distributed transactions are supported transparently by the system. 

C o n c u r r e n c y and Sharing 

Light-weight concurrency is implicit within servers. Every server request, i.e., call 
to server (method) function from a client, is run as its own process. Multiple light
weight processes can also be explicitly initiated using the c o s t a r t form. Optimistic 
and pessimistic locking protocols (atomic and dynamic atomicity) are supported. 

39 



Data persistence is provided, but only in concert with a notion of persistent process. 
Data associated with a server persists as long as the server instance does. If the server 
is replaced (by a revised version), the associated data is lost. Unlike the persistent pro-
gramming languages discussed previously, the data persisting in Avalon/C++ is protected 
by the server, and can thus not be directly shared by multiple applications. By contrast, 
persistent values can be shared by applications in E, which does not partition the dataspace. 

8.2 S o u r c e s 

[HW87] Maurice P. Herlihy and Jeannette M. Wing. Avalon: Language Support for 
Reliable Distributed Systems. In Proceedings of the Seventeenth International 
Symposium on Fault-Tolerant Computing. IEEE, July 1987. 

[DHW88] David Detlefs, Maurice P. Herlihy, and Jeannette M. Wing. Inheritance of 
Synchronization/Recovery Properties in Ava lon /C++ . Computer, 21(12), De
cember 1988. 

[WHC+91] Jeannet te Wing, Maurice Herlihy, Stewart Clamen, David Detlefs, Karen Ki-
etske, Richard Lerner, and Su Yuen Ling. The Avalon language. In Jeffrey L. 
Eppinger, Lily B. Mummert , and Alfred Z. Spector, editors, Camelot and 
Avalon: A Distributed Transaction Facility, The Morgan Kaufmann Series in 
Data Management Systems. Morgan Kaufmann Publishers, Inc., San Mateo, 
California, February 1991. 

Other References 

[WHC+88] Jeannet te Wing, Maurice Herlihy, Stewart Clamen, David Detlefs, Karen Ki-
etske, Richard Lerner, and Su Yuen Ling. The A v a l o n / C + + programming 
language (version 0). Technical Report CMU-CS-88-209, Carnegie Mellon Uni
versity School of Computer Science, December 1988. 

Technical report version of material found in [ W H C + 9 1 ] . 

40 



9 Ava lon /Common Lisp 

Avalon/Common Lisp is a prototype system developed to investigate how some of the 
characteristic features of Avalon/C++ could be integrated into a drastically different base 
language, such as Common Lisp [Ste90]. It is included here because of my intimate associ
ation with the system. 

9 .1 I s s u e s 

M o d e l , Pervas ion and Manipula t ion 

Avalon/Common Lisp presents the following model of computation. The system is 
made up by a distributed set of evaluators , each a distinct Common Lisp process. 
Users can establish connections between their initial evaluator and others, and pass 
expressions over these connections, where they will be evaluated by the remote eval
uation service. Many evaluators have an associated persistent store, on which may 
be stored objects that are guaranteed to survive hardware failure. 

Avalon/Common Lisp provides transparent access to the objects in the persistent 
store; there are no explicit routines to import or export objects. Although the ini
tial design of the system called for uniform manipulation of volatile and persistent 
instances, this was never achieved. Operations for the persistent base types (e.g., 
p a i r s and v e c t o r s ) are provided, as well as for persistent instances of user-defined 
s t r u c t u r e s . 

Almost all of the Common Lisp da ta types admit persistent instances, the most no
table exception being the f u n c t i o n type. As a result, persistent code is not supported. 

In a manner reminiscent of Amber (p. 23), universal operators are provided that 
create a volatile da ta type instance from its corresponding persistent instance, and 
vice versa. These operations have copy semantics. 

Declarat ion and Addres s ing 

Similar to E and A v a l o n / C + + , Avalon/Common Lisp provides a construct to declare 
persistent variable bindings. The form, d e f p e r s i s t e n t , is an extension of the Com
mon Lisp def var form, declaring the variable and providing a default binding if a 
previous (persistent) value is not present. 

I m p l e m e n t a t i o n 

Like A v a l o n / C + + , Avalon/Common Lisp relies on the Camelot system for persis
tent and transaction management. The persistent heap is managed by a Camelot 
server. This design made Avalon/Common Lisp operations on the persistent store 
particularly expensive, an acknowledged serious deficiency of the system. [CLNW90b] 

41 



Transact ions , Concurrency and Sharing 

The underlying support for distributed, nested transactions tha t is supported by the 
Camelot system is provided to the Avalon/Common Lisp user in an explicit manner. 
Special forms are supplied to begin new or nested transactions. As in Galileo, normal 
evaluation of the transaction expression commits the operation, while an abnormal 
termination of the subcomputation, either by explicit transaction abort or Common 
Lisp exception, results in an abort of the operation. 

Avalon/Common Lisp was designed as a distributed programming system, but the 
realization of this goal was limited in a number of serious ways. The lack of light
weight concurrency within the base Common Lisp implementation prevented the 
Avalon/Common Lisp designers from supporting local concurrency. 

Addi t iona l C o m m e n t s 

Avalon/Common Lisp's most distinguishing feature is its support for r e m o t e eval
uat ion, which allowed the migration of sub computations to non-local servers. The 
transmission of all Common Lisp types to remote evaluators is supported, and shar
ing within objects passed as part of the remote evaluation expression is preserved. 
Although similar to remote procedure call, remote evaluation provides the ability to 
coalesce a number of R P C invocations into one. 

The lack of concurrency makes Avalon/Common Lisp practically unusable. Camelot was 
also a problem: its data model, which is C-based, is quite different from that required by 
Common Lisp, making access to the persistent store quote expensive, and making garbage 
collection of the store impractical. 

The unification of the type system (i.e., unifying volatile and persistent types) could 
have been achieved eventually, removing a considerable amount of the awkwardness present 
in the current implementation. 

9 .2 S o u r c e s 

[CLNW90a] Stewart M. Clamen, Linda D. Leibengood, Scott M. Nettles, and Jeannet te M. 
Wing. Reliable distributed computing with Avalon/Common Lisp. In Proceed-
ings of the International Conference on Computer Languages, New Orleans, 
LA, March 1990. Insti tute of Electrical and Electronic Engineers Computer 
Society. Also available as Carnegie Mellon School of Computer Science Tech 
Report # CMU-CS-89-186; also an extended abstract appears as 79An overview 
of Avalon/Common Lisp," in the Proceedings of the Third Workshop on Large 
Grained Parallel Programming (Pittsburgh, PA, October 10-11, 1989). 

An overview of the features and characteristics of Avalon/Common Lisp. 

42 



Secondary Sources 

[Cla89] Stewart M. Clamen. Towards Avalon/Common Lisp: Remote Lisp evaluation. 
Avalon Note 14, Carnegie Mellon University School of Computer Science, 1989. 

• Introduces and defines the concept of remote evaluation for Avalon/Common 
Lisp. 

