NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Interactive Sketch Interpretation Using Arc-labeling
and Geometric Constraint Satisfaction.

David Pugh

September, 1991
CMU-CS5-91-181 2

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

- Abstract

This paper describes the algorithms used by Viking, a solid modeling system
whase user-interface is based on interactive sketch interpretation. Pencil and pa-
per sketches are widely used early in the design process. Viking’s user-interface
lets the user create these sketches on the computer and automatically generate -
the corresponding three-dimensional interpretation. This user-interface coms-
bines the simplicity of pencil and paper sketches with the power of a solid
modeling system.

Sketch interpretation combines arc-labeling and constraint satisfaction. Arc-
labeling generates a surface topology for the interpretation. This algorithm
extends the line-labeling methodology to non-trihedral objects and uses heuris-
tics to generate interpretations in order of decreasing desirability to the user.
Constraint satisfaction solves for the vertex positions in the interpretation. Con-
straints are either generated from implicit relations in the line-drawing or ex-
plicitly created by the user.



S\, 78Co
L18¢
it B

¢. L

Keywords: solid modeling, sketch interpretation, line-labeling, arc-labeling,
constraint satisfaction, geometric constraints



Interactive Sketch Interpretation Using Arc-labeling and Geometric
Constraint Satisfaction.

David Pugh

Carnegie-Mellon University
Pittsburgh, PA 15213, USA.

September 29, 1991

Abstract

This paper describes the algorithms used by Viking, a solid modeling system whose user-interface is
based on interactive sketch interpretation. Pencil and paper sketches are widely used early in the design
process. Viking’s user-interface lets the user create these sketches on the computer and automatically
generate the corresponding three-dimensional interpretation. This user-interface combines the simplicity
of pencil and paper sketches with the power of a solid modeling system.

Sketch interpretation combines arc-labeling and constraint satisfaction. Arc-labeling generates a
surface topology for the interpretation, This algorithm extends the line-labeling methodology to non-
trihedral objects and uses heuristics to generate interpretations in order of decreasing desirability to the
user. Constraint satisfaction solves for the vertex positions in the interpretation. Constraints are either
generated from implicit relations in the line-drawing or explicitly created by the user.

1 Introduction

Sketches have long played an important role in design. Even now, despite the wide availability of solid
modeling systems, designers will often do the preliminary design using pencil and paper instead of using the
computer. This paper describes a solid modeling system, called Viking, which uses sketches created by the
user to determine an object’s shape. Topologic and geometric constraints are derived from the sketch and
a three-dimensional object description consistent with those constraints is generated. The resulting object,
despite the ambiguity inherent in a sketch, is normally close enough to the intended object that the user’s
momentum is maintained and the design process can continue without pause.

Viking uses arc-labeling and constraint satisfaction allow the user to create complex, precisely dimen-
sioned, models. The task of generating a new object description has two parts: arc-labeling is used to find
the surface topology, and constraint satisfaction is used to solve for the vertex positions. Arc-labeling ex-
tends Huffman-Clowes line-labeling [5] [9] to non-trihedral objects. Constraint satisfaction uses a satisfaction
algorithm to simultaneously solve systems of non-linear equations. The constraints are generated from the
line-drawing (e.g. a hidden line must cross behind a visible line), the world constraints (e.g. faces are planar
polygons) and user constraints. The latter class of constraints represent geometric constraints placed on the
model by the user (e.g. two sides have equal lengths).

Viking’s combination of sketch interpretation and constraint satisfaction creates a surprisingly effective
user-interface. At each step in the creation of a model, the designer is simply changing the sketch to make
it look right: each step is obvious from context. This leaves the designer free to concentrate on the design
itself and not how to convey it to the computer.- Sketches, however, lack the precision needed later in the
design process. Viking circumvents this problem by letting the designer place geometric constraints on the
object thereby allowing the designer to turn a rough sketch into a precisely dimensioned object.

University Libraries
1 Carnegie Mellon Liniversity
ttshurar Somnsweniz 700



2 Related work

Viking is a solid modeling system whose user-interface is based on interactive sketch interpretation
systemn. In this respect, Viking is unique: this is the first system to do sketch interpretation interactively.
Viking, however, does use two well established techniques to create its user-interface: line-labeling and con-
straint satisfaction. Line-labeling systems have been around for over 20 years [9] [5]. Constraint satisfaction
systems have been around even longer {14].

