
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

COMPUTER PROGRAMS AND GRAPH TRANSFORMATIONS

by

David C. Cooper

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

September 19, 1966

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146).

Part I was presented at the Machine Intelligence Workshop held
at Edinburgh University from 27th June to 1st July, 1966. The
proceedings will be published by Oliver and Boyd Ltd., Edinburgh.

Part II was presented at the "International Seminar on Graph Theory"
held in Rome, Italy from 5th July to 9th July, 1966, and will be
published in "Actes des Journees d'Etudes sur la Theorie des Graphes"
ICC, Dunod 1967.

ABSTRACT

Each part is complete in itself, which of course necessitates some
overlap.

Part I describes the general approach and motivations of this re­
search. It is assumed that with a computer program we may associate a
directed graph (its "flow chart"). Several transformations of a directed
graph are defined with the property that they "obviously" do not affect
the meaning of the program. Two particular standard forms for graphs
are described and results and conjectures given concerning the possibil­
ity of transforming graphs into these standard forms by using the defined
graph transformations.

Part II gives the mathematical proofs of the theorems stated in
Part I without proof and completely solves the problems concerning one
of the defined standard forms.

TABLE OF CONTENTS

Title Page i
Abstract • ii
Table of Contents iii
PART I

Some Transformations and Standard Forms of
Graphs with Applications to Computer Programs

Illustrations for Part I

PART II
Reduction of Programs to a Standard Form
by Graph Transformations

Illustrations for Part II

PART I

SOME TRANSFORMATIONS AND STANDARD FORMS OF GRAPHS,
WITH APPLICATIONS TO COMPUTER PROGRAMS

Introduction: Programs and Directed Graphs

In Cooper (1966b) I reported on several attempts at proving theorems

about computer programs, with the ultimate goal in mind of providing mathe­

matical proofs that programs are correct rather than just testing them on

some particular data sets. In the last section I commented that the proofs

I obtained in Cooper (1966a) could be viewed as deep results about small

programs but that what was needed were techniques for proving shallow re­

sults about large programs. By this latter I meant that the proofs did not

depend too much on properties of the basic functions or commands used in the

program but rather depend on the synthesis of a large number of trivial prop­

erties, the particular way this synthesis is performed being guided by the

structure of the large program. Some of the other work reported on in

Cooper (1966b), particularly the work of Evans (1965), has this flavour but

are particular proofs about particular programs. Mention should also be made

of the long proof of Balzer (1966) which proves that a particular finite auto­

maton correctly performs its given task.

There are many programs whose control structure can be well shown by a

directed graph - that is the flow chart of the program. The first goal of

this research is to produce some kind of automatic scheme which will prove

results about programs which only use conditional statements and assignment

statements and we shall not consider those features of a programming language

which imply some kind of control structure not immediately so representable;

for example, the passing of parameters to subroutines, perhaps by the use of

procedures and functions previously defined by the programmer. These are very

important features of programming languages but they will not be further con­

sidered in this paper. Although the techniques of this paper may not be di­

rectly applicable in these circumstances some modification of the ideas used

could well be useful; for example, the graphs could represent the relations

between a set of mutual recursive function definitions and the transforma­

tion to be defined later could well be meaningful.

Having associated a graph with a program there may well be transforma­

tions which can be made on the graph which "do not affect" the program, later

we shall amplify this remark. The question then arises as to whether the

graph may be put into some standard form by a series of such transformations,

this standard form being one in which it is easier to prove results about

the program by taking advantage of special features of the standard form.

The purpose of this chapter is to define several such transformations and

two such standard forms, and to give results and conjectures about the pos­

sibility of transforming programs to the standard forms.

The particular way in which a directed graph is associated with a given

program is not important. All that matters is that the graph transforma­

tions defined in the next section should represent meaningful transforma­

tions if performed on the programs with which the graphs are associated.

However, in order to better illustrate the intention behind the transforma­

tions, we give a particular definition of a program and of the graph associ­

ated with a program. This definition will use a state vector approach; see

McCarthy (I960). In this approach the current state of a computation is

represented by the value of a vector, each component of which corresponds to

one of the variables, machine locations, etc. (dependent on the particular

programming language used). The effect of a basic command can then be de­

scribed by a function whose argument is a state vector (the state of the

machine before the command is obeyed) and whose value is also a state vector

(the state of the machine after the command is obeyed). A sequence of com­

mands corresponds to composition of the corresponding functions. A two-way

test is represented by a predicate whose argument is a state vector.

Assume then that we have a domain D, a set of functions f^ which map D

into D and a set of predicates p. whose domains are D. A program is defined

to be a directed graph with every arc of which is associated one of the f

functions and one of the p predicates. It is a legal program if the graph
if it has

has just one node (A, say) with no arcs leading to it, just one node (Z, say)
A

with no arcs leading from it, if every node is on a path which starts at A

and ends at Z, and if for all nodes (except Z) the set of predicates on all

arcs leading from the node is complete and mutually exclusive.

The intended interpretation is that if f^ and p^ are the function and

predicate associated with some arc then f̂, represents the effect of all the

statements obeyed along that arc and p^ represents the condition that the

arc is entered. A program then defines a partial function from D into D in

an obvious manner (partial because the program may loop indefinitely).

It should again be emphasised that we are not concerned with this par­

ticular definition of a program, only with the ability to associate a graph

with a program. As alternatives we could have associated the information

in the program with the nodes rather than the arcs, or we could have taken

some simple programming language and explicitly stated how to obtain the

graph from the program.

The results to be obtained later could well have applications in other

areas than computer programs. For example, Seshu and Reed (1961) describe

the application of graphs to sequential machines and to systems of linear

algebraic equations. All our transformations can be given interpretations

in these areas, in fact the delete node transformation (T 5 of the next sec­

tion) is already well known in these applications. The particular field of

interest determines the transformations of interest; for example, later we

shall reject a certain transformation (DT 1) as not being a useful one for

computer programs. However, this transformation is of use in the areas of

sequential machines and of linear equations.

