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ABSTRACT 

Each part is complete in itself, which of course necessitates some 
overlap. 

Part I describes the general approach and motivations of this re­
search. It is assumed that with a computer program we may associate a 
directed graph (its "flow chart"). Several transformations of a directed 
graph are defined with the property that they "obviously" do not affect 
the meaning of the program. Two particular standard forms for graphs 
are described and results and conjectures given concerning the possibil­
ity of transforming graphs into these standard forms by using the defined 
graph transformations. 

Part II gives the mathematical proofs of the theorems stated in 
Part I without proof and completely solves the problems concerning one 
of the defined standard forms. 
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PART I 

SOME TRANSFORMATIONS AND STANDARD FORMS OF GRAPHS, 
WITH APPLICATIONS TO COMPUTER PROGRAMS 



Introduction: Programs and Directed Graphs 

In Cooper (1966b) I reported on several attempts at proving theorems 

about computer programs, with the ultimate goal in mind of providing mathe­

matical proofs that programs are correct rather than just testing them on 

some particular data sets. In the last section I commented that the proofs 

I obtained in Cooper (1966a) could be viewed as deep results about small 

programs but that what was needed were techniques for proving shallow re­

sults about large programs. By this latter I meant that the proofs did not 

depend too much on properties of the basic functions or commands used in the 

program but rather depend on the synthesis of a large number of trivial prop­

erties, the particular way this synthesis is performed being guided by the 

structure of the large program. Some of the other work reported on in 

Cooper (1966b), particularly the work of Evans (1965), has this flavour but 

are particular proofs about particular programs. Mention should also be made 

of the long proof of Balzer (1966) which proves that a particular finite auto­

maton correctly performs its given task. 

There are many programs whose control structure can be well shown by a 

directed graph - that is the flow chart of the program. The first goal of 

this research is to produce some kind of automatic scheme which will prove 

results about programs which only use conditional statements and assignment 

statements and we shall not consider those features of a programming language 

which imply some kind of control structure not immediately so representable; 

for example, the passing of parameters to subroutines, perhaps by the use of 

procedures and functions previously defined by the programmer. These are very 

important features of programming languages but they will not be further con­

sidered in this paper. Although the techniques of this paper may not be di­

rectly applicable in these circumstances some modification of the ideas used 

could well be useful; for example, the graphs could represent the relations 



between a set of mutual recursive function definitions and the transforma­

tion to be defined later could well be meaningful. 

Having associated a graph with a program there may well be transforma­

tions which can be made on the graph which "do not affect" the program, later 

we shall amplify this remark. The question then arises as to whether the 

graph may be put into some standard form by a series of such transformations, 

this standard form being one in which it is easier to prove results about 

the program by taking advantage of special features of the standard form. 

The purpose of this chapter is to define several such transformations and 

two such standard forms, and to give results and conjectures about the pos­

sibility of transforming programs to the standard forms. 

The particular way in which a directed graph is associated with a given 

program is not important. All that matters is that the graph transforma­

tions defined in the next section should represent meaningful transforma­

tions if performed on the programs with which the graphs are associated. 

However, in order to better illustrate the intention behind the transforma­

tions, we give a particular definition of a program and of the graph associ­

ated with a program. This definition will use a state vector approach; see 

McCarthy (I960). In this approach the current state of a computation is 

represented by the value of a vector, each component of which corresponds to 

one of the variables, machine locations, etc. (dependent on the particular 

programming language used). The effect of a basic command can then be de­

scribed by a function whose argument is a state vector (the state of the 

machine before the command is obeyed) and whose value is also a state vector 

(the state of the machine after the command is obeyed). A sequence of com­

mands corresponds to composition of the corresponding functions. A two-way 

test is represented by a predicate whose argument is a state vector. 

Assume then that we have a domain D, a set of functions f^ which map D 

into D and a set of predicates p. whose domains are D. A program is defined 



to be a directed graph with every arc of which is associated one of the f 

functions and one of the p predicates. It is a legal program if the graph 
if it has 

has just one node (A, say) with no arcs leading to it, just one node (Z, say) 
A 

with no arcs leading from it, if every node is on a path which starts at A 

and ends at Z, and if for all nodes (except Z) the set of predicates on all 

arcs leading from the node is complete and mutually exclusive. 

The intended interpretation is that if f^ and p^ are the function and 

predicate associated with some arc then f̂, represents the effect of all the 

statements obeyed along that arc and p^ represents the condition that the 

arc is entered. A program then defines a partial function from D into D in 

an obvious manner (partial because the program may loop indefinitely). 

It should again be emphasised that we are not concerned with this par­

ticular definition of a program, only with the ability to associate a graph 

with a program. As alternatives we could have associated the information 

in the program with the nodes rather than the arcs, or we could have taken 

some simple programming language and explicitly stated how to obtain the 

graph from the program. 

The results to be obtained later could well have applications in other 

areas than computer programs. For example, Seshu and Reed (1961) describe 

the application of graphs to sequential machines and to systems of linear 

algebraic equations. All our transformations can be given interpretations 

in these areas, in fact the delete node transformation (T 5 of the next sec­

tion) is already well known in these applications. The particular field of 

interest determines the transformations of interest; for example, later we 

shall reject a certain transformation (DT 1) as not being a useful one for 

computer programs. However, this transformation is of use in the areas of 

sequential machines and of linear equations. 



Examples of Transformations 

In this section we define several directed graph transformations of 

interest. In each case we give a description of the general case in English 

and illustrate the transformation with a particular case. The illustration 

of course only shows how the affected part of the graph is altered, the graph 

may have other nodes and arcs except that in all cases we .assume tkiat thero 

are no further arcs which lead into or out of the no<^es labelled N. 

T 1 Stretch a node N by outputs. 

