NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

COMPUTER PROGRAMS AND GRAPH TRANSFORMATIONS

by

David C. Cooper

Carnegle Institute of Technology
Pittsburgh, Pennsylvania
September 19, 1966

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146).

Part I was presented at the Machine Intelligence Workshop held
at Edinburgh University from 27th June to lst July, 1966. The
proceedings will be published by Oliver and Boyd Ltd., Edinburgh.

Part II was presented at the "International Seminar on Graph Theory"
held in Rome, Italy from 5th July to 9th July, 1966, and will be
published in "Actes des Journees d'Etudes sur la Theorie des Graphes"
ICC, Dunod 1967.

ABSTRACT

Each part is complete in itself, which of course necessitates some
cverlap.

Part I describes the general approach and motivations of this re-
search. It 1s assumed that with a computer program we may associate a
directed graph (its "flow chart"). Several transformations of a directed
graph are defined with the property that they "obviously" do not affect
the meaning of the program. Two particular standard forms for graphs
are described and results and conjectures given concerning the possibil-
ity of transforming graphs into these standard forms by using the defined
graph transformations.

Part I1 gives the mathematical proofs of the theorems stated in
Part I without proof and completely solves the problems concerning one

of the defined standard forms.

i1

TABLE OF CONTENTS

Title Page.vesicacsncncscrstssstsoscannansstnnsanaes i
AbStract...csevesroasintosvocessanoanasaa ceeneeas 11
Table of Contenta...ccvieneraniacnsernsnanannas Lo1id
PART T

Some Transformations and Standard Forms of

Graphs with Applications to Computer Programs

I1lustrations for Part I

PART Il

Reduction of Programs to a Standard Form

by Graph Transformations

Tllustrations for Part II

iii

PART I

SOME TRANSFORMATIONS AND STANDARD FORMS OF GRAPHS,
WITH APPLICATIONS TO COMPUTER PROGRAMS

o~

~-1-

Introduction: Programs and Directed Graphs

In Cooper (1966b) I reported on several attempts at proving theorems
about computer programs, with the ultimate goal in mind of providing mathe-
matical proofs that prograﬁs are correct rather thén just testing them on
some particular data sets. In the last section I commented that the proofs
1 obtained in Cooper (1966a) could be viewed as deep results about small
programs but that what was needed were techniques for proving shallow re-
sults about large programs. By this latter I meant that the proofs did not
depend too much on propérties of the basic functions or commands used in the
program but rather depend on the synthesis of a large number of trivial prop-
erties, the particular way this synthesis is performed being guided by the
structure of the large program., Some of the other work reported on in
Cooper (l966b), particularly the work of Evans (1965), has this flavour but
are particular proofs about particular programs. Mention should also be made
of the long proof of Balzer (1966) which proves that a particular finite auto-
maton correctly performs its given task,

There are many programs whose control structure can be well showm by a
directed graph - that is the flow chart of the program. .The first goal of
this research is to produce some kind of automatic scheme which will prove
results about programs which only use conditional statements and assignment
statements and we shall not consider those features of a programming language
which imply some kind of control structure not immediately so representable;
for example, the passing of parameters to subroutines, perhaps by the use of
procedures and functions previously defined by the programmer. These are very
important features of programming languages but they will not be further con-
sidered in this paper. Although the techniques of this paper may not be di-
rect]ly applicable in these circumstances some modification of the ideas used

could well be useful; for example, the graphs could represent the relations

-2

between a set of mutual recursive function definitions and the transforma-
tiore to be defined later could well be meaningful.

Having associated a graph with a program there may well be transforma-
tions which can be made on the graph which "do not affect" the program, later
we shall amplify this remark. The question then arises as to whether the
graph may be put into some standard form by a series of such transformations,
this standard form being one in which it is easier to prove results about
the program by taking advantage of special features of the standard form.
The purpose of this chapter is to define several such transformations and
two such standard forms, and to give results and conjectures about the pos-
sibility of transforming programs to the standard forms.

The particular way in which a directed graph is associated with a given
program is not important. All that matters is that the graph transforma-
tions defined in the next section should represent meaningful transforma-
tions if performed on the programs with which the graphs are associated,
However, in order to better illustrate the intention behind the transforma-
tions,we give a particular definition of a program and of the graph associ-
ated with a program. This definition will use a state vector approach; see
McCarthy (1960). In this approach the current state of a computation is
represented by the value of a vector, each component of which corresponds to
one of the variables, machine locations, etc. (dependent on the particular
programming language used)., The effect of a4 basic command can then be de-
scribed by a function whose argument is a state vector (the state of the
machine before the command is obeyed) and whose value is also a state vector
(the state of the machine after the command is obeyed). A sequence of com-
mands corresponds to composition of the corresponding functions. A two-way
test is'represented by a predicate whose argument is a state vector.

Assume then that we have a domain D, a set of functions fi which map D

into D and a set of predicates Py whose domains are D. A program is defined

-3-

toc be a directed graph with every arc of which is associated one of the f

functions and one of the p predicates. It is a legal program if the graph
if it has
has just one node (A, say) with no arcs leading to it,Ajust one node (Z, say)
with no arcs leading from it, if every node is on a path which starts at A
and ends at Z, and if for all nodes (except Z) the set of predicates on all
arcs leading from the node is complete and mutually exclusive,.
The intended interpretation is that if fi and pj are the function and

predicate associated with some arc then £, represents the effect of all the

i
statements obeyed along that arc and pj represents the condition that the
arc is entered. A program then defines a partial function from D into D in
an obvious manner (partial because the program may loop indefinitely).