Examples of Transformations

In this section we define several directed graph transformations of

interest. In each case we give a description of the general case in English

and illustrate the transformation with a particular case. The illustration

of course only shows how the affected part of the graph is altered, the graph

may have other nodes and arcs except that in all cases we .assume tkiat thero

are no further arcs which lead into or out of the no<^es labelled N.

T 1 Stretch a node N by outputs.

Let 0 be some subset of the output nodes of N, this subset may be

all the output nodes but must not be empty. Delete all arcs from N

to nodes in 0, add a new node N^ and add arcs from N to and from

to all nodes in 0. (The output nodes of a node N are all those

nodes P such that there is an arc NP, including N itself if there is

an arc NN).

In the example 0 is the set {N,D,E}.

T 2 Stretch a node N by inputs.

Let I be some subset of the input nodes of N; this subset may be

all the input nodes but must not be empty. Delete all arcs from nodes

in I to N, add a new node and add arcs from N^ to N and from all

nodes in I to N^ . (The input nodes of a node are defined in an anal­

ogous way to the output nodes.)

In the example I is the set {A,B}.

T 3 Duplicate a node N.

Let I be some non-empty, proper subset of the input nodes of N,

not including N itself if NN is an arc. Delete all arcs from nodes

in I to N, add a new node N^, add arcs from N^ to all the output

nodes of N (except N itself if NN is an arc) and add arcs from every

node in I to N^. If NN is an arc also add an arc N^ N^.

In the example I is the set {A,B} .

T 4 Delete an arc AN.

This transformation may only be made if there is no arc NN. Delete

the arc AN and add arcs from A to all the output nodes of N. If A was

the only input node of N then also delete node N and all arcs leading

from N.

T 5 Delete a node N.

This transformation may only be made if there is no arc NN and is

equivalent to applying a sequence of T 4 transformations in any order

to all the arcs leading to N. Add all possible arcs from an input

node of N to an output node of N and delete node N and all arcs leading

to or from N.

In all these cases if the untransformed graph is the graph of some pro­

gram P it is easy to find an equivalent program with the transformed graph

as its associated graph. For example, in the diagram illustrating transforma­

tion T 1 if p A„(s) and f A X T(s) are the predicate and function associated with

AN AN

arc AN on the untransformed graph (and similarly for the other arcs) then

in the transformed graph on arc NN^ we have the predicate P^p(s) V P^g(s) V Pj^(s)

and the identity function, N^N, N^D and N^E have the same predicates and

functions as NN, ND and NE respectively, and all other arcs have the same

predicates and functions as before the transformation. Transformation T 4

represents the effect of anticipating the test at N at the previous node A

so that on the transformed graph, for example, with the arc AC we associate

the predicate P M (s) A P^c^f^s>>^ a n d t h e function ^ (^ (s)) -

As two examples of transformation which we do not wish to allow consider

the following:
DT 1 Delete a node N with a loop.

This is defined exactly as T 5 but we remove the restriction that

there must be no arc NN.

DT 2 Join two arcs AB and CD.

Delete the arcs AB and CD, add a new node N and add arcs AN, NB, CN

and ND.

In DT 1 with arc AC we would have to associate a predicate expressing the

condition that when control finally comes out of the loop at N control passes

to node C. This can be done, but in general requires an infinite disjunction,

we assume this is not a useful concept to introduce. The aim in making the

transformation is to better reveal the program 1s structure, we do not wish to

produce a transformed program which introduces complex new concepts and makes

our task of proving the desired theorem about the program much more difficult.

Admittedly we are being vague here, the transformations T 1 to T 5 imply we

do not mind complicating our programs by forming conjunctions and disjunctions

of predicates and compositions of functions. Note that the situation arising

in DT 1 would not be improved by adding loops on the transformed graph at A

and B, or at new nodes internal to the arcs AC, AD, BC and BD.

We could allow the transformation DT 2 if an extra Boolean variable is

defined and semantics added to the program to set this variable true along

arc AN, false along arc CN, The predicate on arc NB would then be a test

whether this variable is true, on arc ND whether it is false. In effect we

are coding the path already taken on the graph into a variable. Again we

assume that this is not a good thing to do.

In this chapter we define T 1 to T 5 as the only allowable transforma­

tions, and then prove or conjecture theorems concerning them. We would like

to somehow characterize the allowable transformations and perhaps produce

some more. A possible approach is to define a transformation of one graph

into another by a definition of the following form:

G ->G' if and only if (p)(ap ,)[G=graph(p)3[G ,=graph(p ,)Af(p,p')}].

This definition presupposes that we already have a definition of a program,

of a function "graph 1 1 which produces the graph of a program and of a predicate

f(p»p')« This predicate must express the condition that program p 1 is equiva­

lent to program p, and moreover can be produced from it with some giveu rules

which allow such things as function composition but does not allow anything

corresponding to the infinite disjunction of DT 1 or the nev Boolean variable

of DT 2.

Proper Cycle Free Form

Having defined the allowable graph transformations are there some partic­

ularly desirable standard forms into which we can try to transform a given

graph? Two desirable forms will be defined, one in this section and one in

the following section.

Most, if not all, of the questions we wish to answer about a computer

program are easy to answer if there are no cycles in the program. The simpler

the interconnections between the cycles the easier it should be to answer

questions about whether a program performs correctly; it should therefore be

profitable to make transformations aimed at simplifying the cycle structure of

a graph.

The simplest (and also rarest) program is one which has no cycles. Next

one might consider programs in which all the cycles are independent, i.e. no

section of the program is in more than one cycle. This class of programs is

more interesting but still very restrictive. However, experience indicates

that a large number of interesting programs may be transformed by a series of

transformations into a program with this independent loop structure.