Let 0 be some subset of the output nodes of N, this subset may be 

all the output nodes but must not be empty. Delete all arcs from N 

to nodes in 0, add a new node N^ and add arcs from N to and from 

to all nodes in 0. (The output nodes of a node N are all those 

nodes P such that there is an arc NP, including N itself if there is 

an arc NN). 

In the example 0 is the set {N,D,E}. 

T 2 Stretch a node N by inputs. 

Let I be some subset of the input nodes of N; this subset may be 

all the input nodes but must not be empty. Delete all arcs from nodes 

in I to N, add a new node and add arcs from N^ to N and from all 

nodes in I to N^ . (The input nodes of a node are defined in an anal­

ogous way to the output nodes.) 

In the example I is the set {A,B}. 

T 3 Duplicate a node N. 

Let I be some non-empty, proper subset of the input nodes of N, 

not including N itself if NN is an arc. Delete all arcs from nodes 

in I to N, add a new node N^, add arcs from N^ to all the output 

nodes of N (except N itself if NN is an arc) and add arcs from every 

node in I to N^. If NN is an arc also add an arc N^ N^. 



In the example I is the set {A,B} . 

T 4 Delete an arc AN. 

This transformation may only be made if there is no arc NN. Delete 

the arc AN and add arcs from A to all the output nodes of N. If A was 

the only input node of N then also delete node N and all arcs leading 

from N. 

T 5 Delete a node N. 

This transformation may only be made if there is no arc NN and is 

equivalent to applying a sequence of T 4 transformations in any order 

to all the arcs leading to N. Add all possible arcs from an input 

node of N to an output node of N and delete node N and all arcs leading 

to or from N. 

In all these cases if the untransformed graph is the graph of some pro­

gram P it is easy to find an equivalent program with the transformed graph 

as its associated graph. For example, in the diagram illustrating transforma­

tion T 1 if p A„(s) and f A X T(s) are the predicate and function associated with 

AN AN 

arc AN on the untransformed graph (and similarly for the other arcs) then 

in the transformed graph on arc NN^ we have the predicate P^p( s) V P^g( s) V Pj^( s) 

and the identity function, N^N, N^D and N^E have the same predicates and 

functions as NN, ND and NE respectively, and all other arcs have the same 

predicates and functions as before the transformation. Transformation T 4 

represents the effect of anticipating the test at N at the previous node A 

so that on the transformed graph, for example, with the arc AC we associate 

the predicate P M ( s ) A P^c^f^s>>^ a n d t h e function ^ ( ^ ( s ) ) -

As two examples of transformation which we do not wish to allow consider 

the following: 
DT 1 Delete a node N with a loop. 



This is defined exactly as T 5 but we remove the restriction that 

there must be no arc NN. 

DT 2 Join two arcs AB and CD. 

Delete the arcs AB and CD, add a new node N and add arcs AN, NB, CN 

and ND. 

In DT 1 with arc AC we would have to associate a predicate expressing the 

condition that when control finally comes out of the loop at N control passes 

to node C. This can be done, but in general requires an infinite disjunction, 

we assume this is not a useful concept to introduce. The aim in making the 

transformation is to better reveal the program 1s structure, we do not wish to 

produce a transformed program which introduces complex new concepts and makes 

our task of proving the desired theorem about the program much more difficult. 

Admittedly we are being vague here, the transformations T 1 to T 5 imply we 

do not mind complicating our programs by forming conjunctions and disjunctions 

of predicates and compositions of functions. Note that the situation arising 

in DT 1 would not be improved by adding loops on the transformed graph at A 

and B, or at new nodes internal to the arcs AC, AD, BC and BD. 

We could allow the transformation DT 2 if an extra Boolean variable is 

defined and semantics added to the program to set this variable true along 

arc AN, false along arc CN, The predicate on arc NB would then be a test 

whether this variable is true, on arc ND whether it is false. In effect we 

are coding the path already taken on the graph into a variable. Again we 

assume that this is not a good thing to do. 

In this chapter we define T 1 to T 5 as the only allowable transforma­

tions, and then prove or conjecture theorems concerning them. We would like 

to somehow characterize the allowable transformations and perhaps produce 

some more. A possible approach is to define a transformation of one graph 

into another by a definition of the following form: 



G ->G' if and only if (p)(ap ,)[G=graph(p)3[G ,=graph(p ,)Af(p,p')}]. 

This definition presupposes that we already have a definition of a program, 

of a function "graph 1 1 which produces the graph of a program and of a predicate 

f(p»p')« This predicate must express the condition that program p 1 is equiva­

lent to program p, and moreover can be produced from it with some giveu rules 

which allow such things as function composition but does not allow anything 

corresponding to the infinite disjunction of DT 1 or the nev Boolean variable 

of DT 2. 

Proper Cycle Free Form 

Having defined the allowable graph transformations are there some partic­

ularly desirable standard forms into which we can try to transform a given 

graph? Two desirable forms will be defined, one in this section and one in 

the following section. 

Most, if not all, of the questions we wish to answer about a computer 

program are easy to answer if there are no cycles in the program. The simpler 

the interconnections between the cycles the easier it should be to answer 

questions about whether a program performs correctly; it should therefore be 

profitable to make transformations aimed at simplifying the cycle structure of 

a graph. 

The simplest (and also rarest) program is one which has no cycles. Next 

one might consider programs in which all the cycles are independent, i.e. no 

section of the program is in more than one cycle. This class of programs is 

more interesting but still very restrictive. However, experience indicates 

that a large number of interesting programs may be transformed by a series of 

transformations into a program with this independent loop structure. 