[CLNW90c] Stewart M. Clamen, Linda D. Leibengood, Scott N. Nettles, and Jeannette M. 
Wing. A programmer's guide to Avalon/Common Lisp. Avalon Note 15, 
Carnegie Mellon University School of Computer Science, 1990. 

Describes the features and programming idioms for Avalon/Common Lisp. 

[CLNW90b] Stewart M. Clamen, Linda D. Leibengood, Scott N. Nettles, and Jeannette M. 
Wing. Assessment of the Avalon/Common Lisp implementation. Avalon 
Note 16, Carnegie Mellon University School of Computer Science, 1990. 

An Avalon/Common Lisp post-mortem, analyzing the final state of the pro
totype system. 

43 



10 Noteworthy Projects and Publications 

1 0 . 1 R e l a t e d W o r k 

Below are brief descriptions of some additional persistent programming and systems. They 
were not included in the main body of the survey for one of two reasons: either they did not 
differ significantly from the highlighted languages, or there was a lack of research material 
available. 

Taxis 

Supports semantic da ta modeling using type inheritance. Represents an a t tempt 
at providing richer da ta semantics without resorting to an applicative programming 
language. [MBW80] 

M o d u l a / R 

Successor to Pascal /R. [AB87] 

D B P L 

Successor to Modula /R. [SM83] 

P L A I N 
Similar to Pascal /R but with some additional features, including exception handling, 
aggregate operations over sets or sequences in addition to relations (unlike Pascal /R 
which restricted aggregate operations to relations.) [WSK+81, AB87] 

A r g u s 

A CLU-based language developed by Liskov et. al for reliable, distributed applica
tions. Distribution is based on the client-server model, using remote procedure calls 
for communication, and persistence takes the form of resilient da ta and bindings in 
the presence of hardware failure. As in A v a l o n / C + + , however, da ta is wedded to the 
server it is associated with: da ta cannot be passed out by a server (server handlers 
are call-by-value), and persists only while the server is existent. [LDH+87] 

In an effort to cope with the need for schema evolution, Bloom developed a system 
for replacing modules and transforming persistent da ta in Argus. [Blo83] 

O M 
A persistent object system extension to T (a Yale dialect of Scheme), running on top 
of the Apollo DOMAIN system, done as a doctoral thesis project. The da ta model 
is centered around the persistent heap, a new type of object in which objects can be 
created and manipulated. The author is primarily concerned with accessibility and 
ease of programming, and as a result, ignores all reliability issues. Concurrent access 

44 



to heaps is supported by explicitly importing the DOMAIN system synchronization 
routines into T, and expecting the programmer to handle possible conflicts himself. 
[Mis84] 

P o l y and P o l y / M L 

Developed at Cambridge by Matthews [Mat85, Mat86], Poly is a general purpose 
programming language, with an execution model similar to ML, but with a different 
type system. The Poly/ML systems supports both Poly and ML "under the same 
roof", the two languages sharing a compiler back-end. Poly was initially designed 
to support persistence, and the Poly/ML system supports a persistent programming 
environment with an emphasis on transparency. The result is a system similar to that 
of Galileo [ A C 0 8 5 ] , but with some of the restrictions of PS-Algol [ABC+83] . Poly 
is an interactive language, and, like Galileo, the entire workspace of the user persists 
across sessions. Unreferenced objects are eventually garbage collected. Modified (and 
new) objects are written back into the database at the end of the interactive session 
(or when the commit operation is called) . In a method similar to PS-Algol, the 
database is divided at the abstract level into files. One significant improvement over 
PS-Algol is that cross-file references are supported. However, Poly still possesses one 
of PS-Algol's major shortcomings: primitive support for concurrent database access. 
There are no transactions; instead, shared database files are opened read-only, and 
any modification to the objects retrieved from that file do not persist. [This is where 
the principle of transparency breaks down.] Rather than expose the user to locking, 
locks are automatically assigned at the database file level. [Mat89, Mat87] 

SOS 

A distributed operating system developed by Shapiro et. al. at INRIA. C + + was 
extended to support a number of features, including object migration and persistence. 
Their extensions present a simple view of persistent store, providing only a single 
level of naming, and viewing the process of importing a value from the store as the 
migration of the object from a server (i.e., one managing the store) to the client. 
Unlike E and A v a l o n / C + + there is no support for persistent binding. [SGM89] 

O b s e r v e r and E N C O R E 

A Brown project. ObServer is the typeless object-oriented database system and EN
CORE the more semantically-oriented system on top of it. ObServer was written 
general enough to be used by a number of systems requiring database semantics 
without any associated programming language features (which are supported in EN
CORE) . In fact, a persistent programming environment, GARDEN, is written on top 
of ObServer. [Rei86, HZ87] 

45 



O R I O N 
A system out of MCC, motivated by interest in building a multimedia development 
systems. Is distinguished by its extensive support for type evolution, which allows 
entensive changes to the schema, automatically adjusting the database objects to 
compensate. Also spurred some work on query optimization. [WK87, KBC+87, 
KBCG89, KGBW90] 

A V A N C E 
An object-oriented, distributed database programming language. Its most interesting 
feature was the presence of system-level version control, which is used to support 
schema evolution, system-level versioning (as a way of improving concurrency), and 
objects with their own notion of history. System consists of programming language 
(PAL) and distributed persistent object manager. An ambitious project, AVANCE 
was unfortunately never completed. [BB88, BH89] 

M N E M E 
A new project to develop a robust object-oriented database system. Current plans 
exist to use support Modula3 and Smalltalk as base languages, but much of the 
published work so far deals with the persistent object system. This platform is 
noteworthy as one of its goals is to be essentially free from the language-specific 
semantics and to be sympathetic to the needs of the range of design applications. 
[MS88, Mos89, HMB90, Mos90] 

G E S T A L T 
A functional database system. Old versions of objects persist indefinitely, and can 
always (modulo tape archival) be retrieved. [HN88] 

Machiavel l i 

A new statically-typed persistent language being developed at Penn. [OBBT89] 

Per log 

Persistent Prolog. [Mof87] 

46 



1 0 . 2 P r o c e e d i n g s , C o l l e c t i o n s , a n d S u r v e y s 

There are a number of conference proceedings, book collections, and surveys that the reader 
might find an interest in, including: 

[AB87] Malcolm P. Atkinson and 0 . Peter Buneman. Types and persistence in 
database programming languages. ACM Computing Surveys, 19(2):105-190, 
June 1987. 

An extensive survey about persistence and their type systems. Identifies four 
typical operations that should be able to be easily performed in a database pro
gramming language, and then evaluates various existing database and (early) 
persistent programming against them. Includes only scant information on 
object-oriented language efforts. 

[ABM85] M. P. Atkinson, 0 . P. Buneman, and R. Morrison, editors. Proceedings of 
the Persistence and Data Type Workshop, Appin, Scotland, August 1985. 
Springer-Verlag. Published as PPRG Persistent Programming Research Re
port 16, and redone as [AB88]. 