In order to make these vague remarks more exact we define a proper cycle

of a graph to be a cycle through two or more nodes and a proper cycle free

(PCF) graph to be a graph with no proper cycles. A graph which is PCF clearly

has the independent looping property, and it is also trivial to transform any

graph with independent loops into PCF form. We therefore take PCF form as

being a standard form into which we try to transform a given graph, and

obtain necessary and sufficient conditions for a graph to be transformable

into PCF form together with an algorithm for making the transformation if it

is possible. For this purpose only transformation T 5, delete a node, turns

out to be relevant. If a graph can be transformed to PCF form by a sequence

of transformations, each of which is one of T 1 to T 5, then this may be done

by a sequence of T 5 transformations alone.

Consider graph 1. By deleting node A we obtain graph 2 which is not

PCF (and which in fact cannot be transformed to PCF form at all; see the

theorem below). But if instead of deleting A we delete B and then C we ob­

tain graph 3 which is PCF and "obviously much simpler11 than graph 2. (The

2 fs on graph 3 indicate multiple arcs.) Graph 3 reveals the "basic structure"

of graph 1 in a way which graph 2 does not. These graphs show that the order

in which nodes are deleted is critical.

Define a graph to be loop connected if it contains two nodes, A and B

say, and three cycles a, (3 and y such that: 1) there is no one node which is

on ot> (3 and y> 2) A is on a but not on j3, 3) B is on g but not on and

4) both A and B are on y This is a generalization of part of graph 2 in

which arcs have been replaced by paths. Then we have:

Theorem 1

A graph G can be transformed by a series of transformations, each

of which is one of T 1 to T 5, to a graph which is PCF if and only if

it is not loop connected.

In Cooper (1966c) only transformation T 5 is considered but it is easy

to extend the results of that paper in such a way that theorem 1 is an immedi­

ate deduction from the theorems proved there.

Theorem 1 does not give an algorithm for performing the sequence of

transformations. In order to do this define a delete node N transformation

(T 5) to be a safe deletion if there is some node A (not N) of the untrans­

formed graph with the property that all cycles of the graph which pass through

node N also pass through node A. For example, in graph 1 B or C may be safely

deleted but not A. Then the following theorem gives the required algorithm;

it is an easy extension of one of the theorems in Cooper (1966c):

Theorem 2

Start with any graph G and perform safe deletions in any order until

a graph G 1 is obtained on which no safe deletions may be performed. This

process must terminate and either G 1 is PCF or there is no sequence of

transformations, each of which is one of T 1 to T 5, which will transform

G to a graph in PCF form.

Theorems 1 and 2 completely solve the relevant questions about transforma­

tions to PCF form. In the same paper an equivalent condition to loop connected­

ness is defined; this condition appears more complicated but simplifies the

proofs. In addition a theorem is proved which shows that safe deletions is

the widest possible subclass of deletions, i.e. if we make a deletion which

is not a safe deletion we obtain a graph which is loop connected and hence not

transformable to PCF form.

Block Form

The second standard form corresponds in a more natural manner than PCF

form to the way a large number of programs are written; it roughly corresponds

to programs in which all loops are properly nested. A recursive definition of

block form is simply given: - a graph is defined to be in block form if it is

of one of the forms B1, B2 or B3 (see the diagrams) where the shaded boxes

are either arcs or subgraphs in block form.

It is not necessary to take exactly these forms; for example, instead of

B2 we may allow any number of blocks in parallel and instead of B3 any number

in series, obviously a graph of such form can easily be transformed into the

standard block form. A more useful equivalent standard form is where instead

of B2 and B3 we allow any graph made up of subgraphs, each in block form, and

these subgraphs joined in any manner that does not create a cycle. Such a

graph can be further transformed into the standard block form, but it may

well be better not to carry out these further transformations as this usually

involves a lot of duplicating of nodes. A third alternative is to replace Bl

by Bla.

Very little progress has been made so far with proving results about

transformation of graphs to block form, although a large number of small graphs

have been investigated. A conjecture has been made as to the necessary and

sufficient conditions for a graph to be transformable to block form and we hope

soon to have an algorithm to effect the transformations. Any graph in PCF form

can be transformed to block form; essentially it already is in block form ac­

cording to the second alternative definition. However, consider graph 4, which

is clearly loop connected and hence cannot be transformed into PCF form. First

use T 1 (with N being A and 0 the set {B,Z}) and then use T 3 (N being A again

and I the set {B}), this produces graph 5 and it is obvious how to put this

into block form. Thus graph 4 is an example of a graph which can be transformed

to block form but not to PCF form. As a more complex example, graph 6 may be

transformed to block form; this is left as an exercise for the reader; a good

start is to delete node A.

What graphs cannot be transformed to block form? Here we have no proven

results but it seems almost certain that graph 7 cannot be so transformed (or

any graph containing this as a subgraph). The situation is much more complex

than for the PCF case; there a knowledge of just the cycles of a graph was

sufficient to determine whether the graph could be transformed to PCF form,

but graphs 4 and 7 have the same cycles and one can be transformed to block

form but not the other. It seems that a generalization of graph 7 in which

its arcs are replaced by paths (possibly intersecting each other) is the key

situation which, if it occurs in a graph, makes the graph untransformable to

block form. But examples show that if enough of the paths intersect then we

are back to the position of being able to transform to block form.

By induction from examples tried we make the following definition:

A graph is loop connected with two exits if it contains three nodes,

A, B and Z say, a cycle a through A, a cycle p through B, a path y connecting

A to B, a path 6 connecting B to A, a path 0 connecting A to Z and a path

^ connecting B to Z (see graph 8) . Further there must be no node which is on

all three members of any of the following triples:

(c*,P,y)> (a , 0 , 6) , (6 , a , *) , (y ,3,0), (04,a) and (0,i|r,p).

