
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



An Agenda for Research in 

Large-Scale Distributed Data Repositories 
M. Satyanarayanan 

July 1991 

CMU-CS-91-171 7 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Invited Paper for 
Workshop on Operating Systems of the 90s and Beyond 

Dagstuhl Castle, Germany, July 1991 

Abstract 

Access to shared data is provided today by distributed file systems and 
databases. In this paper, we explore certain usage and technological trends that 
will radically change the way shared data is used in the future. The usage trends 
include the growing need to access shared data from anywhere, increasing scale, 
and the increasing importance of efficient search. The technology trends include 
the advent of portable machines, the availability of software and hardware for 
using diverse types of data, and the growing diversity of network speeds and 
capabilities. These trends induce fundamental research problems in the areas of 
adaptive system behavior, secure remote execution and extensibility. 

This work has been supported by the Defense Advanced Research Projects Agency (Avionics Lab, Wright Research and Development Center, 
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio, 45433-6543 under Contract F33615-90-C-1465, ARPA 
Order No. 7597), the National Science Foundation (CCR-8657907), and the IBM Corporation (Research Initiation Grant). The views and 
conclusion expressed in this paper are those of the author, and should not be interpreted as those of the funding agencies or Carnegie Mellon 
University. 



Keywords: Coda, Odyssey, extensibility, secure remote execution, adaptive system behavior, portability, 
efficient search, ubiquitous data access, diverse networks, diverse types of data, scalability 



1 

1. Introduction 
A distributed data repository enables nodes in a distributed system to share information. An ideal 
instance of such a mechanism would be transparent, efficient and ubiquitous, allowing unobtrusive and 
fast access to shared data from anywhere. It would be scalable, allowing graceful expansion in terms of 
number of users, volume of data stored, and geographical area spanned. Even at large scale, the 
mechanism would be secure, reliable and available. Finally, the mechanism would be flexible, placing 
minimal constraints on the kind of information being shared, on the patterns of access to it, and on the 
data model presented to application programs. 

The feasibility of distributed data repositories was explored in the 1980s by many projects in industry and 
academia. Distributed file systems, such as AFS [7] and NFS [5], and distributed databases, such as 
Ingres [9], are examples of present-day distributed data repositories. But although such systems are of 
great utility and commercial significance, they fall far short of the ideal. Research prototypes such as 
Coda [6], Echo [3], Starburst [4], and Postgres [10] come closer to the ideal in some respects. However, 
no system in operation today simultaneously addresses a number of emerging technological and usage 
trends. Some of these trends are already evident, and all of them are certain to be increasingly important 
over the next decade. 

In this paper, we identify these trends and explore their implications for the distributed data repositories 
of the future. By examining these implications in the context of the current state of the art, we induce 
three key research problems: adaptive system behavior, secure remote computation, and extensibility. 
Substantial progress in these research areas is essential if the full potential of distributed data repositories 
is to be realized. 

2. Future Demands 
Two kinds of forces are at work in shaping the evolution of distributed data repositories. First, the way in 
which humans and organizations use data repositories is changing, thereby placing new demands on the 
repositories. Second, advances in hardware and software technologies are providing new opportunities in 
areas hitherto considered infertile. Although these two kinds of forces are interdependent, they are 
sufficently distinct in character that we consider them separately here. 

2,1. Usage Trends 

2.1.1. Accessing data from anywhere 
The ability to conduct business from any location is a necessity in an increasingly mobile world. As 
end-users become more sophisticated and make direct use of data in shared repositories, there will be 
increasing need to widen the span of access of those repositories. Not being able to access necessary data 
at all times will put one at a competitive disadvantage, and will be viewed as unacceptable. Further, as 
the popularity of cellular telephones suggests, there is considerable latent demand for the ability to access 
data without being physically attached to a network. 