It should again be emphasised that we are not concerned with this par-
ticular definition of a program, only with the ability to associate a graph
with a program. As alternatives we could have associated the information
in the program with the nodes rather than the arcs, or we could have taken
some simple programming language and explicitly stated how to obtain the
graph from the program,

The results to be obtained later could well have applications in other
areas than computer programs. For example, Seshu and Reed (1961) describe
the application of graphs to sequential machines and to systems of linear
algebraic equations. All our transformations can be given interpretations
in these areas, in fact the delete node transformation (T 5 of the next sec-
tion) is already well known in these applications. The particular field of
interest determines the transformations of interest; for example, later we
shall reject a certain transformation (DT 1) as not being a useful one for
computer programs. However, this transformation is of use in the areas of

sequential machines and of linear equations.

b

Examples of Transformations

In this section we define several directed graph transformations of
interest. In each case we give a description of the general case in English
and illustrate the transformation with a particular case. The illustration
of course only shows how the affected part of the graph is altered, the graph
may have other nodes and arcs except that in all cases we assume that there
are no further arcs which lead into or out of the noges lapelled N,

T 1 Stretch a node N by outputs.

Let O be some subset of the output nodes of N, this subset may be

all the output nodés but must not be empty. Delgte all arcs from N

to nodes in 0, add a new node N, and add arcs from N to N, and from

1 1

N] to all nodes in 0. (The output nodes of a node N are allrthose
nodes P such that there is an arc NP, including N itself if there is

an arc NN),

In the example O is the set {N,D,E}.

T 2 Stretch a node N by inputs,

Let I be some subset of the input nodes of N; this subset may be
all the input nodes but must not be empty., Delete all arcs from nodes
in I to N, add a new node N] and add arcs from N] to N and from all

nodes in I to N]. (The input nodes of a node are defined in an anal-
ogous way to the output nodes.)

In the example I is the set {A,B}.

3 Duplicate a node N,
Let T be some non-empty, proper subset of the input nodes of N,
not including N itself if NN is an arc. Delete all arcs from nodes

in I to N, add a new node N,, add arcs from N, to all the output

1 1
nodes of N (except N itself if NN is an arc) and add arcs from every

node in I to N]. If NN is an arc alseo add an arc N] N].

-5~
In the example I is the set {A,B}.

T 4 Delete an arc AN.

This transformation may only be made if there is no arc NN. Delete
the arc AN and add arcs from A to all the output nodes of N. If A was
the only input node of N then also delete node N and all arcs leading

from N.

T 5 Delete a node N.

This transformation may only be made if there is no arc NN and is
equivalent to applying a sequence of T 4 transformations in any order
to all the arcs leading to N. 'Add all possible arcs from an input
node of N to an ocutput node of N and delete node N and all arcs leading

to or from N.

In all these cases if the untransformed graph is the graph of some pro-
gram P it is easy to find an equivalent program with the transformed graph
as its associated graph. For example, in the diagram illustrating transforma-
tion T 1 if pAN(s) and fAN(s) are the predicate and function associated with
arc AN on the untransformed graph (and similarly for the other arcs) then
in the transformed graph on arc NN] we have the predi;ate pND(s) v pNE(s) v pNN(s)

and the identity function, N.N, N.D and N.E have the same predicates and

1 1 1

functions as NN, ND and NE respectively, and all other arcs have the same

predicates and functions as before the transformation. Transformation T 4
represents the effect of anticipating the test at N at the previous node A
so that on the transformed graph, for example, with the arc AC we associate

(s)) and the function f_ (£, _{(s)).

the predicate pAN(s) A pNC(f ne Ean

AN
As two examples of transformation which we do not wish to allow consider
the following:

DT 1 Delete a node N with a loop.

~6-

This is defined exactly as T 5 but we remove the restriction that

there must be no arc NN.

DT 2 Join two arcs AB and CD.
Delete the arcs AB and CD, add a new node N and add arcs AN, NB, CN

and ND.

In DT 1 with arc AC we would have to associate a predicate expressing the
condition that when control finally comes out of the loop at N control passes
to node C, This can be done, but in general requires an infinite disjunction,
we agsume this is not a useful concept to introduce, The aim in making the
transformation is to better reveal the program's structure, we do not wish to
produce a transformed program which introduces complex new concepts and makes
our task of proving the desired theorem about the program much more difficult.
Admittedly we are being vague here, the transformations T 1 to T 5 imply we
do not mind complicating our programs by forming conjunctions and disjunctions
of predicates and compositions of functions. Note that the situation arising
in DT 1 would not be improved by adding loops on the transformed graph at A
and B, or at new nodes internal to the arcs AC, AD, BC and BD.

We could allow the transformation DT 2 if an extra Boolean variable is
defined and semantics added to the program to set this variable true along
arc AN, false along arc CN. The predicate on arc NB would then be a test
whether this variable is true, on arc ND whether it is false. 1In effect we
are coding the path already taken on the graph into a variable. Again we
assume that this is not a good thing to do.

In this chapter we define T 1 to T 5 as the only allowable transforma-
tions, and then prove or conjecture theoremé concerning them. We would like
to somehow characterize the allowable transformations and perhaps produce
some more. A possible approach is to define a transformation of one graph

into another by a definition of the following form:

-7-

G -G' if and only if (p)(p')[G=graph(p)>{G '=graph(p')Af(p,p')}].
This definition presupposes that we already have a definition of a program,
of a function "graph" which produces the graph of a program and of a predicate
f(p,p'). This predicate must express the coandition that program p' is equiva-
lent to program p, and moreover can be produced frém it with some giveu rules
which allow such things as function composition but does not allow anything
corresponding to the infinite disjuncﬁion of DT 1 or the nev Boolean variable

of DT 2.

Proper Cycle Free Form

Having defined the allowable graph transformations are there some partic-
ulariy desirable standard forms into which we can try to transform a given
graph? Two desirable forms will be defined, one in this section and one in
the following section.

Most, if not all, of the questions we wish to answer about a computer
program are easy to answer if there are no cycles in the program. The simpler
the interconnections between the cycles the easier it should be to answer
questions about whether a program performs correctly; it should therefore be
profitable to make transformations aimed at simplifying the cycle structure of
a graph,.