We conjecture the following:

Theorem 3

A graph can be transformed by a series of transformations T 1 to

T 5 to a graph which is in block form if and only if it is not loop

connected with two exits,

it

Bohm and Jacopini (1966) investigate the reduction of flow diagrams to

standard forms, they show that corresponding to any flow diagram there is an

equivalent one which is "decomposable into n, $ and A". This is precisely

block form. Their algorithm for producing this equivalent flow diagram may be

looked on as a sequence of graph transformations which, however, allow the

transformation DT 2, which we have not allowed. Transformation DT 2 on pro­

grams was justified by the introduction of a new variable, rather than intro-
t i

ducing a separate new variable everytimei DT 2 is used Bohm and Jacopini intro­

duce a single Boolean stack and add semantics to test the top of the stack,

to delete the top of the stack and to add a new truth value to the top of the

stack. This stack may be thought of as a code for the path through the flow

diagram traversed so far. For our purposes we do not wish to allow this trans

formation, but it is an interesting result that if DT 2 is allowed then any

graph may be transformed to block form.

References

Balzer, R.M. (1966), Studies Concerning Minimal Time Solutions to
the Firing Squad Synchronization Problem.
Ph.D. thesis. Pittsburgh: Carnegie Institute
of Technology.

Bohm,C.&Jacopini,G.(1966).Flow Diagrams, Turing Machines and Languages
with Only Two Formation Rules. Comm. ACM, 9,
366-371 .

Cooper, D.C. (1966a).

Cooper, D.C. (1966b).

Cooper, D.C. (1966c).

Evans, A. (1965).

McCarthy, J. (I960).

Seshu, S. & Reed,M.B.
(1961).

The Equivalence of Certain Computations.
Computer J., 9, 45-52.

Mathematical Proofs About Computer Programs.
To appear in Machine Intelligence 1, Editor
Michie, D. Oliver and Boyd Ltd., Edinburgh.

Reduction of Programs to a Standard Form by
Graph Transformation. Presented at "Inter­
national Seminar on Graph Theory and its ^
Applications", Rome, Italy, July 5-9, 1966.

Syntax Analysis by a Production Language, Ph.D.
thesis. Pittsburgh: Carnegie Institute of
Technology.

Recursive Functions of Symbolic Expressions
and Their Computation by Machine. Comm. ACM 3,
184-195.

Linear Graphs and Electrical Networks. Addison
Wesley Publishing Co., Inc. Massachusetts and
London.

Part II of this report

c

E

1] 1 1 1 I I

1 1 I

>

1 1 "1 1 1 1 1 1 1 1 1

1 1 1 1 I 1 1) 1 1 1)

• —>

• > •
C D C

1 1 1 1 1) 1 1 1

1 1 I f > 1 I)) I 1

1 1 1 1 1) 1 1 I I 1 1

f ^

1 1 1) J J 1 1 1 1 I I I I

PART II

REDUCTION OF PROGRAMS TO A STANDARD
FORM BY GRAPH TRANSFORMATION

INTRODUCTION: Motivation for the theorems proved

Recently there have been several attempts at producing proofs about

computer programs, see for example [1] and the other papers referred to

therein. The work reported in this paper is motivated by the idea that

a knowledge of the underlying structure of a specific program could be

of great help in proofs concerning that program. For example the simplest

(and also rarest) program is one which does not have any loops in it.

Next one might consider programs in which all loops are independent, i.e.

no section of the program is part of more than one loop. This class of

programs is more interesting, but still very restrictive. However, rules

may be set up for transforming a program into an equivalent program which

could have a different looping structure. In fact experience indicates

that a large number of interesting programs may be transformed by a series

of trivial transformations into a program with this independent loop

structure. This paper investigates one such transformation and shows how

it may be used to transform a program to the desired form, if that is

possible.

So far, we have been vague; we should define what we mean by a program,

by a transformation, by loops and independent looping, and by equivalence

of programs. We take a slightly different view. Assume that, whatever

definition of a program is used, a directed graph may be associated in some

way with a program, i.e. there is a total function whose domain is the

class of all programs and whose range is the class of all directed graphs.

Assume also that there is an equivalence relation defined between programs.

Then any transformation from graph G to graph G f which is considered should

have the property that, for any program with G as its graph, an equivalent

program can be mechanically produced with G f as its graph. Further dis­

cussion and clarification of these remarks will be found in [2] .

In this paper we consider one particular graph transformation which

should satisfy this last criterion for most definitions of a program and

of equivalence of programs; further such transformations will be found in

[2] . This transformation consists of deleting a node from a graph by

connecting all its input nodes to all its output nodes (for example Graph

1 may be transformed into Graph 2 by deleting node N, also see the more

rigorous definition below). The justification for allowing this trans­

formation is that whatever program has Graph 1 as part of its flowchart,

the test at node N amy be anticipated at nodes A and B and direct connec­

tions made to nodes C and D as shown. With arc AC will be associated

whatever assignment statements were made on arc AN, followed by those on

arc NC, and so on. The new test associated with arc AC in Graph 2 will

be the conjunction of the condition in Graph 1 for control to go from A

to N (there may be other arcs out from A) and the condition for control

to go from N to C; there might have to be substitutions made in this

latter test to allow for the effect of changes in going from A to N. The

node N may not be deleted if there is an arc from N to N; for example

neither B nor C may be deleted from Graph 4 . If this were to be allowed,

the new test associated with AC (Graph 2) would have to be the condition

that, after control goes from A to N (Graph 1) and after control finally

comes out of the loop around N, control then goes to C. We assume it is

not useful to accept this as a basic test in a program although it would,

of course, be perfectly possible to do so.

PEFINITIONS

A graph is a set of nodes together with a set T of ordered pairs of

these nodes. Each member of T is an arc. Note that only what are usually

called directed graphs are considered in this paper, so we omit the

adjective "directed 1 1.

The first member of an arc is its initial node, the second member,

its final node.