In order to make these vague remarks more exact we define a proper cycle 

of a graph to be a cycle through two or more nodes and a proper cycle free 

(PCF) graph to be a graph with no proper cycles. A graph which is PCF clearly 



has the independent looping property, and it is also trivial to transform any 

graph with independent loops into PCF form. We therefore take PCF form as 

being a standard form into which we try to transform a given graph, and 

obtain necessary and sufficient conditions for a graph to be transformable 

into PCF form together with an algorithm for making the transformation if it 

is possible. For this purpose only transformation T 5, delete a node, turns 

out to be relevant. If a graph can be transformed to PCF form by a sequence 

of transformations, each of which is one of T 1 to T 5, then this may be done 

by a sequence of T 5 transformations alone. 

Consider graph 1. By deleting node A we obtain graph 2 which is not 

PCF (and which in fact cannot be transformed to PCF form at all; see the 

theorem below). But if instead of deleting A we delete B and then C we ob­

tain graph 3 which is PCF and "obviously much simpler11 than graph 2. (The 

2 fs on graph 3 indicate multiple arcs.) Graph 3 reveals the "basic structure" 

of graph 1 in a way which graph 2 does not. These graphs show that the order 

in which nodes are deleted is critical. 

Define a graph to be loop connected if it contains two nodes, A and B 

say, and three cycles a, (3 and y such that: 1) there is no one node which is 

on ot> (3 and y> 2) A is on a but not on j3, 3) B is on g but not on and 

4) both A and B are on y This is a generalization of part of graph 2 in 

which arcs have been replaced by paths. Then we have: 

Theorem 1 

A graph G can be transformed by a series of transformations, each 

of which is one of T 1 to T 5, to a graph which is PCF if and only if 

it is not loop connected. 

In Cooper (1966c) only transformation T 5 is considered but it is easy 

to extend the results of that paper in such a way that theorem 1 is an immedi­

ate deduction from the theorems proved there. 

Theorem 1 does not give an algorithm for performing the sequence of 



transformations. In order to do this define a delete node N transformation 

(T 5) to be a safe deletion if there is some node A (not N) of the untrans­

formed graph with the property that all cycles of the graph which pass through 

node N also pass through node A. For example, in graph 1 B or C may be safely 

deleted but not A. Then the following theorem gives the required algorithm; 

it is an easy extension of one of the theorems in Cooper (1966c): 

Theorem 2 

Start with any graph G and perform safe deletions in any order until 

a graph G 1 is obtained on which no safe deletions may be performed. This 

process must terminate and either G 1 is PCF or there is no sequence of 

transformations, each of which is one of T 1 to T 5, which will transform 

G to a graph in PCF form. 

Theorems 1 and 2 completely solve the relevant questions about transforma­

tions to PCF form. In the same paper an equivalent condition to loop connected­

ness is defined; this condition appears more complicated but simplifies the 

proofs. In addition a theorem is proved which shows that safe deletions is 

the widest possible subclass of deletions, i.e. if we make a deletion which 

is not a safe deletion we obtain a graph which is loop connected and hence not 

transformable to PCF form. 

Block Form 

The second standard form corresponds in a more natural manner than PCF 

form to the way a large number of programs are written; it roughly corresponds 

to programs in which all loops are properly nested. A recursive definition of 

block form is simply given: - a graph is defined to be in block form if it is 

of one of the forms B1, B2 or B3 (see the diagrams) where the shaded boxes 

are either arcs or subgraphs in block form. 



It is not necessary to take exactly these forms; for example, instead of 

B2 we may allow any number of blocks in parallel and instead of B3 any number 

in series, obviously a graph of such form can easily be transformed into the 

standard block form. A more useful equivalent standard form is where instead 

of B2 and B3 we allow any graph made up of subgraphs, each in block form, and 

these subgraphs joined in any manner that does not create a cycle. Such a 

graph can be further transformed into the standard block form, but it may 

well be better not to carry out these further transformations as this usually 

involves a lot of duplicating of nodes. A third alternative is to replace Bl 

by Bla. 

Very little progress has been made so far with proving results about 

transformation of graphs to block form, although a large number of small graphs 

have been investigated. A conjecture has been made as to the necessary and 

sufficient conditions for a graph to be transformable to block form and we hope 

soon to have an algorithm to effect the transformations. Any graph in PCF form 

can be transformed to block form; essentially it already is in block form ac­

cording to the second alternative definition. However, consider graph 4, which 

is clearly loop connected and hence cannot be transformed into PCF form. First 

use T 1 (with N being A and 0 the set {B,Z}) and then use T 3 (N being A again 

and I the set {B}), this produces graph 5 and it is obvious how to put this 

into block form. Thus graph 4 is an example of a graph which can be transformed 

to block form but not to PCF form. As a more complex example, graph 6 may be 

transformed to block form; this is left as an exercise for the reader; a good 

start is to delete node A. 

What graphs cannot be transformed to block form? Here we have no proven 

results but it seems almost certain that graph 7 cannot be so transformed (or 

any graph containing this as a subgraph). The situation is much more complex 

than for the PCF case; there a knowledge of just the cycles of a graph was 



sufficient to determine whether the graph could be transformed to PCF form, 

but graphs 4 and 7 have the same cycles and one can be transformed to block 

form but not the other. It seems that a generalization of graph 7 in which 

its arcs are replaced by paths (possibly intersecting each other) is the key 

situation which, if it occurs in a graph, makes the graph untransformable to 

block form. But examples show that if enough of the paths intersect then we 

are back to the position of being able to transform to block form. 

By induction from examples tried we make the following definition: 

A graph is loop connected with two exits if it contains three nodes, 

A, B and Z say, a cycle a through A, a cycle p through B, a path y connecting 

A to B, a path 6 connecting B to A, a path 0 connecting A to Z and a path 

^ connecting B to Z (see graph 8 ) . Further there must be no node which is on 

all three members of any of the following triples: 

(c*,P,y)> ( a , 0 , 6 ) , ( 6 , a , * ) , (y ,3,0), (04,a) and (0,i|r,p). 