The simplest (and also rarest) program is one which has no cycles. Next
one might consider programs in which all the cycles are independent, i.e. no
" section of the program is in more than one cycle, This class of programs is
more interesting but still very restrictive. However, experience indicates
that a large number of interesting programs may be transformed by a series of
transformations into a program with this independent loop structure.

In order to make these vague remarks more exact we define a proper cycle

of a graph to be a'cycle through two or more nodes and a proper cycle free

(PCF) graph to be a graph with no proper cycles. A graph which 18 PCF clearly

-8~

has the independent looping property, and it is also trivial to transform any
graph with independent loops into PCF form. We therefore take PCF form as
being a standard form into which we try to transform a given graph, and
obtain necessary and sufficient conditions for a graph to be transformable
into PCF form together with an algorithm for making the transformatiom if it
is possible., For this purpose only transformation T 5, delete a node, turns
out to be relevant., If a graph can be transformed to PCF form by a sequence
of transformations, each of which is one of T 1 to T 5, then this may be done
by a sequence of T 5 transformations alone.

Consider graph I.‘ By deleting node A we obtain graph 2 which is not
PCF (and which in fact cannot be transformed to PCF form at all; see the
theorem below). But if instead of deleting A we delete B and then C we ob-
tain graph 3 which is PCF and "obviously much simpler" than graph 2. (The
2's on graph 3 indicate multiple arcs.) Graph 3 reveals the "basic structure”
of graph 1 in a way which graph 2 does not. These graphs show that the order
in which nodes are deleted is critical,

Define a graph to be loop connected if it contains twe nodes, A and B

say, and three cycles o, B and y such that: 1) there is no one node which is
on ¢, B and vy, 2) A is on o but not on §, 3) B is on B but not on ¢, and
4) both A and B are on y. This is a generalization of part of graph 2 in
which arcs have been replaced by paths. Then we have:
Theorem 1
A graph G can be transformed by a series of transformations, each
of which is one of T 1 to T 5, to a graph which is PCF if and only if

it is not loop connected.

In Cooper (1966c) only transformation T 5 is considered but it is easy
to extend the results of that paper in such a way that theorem 1 is an immedi-
ate deduction from the theorems proved there.

Theorem 1 does not give an algorithm for performing the sequence of

-9,

transformations. In order to do this define a delete node N transformation

(T 5) to be a safe deletion if there is some node A (not N) of the untrans-

formed graph with the property that all cycles of the graph which pass through
node N also pass through node A. For example, in graph 1 B or C may be safely
deleted but not A. Then the following theorem gives the required algorithm;

it is an easy extension of one of the theorems in Cooper (1966c):

Theorem 2

start with any graph G and perform safe deletions in any order until
a graph G' is obtained on which no safe deletions may be performed. This
process must terminate and either G' is PCF or there is no sequence of
transformations, each of which is one 0of T 1 to T 5, which will transform

G to a graph in PCF form.

Theorems 1 and 2 completely solve the relevant questions about transforma-
tions to PCF form, In the same paper an equivalent condition to loop connected-
ness is defined; this condition appears more complicated but simplifies the
proofs. In addition a theorem is proved which shows that safe deletions is
the widest possible subclass of deletions, i.e. if we make a deletion which
is not a safe deletion we obtain a graph which is loop connected and hence not

transformable to PCF form.

Block Form

| The second standard form corresponds in a more natural mamner than PCF
form to the way a large number of programs are written; it roughly corresponds
to programs in which all loops are properly nested. A recursive definition of
block form is simply given: - a graph is defined to be in block form if it is
of one of the forms Bl, B2 or B3 (see the diagrams) where the shaded boxes

are either arcs or subgraphs in block form.

~10-

It is not necessary to take exactly these forms; for example, instead of
B2 we may allow any number of blocks in parallel and instead of B3 any number
in series, obviously a graph of such form can easily be transformed into the
standard block form. A more useful equivalent standard form is where instead
of B2 and B3 we allow any graph made up of subgraphs, each in block form, and
these subgraphs joined in any manner that does not create a cycle. Such a
graph can be further transformed into the standard block form, but it may
well be better not to carry out these further transformations as this usually
involves a lot of duplicating of nodes. A third alternative is to replace Bl
by Bla.

Very little progress has been made so far with proving results about
transformation of graphs to block form, although a large number of small graphs
have been investigated. A conjecture has been made as to the necessary and
sufficient conditions for a graph to be transformable to block form and we hope
soon to have an algorithm to effect the transformations. Any graph in PCF form
can be transformed to block form; essentially it already is in block form ac-
cording to the second alternative definition. However, consider graph 4, which
is clearly loop connected and hence cannot be transformed into PCF form. First
use T 1 (with N being A and O the set {B,Z}) and then use T 3 (N being A again
and I the set {B}), this produces graph 5 and it is obvious how to put this
inte block form. Thus graph 4 is an example of a graph which can be transformed
to block form but not to PCF form. As a more complex example, graph 6 may be
transformed to block form; this is left as an exercise for the reader; a good
start is to delete node A.