The first of four conferences on persistent programming languages and the 
underlying persistent object managers. Features early papers on PS-Algol, and 
Galileo, among other languages and systems. 

[AB88] Malcolm P. Atkinson and 0 . Peter Buneman. Data Types and Persistence. 
Topics in Information Systems. Springer-Verlag, 1988. Based on the proceed
ings of the First Appin Workshop, which appeared as PPRG Persistent Pro
gramming Research Report 16. 

[CC87] Ray Carrick and Richard Cooper, editors. A Workshop on Persistent Object 
Systems: Their Design, Implementation and Use, North Haugh, St. Andrews 
KY16 9SS, UK, August 1987. University of St. Andrews, Department of Com
putational Science. Persistent Programming Research Report 44. 

Includes papers on Napier, EXODUS, GemStone, and other persistent lan
guages and object systems. 

[Ros89] John Rosenberg, editor. Proceedings of the Third Workshop on Persistent 
Object Systems: Their Design, Implementation and Use, Newcastle, Australia, 
January 1989. The University of Newcastle. 

Includes papers on Napier, and E, as well as some describing new project 
efforts that I have not mentioned. 

47 



[DSZ91] Alan Dearie, Gail M. Shaw, and Stan Zdonik, editors. Implementing Persisteng 
Object Bases: Principles and Practice: The Fourth International Workshop on 
Persistent Object Systems. Da ta Management Series. Morgan Kaufmann, San 
Mateo, CA, 1991. 

[SW87] Bruce D. Shriver and Peter Wegner. Research Directions in Object-Oriented 
Programming. MIT Press Series in Computer Systems. MIT Press, Cambridge, 
MA, 1987. 

A collection of papers from contemporary research projects concerned with 
object-oriented languages. One section dealing with persistent and database 
issues, including [Bee87, SZ87, MS87]. 

[Dit88] K.R. Dittrich, editor. Advances in Object-Oriented Database Systems, vol
ume 334 of Lecture Notes in Computer Science, Ebernburg, West Germany, 
September 1988. Springer-Verlag. 

Produced from the proceedings of the Second International Workshop on 
Object-Oriented Systems (1988). Includes papers on a host of object-oriented 
database systems that appear few other places in the literature. Some of the 
projects are programming languages extended for database applications, such 
as OPAL, while others are totally redesigned database systems based on object-
oriented principles. 

[OOP86] Proceedings of the ACM Conference on Objected-Oriented Programming: Sys
tems, Languages and Applications (OOPSLA), Portland, OR, September 1986. 

Includes a track on object-oriented database systems. 

[OOP87] Proceedings of the ACM Conference on Objected-Oriented Programming: Sys
tems, Languages and Applications (OOPSLA), Orlando, FL, September 1987. 

Includes a trade on object-oriented database systems. 

[ZM90] Stanley B. Zdonik and David Maier, editors. Readings in Object-Oriented 
Database Systems. Data Management Series. Morgan Kaufmann, San Mateo, 
CA, 1990. 

A collection of republished papers dealing with the principle and background 
issues necessary for the building of a object-oriented database programming 
language. Includes a number of the papers cited in this survey, including 
[CAC+84, A B C + 8 3 , A C 0 8 5 , CDG+90, MS87, HZ87] . 

48 



[Kim90] Won Kim. Introduction to Object-Oriented Databases. Computer Systems. 
MIT Press, Cambridge, MA, 1990. 

A book by the leader of the ORION project, discussing many of the issues 
involved in the design of a database programming language. 



References 
[AB87] 

[AB88] 

[ABC+83] 

[ABM85] 

[ACC82] 

[ACC83] 

[ACCM83] 

[AC085] 

[ACPP89] 

[AGOP88] 

[AM84] 

Malcolm P. Atkinson and 0 . Peter Buneman. Types and persistence in 
database programming languages. ACM Computing Surveys, 19(2):105-190, 
June 1987. 

Malcolm P. Atkinson and 0 . Peter Buneman. Data Types and Persistence. 
Topics in Information Systems. Springer-Verlag, 1988. Based on the proceed
ings of the First Appin Workshop, which appeared as PPRG Persistent Pro
gramming Research Report 16. 

M.P. Atkinson, P.J. Bailey, K.J. Chisolm, W.P. Cockshott, and R. Morrison. 
An approach to persistent programming. Computer Journal, 26(4):360-365, 
1983. Reprinted in ZdonikMaier90-Readings[ZM90]. 

M. P. Atkinson, 0 . P. Buneman, and R. Morrison, editors. Proceedings of 
the Persistence and Data Type Workshop, Appin, Scotland, August 1985. 
Springer-Verlag. Published as PPRG Persistent Programming Research Re
port 16, and redone as [AB88]. 

Malcolm Atkinson, Ken Chilsholm, and Paul Cockshott. PS-Algol: An Algol 
with a persistent heap. ACM SIGPLAN Notices, 17(7):24-31, July 1982. 

M.P. Atkinson, K.J. Chilsholm, and W.P. Cockshott. CMS — a chunk man
agement system. Software - Practice and Experience, 13:273-285, 1983. 

M.P. Atkinson, K.J. Chilsholm, W.P. Cockshott, and R.M. Marshall. Algo
rithms for a persistent heap. Software - Practice and Experience, 13:259-271, 
1983. 

Antonio Albano, Luca Cardelli, and Renzo Orsini. Galileo: A strongly-typed, 
interactive conceptual language. A CM Transactions on Database Systems, 
10(2):230-260, June 1985. Reprinted in ZdonikMaier90-Readings[ZM90]. 

Martin Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon D. Plotkin. 
Dynamic typing in a statically typed language. Research Report 47, DEC 
Systems Research Center, Palo Alto, California, June 1989. 

A. Albano, F . Giannotti , R. Orsini, and D Pedreschi. The type system of 
Galileo. In Atkinson and Buneman [AB88], chapter 8, pages 101-199. Based 
on the proceedings of the First Appin Workshop, which appeared as PPRG 
Persistent Programming Research Report 16. 

Malcolm P. Atkinson and Ronald Morrison. Persistent first class procedures 
are enough. In Proceedings of the Fourth Conference of Software Technology 
and Theoretical Computer Science, volume 181 of Lecture Notes in Computer 
Science, pages 223-240. Springer-Verlag, Berlin, December 1984. 

50 



[AM85] Malcolm P. Atkinson and Ronald Morrison. Procedures as persistent da ta ob
jects. ACM Transactions on Programming Languages and Systems, 7(4):539-
559, October 1985. 

[AM87] Malcolm P. Atkinson and Ronald Morrison. Polymorphic names, types, con
stancy and magic in a type secure persistent object store. In Carrick and 
Cooper [CC87], pages 1-12. Persistent Programming Research Report 44. 