We conjecture the following: 

Theorem 3 

A graph can be transformed by a series of transformations T 1 to 

T 5 to a graph which is in block form if and only if it is not loop 

connected with two exits, 

it 

Bohm and Jacopini (1966) investigate the reduction of flow diagrams to 

standard forms, they show that corresponding to any flow diagram there is an 

equivalent one which is "decomposable into n, $ and A". This is precisely 

block form. Their algorithm for producing this equivalent flow diagram may be 

looked on as a sequence of graph transformations which, however, allow the 

transformation DT 2, which we have not allowed. Transformation DT 2 on pro­

grams was justified by the introduction of a new variable, rather than intro-
t i 

ducing a separate new variable everytimei DT 2 is used Bohm and Jacopini intro­

duce a single Boolean stack and add semantics to test the top of the stack, 



to delete the top of the stack and to add a new truth value to the top of the 

stack. This stack may be thought of as a code for the path through the flow 

diagram traversed so far. For our purposes we do not wish to allow this trans 

formation, but it is an interesting result that if DT 2 is allowed then any 

graph may be transformed to block form. 
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PART II 

REDUCTION OF PROGRAMS TO A STANDARD 
FORM BY GRAPH TRANSFORMATION 



INTRODUCTION: Motivation for the theorems proved 

Recently there have been several attempts at producing proofs about 

computer programs, see for example [1] and the other papers referred to 

therein. The work reported in this paper is motivated by the idea that 

a knowledge of the underlying structure of a specific program could be 

of great help in proofs concerning that program. For example the simplest 

(and also rarest) program is one which does not have any loops in it. 

Next one might consider programs in which all loops are independent, i.e. 

no section of the program is part of more than one loop. This class of 

programs is more interesting, but still very restrictive. However, rules 

may be set up for transforming a program into an equivalent program which 

could have a different looping structure. In fact experience indicates 

that a large number of interesting programs may be transformed by a series 

of trivial transformations into a program with this independent loop 

structure. This paper investigates one such transformation and shows how 

it may be used to transform a program to the desired form, if that is 

possible. 

So far, we have been vague; we should define what we mean by a program, 

by a transformation, by loops and independent looping, and by equivalence 

of programs. We take a slightly different view. Assume that, whatever 

definition of a program is used, a directed graph may be associated in some 

way with a program, i.e. there is a total function whose domain is the 

class of all programs and whose range is the class of all directed graphs. 

Assume also that there is an equivalence relation defined between programs. 

Then any transformation from graph G to graph G f which is considered should 

have the property that, for any program with G as its graph, an equivalent 



program can be mechanically produced with G f as its graph. Further dis­

cussion and clarification of these remarks will be found in [ 2 ] . 

In this paper we consider one particular graph transformation which 

should satisfy this last criterion for most definitions of a program and 

of equivalence of programs; further such transformations will be found in 

[ 2 ] . This transformation consists of deleting a node from a graph by 

connecting all its input nodes to all its output nodes (for example Graph 

1 may be transformed into Graph 2 by deleting node N, also see the more 

rigorous definition below). The justification for allowing this trans­

formation is that whatever program has Graph 1 as part of its flowchart, 

the test at node N amy be anticipated at nodes A and B and direct connec­

tions made to nodes C and D as shown. With arc AC will be associated 

whatever assignment statements were made on arc AN, followed by those on 

arc NC, and so on. The new test associated with arc AC in Graph 2 will 

be the conjunction of the condition in Graph 1 for control to go from A 

to N (there may be other arcs out from A) and the condition for control 

to go from N to C; there might have to be substitutions made in this 

latter test to allow for the effect of changes in going from A to N. The 

node N may not be deleted if there is an arc from N to N; for example 

neither B nor C may be deleted from Graph 4 . If this were to be allowed, 

the new test associated with AC (Graph 2 ) would have to be the condition 

that, after control goes from A to N (Graph 1 ) and after control finally 

comes out of the loop around N, control then goes to C. We assume it is 

not useful to accept this as a basic test in a program although it would, 

of course, be perfectly possible to do so. 



PEFINITIONS 

A graph is a set of nodes together with a set T of ordered pairs of 

these nodes. Each member of T is an arc. Note that only what are usually 

called directed graphs are considered in this paper, so we omit the 

adjective "directed 1 1. 

The first member of an arc is its initial node, the second member, 

its final node. 

A path is a sequence of arcs (u,,u 0, u ) such that the final node 
I z n 

of u^ is the initial node of u^ +^ (for i = 1, 2, n-1). It is a cycle 

if the final node of u is the initial node of u-. It meets those nodes 
n I 

which are initial or final nodes of its arcs. Any node met by a path or 

cycle is said to be on the path or cycle. The initial node of a path is 

the initial node of u,, and the final node is the final node of u . A 

1 n 

subpath of a path (u^^xi^ u^) is a path ( u £ » u j l + i » u j ) wlth 

1 <. i <; j <. n . 

A path or cycle is elementary if it does not meet the same node more 

than once (except for the initial and final nodes in the case of a cycle). 

A proper cycle is a cycle which meets two or more distinct nodes. 

A proper cycle free (PCF) graph is a graph with no proper cycles. 

input nodes of a node N are those nodes A such that (A,N) is an 

arc and the output nodes of N are those nodes Z such that (N,Z) is an arc. 

A graph is loop-connected (LC) if it contains two nodes, A and B, 

and three elementary cycles ot, 0 , and y such that: 

1) There is no one node which is on or, 0 , and y; 

2) a meets A but does not meet B; 

3 ) 0 meets B but does not meet A; 



4 ) Y meets both A and B. 