A different, but equally compelling, forcing function is the increasing social acceptance of the home (or 
any other location) as a place of work. Although the traditional office environment is unlikely to 
disappear, there are many work-related activities that can be effectively done elsewhere. A CEO writing 

•mversity! Cranes 



2 

a speech for the next shareholders' meeting would probably be better inspired outdoors under a tree! If 
she could easily access relevant data, an investment banker with a young child could be productive even if 
she had to stay at home due to the absence of her babysitter. 

2,1.2. Increasing scale 
There is relentless pressure on successful distributed systems to grow, both in terms of number of users as 
well as number of nodes. It is easy to see why. As the volume of stored data in a shared repository 
grows, it becomes an increasingly valuable resource. At some point in the evolution of the system, access 
to this data is viewed as a necessity rather than a luxury by the user community. There is then 
considerable incentive to allow access to users who were originally outside the scope of the system. 

Increased scale has performance, administrative and economic consequences. The negative impact of 
scale on performance is now well recognized. Algorithms and techniques that work well at small scale 
degenerate in non-obvious ways at large scale. Each quantum increase in scale exposes new ways in 
which the old tricks fail to work. Scale-related performance issues are certain to be an area of continuing 
research in the forseeable future. 

Scale exacerbates the intrinsic tension between autonomy and interdependence in distributed system 
design. Whereas tight coupling between nodes tends to offer better consistency and transparency, weak 
coupling tends to offer better performance and availability. One possible compromise is to use a dynamic 
strategy as in Coda. Under normal conditions, Coda offers relatively tight coupling. But when failures 
make tight coupling impossible, Coda transparently falls back to a weaker coupling. While Coda has 
shown the viability of such a strategy for the Unix file system model, its use in a broader context remains 
to be explored. 

A large distributed system is unwieldy to manage as a monolithic entity. For smooth and efficient 
operation it is essential to delegate administrative responsibility along lines that parallel institutional 
boundaries. Such a system decomposition has to balance site autonomy with the desirable but conflicting 
goal of system-wide uniformity in human and programming interfaces. The cell mechanism of AFS is an 
example of a mechanism that allows decentralized administration. 

The economic impact of growth is closely related to how cost is reflected. The optimal system design for 
an organization where all system costs are borne centrally will be different from one for an organization 
where some costs are borne centrally and others are passed on to the end users. The latter model is more 
common, and favors designs in which the cost of incremental growth is almost entirely borne by the 
individuals benefiting from that growth. This in turn implies that incremental growth should minimally 
impact central resources. 

2.1.3. Efficient search 
As the volume of data in distributed repositories grows it becomes increasingly difficult to precisely 
identify the data item one wants. The distributed file systems of today offer little by way of help in this 
area. A nationwide distributed file system like AFS is invaluable when one knows at least the 
approximate pathname of the files one is interested in. It is much less convenient when one only has a 
vague specification, such as " a paper on RPC by someone at Stanford.*' 



3 

Relational databases offer associative access but are constrained in the kinds of queries that are possible 
and in the kinds of data that can be searched efficiently. Their indexing structure is typically static and is 
oriented toward textual or numerical searches. Presenting a speech fragment, a rough outline of a face, or 
the approximate 3-D shape of a molecule to a distributed database and asking it to search nationwide for 
matches is not something that can be done efficiently today. 

It will be extremely valuable to build data repositories that can be extended by value-added search 
services. A good example from a traditional domain is the legal system, where numerous cases are tried 
and decided each day. The text of the trial proceedings and judgements are in the public domain. Yet 
there are a number of competing companies, successful for many years, whose sole service is the indexing 
of these cases. Because the indexing scheme is sophisticated, the time a lawyer spends on searching for 
applicable precedents to his case is substantially reduced. With large enough volumes of data, the index 
becomes as precious as the data itself! 

The need for efficient search is not, of course, limited to the legal domain. Virtually every area of human 
activity is likely to benefit from distributed repositories that facilitate the annotation and indexing of data 
by parties other than creators and end users. 