[AU79] A.V. Aho and J.D. Ullman. Universality of da ta retrieval languages. In Pro
ceedings of the Annual ACM Symposium on Principles of Programming Lan
guages, pages 110-120, New York, 1979. ACM. 

[BB88] Anders Bjornerstedt and Stefan Britts. AVANCE: An object management 
system. In Proceedings of the ACM Conference on Objected-Oriented Pro
gramming: Systems, Languages and Applications (OOPSLA), pages 206-221, 
San Diego, CA, September 1988. 

[Bee87] David Beech. Groundwork for an object database model. In Shriver and 
Wegner [SW87], pages 317-354. 

[BH89] Anders Bjornerstedt and Christer Hulten. Version control in an object-oriented 
architecture. In Kim and Lochovsky [KL89], chapter 18. 

[Blo83] Toby Bloom. Dynamic module replacement in a distributed programming sys
tem. Technical Report MIT/LCS/TR-303 , Massachusetts Institute of Tech
nology, Cambridge, MA, March 1983. Thesis (Ph.D.) . 

[BMO + 89] Robert Bretl, David Maier, Allen Otis, Jason Penney, Bruce Schuchardt, Ja
cob Stein, E. Harold Williams, and Monty Williams. The GemStone data 
management system. In Kim and Lochovsky [KL89], chapter 12. 

[BZ81] M.L. Brodie and S.N. Zilles, editors. Proceedings Workshop on Data Abstrac
tion, Data Bases, and Conceptual Modelling, 1981. ACM SIGMOD Special 
Issue 11,2. 

[CAC+84] W.P. Cockshott, M.P. Atkinson, K.J. Chilsholm, P.J. Bailey, and Morrison R. 
Persistent objected management system. Software - Practice and Experience, 
14:49-71, 1984. Reprinted in ZdonikMaier90-Readings[ZM90]. 

[CADA87] R.L. Cooper, M.P. Atkinson, A. Dearie, and D. Abderrahmane. Constructing 
database systems in a persistent environment. In Pirot te and Vassiliov [PV87], 
pages 117-125. 

[Car86a] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard 
Robinet, editors, Combinators and Functional Programming Languages, vol
ume 242 of Lecture Notes in Computer Science, pages 48-70. Springer-Verlag, 
Berlin, 1986. 

51 



[Car86b] Luca Cardelli. The Amber machine. In Guy Cousineau, Pierre-Louis Curien, 
and Bernard Robinet, editors, Combinators and Functional Programming 
Languages, volume 242 of Lecture Notes in Computer Science, pages 1-27. 
Springer-Verlag, Berlin, 1986. 

[CC87] Ray Carrick and Richard Cooper, editors. A Workshop on Persistent Object 
Systems: Their Design, Implementation and Use, North Haugh, St. Andrews 
KY16 9SS, UK, August 1987. University of St. Andrews, Department of Com
putational Science. Persistent Programming Research Report 44. 

[CDG+90] Michael J. Carey, David J. DeWitt , Goetz Graefe, David M. Haight, Joel E. 
Richardson, Daniel T. Schuh, Eugene J. Skekita, and Scott L. Vandenberg. 
The EXODUS extensible DBMS project: An overview. In Zdonik and Maier 
[ZM90]. Also available as WISC-CS-TR 808. 

[CDRS86] Michael J. Carey, David J. DeWitt , Joel E. Richardson, and Eugene J. Skekita. 
Object and file management in the EXODUS extensible database system. In 
Yahiko Kambayash, editor, Proceedings of the Twelveth International Con
ference on Very Large Data Bases, pages 91-100, Kyoto, August 1986. Very 
Large Da ta Base Endowment. 

[CDV88] Michael J. Carey, David J. DeWitt , and Scott L. Vandenberg. A da ta model 
and query language for EXODUS. In Proceedings of the SIGMOD Interna
tional Conference on Management of Data, pages 413-423, Chicago, IL, June 
1988. Also available as WISC-CS-TR 734. 

[Cla89] Stewart M. Clamen. Towards Avalon/Common Lisp: Remote Lisp evaluation. 
Avalon Note 14, Carnegie Mellon University School of Computer Science, 1989. 

[CLNW90a] Stewart M. Clamen, Linda D. Leibengood, Scott M. Nettles, and Jeannet te M. 
Wing. Reliable distributed computing with Avalon/Common Lisp. In Proceed
ings of the International Conference on Computer Languages, New Orleans, 
LA, March 1990. Insti tute of Electrical and Electronic Engineers Computer 
Society. Also available as Carnegie Mellon School of Computer Science Tech 
Report # CMU-CS-89-186; also an extended abstract appears as "An overview 
of Avalon/Common Lisp," in the Proceedings of the Third Workshop on Large 
Grained Parallel Programming (Pittsburgh, PA, October 10-11, 1989). 

[CLNW90b] Stewart M. Clamen, Linda D. Leibengood, Scott N. Nettles, and Jeannet te M. 
Wing. Assessment of the Avalon/Common Lisp implementation. Avalon 
Note 16, Carnegie Mellon University School of Computer Science, 1990. 

[CLNW90c] Stewart M. Clamen, Linda D. Leibengood, Scott N. Nettles, and Jeannet te M. 
Wing. A programmer's guide to Avalon/Common Lisp. Avalon Note 15, 
Carnegie Mellon University School of Computer Science, 1990. 

52 



[CM88] Luca Cardelli and David MacQueen. Persistence and type abstraction. In 
Atkinson and Buneman [AB88], chapter 3, pages 31-42. Based on the pro
ceedings of the First Appin Workshop, which appeared as PPRG Persistent 
Programming Research Report 16. 

[Coc83] William Paul Cockshott. Orthogonal Persistence. PhD thesis, University of 
Edinburgh, February 1983. Published as Edinburgh TR CST-21-83. 

[Col82] R. Cole, A. J.; Morrison. An Introduction to Programming with S-algol. Cam
bridge University Press, 1982. 

[Dat81] C.J. Date. An Introduction to Database Systems, volume 1. Addison-Wesley, 
Reading, MA, 4th edition, 1981. 

[Dat87] C.J. Date. A Guide to Ingres. Addison-Wesley, Reading, MA, 1987. 

[DB88] A. Dearie and A.L. Brown. Safe browsing in a strongly typed persistent lan
guage. Computer Journal, 31(6):540-544, December 1988. 

[Dea89] Alan Dearie. Environments: A flexible binding mechanism to support system 
evolution. In Shriver [Shr89], pages 46-55. 

[DHW88] David Detlefs, Maurice P. Herlihy, and Jeannette M. Wing. Inheritance of 
Synchronization/Recovery Properties in A v a l o n / C + + . Computer, 21(12), De
cember 1988. 

[Dit88] K.R. Dittrich, editor. Advances in Object-Oriented Database Systems, vol
ume 334 of Lecture Notes in Computer Science, Ebernburg, West Germany, 
September 1988. Springer-Verlag. 