(For example, Graph 4 is loop-connected via nodes B and C.) 

By theorem 11 if the word elementary is omitted we have an equivalent 

definition. 

A graph is loop-connected(k) (LC(k)) where k is an integer ^ 2 if 

there are k nodes A ^ A j , A^; k elementary cycles V]*Y29 ^k a n d 

an elementary cycle 6 such that: 

Restriction A) There is no one node which is on 6 and on all 

the y±; 

Restriction B) For 1 ^ i ^ k the cycle Y i meets all of 

A-j ,A^9 • • • •, except A^; 

Restriction C) 6 meets all of A^,A2> A^. 

A graph is Kloop-connected (KLC) if there is a k such that it is 

LC(k). Obviously, LC is LC(2) so that LC implies KLC; theorem 12 also 

shows the converse, that KLC implies LC. 

The node N can be deleted from graph G giving graph G f (written 
D N 

G -> G f ) if and only if there is no arc (N,N). G 1 is obtained from G by 

adding arcs joining all input nodes of N to all output nodes of N and 

then removing N and all arcs with N as initial or final node. If a node 

A is both an input node and an output node of N, then an arc (A,A) is 

added. 

Examples of node deletions are 1) delete node N from Graph 1 to give 

Graph 2, and 2) delete node A from Graph 3 to give Graph 4. 

The node N can be safely deleted from graph G giving graph G 1 



(written G -» G 1 ) if and only if it can be deleted and also there is some 

node A of graph G (not N) with the property that all elementary cycles 

of G which meet N also meet A. G 1 is obtained from G exactly as for 

deletion. 

Particular cases in which N can be safely deleted are: if there is 

no cycle meeting N, or if only one elementary cycle meets N (proper 

cycle), or if N is the initial node of only one arc (not N,N)), or if 

N is the final node of only one arc (not (N,N)). 

THE MAIN THEOREMS PROVED 

Consider Graph 3. By deleting A, we obtain Graph 4 which is not PCF. 

But if instead of deleting A we delete B and then C, we obtain Graph 5 

which is PCF and "obviously much simpler" than Graph 4. Graph 5 reveals 

the "basic structure" of Graph 3, but this basic structure is not revealed 

in Graph 4. 

This example shows that the order in which nodes are deleted is 

critical. Graph 3 may be transformed into PCF form, but if we delete A 

first we obtain Graph 4 which cannot be transformed into PCF form. This 

raises two questions: what are the necessary and sufficient conditions 

for a graph to be transformable by a series of deletions into a graph 

which is PCF, and given a graph which can be transformed in what order 

should the deletions be performed? 

The answer to the first question is that a graph can be transformed 

into PCF form if and only if it is not LC. However although LC is a 

simpler condition to understand than KLC, the proofs using KLC are much 

simpler than those we first obtained using LC. We therefore use KLC 

throughout and prove separately (theorem 1 2 ) that a graph is LC if and 

only if it is KLC. Alternative definitions of KLC are suggested by 



theorems 4 and 9 . 

Now consider the process which starts with any graph G and performs 

safe deletions in any order until a graph G f is obtained on which no safe 

deletions may be performed. 

If G is not KLC, then the following two theorems prove that this 

algorithm must terminte with G f in PCF form (the algorithm must terminate 

as each safe deletion reduces by one the number of nodes on the graph). 

Theorem 3: If G is not KLC and G -» G f, then G f is not KLC. 

Theorem 5: If G is not KLC and if no node of G can be safely 

deleted, then G is PCF. 

If G is KLC, then the following two theorems prove that it cannot 

be transformed to PCF form. 
D N 

Theorem 6: If G is KLC and G -> G f, then G f is KLC. 

Theorem 7: If G is KLC, then G is not PCF. 

The following theorem proves that safe deletions is the widest class 

of deletions which could be used in the process. 
D 
N 

Theorem 8: If G -> G f and the deletion is not a safe deletion, then 

G f is KLC. 

Finally the following theorem is proved, although it is not needed 

in order to obtain the previous results. 

Theorem 12: G is LC if and only if G is KLC. 

A NOTE ON NOTATION 

G and G f always name graphs, other Roman letters with or without sub­

scripts name nodes. A small Greek letter with or without a subscript 

names either a path or a single node or may be empty; node names and Greek 

letters may be concatenated to make new path names. 



For example if ot and 0 are paths then AB&0C names the path which is 

the sequence of arcs which starts with (A,B) and then follows in order 

the arc joining B to the initial node of a9 the arcs of a9 the arc joining 

the final node of a to the initial node of 0 , the arcs of 0 and the arc 

joining the final node of 0 to C. If ex were a single node, D say, then 

the path referred to would be the path ABD0C and if a were empty the path 

would be AB0C. 

If of is a path of some graph G and if G contains an arc joining the 

final node of a to the initial node of a then the cycle consisting of the 

arcs of a and then this arc is referred to as the cycle or*. In particular 

ABa* is the cycle ABoA, i.e. a * may be thought of as naming the initial 

node of the path in which it occurs. 

Theorem 1 
D N 

If G -> G 1 and if all the elementary cycles of G are: 

Nc^N, Nc*2N, N*p.N, P,, P 2, Pq 

where no 0 meets N, then all the elementary cycles of G f are: 

<* 2*' °p*' P r P 2 ' P q 
and also all those cycles of the following form which are elementary: 

Of. Of . . . Of * 

11 X 2 m 

Proof 

By definition of deletion these are all cycles of G 1, and clearly 

they are elementary. We must also prove the converse, that any elementary 

cycle of G 1 must take one of the above forms. 