2.1 Line-labeling systems

The first line-labeling systems were developed separately by Huffman [9] and Clowes [5]. These algorithms
rednced the problem of determining whether a line-drawing represented a trihedral object! to one of finding
mutually consistent Jabelings for each intersection in the line-drawing. Since then, this basic algorithm has
been extended to a wide variety of objects and line-drawings: scenes containing shadows [15], line-drawings
in which hidden-lines are visible [12], objects with curved surfaces {4], and thin-shell objects [10]. Also.
Waltz [15] introduced an efficient algorithm for filtering out obviously inconsistent labelings, and Sugihara

[13] developed a way to test the feasibility of an interpretation by using linear programiming.

2.9 Constraint satisfaction systems

Constraint solvers generally fall into two broad categories: incremental solvers and simultaneous solvers.
The first type, perhaps best represented by ThingLab (2], essentially modify one variable at a time, prop-
agating the results through the constraint network. These systems work well when dealing with acyclic
networks of constraints, but may have problems with networks of cyclic constraints, iterating indefinitely on
some networks. The second type, which describes Viking and Juno {i1] among others, attempts to find a
solution which simultaneously satisfies all of the constraints, typically using some form of gradient descent
to minimize the total error. These systems have the problem that they require an initial position, and that
they are not guaranteed to find a solution. For example, they may become trapped in local minima and
never find a solution that satisfies all of the constraints. Given an initial position close to a solution, however,
these system will normally find an exact solution, even if there are cyclic constraints.

3 Using Viking

Viking is an implementation of a what you see is what you get user-interface for solid modeling. What
Viking’s users see is a line-drawing, and what the users get is a three-dimensional object description. Viking
first creates a line-drawing from the current object description and the current view transform. The users
describe what they want to see by changing the line-drawing. Viking then uses sketch interpretation to
generate a new object description which is consistent with the modified line-drawing. This object description,
if it is acceptable to the user, replaces the current object description and a new line-drawing is created. The
user can then modify the new line-drawing, starting a new cycle of modification and interpretation.

3.1 Modifying the line-drawing

A substantial portion of Viking is devoted to creating and modifying line-drawings. Creating the line-
drawing is straight-forward: apply a view transform to the current object and generate a hidden-lines-dashed
image. The algorithms used to create and display this image differ from the standard algorithms only in
that special symbols are used to display information about the object’s topology: thick, thin, or double lines
are used to represent, respectively, edges adjacent to zero, one or two faces.

The user can modify the line-drawing in a variety of ways. For example, the user can click on a line-
segment to toggle its visibility flag, making a hidden line-segment visible or vis versa. When the modified

I One in which each vertex is adjacent to exactly three faces.



Figure la: Draw the Figure 1b: Modify the Figure lec: Find an Figure 1d: Add
wire-frame. line-drawing. interpretation. geometric constraints.

line-drawing is displayed, the selected line-segment will be drawn with its new visibility, even though this is
inconsistent with the underlying object description.

3.2 Interpreting a modified line-drawing

Once the user has modified the line-drawing, Viking must find a new interpretation. Unfortunately,
line-drawings can have multiple valid interpretations. For example, a line-drawing of a block could represent
either a solid block or a box which has an opening on the far side. For interactive systems, this topologic
ambiguity presents a serious problem: users have both a particular topology in mind and little patience. In
order for an interface to be successful, it must generate the desired topology quickly and easily.

Viking uses heuristics to control the order in which interpretations are generated, with the intent that the
first interpretation is, at least, close to the interpretation desired by the user. These heuristics assign a cost
to each interpretation based on the user’s stated preferred object type (solid, thin-shell or no preference) and
the current object. Interpretations are then generated in order of increasing cost. Once an interpretation
has been generated, the user can either accept or reject it. In the latter case, the user can guide the search
for subsequent interpretations by indicating where the current interpretation is incorrect.

Once an acceptable interpretation of the line-drawing has been found, geometric constraint satisfaction
is used to find the position of the vertices. Constraints fall into three classes: world constraints, image
constraints and user-specified constraints. World constraints force faces on the new object to be planar
polyhedra. Tmage constraints force the hidden parts of the new object to be behind the visible parts, with
respect to the current view transform. User-specified constraints force the new object to have the geometric
properties desired by the user.

The positions of the vertices in the current object description are used as the initial positions for the
vertices in the new object description. The vertices are then moved to satisfy the system of constraints
using a non-linear satisfaction algorithm developed by Bullard and Biegler [3]). Although there is no explicit
constraint that a solution be close to the initial values, motion in the problem space is well damped and
solutions tend not to differ unnecessarily from the initial values.