What graphs cannot be transformed to block form? Here we héve no proven
results but it seems almost certain that graph 7 cannot be so transformed (or
any graph containing this as a subgraph). The situation is much more complex

than for the PCF case; there a knowledge of just the cycles of a graph was

“11-

sufficient to determine whether the graph could be transformed to PCF form,
but graphs 4 and 7 have the same cycles and one can be transformed to block
form but not the other. It seems that a generalization of graph 7 in which
its arcs are replaced by paths (possibly intersecting each other) i; the key
situation which, if it occurs in a graph, makes the graph untransformable to
block form. But examples show that if enough of the paths intersect then we
are back to the position of being able to transform te block form.
By induction from examples tried we make the following definition:

A graph is loop connected with two exits if it contains three nodes,

A, B and Z say, a cyclera through A, a cycle B through B, a path'y connecting
A to B, a path § connecting B to A, a path @ connecting A to Z and a path
y connecting B to Z (see graph 8). Further there must be no node which is on
all three mémbers of any of the following triples:
@B,v), (@.B,8), (6,0,9), (v,B,8), #,4,a) and (B,y,8),
‘We conjecture the following:
Theorem 3
A graph can be transformed by a series of transformations T 1 to
T 5 to a graph which is in block form if and only if it ié not loop
connected with two exits.

n
Bohm and Jacopini (1966) investigate the reduction of flow diagrams to

standard forms, they show that corresponding to any flow diagram there is an
equivalent one which is "decomposable into II, & and A". This is precisely
block form. Their algorithm for producing this equivalent flow diagram may be
loocked on as a sequence of graph transformations which, however, allow the
transformation DT 2, which we have not allowed. Transformation DT 2 on pro-
grams was justified by the introduction of a new variable, rather than intro-
ducing a separate new variable everytime: DT 2 is used B;hm and Jacopini intro-

duce a single Boolean stack and add semantics to test the top of the stack,

-12~

to delete the top of the stack and to add a new truth value to the top of the

stack. This stack may be thought of as a code for the path through the flow

diagram traversed so far,

For our purposes we do not wish to allow this trans-

formation, but it is an interesting result that if DT 2 is allowed then any

graph may be transformed to block form.

References

Balzer, R.M. (1966).

Studies Concerning Minimal Time Solutions to
the Firing Squad Bynchronization Problem,
Ph.D. thesis. Pittsburgh: Carnegie Institute
of Technology.

L1
Bohm,C.gJacopini,G. (1966) .Flow Diagrams, Turing Machines and Languages

Cooper, D.C. (1966a).

Cooper, D.C. (1966b).

Cooper, D.C. (1966c).

Evans, A, (1965),

McCarthy, J. (1960).

Seshu, S. & Reed,M.B.
(1961),

Part II of this report

with Only Two Formation Rules., Comm. ACM, 9,
366-371.

The Equivalence of Certain Computations,
Computer J., 9, 45-52.

Mathematical Proofs About Computer Programs.
To appear in Machine Intelligence 1, Editor
Michie, D. Oliver and Boyd Ltd., Edinburgh,

Reduction of Programs to a Standard Form by
Graph Transformation. Presented at "Inter-
national Seminar on Graph Theory and its

Applications'", Rome, Italy, July 5-9, 1966,

Syntax Analysis by a Production Language, Ph.D.
thesis., Pittsburgh: Carnegie Institute of
Technology.

Recursive Functions of Symbolic Expressiens
and Their Computation by Machine. Comm. ACM 3,
184-~195,

Linear Graphs and Electrical Networks. Addison-
Wesley Publishing Co., Inc. Massachusetts and
London.

TRANSFORMATION T!

.U:l

TRANSFORMATION T2

:

-]
7 N

(9]

TRANSFORMATION T3

TRANSFORMATION T4

TRANSFORMATION

TS

o
”

Y

TRANSFORMATION DTI

>

- -]
>

Y

e

=)
(]

TRANSFORMATION DT2

GRAPH 1 GRAPH 2

4

GRAPH

3

GRAPH

GRAPH 5 GRAPH

- @

Y
.

GRAPH

Y

7

GRAPH

-4
-]

7

R -

ALTERNATE

TO BI

'FORM DEFINITIONS

BLOCK

PART II

REDUCTION OF PROGRAMS TO A STANDARD
FORM BY GRAPH TRANSFORMATION

INTRODUCTION; Motivation for the theorems proved

Recently there have been several attempts at producing proofs about
computer programs, see for example [1] and the other papers referred to
therein. The work reported in this paper is motivated by the idea that
a knowledge of the underlying structure of a specific program could be
of great help in proofs concerning that program. For example the simplest
(and also rarest) program is cone which does not have any loops in it.

Next one might consider programs in which all loops are independent, i.e.
no section of the program is part of more than one 1qop. This class of
programs is more interesting, but étill very restrictive. However, rules
may be set up for transforming a program into an equivalent program which
could have a different looping structure. In fact experience indicates
that a large number of Interesting programs may be transformed by a series
of trivial transformations into a program with this independent loop
structure. This paper investigates one such transformation and shows how
it may be used to transform a program to the desired form, if that is
possible.

So far, we have been vague; we should define what we mean by a program,
by a transformation, by loops and independent looping, and by equivalence
of programs. We take a slightly different view. Assume that, whatever
definition of a program is used, a directed graph may be assoclated in some
way with a program, i.e. there is a total function whose domain is the
class of all programs and whose range is the class of all directed graphs.
Agsume also that there is an equivalence relation defined between programs.
Then any transformation from graph G teo graph G' which is congidered should

have the property that, for any program with G as its graph, an equivalent

program can be mechanically produced with G' as its graph. Further dis-
cussion and clarification of these remarks will be found in [2].

In this paper we conslider one particular graph transformation which
should satisfy this last criterion for most definitions of a prograﬁ and
of equivalence of programs; further such transformations will be found in
[2]. This transformation consists of deleting a node from a graph by.
connecting all its input nodes to all its output nodes (for example Graph
1 may be transformed into Graph 2 by deleting node N, also see the more
rigorous definition below)., The justification for allowing this trans-
formation is that whatever program has Graph 1 as part of its floﬁchart,
the test at node N amy be anticipated at nodes A and B and direct connec-
tions made to nodes C and D as shown. With arc AC will be associated
whatever assignment statements were made on arc AN, followed by those on
arc NC, and so on. The new test associated with arc AC in Graph 2 will
be the conjunction of the condition in Graph 1 for control to go from A
to N (there may be other arcs ocut from A) and the conditien for control
to go from N to C; there might have to be substitutions made in this
latter test to allow for the effect of changes in going from A to K. The
node N may not be deleted if there is an arc from N to N; for example
neither B nor C may be deleted from Graph 4. If this were to be allowed,
the new test associated with AC (Graph 2) would have to be the condition
that, after control goes from A to N (Graph 1) and after control finally
comes out of the loop around N, control then goes to C. We assume it is
not useful polaccept this as a basic test in a program although it would,

of course, be perfectly possible to do so.