Consider any elementary cycle of G f, if this is also a cycle of G it 

must be a g, If it is not, this can only be because it contains one or 

more arcs which were added to G when N was deleted; let this cycle be of 



the form Y ^ 2 ••• Y n * where each Y is a path on G but the arc joining the 

final node of Y^ t o t , i e initial node of Y i + 1 ( and of Y n to Yj) are all 

arcs in G* but not in G. Then it is clear that N y 1 N Y 2 ••• NY nN is a 

cycle of G. Further each Ny^N must be an elementary cycle of G i.e. 

these Y ? s a r e 8 a n d we have our result. 

Theorem 2 
S D N 

If G -» G f and if all the elementary cycles of G are: 

Nc^N, tt*2N, -NQf N f 0 r P 2, 0 q 

where no 0 meets N, then all the elementary cycles of G f are: 
o^*, a2*> or *, 0 r P 2, Pq . 

Proof 

As we have a safe deletion of N there must be some node which is on 

all the or's. There can therefore be no cycle of the form or, ot ...or. * 
i1 2 m 

(m ^ 2) which is elementary and the result follows from theorem 1. 

Theorem 3 
SD 

If G is not KLC and if G J*G* then G f is not KLC. 

Proof 

Define the arfs and the 0 f s as in theorem 2, so that ot**.ot„*, .... a * , 
1 2 P 

0.j, 0 2 > 0 q are all the elementary cycles of G 1 . 

Now assume G 1 is KLC, we shall derive a contradiction. There are in 

G f then k nodes A ^ A j , on a cycle 6 f and k cycles Y J > Y ^ * •••» Y£ 

subject to restrictions A ) , B) and C) of the definition of LC(k). Each 

Y 1 . and also 6 f must be either of the form a.* or of the form 0 . Define 

Y ^ to be No/jN- in the former case and Y ^ in the latter case and similarly 

6 . 
Then G is LC(k) by nodes A 1 , A 2 , A^, cycles Y - |> Y 2 > Y f c

 and 



cycle 6. All these are nodes and cycles of G by the way we defined them. 

The addition of node N to some of the cycles cannot affect restrictions B) 

and C ) . The only way restriction A) could be violated is if N has become 

a node common to the k+1 cycles i.e. if 6 f and all y 1 were of the form 

a^* . But as the transformation was a safe deletion all the a*s have some 

node E in common and this node would then be common to all the cycles Y ^ 

and 6 1 . But these cycles were a set for the LC(k) condition of G 1 and 

cannot have a common node. 

We have therefore proved that G is LC(k) i.e. is KLC and this is a 

contradiction. 

Theorem 4 

A graph which has an elementary proper cycle 6 and also n 2) 

elementary cycles Y«|>Y2> Y n with the property that each y meets 

at least one node of 6 and that there is no common node to the n+1 cycles 

8> V 1 » Y 2 » Y n» is KLC. 

The converse of this theorem is trivial, so here we have a possible 

alternative definition of KLC. 

Proof (by induction on n) 

Case n = 2 

Let A be any common node of 6 and y^ (there is at least one by the 

conditions of the theorem). Then A cannot be on Y 2 or it would then be 

common to 6 , y^ a n d Y 2 - Similarly let B be any node on 6 and y^, B 

cannot be on Y - j - Further there is no common node to 6 , Y^ a**d y^ and 

we see therefore that G is LC (i.e. LC(2)) and is therefore KLC. 

Assume theorem true for n-1 (^2) 

Consider a graph G with a cycle 6 and n cycles Y i > Y 9 > Y 



satisfying the conditions of the theorem. If some n-1 of the Y f s have 

no common node which is also on 6 we can use the induction hypothesis 

to prove that G is KLC. We may therefore assume that any n-1 of the Y f s 

have a node in common which is on 6. For 1 ^ i ^ n let be a node 

which is on 6 and on all y (j ^ i ) . Then A^ cannot be on y^9 otherwise 

it would be on 6 and all the Y f s a n d further the A f s are all distinct 

nodes for the same reason. Now 6 meets all the A^, each y^ meets all the 

A f s except A^ and there is no common node to 6 and all the Y f s . There­

fore by the definition G is LC(n) i.e. is KLC. 

Theorem 5 

If G is not KLC and if no node of G can be safely deleted, then G is 

PCF. 

Proof 

We prove the following which is logically equivalent to theorem 5: 

If G is not PCF and no node of G can be safely deleted then G is 

KLC. 

Let 6 be any proper cycle of G and let its nodes be A-, A 0 , A . 
I JL n 

For any ordered pair (A^,A^) with i / j there must be an elementary cycle 

meeting but not A^, otherwise Â , could be safely deleted from G . Call 

this cycle y, . . Then 6 and all these Y ' S meet the requirements of 
i > J 

theorem 4 and therefore G is KLC. 

Theorem 6 
D N 

If G is KLC and G - T G 1 then G F is KLC. 

Proof 

As G is KLC there are k nodes A^, A^, A^; k elementary cycles 

Y ^ * > Y 2 * > • • • > Y ^ * and an elementary cycle 6 * subject to restriction A ) , 



B ) , and C ) . 

Case I: N, the deleted node, is not one of the A f s . 

Then , A 2 , •.., are nodes of G 1 and by the definition of deletion 

G 1 contains elementary cycles Y}*> Y 2*» Y£* and > where 

Y^, Y 2» Y^ and 6 f are obtained by omitting node N wherever it occurs 

in Y ^ j Y 2> Y^ and 6 respectively. This does not affect restrictions 

A ) , B ) , and C) and so G 1 is KLC. 

Case II; N is an A and k ^ 3. 