2.2. Technology Trends 

2.2.1. Portable computers 
In the past the computer industry has usually used improvements in hardware technology to provide better 
performance at constant cost, or to lower cost for constant performance. Over the last few years, 
however, vendors have turned their attention to factors such as physical size, compactness, weight and 
power consumption. Some of the laptop computers of today are as powerful as their substantially larger 
and heavier desktop ancestors of a few years ago. Some vendors now have product lines where advances 
in technology are translated into system-level miniaturization at constant cost and performance. 

Although laptop computers are popular, their mode of usage is still quite primitive. Shared data is usually 
accessed by manually copying relevant files onto the laptop's local disk or floppy, operating 
disconnected, and copying back modified files upon reconnection. Explicit file transfer via a modem is a 
less frequently used alternative. In contrast to these manual strategies, the Coda file system facilitates the 
use of shared data on portable computers by simplifying pre-caching of files, allowing autonomous 
operation while disconnected, and transparently reintegrating changes upon reconnection. In the future, 
Coda and other similar systems will substantially increase the use of shared data repositories from 
portable machines. 

2 2.2. Diverse types of data 
Numerical and textual I/O have traditionally been the dominant types of interaction between computers 
and humans. But over the last decade, the decreasing cost of hardware has made it economically feasible 
to use data types that are better suited to human cognition. 

The impact is most evident in computer output. Even the cheapest Apple Macintosh today can render 
graphics effectively, and any Macintosh application can intermix text and graphics in its presentation. 



4 

The emergence of de facto standards such as X, Display Postscript, and Microsoft Windows indicates a 
similar, if less pervasive, trend in other operating system environments. More sophisticated use of 
graphics, with greater computing demands, is found in CAD/CAM systems. 

Less common, but growing in popularity, is the input of graphical images. Today, scanners for the 
Macintosh can convert any printed page into machine-readable data. Applications can merge scanned-in 
data with text and graphics. 

Sound is another type of data that is making the transition from esoteric to commonplace. Digital signal 
processing hardware for speech and music synthesis is now available even on relatively inexpensive Unix 
workstations, such as those from Next, Inc. A recent issue of the Usenix journal Computing Systems 
included an audio compact disc supplement consisting exclusively of computer-generated music! 

The topic of multi-media data is the focus of many research projects today. It is reasonable to expect that 
at least some of these projects will yield new paradigms of data input and output, as well as applications 
that combine them with existing types of data. Although textual and numerical data are likely to remain 
dominant, it is clear that other forms of data will supplement them in the future. 

What does this diversification portend for distributed data repositories? Since all data is represented as a 
sequence of bits at the lowest level, it may appear that the distributed file systems of today are perfectly 
capable of storing any kind of data. But such a reductionist view ignores the fact that all successful 
repositories do, in fact, make explicit or implicit assumptions about the data they store. These include 
assumptions about physical characterstics such as the size of data items, as well as assumptions about 
usage characteristics such as spatial and temporal locality, longevity, and patterns of sharing. Future 
nespositories will have to pay attention to the physical and usage characteristics of new types of data if 
they are to remain viable. 

2.2.3. Diverse network characteristics 
There is a considerable amount of excitement today about the rapid strides being made in the field of 
networking. Nationwide networks at 45 Mb/s are a reality, and work is under way to provide gigabit 
connectivity. Projects such as Autonet [8] at DEC SRC and Nectar [1] at CMU are pushing the current 
limits of performance in local area networking. Continuing progress in the areas of optic fiber materials 
and interface technology indicates that this trend will continue for a long time to come. 

There is considerable debate in the distributed systems community about how best to use this new-found 
opportunity. Should communication be considered essentially free? Or should one take a Malthusian 
view, and design conservatively in the expectation lhat increased usage and more demanding applications 
will rapidly saturate high-speed networks? 

A consideration that is completely ignored in these debates is the fact that the quests for performance and 
span of access are usually in conflict. For example, when accessing data from a hotel room via a modem, 
one only has 2400 b/s connectivity. While this is an improvement over the 300 b/s that was 
commonplace a decade ago, it is still a far cry from a gigabit network. 