3.3 Examples

Figures la-1d shows four steps in the process of creating a triangular torus. In Figure la, the user has
drawn three triangles (each in a different plane) and connected the appropriate vertices to form a wire-frame
for the torus. Figure 1b was created by hiding the line-segments which would be hidden if the drawing
represented a solid object. Figure lc is the first interpretation found for Figure 1b. The position of some of
the vertices has shifted slightly in order to satisfy the constraint that each face is a planar polygon. Figure 1d
shows the interpretation found after constraining every triangle in Figure lec to be an equilateral triangle.

Figures 2a-2d provide an example of cutting a notch into a block. Figure 2a is the block before any
changes have been made. In Figure 2b, the wire-frame for the notch has been added. Figure 2¢ is the
second interpretation found for Figure 2b (in the first interpretation, line ab was adjacent to two surfaces).
Figure 2d is the interpretation found after deleting the unneeded lines and adding the constraint that the
angle at the bottom of the notch is 45°.



|

B

Figure. 2a: Start with Figure 2b: Draw in a Figure 2¢: Find an Fal'liglgr:ded:giia:;ip
a simple block. notch. interpretation. constraints.

4 Finding the valid labelings for an arbitrary intersection

The first step in analyzing a line-drawing is to generate the valid labelings for each intersection in the
drawing. A labeling represents one configuration of surfaces around an intersection and is simply the line-
labels selected for each line adjacent to the intersection. A line’s label describes the surfaces adjacent to the
line. In traditional line-labeling, there are three possible labels: convex (where the line lies along a ridge
formed by the two surfaces), concave {where the line lies at the bottom of valley formed by the two surfaces) .
and occluding (where both surfaces extend to one side of the line). In arc-labeling, a label tells how many
surfaces extend to either side of a line and what the other bounding line is for each surface. The labels
used by arc-labeling can represent lines with any number of adjacent surfaces, but they do not distinguish
between convex and concave arrangements of adjacent surfaces.

The surfaces described in the labeling can be thought of as a solid arc extending left from one line
around the intersection to the right of another line, and are called surface-fragments throughout the rest of
the paper. A labeling is valid for an intersection if a physical model of the labeling can be constructed whose
appearance matches the appearance of the intersection. Most line-labeling algorithms can only generate
the valid labelings for intersections of two or three lines?, Arc-labeling can find the valid labelings for
intersections with any number of adjacent lines. .

With both labeling schemes, the goal is to find valid, mutually consistent labelings for each intersection
in the line-drawing. In line-labeling, a line is consistently labeled if it has the same label at each end. In
arc-labeling, a line is consistently labeled if the same number of surfaces extend to each side at both ends.
If a consistent labeling can not be found, then the line-drawing represents an impossible object: one which
does not have a physical interpretation. .

Both line-labeling and arc-labeling assume that the line-drawing represents a general view of the object
[12]. In essence, this is an assumption that a small change in the observer’s view point will produce a
correspondingly small change in the line-drawing. This assumption has two corollaries in Viking:

1. Every face is drawn as a closed polygon with a non-zero area.
2. Every edge is drawn as a line with a non-zero length.

These corollaries eliminate a lot of special cases (in particular, what is the left and right of a line with a
length of zero?), but make it impossible to use Viking to analyze most engineering drawings since these
drawings typically violate one or both of the corollaries.

4.1 Evaluating the validity of a labeling

A model of an intersection’s labeling can be created by assigning a position to the endpeint of each
adjacent line. Using this model, the visibility of each adjacent line can be calculated and the surface-
fragments can be tested to see if they intersect anywhere except along a common line. If the endpoints can
be positioned such that the appearance of the model is the same as the appearance of the intersection in the
line-drawing and none of the surface-fragments intersect, then a physical model of the labeling exists and
labeling is valid.

2In practice, the labelings are pre-calculated and stored in an intersection library (also called a junction library).

4



a b,... = lines

A.Y,... = surface-fragments
V= Set of all visible lines adjacent to the intersection.
H = Set of all hidden lines adjacent to the intersection.
§ = BSet of all surface-fragments adjacent to the intersection.
ly¥ = The line forming the left boundary of Y.
rx = The line forming the right boundary of X.
True If X spans a (a lies between the bounding lines of X,
(ax X} = a#ly and a #ry).
False otherwise
(aftx) = { E\:xsee (I)f; }(:eisw iirslefront of the plane defined by ..
@l ¥y = { True Ifais l?ehind the plane defined by Y.
False otherwise
(Xey) = { True A& and .y do not intersect except along a common line,
False otherwise

Table 1: Notation key for validity expressions.