DEFINITTONS

A graph is a set of nodes together with a set I' of ordered pairs of
these nodes. Each member of I' is an arc. Note that only what are usually
called directed graphs are considered in this paper, so we omit the
adjective "directed",

The first member of an arc is its initiatl gggg; the second member,
its final node.

A path is a sequence of arcs (u1,u erey un) such that the final node

2,
of uy is the initial node of Ui (for 1 =1, 2, ..., n-1). It 1is a cycle
if the final node of u is the initial node of u,. It meets those nodes
which are initial or final nodes of its arcs. Any node met by a path or
cycle is saild to be on the path or cycle. The initial node of a path is

the initial node of u and the final node is the final node of u . A

'I’

subpath of a path (u1,u2, cens un) is a path (ui,u e uj) with

i+’
1<{s jsn.

A path or cycle is elementary if it does not meet the same node more
than once (except for the initial and final nodes in the case of a cycle).

A proper cycle is a cycle which meets two or more distinct nodes.

A proper cycle free (PCF) graph is a graph with no proper cycles.

The input nodes of a node N are those nodes A such that (A,N) is an

arc and the output nodes of N are those nodes Z such that (N,Z) is an arc.

A graph is loop-connected (LC) if it contains two nodes, A and B,

and three elementary cycles &, B, and ¥ such that:
1) There is no one node which is on «, B, and v;
2) o meets A but does not meet B;

3) B meets B but does not meet A;

4) ¥ meets both A and B.
(For example, Graph 4 is loop-connected via nodes B and C.)
By theorem 11 if the word elementary is omitted we have an equivalent

definition.

A graph is loop-connected(k) (LC(k)) where k is an integer = 2 if

there are k nodes A1,A2, crey Ak; k elementary cycles Yyo¥os eees Yy and
an elementary cycle § such that:
Restriction A) There is no one node which is on & and on all
the Yys
Restriction B) For 1 = 1 < k the cycle Y, meets all of
A!’AZ"'°" Ak except'Ai;

Restriction C) 6 meets all of A1,A2, saey Ak.

A graph is Kloop-connected (KLC) if there is 2 k such that it is

LC(k). Obviously, LC is LC(2) so that LC implies KLC; theorem 12 also
shows the converse, that KLC implies LC.

The node N can be deleted from graph G giving graph G' (written
G BFG') if and only if there is no arc (N,N). G' is obtained from G by
adding arcs joining all input nodes of N to all output nodes of N and
then removing N and all arcs with N as initial or final node.‘ If a node
A is both an input node and an output node of N, then an arc (A,A) is
added.

Examples.of node deletions are 1) delete node N from Graph 1 to give

Graph 2, and 2) delete node A from Graph 3 to give Graph 4.

The node N can be safely deleted from graph G giving graph G'

SD
(written G —yG') if and only if it can be deleted and also there is some

node A of graph G (not N) with the property that all elementary cycles
of G which meet N also meet A. G' is obtained from G exactly as for
deletion.

Particular cases in which N can be safely deleted are: if there is
no cycle meeting N, or if only one elementary cydle meets N (proper
cycle), or 1if N is the initial node of only one arc (not N,N)), or if

N is the final node of only one arc (not (N,N}).

THE MAIN THEOREMS PROVED

Consider Graph 3, By deleting A, we obtain Graph 4 which is not PCF.
But if instead of deleting A we delete B and then C, we obtain Graph 5
which 1s PCF and "obviously much simpler" than Graph 4. Graph 5 reveals
the "basic structure" of Graph 3, but this basic structure is not revealed
in Graph 4.

This example shows that the order in which nodes are deleted is
critical. Graph 3 may be transformed into PCF form, but if we deléte A
first we obtain Graph 4 which cannot be transformed into PCF form. This
raigses two questions: what are the necessary and sufficient conditions
for é graph to be transformable by a series of deletions into a graph
which is PCF, and given a graph which can be transformed in what order
should the deletions be performed?

The answer to the first question is that a graph can be transformed
into PCF form 1f and only if it is not LC. However although LC is a
simpler condition to understand than KLC, the proofs using KLC are much
simpler than those we first obtained using LC. We therefore use KLC
throﬁghout and prove separately (theorem 12).that a graph is LC if and

only if it is KLC. Alternative definitions of KLC are suggested by

theorems 4 and 9.

Now consider the process which starts with any graph G and performs

safe deletions in any order until a graph G' is obtained on which no safe
deletions may be performed.

If G is not KLC, then the following two theorems prove that this
algorithm must terminte with G' in PCF form (the algorithm must terminate
as each safe deletion reduces by one the number of nodes on the graph).

Theorem 3: Iif G 1s not KLC and GSEFG', then G' is not KLC.

Theorem 5: If G 15 not XLC and if no node of G can be safely

deleted, then G is PCF.

If G is KLC, then the following two theorems prove that it cannot

be transformed to PCF form.

D
Theorem 6: If G is KLC and G 2 @', then G' is KLC.
Theorem 7: If ¢ is KLG, then G is not PCF.

The following theorem proves that safe deletions is the widest class
of deletions which couldDbe used in the process.
Theorem 8; If G E»G' and the deletion is not a gafe deletion, then
G' 1s Ki.C.
Finally the following theorem is proved, although it is not needed
in order to obtain the previous results.

Theorem 12: G is 1LC if and only 1if G is KLC.

A_NOTE ON_NOTATION

G and G' always name graphs, other Roman letters with or without sub-
scripts name nodes. A small Greek letter with or without a subscript
names elther a path or a single node or may be empty; node names and Greek

letters may be concatenated to make new path names.