A path is a sequence of arcs (u,,u 0, u) such that the final node
I z n

of u^ is the initial node of u^ +^ (for i = 1, 2, n-1). It is a cycle

if the final node of u is the initial node of u-. It meets those nodes
n I

which are initial or final nodes of its arcs. Any node met by a path or

cycle is said to be on the path or cycle. The initial node of a path is

the initial node of u,, and the final node is the final node of u . A

1 n

subpath of a path (u^^xi^ u^) is a path (u £ » u j l + i » u j) wlth

1 <. i <; j <. n .

A path or cycle is elementary if it does not meet the same node more

than once (except for the initial and final nodes in the case of a cycle).

A proper cycle is a cycle which meets two or more distinct nodes.

A proper cycle free (PCF) graph is a graph with no proper cycles.

input nodes of a node N are those nodes A such that (A,N) is an

arc and the output nodes of N are those nodes Z such that (N,Z) is an arc.

A graph is loop-connected (LC) if it contains two nodes, A and B,

and three elementary cycles ot, 0 , and y such that:

1) There is no one node which is on or, 0 , and y;

2) a meets A but does not meet B;

3) 0 meets B but does not meet A;

4) Y meets both A and B.

(For example, Graph 4 is loop-connected via nodes B and C.)

By theorem 11 if the word elementary is omitted we have an equivalent

definition.

A graph is loop-connected(k) (LC(k)) where k is an integer ^ 2 if

there are k nodes A ^ A j , A^; k elementary cycles V]*Y29 ^k a n d

an elementary cycle 6 such that:

Restriction A) There is no one node which is on 6 and on all

the y±;

Restriction B) For 1 ^ i ^ k the cycle Y i meets all of

A-j ,A^9 • • • •, except A^;

Restriction C) 6 meets all of A^,A2> A^.

A graph is Kloop-connected (KLC) if there is a k such that it is

LC(k). Obviously, LC is LC(2) so that LC implies KLC; theorem 12 also

shows the converse, that KLC implies LC.

The node N can be deleted from graph G giving graph G f (written
D N

G -> G f) if and only if there is no arc (N,N). G 1 is obtained from G by

adding arcs joining all input nodes of N to all output nodes of N and

then removing N and all arcs with N as initial or final node. If a node

A is both an input node and an output node of N, then an arc (A,A) is

added.

Examples of node deletions are 1) delete node N from Graph 1 to give

Graph 2, and 2) delete node A from Graph 3 to give Graph 4.

The node N can be safely deleted from graph G giving graph G 1

(written G -» G 1) if and only if it can be deleted and also there is some

node A of graph G (not N) with the property that all elementary cycles

of G which meet N also meet A. G 1 is obtained from G exactly as for

deletion.

Particular cases in which N can be safely deleted are: if there is

no cycle meeting N, or if only one elementary cycle meets N (proper

cycle), or if N is the initial node of only one arc (not N,N)), or if

N is the final node of only one arc (not (N,N)).

THE MAIN THEOREMS PROVED

Consider Graph 3. By deleting A, we obtain Graph 4 which is not PCF.

But if instead of deleting A we delete B and then C, we obtain Graph 5

which is PCF and "obviously much simpler" than Graph 4. Graph 5 reveals

the "basic structure" of Graph 3, but this basic structure is not revealed

in Graph 4.

This example shows that the order in which nodes are deleted is

critical. Graph 3 may be transformed into PCF form, but if we delete A

first we obtain Graph 4 which cannot be transformed into PCF form. This

raises two questions: what are the necessary and sufficient conditions

for a graph to be transformable by a series of deletions into a graph

which is PCF, and given a graph which can be transformed in what order

should the deletions be performed?

The answer to the first question is that a graph can be transformed

into PCF form if and only if it is not LC. However although LC is a

simpler condition to understand than KLC, the proofs using KLC are much

simpler than those we first obtained using LC. We therefore use KLC

throughout and prove separately (theorem 1 2) that a graph is LC if and

only if it is KLC. Alternative definitions of KLC are suggested by

theorems 4 and 9 .

Now consider the process which starts with any graph G and performs

safe deletions in any order until a graph G f is obtained on which no safe

deletions may be performed.

If G is not KLC, then the following two theorems prove that this

algorithm must terminte with G f in PCF form (the algorithm must terminate

as each safe deletion reduces by one the number of nodes on the graph).

Theorem 3: If G is not KLC and G -» G f, then G f is not KLC.

Theorem 5: If G is not KLC and if no node of G can be safely

deleted, then G is PCF.

If G is KLC, then the following two theorems prove that it cannot

be transformed to PCF form.
D N

Theorem 6: If G is KLC and G -> G f, then G f is KLC.

Theorem 7: If G is KLC, then G is not PCF.

The following theorem proves that safe deletions is the widest class

of deletions which could be used in the process.
D
N

Theorem 8: If G -> G f and the deletion is not a safe deletion, then

G f is KLC.

Finally the following theorem is proved, although it is not needed

in order to obtain the previous results.

Theorem 12: G is LC if and only if G is KLC.

A NOTE ON NOTATION

G and G f always name graphs, other Roman letters with or without sub­

scripts name nodes. A small Greek letter with or without a subscript

names either a path or a single node or may be empty; node names and Greek

letters may be concatenated to make new path names.

For example if ot and 0 are paths then AB&0C names the path which is

the sequence of arcs which starts with (A,B) and then follows in order

the arc joining B to the initial node of a9 the arcs of a9 the arc joining

the final node of a to the initial node of 0 , the arcs of 0 and the arc

joining the final node of 0 to C. If ex were a single node, D say, then

the path referred to would be the path ABD0C and if a were empty the path

would be AB0C.

If of is a path of some graph G and if G contains an arc joining the

final node of a to the initial node of a then the cycle consisting of the

arcs of a and then this arc is referred to as the cycle or*. In particular

ABa* is the cycle ABoA, i.e. a * may be thought of as naming the initial

node of the path in which it occurs.