Using the notation given in Table 1, first order logic expressions can be written which correspond to the
criteria given above. These expressions (along with their English translations) are as follows: '

e (MeV,(V¥ eS| (v &), (v d)) ‘ (1)
Every visible line is in front of every spanning surface-fragment. ’
« ((V=0)V(Vhe H,(3X €S| (hx X),(h 1 X)) @)

Either the entire intersection is hidden by a non-adjacent surface or

every hidden line is behind at least one spanning surface-fragment.

o (WXES(WeS|(V£1),(XoV)) (3)

No two distinct pairs of surface-fragments intersect anywhere except along a common line.

If all three of these expressions can be satisfied, then the labeling is considered valid because it is possible
to create a model of the labeling which matches the appearance of the intersection in the line-drawing.

Of all the predicates used to write these expressions, only the ft and | present significant problems.
While the ® predicate is fairly complex, it can be rewritten in terms of the other predicates, as shown in
Table 2. Table 2 was generated by enumerating the possible ways in which two surface-fragments can share
a common point without intersecting one another. Figures 3a - 11 show all non-intersecting arrangements of
two surface-fragments. The remaining predicates can be evaluated based on the angle each line makes with
the horizontal, which is known.

4.1.1 Evaluating the {t and |} predicates

The satisfiability of an expression containing the f and | predicates can be evaluated if the expression
can be written in the following form:

C = (alﬂ(\.’l)/\(agﬂl'g)/\-'-f\(aﬂ ﬂ'-l)n)/‘\(an.+1Ult’n+1)/\"'/\(amu-vm) (4)



/Za = The angle a makes with the horizontal.
fab = The angle counterclockwise from a to b.
/X = The angle between the bounding lines of X".
(et X) = —{axdi)
(X@Y) = 2X,V)VAX,Y)V (X, V)V (X)) V(X V) VulX, V)V
(Y, XYV (Y, XYV oV, X))V 1(Y, X) VY, X)Vvw(Y, )
W(.Y) = (o< V) A(ex o V) A (ly o< X) A (£y o X) A (X, V)V (X, )
mx,Y) = (LX <180°)A
((x TN A G V) A(y LX) A(ry LX)V [Figure 3aj
((lx A Gr U AQy 1 X)A{ry F )V [Figure 3b]
((lx #Y)A Gz B Y)A (ly $ XA (ry T )V [Figure 3c]
((z 4 Y) A frx A V) Ay 1 X) Ay § ) [Figure 3d]
(X, Y) = (Lrxly <180°) A (Lrylx < 180°)A
(e $Y)A(x T VYA (y f X)A(ry & X))V [Figure 4a]
(L T V)A(x L V) Ay LX) Aty 1 X)) [Figure 4b]

N(X,y) = (1,1' Ocy)/\(l‘x O(y)/\(ly (ﬂ X)/\(ry ¢X)A
(LX < 180°)A

(M A YA (rx 0 V)V [Figure 5a)
((x UIYA(zx 4 2))) [Figure 5b]
oY) = (x x VAl V) Ay ¢ X)A(ry 2 X) A (a1 (X, V)V (X, )
al® ) = (y #52) ALiyle < 180°)A -
((x P Y)A(ry B XNV : [Figure 6a]
((lx L V) A (xy 1+ X)) [Figure 6b]
QQ(X,y) = (ly= ty) A (LY < 180°) A (LY < 180°)A
(((x 1Y) A (ry § 2DV [Figure 7l
(Ix UV) Aty T X)) [Figure 7b!

HX,Y) = (x xV)A(rx g V) A(ly & X)A (ry & XA
(LY < 180°)A
((lx T W)V [Figure 8a]
(lx LX) [Figure 8b]

$X,Y) = (lx g V)A(rx x V) A (ly & X)A(ry & AN
(LX< 180°)A

((rx £ V)V [Figure 9a)
(rx 43)) [Figute 9b]

W) = (x £ V)A G & V) Ay & D) A Gy & DA
((Ly #1y)v [Figutre 10]

((ly = ly) A (LX = 180°))) (Figure 11]

Table 2: Boolean expansion of (¥ ® Y)




This expression is obviously unsatisfiable if it contains (ai + &) and (a; § A;) terms, where a; = a; and
A; = A;. Expressions which are potentially satisfiable are evaluated using an algorithm similar to the one
developed by Sugihara {13] to test the feasibility of a line-drawing’s interpretation.

- The first step is to create vectors for each line and then to find the normal vector for each surface-fragment.
These vectors and normals are created as follows:

For each a € |72, {a:}, create a vector:
Pa = (cos La,sin La, z,), where z, is unknown.
{Pa is the position of the endpoint of line a).