For example if o and B are paths then ABoBC names the path which is
the sequence of arcs which starts with (A,B) and then follows in order
the arc joining B to the initial node of «, the arcs of o, the are joining
the final node of @ to the initial node of P, the arcs of B and the arc
joining the final node of B to C. If o were a single node, D say, then
the path referred to would be the path ABDBC and 1f o were empty the path
would be ABBC.

If o 1is a path of some graph G and if G contains an arc joining the
final node of o to the initial node of o then the cycle consisting of the
arcs of o and then this arc is referred to as the cycle a*, 1In particular
ABa* is the cycle ABowA, i.e. a * may be thought of as naming the initial
node of the path in which it occurs.

Theorem 1
D

If G —FC‘ and if all the elementary cycles of G are:

Ne N, Mo, N, ..., Na N, B], Bz, ceay Sq

1 2 P
where no B meets N, then all the elementary cycles of G' are:

ok, o ¥

1 > ssey ap*, 81, BZ’ cosy Bq
and also all those cycles of the following form which are elementary:

o, o sen O, *
1 72 im

Proof
By definition of deletion these are all cycles of G', and clearly
they are elementary. We must also prove the converse, that any elementary

cycle of G' must take one of the above forms.
Consider.any elementary cycle of G', if this 18 also a cycle of G it
must be a B, 1If it is not, this can only be because it contains one or

more arcs which were added to G when N was deleted; let this cycle‘be of

the form ARAPIRER Ynf where each v is a path on G but the arc joining the
final node of Yy to the initial node of Yi+1 (and of Y, to Y]) are all
arcs in G' but not in G. Then it is clear that NY1NY2 . NYnN is a
cycle of G. Further each NYiN mist be an elementary cycle of G 1.e.
these y's are o's and we have our result.

Theorem 2
SDN :
If 6 - G' and if all the elementary cycles of G are:

NN, NN, ..., NN, Bis Bys vovs Bq

1 2

where no B meets N, then all the elementary cycles of G' are:

ok, o % ...,Aap*, Bl’ Bi, voey B

1 2 q "’

Proof

As we have a safe deletion of N there mmst be some node which is on

all the a's. There can therefore be no cycle of the form oy A ... 0y
1 72 m
(m = 2) which is elementary and the result follows from theorem t.

Theorem 3
SDN
If G is not KIC and if G — G' then G' is not KLC.

Proof

Define the o's and the B's as in theorem 2, so that « *,az*, ey, O K

1 P

B], BZ’ vees Sq are all the elementary cycles of G'.
Now assume G' is KLC, we shall derive a contradiction. There are in

G' then k nodes A],Az, ces Ak on a cycle 8' and k cycles Y{, Ya, caey Yi

subject to restrictions A), B) and C) of the definition of LC(k). Each

Yi and also §' must be either of the form o * or of the form Bj. Define

h|
Y; to be NajN-in the former case and Yi in the latter case and similarly
§.

" Then G is LC (k) by nodes A1, AZ’ caey Ak’ cycles Yis Yo »ees Yy and

cycle §. All these are nodes and cycles of G by the way we defined them.
The addition of node N to some of the cycles canmot affect restrictions B)
and C). The only way restriction A) could be violated is if N has become
a node common to the k+1 cycles i1.e. if 6' and all ¥' were of the form
ai* . But as the transformation was a safe deletion all the «'s have some
node E in common and this node would then be common to all the cycles Yi
and 6' . But these cycles were a set for the LC(k) condition of G' and
cannot have a comméon node.

We have therefore.proved that G is LC(k) i.e. is KLC and this is a
contradiction,
Theorem 4

A graph which has an elementary proper cycle 6§ and also n (= 2)
elementary cycles Yis¥oo soen Yy with the property that each Yi meets
at least one node of § and that there is no common node to the n+l cycles
3, Y]’Yz’ seey yn, is KLC.

The converse of this theorem is trivial, so here we have a possible
altérnative definition of KLC. |
Proof (by induction on n)

Case n = 2

Let A be any common node of & and Y, (there is at least one by the
conditions of the theorem). Then A cannot be on Y, OF it would then be
common to 8§, Yq and Yoo Similarly let B be any node on 6 and Yo B
cannot be on Y1. Further there is no common node to &, Y, and Yo and
we see therefore that G is LC (i.e. LC(2)) and is therefore KILC.

Assume theorem true for n-1 (22)

Consider a graph G with a cycle § and n cycles Yio Yos vevs Yo

=10~

satisfying the conditions of the theorem. If some n-} of the ¥'s have
no common node which is also on 6 we can use the induction hypothesis

to prove that G is KLC. We may therefore assume that any n-1 of the v's
have a node in common which is on 6. For 1 £ 1 < n let Ai be a node

which is on & and on all Yj (i # i). Then A, cannot be on Yi’ otherwise

i
it would be on 8 and all the v's and further the A's are all distinect

nodes for the same reason. Now & meets all the Ai’ each Yi meets all the

A's except A, and there is no common node to & and all the y's. There-

i
fore by the definition G is LC(n) i.e. is KLC.

Theorem 5

If G is not KIC and if no node of G can be safely deleted, then G is

PCF.
Proof
We prove the following which is logically equivalent to theorem 5;
If G is not PCF and no node of G can be safely deleted then G is
KiC.

Let & be any proper cycle of G and let its nodes be A1, Az, raay An.

For any ordered pair (Ai’Aj) with i £ j there must be an elementary cycle

meeting Ai but not Aj’ otherwise A, could be safely deleted from G. Call

i

this cycle Yy i Then § and all these ¥y's meet the requirements of
3

theorem 4 and therefore G is KLC.

Theorem 6

D
If G is KLC and G —1G' then G' is KLC.
Proof
As G is KLC there are k nodes A], Az, cvey Ak; k elementary cycles

Y]*, YZ*, ey Yk* and an elementary cycle 6% subject to restriction A),

w]l-

B), and C).
Case I: N, the deleted node, is not one of the A's.