Assume without loss of generality that N is A^. Define 6 1 * , Yj*> Y 2*» 

Y £ * as before. Then if 6 f , y]s Y 2» Y^.-j d o not have a common 

node G f is LC(k-l). (Use nodes A^, A 2 , A ^ j . ) If they do have a 

common node, E say, then because of restriction A) Y^ cannot meet E. There­

fore G 1 is LC(k). (Use nodes A ^ A ^ A ^ , E and cycles 6 f*,Y}*»Y 2> • • • »Y^*0 

Case III: N is an A and k = 2. 

The proof of case II holds unless 6 1 and Y} do not have a common node. 

Assume then that 6 * is A
2 ^ i A - | S

2
A

2
 a n ( i Y^ is A 2 F e A 2 where no node of Fe is 

on b^k^^. The in graph G 1 (obtained from G by deleting A 2> the nodes A^ 

and F and the elementary cycles A ^ ^ A - j , FeF and F e 6^A^ 6 2F show that G 1 

is LC. 

Theorem 7 

If G is KLC then G is not PCF. 

Proof 

This is trivial, as by the definition of KLC G must contain a proper 

cycle. 

Theorem 8 

If G -* G' and the deletion is not a safe deletion, then G' is KLC. 



Proof 

Suppose all the elementary cycles meeting N of graph G are 

Ny^N, NY 2N, NY nN. Then as the transformation is not a safe deletion 

there is no common node to the Y f s and n ^ 2. By the definition of 

deletion G 1 contains elementary cycles Y-|*> Y 2*> Y n * such that, for 

all i and j, Y^Yj* Is a cycle (not necessarily elementary). Theorem 8 

can therefore be deduced from the following lemma: 

Lemma 

If a graph G contains elementary cycles Y^*> Y 2*> Y n * 

where n ^ 2, if there is no node which is on all these cycles and if, 

for all i and j, YjYj* Is a cycle of G, then G is KLC. 

Proof (by induction on n) 

Case n = 2 

There is no node common to Yj a n d Y 2> therefore the first node 

of each and the elementary cycles Y^Y 2*> Y-j* a n c i Y 2 * show that 

G is LC and therefore KLC. 

Assume true for n-1 (̂  2) 

Consider a graph G with elementary cycles Y^*> Y 2*> Y n * 

satisfying the conditions of the lemma. If some n-1 of these cycles 

have no common node then we use the induction hypothesis to prove 

that G is KLC. We may therefore assume that any n-1 of these cycles 

have a common node. For 2 ^ i ^ n let A^ be a node which is on all 

Y. (j / i ) . Now consider the nodes A~, A~, A . A„ cannot be J z J n i 

on Y^* otherwise it would be on all the Y f s and further, the A f s 

are all distinct for the same reason. The cycle y«|* meets all these 

nodes, and for 2 ^ i ^ n y^* meets all the A's except A^. There is 

no common node to the Y f s and so G is LC(n-l). 



Theorem 9 

If G is KLC then G has an elementary proper cycle 6 and also n (n ^ 2) 

elementary cycles of the form ^ X ^ * (1 ^ i ^ n) where each 6 ^ is a subpath 

or a node of cycle 6 , there is no common node to 6 ^ , 5 ^ , • 6 ^ and no X 

meets a node which is on 6 • 

The converse of this theorem is true by theorem 4, and so again we 

have a possible alternative definition of KLC. 

Proof 

As G is KLC there are k nodes , A^; k elementary cycles 

Yj, a n c * a n elementary cycle 6 satisfying restrictions A ) , B ) , 

and C ) . The cycle y^ must be of the form 

6 i 1 X i 1 6 i 2 X i 2 6iq Xiq* 
where each 6 ^ is either a subpath of 6 or is a node of 6 and each X ^ has 

no node on 6 • 

Define s o that 6 ^ * s a n elementary subpath of 6 . 

Consider the q cycles: 

6 i 2 6 i 2 1 6 i 1 X i 1 * 

6 i 3 6 i 3 2 6 i 2 X i 2 * 

6 , 6 ' 6 X * il ilq iq iq 
(if q = 1 just consider the single cycle ^ ^ ^ ^ i * ) -

Do this for all i with 1 ^ i ^ k and take all these cycles to be the 

^i Xi* °^ t* i e t ^ i e o r e m > t^ey a r e clearly elementary. It only remains to 

prove that all these cycles cannot have a common node which is also on 6 . 

Suppose there was such a node, A^. Now A^ may or may not be one of 

A.j, A^9 A^ , but in any case A cannot be on all the Y f s , assume A 



is not on y ̂ . Then as is on all the cycles listed above none of 

*i21* ^i32* * * * * b e e m p t y a m * A Q m u s t **e l n them all, as these 

are the only portions of the cycles not on y^- But there can be no 

such node by the definition of & i a b - (This is left as an exercise for 

the reader. The 6 ^ are subpaths of 6, consider the ordering 

imposed on them if A^ is on all the s
i a ^ 0 

Theorem 10 

If a graph G has an elementary proper cycle 6 and also n (n ̂  2) 

elementary cycles of the form Sj^j* (1 ̂  i ̂  n) where each 6 i is a sub-

path or a node of cycle 6, if there is no common node to 6^, 6^, ..., & n 

and if no meets a node of 6, then G is loop-connected (i.e. LC(2)). 

Proof (by induction on n) 

Case n = 2 

Take A to be any node on 6^, B any node on 6^. Then nodes A and B 

and cycles 6, and 6 2^2* s h o w t h a t G i s L C # 

Assume true for n-1 (^2) 

Let G be a graph with cycles 6, 6j^i*» 5 2 ^ 2 * ' ^n^n* s a t i s f y i n g 

the conditions of the theorem. Then if some n-1 of 6^, b^* 6^ have 

no common node we can use the induction hypothesis to prove that G is LC. 