[DSZ91] Alan Dearie, Gail M. Shaw, and Stan Zdonik, editors. Implementing Persisteng 
Object Bases: Principles and Practice: The Fourth International Workshop on 
Persistent Object Systems. Data Management Series. Morgan Kaufmann, San 
Mateo, CA, 1991. 

[Ghe85] G. Ghelli. La gestione della persistenza dei valori nel linguaggio Galileo. 
Scienze delVInformazione, 1985. 

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Im
plementation. Addison-Wesley, 1983. 

[Har90] Robin Milner; Mads Tofte; Robert Harper. The Definition of Standard ML. 
MIT Press, Cambridge, MA, 1990. 

[HMB90] Antony L. Hosking, J. Eliot B. Moss, and Cynthia Bliss. Design of an object 
faulting persistent Smalltalk. Submitted to OOPSLA/ECOOP 90, 1990. 

53 



[HN88] Michael L. Heytens and Rishiyur S. Nikhil. GESTALT: An expressive database 
programming system. SIGMOD Record, 18(l):54-67, March 1988. 

[HSS89] William H. Harrison, John J. Shilling, and Peter F . Sweeney. Good news, 
bad news: Experience building a software development environment using the 

• object-oriented paradigm. In OOPSLA89 [OOP89], pages 85-94. 

[HW87] Maurice P. Herlihy and Jeannette M. Wing. Avalon: Language Support for 
Reliable Distributed Systems. In Proceedings of the Seventeenth International 
Symposium on Fault-Tolerant Computing. IEEE, July 1987. 

[HZ87] Mark F . Hornick and Stanley B. Zdonik. A shared, segmented memory system 
for an object-oriented database. ACM Transactions on Office Information Sys
tems, 5( l ) :70-95, January 1987. Reprinted in ZdonikMaier90-Readings[ZM90]. 

[KBC+87] Won Kim, Jay Banerjee, Hong-Tai Chou, Jorge F . Garza, and Darrell Woelk. 
Composite object support in an object-oriented database system. In 0 0 P -
SLA87 [OOP87], pages 118-125. 

[KBCG89] Won Kim, Nat Ballou, Hong-Tai Chou, and Darrell Garza, Jorge F . Woelk. 
Features of the ORION object-oriented database system. In Kim and Lo-
chovsky [KL89], chapter 11. 

[KGBW90] W. Kim, J .F . Garza, N. Ballou, and D. Woelk. Architecture of the orion 
next-generation database system. IEEE Transactions on Knowledge and Data 
Engineering, 2(l) :109-24, March 1990. 

[Kim90] Won Kim. Introduction to Object-Oriented Databases. Computer Systems. 
MIT Press, Cambridge, MA, 1990. 

[KL89] Won. Kim and Frederick H. Lochovsky, editors. Object-Oriented Concepts, 
Databases and Applications. Addison-Wesley, Reading, MA, 1989. 

[LAB+81] B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, R. Scheifler, and 
A. Snyder. CLU Reference Manual. Springer-Verlag, 1981. 

[LDH+87] B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens, R. Scheifler, and 
W. Weihl. Argus Reference Manual. Technical Report TR-400, MIT Labora
tory for Computer Science, Cambridge, MA, November 1987. 

[Mat85] David C. J. Matthews. Poly manual. ACM SIGPLAN Notices, 20(9):52-76, 
September 1985. Also available as University of Cambridge Computer Lab TR 
#63. 

[Mat86] David C.J. Matthews. An overview of the poly programming language. Tech
nical Report 99, University of Cambridge Computer Laboratory, Cambridge, 
UK, November 1986. 

54 



[Mat87] David C . J . Mathews. A persistent storage system for Poly and ML. Technical 
Report 102, University of Cambridge, Cambridge, UK, January 1987. Also 
published as pa r t of [Mat89]. 

[Mat89] David C.J. Matthews. Papers on poly/ml. Technical Report 161, Univer
sity of Cambridge Computer Laboratory, Cambridge, UK, February 1989. A 
collection of previously written papers and research documents on Poly and 
Poly/ML, some of which are available individually. 

[MBC+88] R. Morrison, A.L. Brown, R. Carrick, R. Conner, and A. Dearie. On the 
integration of object-oriented and process-oriented computation in persistent 
environments. In Dittrich [Dit88], pages 334-339. 

[MBC + 89a] R. Morrison, A. Brown, R. Carrick, R. Connor, A. Dearie, and M.P. Atkinson. 
The napier type system. In Rosenberg [Ros89], pages 253-269. 

[MBC + 89b] R. Morrison, A.L. Brown, R. Carrick, R. Connor, A. Dearie, M.J. Livesey, C.J. 
Barter, and A.J. Hurst. Language-design issues in supporting process-oriented 
computation in persistent environments. In Shriver [Shr89], pages 736-744. 

[MBW80] J. Mylopoulos, P.A. Bernstein, and H.K.T. Wong. A language facility for de
signing database intensive applications. ACM Transactions on Database Sys
tems, 5(2):185-207, June 1980. Reprinted in ZdonikMaier90-Readings[ZM90]. 

[Mis84] Nathaniel Mishkin. Managing persistent objects. Research Report 338, Yale 
University, New Haven, Conn., 1984. Adapted from PhD Thesis. 

[MK84] D. McCleod and R. King. Semantics database models. In S.B. Yao, editor, 
Principles of Database Design. Prentice-Hall, 1984. 

[Mof87] D. Moffat. Modular requirements in persistent prolog. In Carrick and Cooper 
[CC87], pages 68-77. Persistent Programming Research Report 44. 

[Mor79] R. Morrison. S-algol language reference manual. Technical Report C S / 7 9 / 1 , 
University of St. Andrews, 1979. 

[Mos89] B. Moss, J. Eliot. The Mneme peristence object store. C O I N S T E C H N I C A L 

R E P O R T 89-107, University of Massachusetts, Amherst , MA, October 1989. 

[Mos90] B. Moss, J. Eliot. Working with persistent objects: To swizzle or not to swiz
zle. C O I N S T E C H N I C A L R E P O R T 90-38, University of Massachusetts, Amherst, 
MA, May 1990. 

[MS86] David Maier and Jacob Stein. Indexing in an object-oriented DBMS. In 
Klaus R. Dittrich and Umeshwar. Dayal, editors, Proceedings of the 1986 In
ternational Workshop on Object-Oriented Database Systems, pages 444-452, 
Pacific Grove, CA, September 1986. Institute of Electrical and Electronic En
gineers. 

55 



[MS87] David Maier and Jacob Stein. Development and implementation of an object-
oriented DBMS. In Shriver and Wegner [SW87], pages 355-392. 

[MS88] J. Eliot B. Moss and Steven Sinofsky. Managing persistent da ta with Mneme: 
Designing a reliable, shared object interface. In Dittrich [Dit88], pages 298-
316. 