Then A1, A cesy Ak are nodes of G' and by the definition of deletion

27
G' contains elementary cycles Y;*, Ya*, ceey Yﬂ* and &'k , where
Y;, Yé’ eruy Yi and &' are obtained by omitting node N wherever it occurs
in y], Y2’ vauy Yk and & respectively. This does not affect restrictions
A), B), and C) and so G' is KILC.
Case II: N is an A and k = 3.

Assume without léss of generality that N is Ak', Define 6%, ya*, y%*,
-++s Yp* as before. Then if &', ¥}, Y}, ..., y£~1 do not have a common

k

node G' is LC(k=1). {(Use nodes A,, A

17 Ags eees Ak_1.) 1f they do have a

common node, E say, then because of restriction A) Yi cannot meet E. There-
fore G' is LC(k). (Use nodes A1,A2, erey Ak_1, E and cycles 6'*,Y;*,Yi,...,yif.)
Case IIT: N is an A and k = 2,

The proof of case II holds unless &' and Y; do not have a common node.
FeA where no node of Fe¢ is

27

on 61A162. The in graph G' (obtained from G by deleting Az) the nodes A

and F and the elementary cycles A]626]A1, FeF and F€51A15

Assume then that 8% is A26]A162A2 and Y? is A

1
F show that G!

2
is LC.
Theorem 7

If G is KLC then G is not PCF.
Proof

This is trivial, as by the definitipn of KIL.C G must contain a proper
cycle.
Theorem 8

D
1f G myC' and the deletion 1s not a safe deletion, then G' is KLC.

-12-

Proof
Suppose all the elementary cycles meeting N of graph G are
NY1N, NYZN, ceey NYnN. Then as the transformation is not a safe deletion
there is no common node to the ¥y's and n = 2. By the definition of
deletion G' contains elementary cycles Y]*, YZ*, ceny Yn* such that, for
all i and j, Yin* is a cycle (not necessarily elementary). Theorem 8
can therefore be deduced from the following lemma:
Lemma
If a graph G contains elementary cycles y]*, Yz*, arey Yn*
where n = 2, if there is no node which is on all these cycles and if,
for all i and j, inj* is a cycle of G, then G is KLC.
Proof (by induction on n)
Case n = 2
There is no node common to Yy and Yoo therefore the first node
of each and the elementary cycles YIYZ*’ y]* and yz* show that
G is LC and therefore KLC.

Assume true for a~1 (= 2)

Consider a graph G with elementary cycles Y1*, Yz*, seay Yn?
satisfying the conditions of the lemma, If some n-1 of these cycles
have no common node then we use the induction hypothesis to prove
that G is KLCL. We may therefore assume that any n-1 of these cycles

have a common node. For 2 £ i £ n let Ai be a node which is on all

Yj (j # i). Now consider the nodes A., A ceus An' A, cannot be

3 i
on Y., otherwise it would be on all the y's and further, the A's

2,

are all distinct for the same reason. The cycle Yl* meets all these

nodes, and for 2 £ i £n Yi* meets all the A's except A There is

i

no common node to the ¥'s and so G is LC(n-1).

-13~

Theorem 9

If G 1is KLC then G has an elementary proper cycle & and also n (n 2 2)
elementary cycles of the form 6111* {1 £ i £ n) where each 6i is a subpath
or a node of cycle &, there is no common node to 6], 62, ey bn and no A
meets a node which is on §.

The converse of this theorem is true by theorem 4, and so again we

have a possible alternative definition of KIC.

Proof

As G is KLC there are k nodes A., A ey Ak; k elementary cycles

| ' A

Yis Yor wees Y and an elementary cycle ¢ satisfying restrictions A), B),
and C). The cycle Y, must be of the form

*
611li1612l12 Tt 6iq)tiq

is either a subpath of & or is a node of & and each ki has

where each & f

1j
no node on §.

Define 6iab so that diaaiabéib is an elementary subpath of §.

Consider the q cycles:

] A

122121800 0*

819%432%12* 0%

6116i1q51qliq*
(if @ = 1 just consider the single cycle 611Ki1*).
Do this for all i with 1 =< 1 < k and take all these cycles to be the
ﬁihi* of the theorem, they are clearly elementary. It only remains to
prove that all these cycles cannot have a common node which is also on §.

Suppose there was such a node, A Now A_ may or may not be one of

Q Q

A1, A2, ‘e Ak , but in any case AQ cannot be on all the ¥'s, assume A

is not on \ e Then as A. is on all the cycles listed above none of

Q

6121, 6132, ceas aiiq can be empty and AQ must be in them all, as these
are the only portions of the cycles not on Yi' But there can be no
such node by the definition of Giab' (This is left as an exercise for
the reader. The 6ij are subpaths of 6, consider the ordering
imposed on them if AQ is on all the Biab.)
Theorem 10

Tf a graph G has an elementary proper cycle § and also n (n = 2)
elementary cycles of the form Gili* {1 £ i = n) where each 5i is a sub-
path or a node of cycle ¢, if there is no common node to 61, 62, ey 6n
and if no ki meets a node of 6, then G is loop-connected {i.e. 1LC(2)).
Proof (by induction on n)

Case n = 2

Take A to be any node on 6], B any node on 62. Then nodes A and B

and cycles 6, 5]k]* and 62k2* show that G is LC.

Assume true for n-1 (= 2)

Let G be a graph with cycles §, 6]k]*, 62l2*, caey 6nhn* satisfying

the conditions of the theorem. Then if some n-1 of 6], 62, ciay Gn have
no common node we can use the induction hypothesis to prove that G is LC.
We may therefore assume that any n-1 of the 61 have a common node. For

i cannot be on ﬁi’

otherwise it would be on all the 6's and further the A's are all distinct

1£1i=<n let Ai be a node on all 6j (3 # i). Then A

nodes for the same reason.