Theorem 1
D N

If G -> G 1 and if all the elementary cycles of G are:

Nc^N, Nc*2N, N*p.N, P,, P 2, Pq

where no 0 meets N, then all the elementary cycles of G f are:

<* 2*' °p*' P r P 2 ' P q
and also all those cycles of the following form which are elementary:

Of. Of . . . Of *

11 X 2 m

Proof

By definition of deletion these are all cycles of G 1, and clearly

they are elementary. We must also prove the converse, that any elementary

cycle of G 1 must take one of the above forms.

Consider any elementary cycle of G f, if this is also a cycle of G it

must be a g, If it is not, this can only be because it contains one or

more arcs which were added to G when N was deleted; let this cycle be of

the form Y ^ 2 ••• Y n * where each Y is a path on G but the arc joining the

final node of Y^ t o t , i e initial node of Y i + 1 (and of Y n to Yj) are all

arcs in G* but not in G. Then it is clear that N y 1 N Y 2 ••• NY nN is a

cycle of G. Further each Ny^N must be an elementary cycle of G i.e.

these Y ? s a r e 8 a n d we have our result.

Theorem 2
S D N

If G -» G f and if all the elementary cycles of G are:

Nc^N, tt*2N, -NQf N f 0 r P 2, 0 q

where no 0 meets N, then all the elementary cycles of G f are:
o^*, a2*> or *, 0 r P 2, Pq .

Proof

As we have a safe deletion of N there must be some node which is on

all the or's. There can therefore be no cycle of the form or, ot ...or. *
i1 2 m

(m ^ 2) which is elementary and the result follows from theorem 1.

Theorem 3
SD

If G is not KLC and if G J*G* then G f is not KLC.

Proof

Define the arfs and the 0 f s as in theorem 2, so that ot**.ot„*, a * ,
1 2 P

0.j, 0 2 > 0 q are all the elementary cycles of G 1 .

Now assume G 1 is KLC, we shall derive a contradiction. There are in

G f then k nodes A ^ A j , on a cycle 6 f and k cycles Y J > Y ^ * •••» Y£

subject to restrictions A) , B) and C) of the definition of LC(k). Each

Y 1 . and also 6 f must be either of the form a.* or of the form 0 . Define

Y ^ to be No/jN- in the former case and Y ^ in the latter case and similarly

6 .
Then G is LC(k) by nodes A 1 , A 2 , A^, cycles Y - |> Y 2 > Y f c

 and

cycle 6. All these are nodes and cycles of G by the way we defined them.

The addition of node N to some of the cycles cannot affect restrictions B)

and C) . The only way restriction A) could be violated is if N has become

a node common to the k+1 cycles i.e. if 6 f and all y 1 were of the form

a^* . But as the transformation was a safe deletion all the a*s have some

node E in common and this node would then be common to all the cycles Y ^

and 6 1 . But these cycles were a set for the LC(k) condition of G 1 and

cannot have a common node.

We have therefore proved that G is LC(k) i.e. is KLC and this is a

contradiction.

Theorem 4

A graph which has an elementary proper cycle 6 and also n 2)

elementary cycles Y«|>Y2> Y n with the property that each y meets

at least one node of 6 and that there is no common node to the n+1 cycles

8> V 1 » Y 2 » Y n» is KLC.

The converse of this theorem is trivial, so here we have a possible

alternative definition of KLC.

Proof (by induction on n)

Case n = 2

Let A be any common node of 6 and y^ (there is at least one by the

conditions of the theorem). Then A cannot be on Y 2 or it would then be

common to 6 , y^ a n d Y 2 - Similarly let B be any node on 6 and y^, B

cannot be on Y - j - Further there is no common node to 6 , Y^ a**d y^ and

we see therefore that G is LC (i.e. LC(2)) and is therefore KLC.

Assume theorem true for n-1 (^2)

Consider a graph G with a cycle 6 and n cycles Y i > Y 9 > Y

satisfying the conditions of the theorem. If some n-1 of the Y f s have

no common node which is also on 6 we can use the induction hypothesis

to prove that G is KLC. We may therefore assume that any n-1 of the Y f s

have a node in common which is on 6. For 1 ^ i ^ n let be a node

which is on 6 and on all y (j ^ i) . Then A^ cannot be on y^9 otherwise

it would be on 6 and all the Y f s a n d further the A f s are all distinct

nodes for the same reason. Now 6 meets all the A^, each y^ meets all the

A f s except A^ and there is no common node to 6 and all the Y f s . There­

fore by the definition G is LC(n) i.e. is KLC.

Theorem 5

If G is not KLC and if no node of G can be safely deleted, then G is

PCF.

Proof

We prove the following which is logically equivalent to theorem 5:

If G is not PCF and no node of G can be safely deleted then G is

KLC.

Let 6 be any proper cycle of G and let its nodes be A-, A 0 , A .
I JL n

For any ordered pair (A^,A^) with i / j there must be an elementary cycle

meeting but not A^, otherwise Â , could be safely deleted from G . Call

this cycle y, . . Then 6 and all these Y ' S meet the requirements of
i > J

theorem 4 and therefore G is KLC.

Theorem 6
D N

If G is KLC and G - T G 1 then G F is KLC.

Proof

As G is KLC there are k nodes A^, A^, A^; k elementary cycles

Y ^ * > Y 2 * > • • • > Y ^ * and an elementary cycle 6 * subject to restriction A) ,

B) , and C) .

Case I: N, the deleted node, is not one of the A f s .

Then , A 2 , •.., are nodes of G 1 and by the definition of deletion

G 1 contains elementary cycles Y}*> Y 2*» Y£* and > where

Y^, Y 2» Y^ and 6 f are obtained by omitting node N wherever it occurs

in Y ^ j Y 2> Y^ and 6 respectively. This does not affect restrictions

A) , B) , and C) and so G 1 is KLC.

Case II; N is an A and k ^ 3.