[MSOP86] David Maier, Jacob Stein, Allen Otis, and Alan Purdy. Development of an 
object-oriented DBMS. In OOPSLA86 [OOP86], pages 472-482. 

[OBBT89] Atsusi Ohori, Peter Buneman, and Val Breazu-Tannen. Database program
ming in Machiavelli - a polymorphic language with static type inference. 
In Proceedings of the SIGMOD International Conference on Management of 
Data, pages 46-57, Portland, OR, May 1989. 

[OOP86] Proceedings of the ACM Conference on Objected-Oriented Programming: Sys
tems, Languages and Applications (OOPSLA), Portland, OR, September 1986. 

[OOP87] Proceedings of the ACM Conference on Objected-Oriented Programming: Sys
tems, Languages and Applications (OOPSLA), Orlando, FL, September 1987. 

[OOP89] Proceedings of the ACM Conference on Objected-Oriented Programming: Sys
tems, Languages and Applications (OOPSLA), New Orleans, LA, October 
1989. 

[Phi87] P. Philbrow. Associative storage and retrieval: Some language design issues. In 
Carrick and Cooper [CC87], pages 226-232. Persistent Programming Research 
Report 44. 

[PS87] D. Jason Penney and Jacob Stein. Class modification in the GemStone object-
oriented DBMS. In OOPSLA87 [OOP87], pages 111-117. 

[PSM87a] D. J . Penney, J . Stein, and D. Maier. Is the disk half full or half empty? 
combining optimistic and pessimistic concurrency mechanisms in a shared per
sistent object base. In Carrick and Cooper [CC87], pages 337-345. Persistent 
Programming Research Report 44. 

[PSM87b] Alan Purdy, Bruce Schuchardt, and David Maier. Integrating an object server 
with other worlds. ACM Transactions on Office Information Systems, 5(1):27-
47, January 1987. 

[PV87] A. Pirot te and T. Vassiliov, editors. Proceedings of the Thirteenth International 
Conference on Very Large Data Bases, Brighton, 1987. Very Large Data Base 
Endowment. 

56 



[RC87] Joel E. Richardson and Michael J. Carey. Programming constructs for 
database system implementation in EXODUS. In U. Dayal and I. Traiger, ed
itors, Proceedings of the SIGMOD International Conference on Management 
of Data, pages 208-219, San Francisco, CA, May 1987. 

[RC89a] Joel E. Richardson and Michael J. Carey. Implementing persistence in e. In 
Rosenberg [Ros89], pages 302-319. Republished as pa r t of [RC89b] . 

[RC89b] Joel E. Richardson and Michael J. Carey. Persistence in the E language: Issues 
and implementation. Software - Practice and Experience, 19(12):1115—1150, 
December 1989. 

[RCDS87] J .E. Richardson, M.J. Carey, Dewitt D.J., and D.T. Schuh. Persistence in EX
ODUS. In Carrick and Cooper [CC87], pages 96-113. Persistent Programming 
Research Report 44. 

[Rei86] S.P. Reiss. An object-oriented framework for graphical programming. SIG-
PLAN Notices, 21(10), October 1986. also availabie as BROWN-TR CS-86-17. 

[Ros89] John Rosenberg, editor. Proceedings of the Third Workshop on Persistent 
Object Systems: Their Design, Implementation and Use, Newcastle, Australia, 
January 1989. The University of Newcastle. 

[RWW89] William R. Rosenblatt, Jack C. Wileden, and Alexander L. Wolf. Oros: Toward 
a type model for software development environments. In OOPSLA89 [OOP89], 
pages 297-304. 

[SBD+86] Alfred Z. Spector, Joshua J. Bloch, Dean S. Daniels, Richard P. Draves, Dan 
Duchamp, Jeffrey L. Eppinger, Sherri G. Menees, and Dean S. Thompson. The 
Camelot Project. Database Engineering, 9(4), December 1986. Also available 
as Technical Report CMU-CS-86-166, Carnegie Mellon University, November 
1986. 

[Sch77] J. W. Schmidt. Some high level language constructs for da ta of type relation. 
ACM Transactions on Database Systems, 2(3):247-261, September 1977. 

[SGM89] Marc Shapiro, Phillippe Gautron, and Laurence Mosseri. Persistence and 
migration for C + + objects. In Proceedings of the European Conference on 
Object-Oriented Programming (ECOOP), Lecture Notes in Computer Science, 
Nottingham, UK, July 1989. Springer-Verlag. 

[Shr89] B.D. Shriver, editor. Proceedings of the Twenty-Second Annual Hawaii Inter
national Conference on System Sciences., volume 2: Software Track, Kailua-
Kona, HI, January 1989. Insti tute of Electrical and Electronic Engineers, IEEE 
Computer Society Press. 

57 



[SM83] J .W. Schmidt and M. Mall. Abstraction mechanisms for database program
ming. SIGPLAN Notices, 18(6), June 1983. 

[Ste90] Guy L. Steele, Jr . Common Lisp: The Language. Digital Press, second edition 
edition, 1990. 

[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986. 

[SW87] Bruce D. Shriver and Peter Wegner. Research Directions in Object-Oriented 
Programming. MIT Press Series in Computer Systems. MIT Press, Cambridge, 
MA, 1987. 

[SZ87] Andrea H. Skarra and Stanley B. Zdonik. Type evolution in an object-oriented 
database. In Shriver and Wegner [SW87], pages 393-415. An early version of 
this paper appears in the OOPSLA '86 proceedings. 

[Wai87] F . Wai. Distribution and persistence. In Carrick and Cooper [CC87], pages 
207-225. Persistent Programming Research Report 44. 

[Wai89] F . Wai. Distributed ps-algol. In Rosenberg [Ros89], pages 343-357. 

[WHC+88] Jeannet te Wing, Maurice Herlihy, Stewart Clamen, David Detlefs, Karen Ki-
etske, Richard Lerner, and Su Yuen Ling. The A v a l o n / C + + programming 
language (version 0). Technical Report CMU-CS-88-209, Carnegie Mellon Uni
versity School of Computer Science, December 1988. 

[WHC+91] Jeannet te Wing, Maurice Herlihy, Stewart Clamen, David Detlefs, Karen Ki-
etske, Richard Lerner, and Su Yuen Ling. The Avalon language. In Jeffrey L. 
Eppinger, Lily B. Mummert , and Alfred Z. Spector, editors, Camelot and 
Avalon: A Distributed Transaction Facility, The Morgan Kaufmann Series in 
Da ta Management Systems. Morgan Kaufmann Publishers, Inc., San Mateo, 
California, February 1991. 

[WK87] Darrell Woelk and Won Kim. Multimedia information management in an 
object-oriented database system. In Pirot te and Vassiliov [PV87], pages 319-
329. 

' [WSK+81] A.I. Wasserman, D.D. Shertz, M.L. Kersten, R.P. Reit, and M.D. van de 
Dippe. Revised report on the programming language PLAIN. ACM SIGPLAN 
Notices, 1981. 