Cordless networking technologies are another source of diversity. Portable computers with built-in 
cellular telephone modems are available today. Work is under way both at IBM Yorktown Heights and at 



5 

Xerox PARC to use infrared communication in the range from 100 Kb/s to 10 Mb/s for indoor use of 
handheld portable machines. The Swedish Institute of Computer Science is exploring the use of packet 
radio for distributed file access. 

These observations imply that the design of distributed data repositories should not be predicated on the 
universal availability of fast networks (for whatever value of "fast" is appropriate at the time of the 
design). A design that exploits fast networks when available, but remains usable via lower speed 
networks is likely to be more successful. The absolute values of "fast" and "slow" will change with time, 
but there is little doubt that diversity in networking speeds and capabilities will persist into the forseeable 
future. 

3. Current State of Art 
The majority of distributed data repositories today are either file systems based on the Unix model, or 
databases based on the relational model. One can also find distributed file systems based on other models 
such as MS-DOS, and non-relational databases such as IMS from IBM. However most advanced 
distributed systems work has been done in the context of Unix file systems and relational databases. 

The work on distributed file systems, exemplified by AFS and NFS, has focused primarily on 
transparency, performance and scalability. Work has also been done in the areas of security and 
heterogeneity. AFS-4, currently under development, focuses on precise emulation of Unix semantics and 
the use of transactional technology for fast crash recovery. Echo, also under development, provides 
precise Unix semantics in conjunction with high availability via read-write replication at the server and 
disk levels. Coda also provides high availability, but achieves it by a combination of read-write 
replication at servers and deferred write-back caching at clients. The latter mechanism allows totally 
disconnected clients to function effectively, thus supporting the use of portable computers. 

All successful distributed file systems exploit locality of reference by extensive caching at clients. They 
also assume low levels of concurrent write-sharing, and in the case of Coda, infrequent closely-spaced 
sequential write-sharing. None of these systems provide any mechanisms to assist in search. 

Distributed databases such as Oracle, Ingres, and SQL/DS span few nodes in comparison with distributed 
file systems such as AFS. But they are large-scale systems in the sense that they store very large amounts 
of data at each node, often far exceeding the amount of data stored at a typical AFS server. These 
systems use a function shipping approach since they expect little locality of reference. Search is 
supported in the form of queries expressed in a query language (typically SQL). Queries are executed by 
servers and the results shipped to clients. 

A considerable amount of theoretical work and some experimental work, has been done on query 
decomposition and optimization. The goal of this work is to improve efficiency when the data referenced 
by a query spans multiple servers. The fact that queries are constrained by the syntax and semantics of 
the query language considerably simplifies such decomposition. Many important applications that use 
databases exhibit high degrees of concurrent write-sharing and a need for high availability. Considerable 
work has therefore been done in the areas of concurrency control, fault tolerance and failure recovery. 
Commercial systems such as Tandem and IBM System/88 [2] are able to provide very high availability 
through a combination of hardware and software techniques. Relational databases have historically been 



6 

constrained in the kinds of data they can store effectively. Projects such as Postgres and Starburst aim to 
overcome this limitation by providing mechanisms for extensibility. 

Over the last five years there has been growing interest in a class of repositories referred to as object 
oriented repositories. Unfortunately, the term has been used to refer to so many variant concepts that it is 
difficult to define precisely. The underlying theme of this work is the merging of programming language 
concepts such as inheritance and abstract data types with system-level concepts such as atomicity and 
permanence. This is still an immature area, with minimal attention being paid to issues of large scale 
distribution. 

There has also been recent interest in the AI community in knowledge bases. The key idea here is that the 
storage repository embodies considerable semantic knowledge about the data it stores. Consequently it is 
able to enforce semantic integrity at a high level of abstraction using common sense knowledge as well as 
domain specific knowledge. Again, this is relatively young area, and with little attention being paid to 
issues of distribution. 