Without Ioss of generality we can assume A], AZ’ ey An are in
order around the cycle 6. Now consider the cycle 6iki*. The 61 meets
all the A's except Ai’ the graph must therefore take the form of graph 6.

~15-

(What appear to be arcs in this graph may be paths i.e. there may be

other nodes on them.)
Define ei and vy to be either elementary subpaths of § or single

nodes of jor empty so that the cycle 5i11* is the cycle A (round

i+l

where we define A to be A, and A_ to be A ,
n+ n

6 to) A 1 1 0

TR LI\ FLIETE
There can be no node which is on a p and a y, for suppose there is

an i such that a node N is on Yy and on Bi+T which is the only possibility,

Then N is on 51 (as‘yi is either a subpath or a node of 6i), N is on 51+1

{as Bi+1 is either a sﬁbpath or a node of 61+‘) and also N must be on all

the othexr §'s (as they all include the complete path from Ai to Ai+1)‘

Therefore N is on all §'s, but they do not have a common node.

We now can find the cycles involved in a loop connection, but need

to consider three cases.

Case 1: n is even

Consider the following cycles (the reader should draw a picture):

I 6
I 8B3h3Y3hBshovshe - oo ABR YA,
11 AR AP A A <o Ay Bakn Yty
Then I meets A] and Ay, II meets A2 but not A1 and T1I meet: A, but
not AZ' Also they cannot have a common node; nc A meets a node df 5 and

no B or vy meets any other B or y. Therefore G is LC by definitien.

Case 2: n 1is odd and 11 meets no Rq with g even

Consider the following cycles (again a picture will help to visualize

-16~

the situation}:

I A (round & to)A,B.AsVAA, BV A o A (B A Y A,
IX An(round b to)A1H212Y2A3 BadeaAs fas An-2 Bn-lln-1yn-1An
1iI AnB1h]Y]A2 (round & through A3, AA’ AS ve. to) An .

Then I meets A, and AZ’ I1 meets A, but not AZ and III meets A2 but
not A]' The only nodes on 6 which both T and II meet are on the path
YnAlaz and III meets no node of this path. The only A in ITII is 11 and
we have postulated this meets no lq where q is even, therefore II cannot

meet any node on h] and so we have proved that I, II and III can have no

common node. Therefore G is 1C.

Case 3: n is odd and A1 meets A where g is even
R q

Suppose W is a node which is on A1 and also on hq, say l] is the

path A!WA" and A: is the path A'WA" .
L q 99

Consider the cycles:

I 6
]]
II An517\lml:;quqHBq+2lq+2lvq+2Aq+3 et An
I1I A] (round 6 to) AZB313Y3A4BSR5Y5A6 e By

Then I meets An and A1, 1T meets An but not A] and III meets A1
but not An, the only common node to I, II and IIT must be on & but it is
easy to see that II and III do not have a common node on 8. Therefore G

is 1C.

Notes on the proof of these three cases

It is not immediately clear that all the cycles produced are legiti-
mate cycles for small values of n e.g. case 1 for n = 2 or 3. Remembering
however that n > 2 (as we have already dealt with the case n = 2) if n is

odd it is at least 3 and if even at least 4. This is sufficient to make

=17~

all the cycles valid. Also the definition of LC stated that the cycles
o, B and v were all to be elementary, many of the cycles used above need
not be elementary as there was no restriction stating that two of the A's
could not have a common node. We therefore need the following theorem.
Theorem 11

A graph G which has two nodes, A and B, and three cycles o, B and v
such that all the conditions for LC, except the restriction that o, ¥ and
¥ be elementary, are satisfied is LC.

Proof |

Let & be the cycle Ax'A, B be BB'B and vy be AN;BYEA- Then we may
assume that o', B', Y; and Y'2 are each either an elementary path or a
node or empty, and that none of o', B', Y; and yi meet A or B, otherwise
it is easy to find, by omitting nodes, new @', 8', Y; and Yi with these
proberties. There remains the possibility that Yi and Ya have a common
node or nodes.

Suppose N is such a node and write y as AY%1NY;ZBYéINY§2A’ where no
node on Y;1 is also on Yi1NY52' Now N cannot be on both @' and ',
assume it is not on o', a similar proof will hold if it is not on B' .
Consider nodes A and N and cycles AY;1NY§2A, ;ZBYEIN and Ao'A. If
the second of these is not elementary replace it by that part of itself
which is an elementary cycle through N. Then if these cycles do not
have a common node they show that G is LC.

If the cycles do have a common noderP then consider the nodes B and
P and the cycles Nyiszi]N, Ax'A and BB'B. The first two both meet P
and there can be no node on all three cycles as they are each part of

the original three cycles. The first may not be elementary but it

must have fewer repeated nodes than Aytiz

A and so we proceed by induction

-18~

to prove that G is LC.
Theorem 12
A graph is LC if and only if it is KLC.
Proof
If a graph is KIC then theorem 9 and 10 shows it is LC. If a graph

is LC it is LC(2) and hence KLC.

ACKNOWLEDGEMERTS

The concept of LC(k) and many of the above proofs are due tc Z. Manna,
I myself obtained a complete set of theorems and proofs based directly on

LC, but the above presentation is simpler.

REFERENCES

[1] Cooper, D. C., '"Mathematical proofs about computer programs".
Machine Intelligence 1, ed. D. Michie. OQliver
and Boyd Ltd. To appear October 19%66.

[2] Cooper, D. C., "Theoretical results concerning programs re-
garded as directed graphs". To be presented
at Second Machine Intelligence Conference,
Edinburgh, June 27 - July 1, 1966.

* Part I of this report

GRAPH 1

GRAPH 2

GRAPH 3

GRAFH 4

2
r)Q%r
I A 2 2

2 indicates a multiple arc

GRAPH 5

I/ \\\
II \
| }
'. .'
\\ ’1
\ /
A Al A
(+1 (=1
Al

GRAFH 6