Assume without loss of generality that N is A^. Define 6 1 * , Yj*> Y 2*»

Y £ * as before. Then if 6 f , y]s Y 2» Y^.-j d o not have a common

node G f is LC(k-l). (Use nodes A^, A 2 , A ^ j .) If they do have a

common node, E say, then because of restriction A) Y^ cannot meet E. There­

fore G 1 is LC(k). (Use nodes A ^ A ^ A ^ , E and cycles 6 f*,Y}*»Y 2> • • • »Y^*0

Case III: N is an A and k = 2.

The proof of case II holds unless 6 1 and Y} do not have a common node.

Assume then that 6 * is A
2 ^ i A - | S

2
A

2
 a n (i Y^ is A 2 F e A 2 where no node of Fe is

on b^k^^. The in graph G 1 (obtained from G by deleting A 2> the nodes A^

and F and the elementary cycles A ^ ^ A - j , FeF and F e 6^A^ 6 2F show that G 1

is LC.

Theorem 7

If G is KLC then G is not PCF.

Proof

This is trivial, as by the definition of KLC G must contain a proper

cycle.

Theorem 8

If G -* G' and the deletion is not a safe deletion, then G' is KLC.

Proof

Suppose all the elementary cycles meeting N of graph G are

Ny^N, NY 2N, NY nN. Then as the transformation is not a safe deletion

there is no common node to the Y f s and n ^ 2. By the definition of

deletion G 1 contains elementary cycles Y-|*> Y 2*> Y n * such that, for

all i and j, Y^Yj* Is a cycle (not necessarily elementary). Theorem 8

can therefore be deduced from the following lemma:

Lemma

If a graph G contains elementary cycles Y^*> Y 2*> Y n *

where n ^ 2, if there is no node which is on all these cycles and if,

for all i and j, YjYj* Is a cycle of G, then G is KLC.

Proof (by induction on n)

Case n = 2

There is no node common to Yj a n d Y 2> therefore the first node

of each and the elementary cycles Y^Y 2*> Y-j* a n c i Y 2 * show that

G is LC and therefore KLC.

Assume true for n-1 (̂ 2)

Consider a graph G with elementary cycles Y^*> Y 2*> Y n *

satisfying the conditions of the lemma. If some n-1 of these cycles

have no common node then we use the induction hypothesis to prove

that G is KLC. We may therefore assume that any n-1 of these cycles

have a common node. For 2 ^ i ^ n let A^ be a node which is on all

Y. (j / i) . Now consider the nodes A~, A~, A . A„ cannot be J z J n i

on Y^* otherwise it would be on all the Y f s and further, the A f s

are all distinct for the same reason. The cycle y«|* meets all these

nodes, and for 2 ^ i ^ n y^* meets all the A's except A^. There is

no common node to the Y f s and so G is LC(n-l).

Theorem 9

If G is KLC then G has an elementary proper cycle 6 and also n (n ^ 2)

elementary cycles of the form ^ X ^ * (1 ^ i ^ n) where each 6 ^ is a subpath

or a node of cycle 6 , there is no common node to 6 ^ , 5 ^ , • 6 ^ and no X

meets a node which is on 6 •

The converse of this theorem is true by theorem 4, and so again we

have a possible alternative definition of KLC.

Proof

As G is KLC there are k nodes , A^; k elementary cycles

Yj, a n c * a n elementary cycle 6 satisfying restrictions A) , B) ,

and C) . The cycle y^ must be of the form

6 i 1 X i 1 6 i 2 X i 2 6iq Xiq*
where each 6 ^ is either a subpath of 6 or is a node of 6 and each X ^ has

no node on 6 •

Define s o that 6 ^ * s a n elementary subpath of 6 .

Consider the q cycles:

6 i 2 6 i 2 1 6 i 1 X i 1 *

6 i 3 6 i 3 2 6 i 2 X i 2 *

6 , 6 ' 6 X * il ilq iq iq
(if q = 1 just consider the single cycle ^ ^ ^ ^ i *) -

Do this for all i with 1 ^ i ^ k and take all these cycles to be the

^i Xi* °^ t* i e t ^ i e o r e m > t^ey a r e clearly elementary. It only remains to

prove that all these cycles cannot have a common node which is also on 6 .

Suppose there was such a node, A^. Now A^ may or may not be one of

A.j, A^9 A^ , but in any case A cannot be on all the Y f s , assume A

is not on y ̂ . Then as is on all the cycles listed above none of

i21 ^i32* * * * * b e e m p t y a m * A Q m u s t **e l n them all, as these

are the only portions of the cycles not on y^- But there can be no

such node by the definition of & i a b - (This is left as an exercise for

the reader. The 6 ^ are subpaths of 6, consider the ordering

imposed on them if A^ is on all the s
i a ^ 0

Theorem 10

If a graph G has an elementary proper cycle 6 and also n (n ̂ 2)

elementary cycles of the form Sj^j* (1 ̂ i ̂ n) where each 6 i is a sub-

path or a node of cycle 6, if there is no common node to 6^, 6^, ..., & n

and if no meets a node of 6, then G is loop-connected (i.e. LC(2)).

Proof (by induction on n)

Case n = 2

Take A to be any node on 6^, B any node on 6^. Then nodes A and B

and cycles 6, and 6 2^2* s h o w t h a t G i s L C #

Assume true for n-1 (^2)

Let G be a graph with cycles 6, 6j^i*» 5 2 ^ 2 * ' ^n^n* s a t i s f y i n g

the conditions of the theorem. Then if some n-1 of 6^, b^* 6^ have

no common node we can use the induction hypothesis to prove that G is LC.

We may therefore assume that any n-1 of the 6^ have a common node. For

1 <> i <> n let A, be a node on all 6, (j i) . Then A. cannot be on 6., i j l l

otherwise it would be on all the 6's and further the A f s are all distinct

nodes for the same reason.

Without loss of generality we can assume A,, A 0 , A are in
I z n

order around the cycle 6. Now consider the cycle &j^i* # ^ e ^i m e e t s

all the A's except A^, the graph must therefore take the form of graph 6 .