[ZM90] Stanley B. Zdonik and David Maier, editors. Readings in Object-Oriented 
Database Systems. Da ta Management Series. Morgan Kaufmann, San Mateo, 
CA, 1990. 

58 



A Persistent Language Features 

The following appendix is a condensation of the information presented in the body of the 
paper. Possible approaches to the various research issues are enumerated, followed by a 
table which categorizes each featured language system accordingly. 

1. C o m m u n i c a t i o n Init ial ization M o d e l 
(Section 2.1.1) 

(a) Single database, implicit initialization. 

(b) Multiple database, explicit file manipulation. 

(c) Multiple database, with default partition definable. 

2. C o m m u n i c a t i o n M o d e l 
(Section 2.1.1) 

(a) Explicit impor t /expor t . Operations to move object from persistent to volatile 
area. 

(b) Fully transparent scheme. Persistent objects automatically imported from per
sistent store on demand. Similar to virtual memory systems. 

(c) Mixed scheme. Mostly transparent access to the da ta in the store with some 
support for locking/concurrency. Transparency is compromised some, since it is 
possible that a request for a persistent value would block. 

3 . Pers i s tent Object Ident i ty 
(Section 2.1.1) 

(a) Yes. Identity is preserved when an object is maintained in the persistent store. 

(b) No. The process of installing a value into the store is not identity-preserving. 

(c) Not applicable. The values that can be maintained in the persistent store are 
too simple to be able to detect identity (i.e., no pointer references). 

4. Pervas ion of Pers i s t ence 
(Section 2.1.2) 

(a) Persistence is universally applied. All objects in the language may persist. (Or
thogonal Persistence) 

(b) Persistence is restricted to instances of certain types. 

(c) Persistence is restricted to a fixed set of type instances. 

59 



5. D e c l a r i n g / D e n o t i n g Pers i s tent Objec t s 
(Section 2.1.3) 

(a) Instances of special types. All instances of special "persistent" types persist, 
although they might not be addressable. An explicit delete operation is provided 
to remove objects from the store. 

(b) Based on GC reachability. Any object reachable from a system-defined persistent 
root will persist. 

(c) All addressable objects persist. This is a special instance of the previous case, 
where the persistent root and the garbage-collection root are the same. 

6. N a m i n g of Pers i s tent Objec t s 
(Section 2.1.4) 

(a) Lexical lookup (e.g., modules, static environments) built into the language. 

(b) Specialized dictionary da ta types to assist in arranging the data . 
(c) Flat , top-level naming (e.g., files, processes, type names). 

(d) Keyed on top-level names. 

7. I m p l e m e n t a t i o n Features 
(Section 2.1.7) 

(a) Page Faulting. Using virtual memory features to reduce cost of detecting per
sistent addresses. 

(b) Clustering. System accepts hints from client regarding reference pat terns , and 
tries to reduce working set by collecting objects. 

(c) Swizzling. Persistent addresses replaced by local ones when object is interned. 
Pays off when object is referenced often while it is in memory. 

(d) Organizing da ta for optimizing queries (a la relational database systems.) 

(e) Index tables. Associative access supported on elements for efficient lookup. 

8. Database -or i en ted T y p e s and Control Forms 
(Section 2.2.2) 

(a) Aggregates (related to addressing). Collections of like-typed objects with func
tions and forms to operate on or search over all of them. 

(b) Index tables. Merely a language-level view of the implementation feature noted 
above. 

(c) Classification. Using the type hierarchy to help organize data . 

60 



9. T y p e Evo lut ion 
(Section 2.1.6) 

(a) Type identity by name; type can be redefined, making old versions inaccessible 
(or worse). [Dynamic Typing] 

(b) New type definition aliases previous one; but old instances (and old type defini
tion) still around. [Static Typing] 

(c) Direct Support for Type Evolution: Emulation 
(d) Direct Support for Type Evolution: Eager Conversion 
(e) Direct Support for Type Evolution: Lazy Conversion 

10. Locking Granulari ty 
(Section 2.2.4) 

(a) On database files 
(b) On pre-defined regions of files 
(c) On objects 
(d) On parts of objects 
(0) None at all 

(-) Locking is automatic. 

(+) Some programmer control over locking is supported. 

11 . Transact ions 
(Section 2.2.3) 

(a) One-per-program 

(b) Transaction blocks (simple transactions only) 
(c) Transaction blocks (simple and nested transactions) 
(0) None 

(-) Transaction management is automatic. 

(+) Programmer control over transaction management is supported. 

12. D i s tr ibut ion 
(Section 2.3) 

• Does the system support distributed computation? 

13. User- leve l Secur i ty 
(Section 2.3) 

• Does the language system provide a method for enforcing personal-level security 
on the objects in the persistent store? 

61 



System/Language 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 

Pascal /R b c n.a. c a d e ab a a- a- no no 
PS-Algol b c yes a b b be a b a - a- no no 
Napier b c yes a b a be b a- a+ no no 
Amber b a no a a c a 0 0 no no 
Galileo a b yes a c da ce abc b 0 c+ no no 
Exodus /E a c yes b a da b a a cd+ b - no no 
GemStone/OPAL a c yes a c b acde abc b e 1 c+? b+ yes yes 
A v a l o n / C + + b c yes 2 b a c a a cd+ c+ yes no 
Avalon/CL a a yes b a a a c- c+ yes no 
INGRES/SQL a c n.a. c a d de ab d c- b+ yes yes 
AVANCE a? c yes b a a 3 c d-? c+ yes no 
n.a.=not applicable 

?=insufficient information in literature 
1 Eager (in current implementation); lazy and eager at GC (ultimately), 
ident i ty is only preserved on the resident server. Objects passed out of a server through 

RPC mechanism are copies. 
3 Arbitrary size restriction on size of aggregates. 

62 



B Relational Database Systems 

Much of the database system effort of the past fifteen years has been in the area of relational 
database systems, so I will include here a short primer on relational database systems from 
the perspective of someone familiar with traditional programming languages. [Materia] 
gleaned from [Dat81].] 

The basic unit of information in relational systems is the record, often called a tuple 
or row. Records are tuples of typed, named fields — also called attributes or columns 
— consisting of primitive values (strings, integers, reals, dates) only. 

Records are stored according to type in unordered collections called tables, which are 
sometimes referred to as relations or files. From a programming language perspective, 
one might view a table as a datatype, and a record as an instance. Figure 1 (p.64), provides 
some table definitions, along with some sample data records. 

Operations on tables generally take the form of queries, retrieving da ta out of existing 
tables and returning new ones. (Sample queries can be seen in Figure 2 (p.65).) There are 
also operations to add and delete records from a table, and to modify the value of a record 
field. A fixed set of aggregate operators — COUNT, SUM, AVG, MIN, and MAX — 
are provided. 