4. Research Agenda 
No distributed data repository in existence today adequately addresses the trends discussed in Section 2. 
These trends induce a set of basic research problems that must be solved in order to meet future demands 
on distributed data repositories. In addressing these problems, it is important to preserve the advances 
that have been made in the past decade in areas such as transparency, scalability, and performance. 

4.1. Adaptive system behavior 
Future distributed systems will have to exhibit adaptive behavior at many levels of abstraction. Consider, 
for example, the problem of accessing data across low-bandwidth networks. One way to address the 
problem is to use compression. Different compression algorithms or parameters may be optimal for 
different types of data. A viable strategy would be for higher levels of the system to recognize the type of 
data they are dealing with, pass this information to the lower levels, and for the latter to adjust their 
transmission strategy accordingly. This strategy is an instance of separation of policy and mechanism, 
with the higher levels providing policy and the lower levels providing the mechanism. 

In the above scenario the higher levels of the system are unaware of the networking environment. The 
adaptation is occurring at the lower levels, based on information provided by the higher levels. A 
radically different approach would be for the higher levels of the system to be cognizant of the state of the 
world at the lower levels and to adapt accordingly. For example, at low bandwidth it may be more 
efficient to adopt a function shipping strategy rather than a data shipping strategy. This approach makes 
sense if there are easily recognizable boundaries in the computation at the client within which large 
amounts of data are accessed, but across which relatively small amounts of data are reused. This 
combination of circumstances occurs most frequently in search, and is the reason distributed databases 
adopt a function shipping strategy. In this scenario, lower levels of the system provide information to the 
higher level about the state of the network but the adaptation occurs entirely at the high level. 

Making the choice between function and data shipping dynamic complicates strategies to make the 
system scalable. Much of the scalability of systems such as AFS and Coda arises from the fact that 



7 

clients bear most of the burden, with server resources being used only where essential. Function shipping 
muddies this simple picture, since server resources are now used for actual computation, not just for file 
system housekeeping. For the system as a whole to remain scalable, the decision to use function shipping 
must take into consideration the current load on the server. On a lightly loaded server, it may be perfectly 
reasonable to have a server perform an intense computation on behalf of a client. This is not a wise 
strategy when the server is heavily loaded, even if the client is connected via a low-bandwidth network. 

High-level adaptation is also possible while remaining wholly within the data shipping paradigm. The 
client cache manager could adopt different caching strategies for different types of data. It could also 
dynamically detect usage patterns and modify its caching policies accordingly. Unlike hardware caches, 
where execution cycles and state for cache management are at a premium, file caches can afford more 
sophisticated and expensive strategies. 

4.2. Secure remote computation 
Function shipping opens a Pandora's box from the point of view of security. Distributed file systems 
such as AFS and Coda base their security on the fact that no user computation is ever performed on the 
servers. As long as physical integrity of the servers is guaranteed, these systems are able to bound the 
damage that a malicious user can cause. Even if he is able to subvert the hardware and software on a 
workstation, the worst that can happen is the compromise of data writable or readable by the users of that 
workstation. The rest of the system remains secure. Once client-generated computations are allowed on 
servers, how is one to prevent a malicious client from exploiting a flaw in the server software and 
injecting a virus? 

Distributed databases have (probably unwittingly!) addressed this problem by severely constraining what 
gets executed on a server. All requests are expressed in a query language that the system interprets. The 
limitations of the query language, and the fact that the system has full semantic knowledge of it, together 
allow the system to avoid the pitfall mentioned in the previous paragraph. 

Unfortunately the need to support distributed search on arbitrary data types suggests that neither a query 
language approach nor a more general interpretive approach is likely to be flexible enough. Rather, a 
client should be able to compose arbitrary search code at runtime and have a server execute it. Even 
ignoring the obvious questions pertaining to the mechanics of compilation and execution, there remains 
the deeper problem of guarding against malicious side effects of compiled code. 