(What appear to be arcs in this graph may be paths i.e. there may be

other nodes on them.)

Define p^ and y^ to be either elementary subpaths of 6 or single

nodes of 6or empty so that the cycle 6jXj* is the cycle (round

6 to) A^ i^iYi^i-H 9 w * i e r e w e define A
n + ^ t o be A j a n c * t o ^ e

There can be no node which is on a p and a y, fo r suppose there is

an i such that a node N is on and on P +̂-| which is the only possibility.

Then N is on 6^ (as y^ is either a subpath or a node of 8^), N is on 6 ^

(as P^+i i s either a subpath or a node of a n d also N must be on all

the other 6's (as they all include the complete path from A^ to A ^) .

Therefore N is on all 6 fs, but they do not have a common node.

We now can find the cycles involved in a loop connection, but need

to consider three cases.

Case 1; n is even

Consider the following cycles (the reader should draw a picture):

I 8

II A
2 P 3 X 3 V 3

A 4 P 5 X 5 V 5
A 6 A n P 1 X 1 ^ 1 A 2

III W 2 Y Z W 4 V 5 ••• A n - l P n X n V S

Then I meets A^ and II meets A^ but not A^ attd III meet* A^ but

not A^. Also they cannot have a common node; no \ meets a node c:f 6 and

no p or y meets any other p or y. Therefore G is LC by definition.

Case 2: n is odd and \^ meets no \ with q even

Consider the following cycles (again a picture will help to visualize

the situation):

I Aground 6 t o ^ t ^ X ^ P j ^ A g ... A ^ I ^ X ^ A ,

II A n(round 6 t o) ^ ^ ^ V 4 Y 4 S . . . k^2 ^ V l V A

III AP^YjAj (round 6 through A 3 , k^9 A $... to) A r •

Then I meets A^ and k^9 II meets A 1 but not A 2 and III meets A 2 but

not A^. The only nodes on 6 which both I and II meet are on the path

Y nA^P 2 and III meets no node of this path. The only X in III is X 1 and

we have postulated this meets no X q where q is even, therefore II cannot

meet any node on X^ and so we have proved that I, II and III can have no

common node. Therefore G is LC.

Case 3; n is odd and meets X^ where q is even

Suppose W is a node which is on ^ and also on X 9 say X^ is the

path XJWXV and X is the path X'WX" . 1 1 q q q
Consider the cycles:

I 6

II A P-XIWX'V A ,-(3 t 0 X i 0 Y | 0 A i 0 ... A
n 1 1 q Tq q+1 q+2 q+2 Tq+2 q+3 n

III A 1 (round 6 to) ^ s ^ ^ A ^ X ^ A g ... A] .

Then I meets A and A-, II meets A but not k« and III meets A-n 1' n 1 1
but not A , the only common node to I, II and III must be on 6 but it is n

easy to see that II and III do not have a common node on 6. Therefore G

is LC.

Notes on the proof of these three cases

It is not immediately clear that all the cycles produced are legiti­

mate cycles for small values of n e.g. case 1 for n = 2 or 3. Remembering

however that n > 2 (as we have already dealt with the case n = 2) if n is

odd it is at least 3 and if even at least 4. This is sufficient to make

all the cycles valid. Also the definition of LC stated that the cycles

a, P and y were all to be elementary, many of the cycles used above need

not be elementary as there was no restriction stating that two of the X fs

could not have a common node. We therefore need the following theorem.

Theorem 11

A graph G which has two nodes, A and B, and three cycles a> P and y

such that all the conditions for LC, except the restriction that or, P and

Y be elementary, ate satisfied is LC.

Proof

Let a be the cycle Aa fA, P be Bp'B and y be A Y J B Y ^ A- Then we may

assume that a 1 , P f, Y] a n<* a r e each either an elementary path or a

node or empty, and that none of Of1, P f , Y] a n d Y^ meet A or B, otherwise

it is easy to find, by omitting nodes, new Of1, P f , Y^ a n d Y^ with these

properties. There remains the possibility that YJ and y!> have a common

node or nodes.

Suppose N is such a node and write Y a s j^Y]2^21^22^' w ^ e r e n o

node on yj-j is also on Y21^22* ^ O W ^ c a n n o t he on both a1 and P 1,

assume it is not on a% , a similar proof will hold if it is not on P' .

Consider nodes A and N and cycles A y ^ N Y ^ ^ * ^ 1 2 ^ 2 1 ^ a n (* Aof'A. If

the second of these is not elementary replace it by that part of itself

which is an elementary cycle through N. Then if these cycles do not

have a common node they show that G is LC.

If the cycles do have a common node P then consider the nodes B and

P and the cycles N Y ^ Y ^ 1 ^ A c y < A a n d BP fB. The first two both meet P

and there can be no node on all three cycles as they are each part of

the original three cycles. The first may not be elementary but it

must have fewer repeated nodes than AylBYiA and so we proceed by induction

to prove that G is LC.

Theorem 12

A graph is LC if and only if it is KLC.

Proof

If a graph is KLC then theorem 9 and 10 shows it is LC. If a graph

is LC it is LC(2) and hence K L C

ACKNOWLEDGEMENTS

The concept of LC(k) and many of the above proofs are due to Z. Manna.

I myself obtained a complete set of theorems and proofs based directly on

LC, but the above presentation is simpler.

REFERENCES

[1] Cooper, D. C , "Mathematical proofs about computer programs 1 1.
Machine Intelligence 1, ed. D. Michie. Oliver
and Boyd Ltd. To appear October 1966.

[2] Cooper, D. C , "Theoretical results concerning programs re­
garded as directed graphs". To be presented
at Second Machine Intelligence Conference,
Edinburgh, June 27 - July 1, 1966.*

Part I of this report

GRAPH 1

GRAPH 3

B

A *

GRAPH 4

2 Z

2 indicates a multiple arc

GRAPH 5

GRAPH 6