A little bit of nomenclature: a candidate key on a relation is a set of attributes that 
uniquely identify the records of a table — that is, it can never be the case that a relation 
will have two tuples with the same values for those at tr ibutes. In our example, the airline 
(AL) , flight number (NO) , and destination (ARR) attr ibutes are a candidate key for the 
FLIGHTS relation. AL, NO, and origin (DEP) is another. From the set of candidate keys, 
one is arbitrarily chosen as the primary key, and is used by the system as an associative 
address for the tuple. Database programmers are encouraged to declare a primary key, so 
that the database management system (DBMS) can optimize table operations. 

Relational databases have no pointers: references between records are achieved via a 
correspondence between sets of fields. In the second query example in Figure 2 (p.65), 
the AL, D E P , and ARR columns in the FLIGHTS table are used to uniquely identify a row 
in the PRICES table. These attributes constitute a foreign key in the FLIGHTS table for 
the PRICES relation. Formally, a foreign key is an at t r ibute set from one relation that is 
required to match the primary key of some (not necessarily different) relation. 

In a database with large amounts of records, retrieval speed is of primary importance. 
To this end, relational database systems support index tables. Keyed upon by a unique 
subset of a t t r ibute values, usually the primary key 1 , an index provides a method of retrieval 
faster than sequential search, at the expense of some additional bookkeeping requirements 
whenever the table or its records are modified. Usually, the database manager must explic
itly create index tables, specifying the index fields. 

1 An index on a primary key is called a primary index. 

63 



CREATE TABLE FLIGHTS 
( AL 

NO 
DEP 
ARR 
DTIME 
ATIME 

CHAR(2) 
SMALLINT 
CHAR(3) ; 
CHAR(3) ; 
DATE ; 
DATE ) ; 

CREATE TABLE PRICES 
( AL CHAR(2) 

DEP CHAR(3) 
ARR CHAR(3) 
COST MONEY ) 

AL NO DEP ARR DTIME ATIME 
CP 918 YYZ PIT 10:55am 12:00pm 
CP 917 PIT YYZ 12:23pm 1:23pm 
NW 1481 DET PIT 6:25am 7:25am 
NW 1418 PIT DET 7:45am 8:45am 
NW 1421 DET PIT 1:25pm 2:25pra 
NW 1414 PIT DET 2:45pm 3:45pm 
US 709 YUL SYR 11:30am 12:25pm 
US 709 SYR PIT 12:55pm 2:00pm 
us 554 PIT SYR 1:15pm 2:15pm 
us 554 SYR YUL 2:50pm 3:38pm 
us 172 CLE PIT 7:10am 7:51am 
us 317 CLE PIT 8:20am 9:07am 
us 79 PIT CLE 8:45am 9:29am 
us 263 PIT CLE 12:00pm 12:43pm 
us 1769 PIT SYR 8:23pm 9:10pm 

AL DEP ARR COST 
CP PIT YYZ $165.50 
NW DET PIT $175.00 
US CLE PIT $145.50 
US PIT YUL $201.50 
US PIT SYR $159.50 

Figure 1: Definitions of two tables in the SQL database definition language, and associated 
records. 

64 



SELECT AL, NO 
FROM FLIGHTS 
WHERE ARR = 'PIT* 
AND ATIME < '12pm' 
AND ATIME > 'Sam' 

SELECT 
FROM 
WHERE 
AND 

AND 

AND 

FLIGHTS.*, PRICES.COST 
FLIGHTS, PRICES 
FLIGHTS.AL = PRICES.AL 
( FLIGHTS.ARR = PRICES.DEP 
OR FLIGHTS.ARR = PRICES.ARR ) 
( FLIGHTS.DEP = PRICES.DEP 
OR FLIGHTS.DEP = PRICES.ARR ) 
PRICES.COST = 
( SELECT MIN (COST) 

FROM PRICES ) ; 

AL NO DTIME 
NW 1481 7:25am 
US 172 7:51am 
US 317 9:07am 

AL NO DEP ARR PRICE 
US 331 PIT CLE $145.50 
US 332 CLE PIT $145.50 
US 333 PIT CLE $145.50 
US 334 CLE PIT $145.50 

Figure 2: Two sample queries in the flight database: The first asks for all morning flights 
arriving in Pi t tsburgh, while the second asks for the cheapest flight(s) leaving Pit tsburgh. 
(This operation, performing a cross-reference between tables, is called a join.) 

T r a n s a c t i o n s a n d F a u l t - T o l e r a n c e in R e l a t i o n a l D a t a b a s e S y s t e m s 

With the records comprising the database persisting indefinitely, it is important that some 
provision is made to protect the da ta against (hardware or software) faults. Assuming 
for the time being tha t the secondary storage medium (the disk) is trustworthy, we only 
have to worry about the computer crashing while the database system is in the midst of 
performing an update . The abstraction typically used to deal with this problem is the 
transact ion , which guarantees that the operations associated with it will be performed 
atomically — either all the operations within the transaction are performed or none. When 
the subprogram run as a transaction completes, its effects are installed, and the transaction 
is said to have c o m m i t t e d . However, if the subprogram is preventing from committing 
— the machine might have crashed while it was in midst of the computation, for instance 
— the effects are not installed, and the transaction is said to have a b o r t e d . Transactions 
are a powerful mechanism for guaranteeing that the database is always left in a consistent 
state. 

There are a number of ways a system can protect itself against da ta corruption on 
the disk. The most popular methods are repl ication and backup storage. In brief, 
replication involves duplicating the database onto other disks, so da ta corrupted in one 
place can still be retrieved on others. This procedure increases the expense of writing 
to the database, but increases the reliability. Backup involves archiving the database onto 
slower, yet more reliable media, such as tape, from which it can be restored in an emergency. 

65 



Index 
Below is an index of the primary sources 
of the language systems featured in this 
survey: 

[AB87] 47 
[AB88] 47 
[ABC+83] 19 
[ABM85] 47 
[ACC82] 20 
[ACC83] 21 
[ACCM83] 21 
[AC085] 28 
[AGOP88] 28 
[AM84] 20 
[AM85] 19 
[AM87] 21-
[BMO+89] 36 
[CAC+84] 20 
[CC87] 47 
[CDG+90] 33 
[CDRS86] 32 
[CDV88] 32 
[CLNW90a] 42 
[CLNW90b] 43 
[CLNW90c] 43 
[Car86a] 25 
[Car86b] 25 
[Cla89] 43 
[DHW88] 40 
[DSZ91] 47 
[Dea89] 19 
[Dit88] 48 
[Ghe85] 28 
[HW87] 40 
[Kim90] 48 
[MBC+88] 20 
[MBC+89a] 20 
[MBC + 89b] 21 

[MS86] 
[MS87] 
[MSOP86] 
[OOP86] 
[OOP87] 
[PS87] 
[PSM87a] 
[PSM87b] 
[RC87] 
[RC89a] 
[RC89b] 
[RCDS87] 
[Ros89] 
[SW87] 
[WHC+88] 
[WHC+91] 
[ZM90] 

66 