One strategy that appears plausible is for the server to disable all system calls made by the untrusted 
search code. Each data item being examined is successively mapped into the address space of the process 
running that code, using an iterator mechanism. At the end of each iteration, the search code returns an 
indication of whether the current item matches the search. Malicious search code could, at worst, do two 
things. It could clobber the address space of its own process, and it could loop infinitely. The former is a 
risk even with non-malicious buggy code and is easily handled by the usual operating system firewall 
between process address spaces. The latter is an instance of unauthorized denial of resources. One 
approach to handling this problem would be to bound the time allowed for each iteration of the search, 
and to abort the search if this limit is exceeded. 

The strategy described in the previous paragraph focused on function shipping of search code. Could one 



8 

be more general? When one says "make vmunix" in a directory on one's laptop in a hotel room, it would 
be impressive if the system could recognize that function shipping the make would be far more efficient 
than data shipping all the files missing from the local cache over a phone line. When connected to a high 
speed network, the same command issued from the same laptop should result in files being cached and the 
make being performed locally. Unlike search, arbitrary computations may need to modify permanent data 
on the servers. Disabling all system calls is therefore not a viable option. It is an open question whether 
there are subsets of system calls that are large enough to be useful yet provably secure when used by 
remote computations. 

4.3. Extensibility 
The idea of factoring out common functionality into a substrate and allowing customization of other 
functionality is an intuitively appealing one. This concept, along with the concept of inheritance, is at the 
core of the object oriented programming paradigm that has received wide attention in the last few years. 
The focus of activity in this area has hitherto been at the language level. However the concept is also 
applicable to the runtime level. A common example of this is the partitioning of modern operating 
systems into a machine-independent section and machine-specific device drivers. The latter encapsulate 
all knowledge of the devices they control, and interact with the machine-independent section via a 
standardized interface. 

For runtime extensibility to be viable, certain conditions must be satisfied: 
• First, the common part of the system must provide functionality that is really usable by a 

large number of customizations. Otherwise individual customizations will end up 
reimplementing this functionality themselves. 

• Second, the standardized interface must allow the right kind of information to be 
communicated across it. An interface that is deficient in this respect will limit the kinds of 
customizations that can be done. 

• Third, the decomposition should not degrade performance significantly. If the cost of 
crossing the interface is high, the design of the interface should be such that the number of 
such crossings is low. If crossing is inexpensive, the interface can be crossed more 
frequently. 

• Finally, the human effort needed to exploit extension should be commensurate with the gains 
from it. A case in point is the shell in Unix. In theory, the shell is merely a user program and 
each user can write his own. In practice, however, hardly a handful of shells have been 
written over the history of Unix. 

We believe that it is both advisable and feasible to build distributed data repositories that are extensible. 
The need to support diverse types of data with very different physical and usage characteristics argues for 
customized caching strategies, transmission protocols, and server access strategies. At the same time, at 
least three aspects of repositories can be type independent: 

• The first is data location. Virtually all distributed file systems and databases exploit the fact 
that location information can be treated as a hint, since it is self-validating upon use. 
Location information can therefore be cached at clients and used without explicit 
mechanisms for cache coherence. 

• The second is authentication. A user's identity is the same regardless of the kind of data he 
is accessing. Note that this is not true of protection, since the set of operations on a data item 



9 

are type-specific. 

• The third type-independent aspect is system administration. From the point of view of an 
operator who is performing backup, or a system administrator who is deciding how to 
allocate disk storage quotas, it is irrelevant whether the data items in question are Unix files, 
database tuples, or Landsat images. 

Distributed file systems and databases have been successful in large part because they insulate users from 
considerations pertaining to distribution. Although this insulation is occasionally imperfect, the majority 
of users are able to write applications ignoring distribution. The implementors of file systems and 
databases on the other hand are willing to put in the effort to attain transparency with good performance 
because they are confident of the market for their product. 

How can we realize a similar state of affairs for other kinds of data? The approach has to be evolutionary. 
It should be relatively simple to take a class of applications that manage a new kind of data locally and 
allow the data to be distributed using existing runtime support. This initial realization may not be 
particularly efficient. However, it should be possible to incrementally improve the runtime support for 
the new data type, using usage information maintained by the system. Such usage information may, for 
example, suggest a different caching strategy, or a different concurrency control technique. After some 
number of such refinements, runtime support for the new data type will be closely matched to its use. 
The goal one would like to strive toward is that the customization effort be incremental and the cost be 
reasonable relative to the gains. 