We may therefore assume that any n-1 of the 6^ have a common node. For 

1 <> i <> n let A, be a node on all 6, (j i) . Then A. cannot be on 6., i j l l 

otherwise it would be on all the 6's and further the A f s are all distinct 

nodes for the same reason. 

Without loss of generality we can assume A,, A 0 , A are in 
I z n 

order around the cycle 6. Now consider the cycle &j^i* # ^ e ^i m e e t s 

all the A's except A^, the graph must therefore take the form of graph 6 . 



(What appear to be arcs in this graph may be paths i.e. there may be 

other nodes on them.) 

Define p^ and y^ to be either elementary subpaths of 6 or single 

nodes of 6or empty so that the cycle 6jXj* is the cycle (round 

6 to) A^ i^iYi^i-H 9 w * i e r e w e define A
n + ^ t o be A j a n c * t o ^ e 

There can be no node which is on a p and a y, fo r suppose there is 

an i such that a node N is on and on P +̂-| which is the only possibility. 

Then N is on 6^ (as y^ is either a subpath or a node of 8^), N is on 6 ^ 

(as P^+i i s either a subpath or a node of a n d also N must be on all 

the other 6's (as they all include the complete path from A^ to A ^ ) . 

Therefore N is on all 6 fs, but they do not have a common node. 

We now can find the cycles involved in a loop connection, but need 

to consider three cases. 

Case 1; n is even 

Consider the following cycles (the reader should draw a picture): 

I 8 

II A
2 P 3 X 3 V 3

A 4 P 5 X 5 V 5
A 6 A n P 1 X 1 ^ 1 A 2 

III W 2 Y Z W 4 V 5 ••• A n - l P n X n V S 

Then I meets A^ and II meets A^ but not A^ attd III meet* A^ but 

not A^. Also they cannot have a common node; no \ meets a node c:f 6 and 

no p or y meets any other p or y. Therefore G is LC by definition. 

Case 2: n is odd and \^ meets no \ with q even 

Consider the following cycles (again a picture will help to visualize 



the situation): 

I Aground 6 t o ^ t ^ X ^ P j ^ A g ... A ^ I ^ X ^ A , 

II A n(round 6 t o ) ^ ^ ^ V 4 Y 4 S . . . k^2 ^ V l V A 

III AP^YjAj (round 6 through A 3 , k^9 A $ ... to) A r • 

Then I meets A^ and k^9 II meets A 1 but not A 2 and III meets A 2 but 

not A^. The only nodes on 6 which both I and II meet are on the path 

Y nA^P 2 and III meets no node of this path. The only X in III is X 1 and 

we have postulated this meets no X q where q is even, therefore II cannot 

meet any node on X^ and so we have proved that I, II and III can have no 

common node. Therefore G is LC. 

Case 3; n is odd and meets X^ where q is even 

Suppose W is a node which is on ^ and also on X 9 say X^ is the 

path XJWXV and X is the path X'WX" . 1 1 q q q 
Consider the cycles: 

I 6 

II A P-XIWX'V A ,-(3 t 0 X i 0 Y | 0 A i 0 ... A 
n 1 1 q Tq q+1 q+2 q+2 Tq+2 q+3 n 

III A 1 (round 6 to) ^ s ^ ^ A ^ X ^ A g ... A ] . 

Then I meets A and A-, II meets A but not k« and III meets A-n 1' n 1 1 
but not A , the only common node to I, II and III must be on 6 but it is n 

easy to see that II and III do not have a common node on 6. Therefore G 

is LC. 

Notes on the proof of these three cases 

It is not immediately clear that all the cycles produced are legiti­

mate cycles for small values of n e.g. case 1 for n = 2 or 3. Remembering 

however that n > 2 (as we have already dealt with the case n = 2) if n is 

odd it is at least 3 and if even at least 4. This is sufficient to make 



all the cycles valid. Also the definition of LC stated that the cycles 

a, P and y were all to be elementary, many of the cycles used above need 

not be elementary as there was no restriction stating that two of the X fs 

could not have a common node. We therefore need the following theorem. 

Theorem 11 

A graph G which has two nodes, A and B, and three cycles a> P and y 

such that all the conditions for LC, except the restriction that or, P and 

Y be elementary, ate satisfied is LC. 

Proof 

Let a be the cycle Aa fA, P be Bp'B and y be A Y J B Y ^ A- Then we may 

assume that a 1 , P f, Y] a n<* a r e each either an elementary path or a 

node or empty, and that none of Of1, P f , Y] a n d Y^ meet A or B, otherwise 

it is easy to find, by omitting nodes, new Of1, P f , Y^ a n d Y^ with these 

properties. There remains the possibility that YJ and y!> have a common 

node or nodes. 

Suppose N is such a node and write Y a s j^Y]2^21^22^' w ^ e r e n o 

node on yj-j is also on Y21^22* ^ O W ^ c a n n o t he on both a1 and P 1, 

assume it is not on a% , a similar proof will hold if it is not on P' . 

Consider nodes A and N and cycles A y ^ N Y ^ ^ * ^ 1 2 ^ 2 1 ^ a n (* Aof'A. If 

the second of these is not elementary replace it by that part of itself 

which is an elementary cycle through N. Then if these cycles do not 

have a common node they show that G is LC. 

If the cycles do have a common node P then consider the nodes B and 

P and the cycles N Y ^ Y ^ 1 ^ A c y < A a n d BP fB. The first two both meet P 

and there can be no node on all three cycles as they are each part of 

the original three cycles. The first may not be elementary but it 

must have fewer repeated nodes than AylBYiA and so we proceed by induction 



to prove that G is LC. 

Theorem 12 

A graph is LC if and only if it is KLC. 

Proof 

If a graph is KLC then theorem 9 and 10 shows it is LC. If a graph 

is LC it is LC(2) and hence K L C 
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