5. Conclusion 
To explore the issues described in this paper, we are initiating a new research project, Odyssey, at 
Carnegie Mellon University. Although the project is still in its infancy, the broad outline of the Odyssey 
architecture is emerging. It consists of a substrate that provides common functionality for all types of 
data, and an extension mechanism that allows exploitation of type-specific properties. This 
decomposition into substrate and extension is present in all the major components of the system: the 
server, the client, and the network transport. A secure remote-execution mechanism allows servers to 
execute limited kinds of client-generated computation without fear of contamination. Data on servers is 
organized into typed volumes that can be manipulated by the administrative operations of the substrate, as 
well as type-specific operations invoked by clients. 

An important goal of Odyssey is to simplify the creation and use of distributed repositories whose 
characteristics are well-tuned to the data stored in them. Today, the implementation of such a repository 
is done in isolation, with virtually no sharing of code or uniformity of administrative functions with other 
repositories. Consequently, the creation of a new kind of repository is a major undertaking, with little 
opportunity for incremental evolution. The Odyssey architecture provides a unifying framework, but 
allows diversity in areas where unification would be counter to performance or functionality. 

In summary, this paper has argued that the problems of adaptive system behavior, secure remote 
computation, and extensibility are central to the future evolution of large-scale distributed data 
repositories. Although these problems have been identified, the best solutions to them are far from being 
clear. Only implementation and usage experience from the next generation of research prototypes will 
provide that information. 



10 

References 
[1] Arnould, E.A., Bitz, F.J., Cooper, E.C., Kung, H.T., Sansom, R.D., Steenkiste, P.A. 

The Design of Nectar: a Network Backplane for Heterogeneous Multicomputers. 
In Proceedings of the Third International Conference on Architectural Support for Programming Languages 

and Operating Systems, Boston, MA. 1989. 

[2] Harrison, E.S., Schmitt, E J. 
The Structure of System/88, a Fault-Tolerant Computer. 
IBM Systems Journal 26(3), 1987. 

[3] Hisgen, A., Birrell, A., Mann, T., Schroeder, M., Swart, G. 
Availability and Consistency Tradeoffs in the Echo Distributed File System. 
In Proceedings of the Second Workshop on Workstation Operating Systems, Pacific Grove, CA. September, 

1989. 
[4] Lindsay, B. 

A Data Management Extension Architecture. 
In Proceedings of the 1987 ACM SIGMOD Conference on Management of Data. 1987. 

[5] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B. 
Design and Implementation of the Sun Network Filesystem. 
In Summer Usenix Conference Proceedings, Portland. 1985. 

[6] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., Steere, D.C. 
Coda: A Highly Available File System for a Distributed Workstation Environment. 
IEEE Transactions on Computers 39(4), April, 1990. 

[7] Satyanarayanan, M. 
Scalable, Secure, and Highly Available Distributed File Access. 
IEEE Computer 23(5), May, 1990. 

[8] Schroeder, M.D., Birrell, A.D., Burrows, M., Murray, H., Needham, R.M., Rodeheffer, T.L., Satterthwaite, 
E.H., Thacker, CP. 
Autonet: a High-speed, Self configuring Local Area Network Using Point-to-point Links. 
Technical Report 59, Digital Equipment Corporation, Systems Research Center, April, 1990. 

[9] Stonebraker, M. 
The Design and Implementation of Distributed INGRES. 
The Ingres Papers: Anatomy of a Relational Database System. 
In Stonebraker, M., 
Addison Wesley, 1986, Chapter 9. 

[10] Stonebraker, M., RoweJL. 
The Design of POSTGRES. 
In Proceedings of the 1986 ACM SIGMOD Conference on Management of Data. 1986. 