For each X € U;r':l{zt'j}, create a vector:

(Pro x 11,) if (£.¥ < 180°)
Ay = (Frr x (cos Lrx + 90°,sin Lry -+ 90°,¢x)), where (x ts unknown if (.Y = 180°)
(I_"L,r X Pra) otherwise

{Rx is an upward-pointing normal for the plane defined by x).

The dot product of §; and Ay can be used to determine whether Fi is above, on, or below X. If the
dot product is positive, p; is above X; if it is zero, p; is on X; otherwise, 7; is below X. Using this, the
predicates in C can be evaluated as follows:

For each predicate (a; + &) (1 < i < n), create the equation: fy, - Pa, >0
For each predicate (a; | X;) (n < j < m), create the equation: Ry, Pa, <0
For each X € |JL, A} | LX = 180°, create the equation: Zry + 2y =0

The last equation is based on the general view assumption (see Section 4). By that assumption, two bounding
lines which appear parallel must be parallel.

Even though the first two equations are linear, they are not in a form which can be solved using linear
programming. These equations can be converted for forms which are amiable to linear programming by
replacing > 0 and < 0 with > £ and < —¢ respectively (¢ is any positive constant). This modified system
of equations is equivalent to the original system®. If this modified system of equations has a solution, then
there is a way to arrange the lines and surface-fragments so that the relations described in C are satisfied.

4.1.2 Evaluating the validity criteria

For any intersection, the validity of an arbitrary labeling can be determined as follows:

1. Generate boolean expressions corresponding to expressions (1) - (3), based on the intersection and the
labeling.

2. Combine the three boolean expressions into a single expression (ANDing the three clauses together).
3. Simplify the boolean expression by:

¢ rewriting the ® predicate expressions in terms of the other predicates and

¢ evaluating all except the f} and § predicates.

3Proof: A solution to the modified system of equations is a solution to the original system. Any solution to the original
system can be multiplied a large enough constant that it constitutes a solution to the modified system. Therefore, if a solution
exists to the original system, a solution exists to the modified system



Figure 3a: Figure 3b: Figure 3c: Figure 3d:
((lx WA (tx AN ((tx $ V) A (x 4 WA ((lx FVIA(rx U ((lx UV A (rxe R V)N
(Iy $ &) A (ry 4 X)) (Iy # X) A (xy £+ &) (ly L X) A (ry 1+ X)) (y 1 X) A (ry 4 X))

Figures 3a-3d: Double overlapping small-large surface-fragments.

1
N2
Figure 4a: Figure 4b: Fi f . ) y
1 1 r igure Sa: Figure 5b:
R SUNAR AL IV AN Qe A MAGe 1Y) (x 8V Al )

Figures 5a-5b: Fully overlapped

Figures 4a-4b: Double overlapping large-large surface fragments.

surface-fragments.

4. Rewrite the boolean expression in disjunctive normal form. This expression will have the form:
B = CiVCV---VCy (5)
where each C; is an expression of the form given by equation (4).

5. Determine the satisfiability of each C; in B, using the algorithm described in Section 4.1.1. If any of
the C;’s are satisfiable, then the labeling represents a valid arrangement of surface-fragments around
the intersection. Otherwise, the labeling is invalid.

4.2 Intersection types

The set of valid labelings is relatively insensitive to the exact position of the lines around the intersection.
Two different intersections will have the same valid labelings if:

e the corresponding pairs of lines around each intersection have the same angular sense (less than 1807,
equal to 180° or greater than 180°) and

e the corresponding lines around each intersection are both either visible or hidden.

As a result, it is possible to create an intersection library. For each distinct arrangement of lines around
an intersection, generate all possible labelings and use the algorithm described in the previous section to
reject the invalid ones. Intersection libraries improve performance, since it takes less time to find the valid
labelings in an intersection library than it does to generate them from scratch. Figures 12a-12k show all
distinct arrangements of four or fewer lines around an intersection (unless mentioned otherwise, the angle
between adjacent lines is less than 180°).




Figure Ga: Figure 6b: Figure 7a: Figure 7h:
Iy F V)A (ry § 2) (x T V)A(ry 4 X) (e f VYA (ry 4 X) (e UV A(ry 1)
Figures 6a-6b: Partially overlapping Figures 7a-Th: Partially overlapping joined
surface-fragments. surface-fragments.
r
Il xr 1 r I xr 1 r X X < r
1 N = 1 R
AV A, TN O AT AIEES SRR o
y Y y y y 1 .
Figure 8a: Figure 8b: Figure 9a: Figure 9b: ry ny
(lx 13) (x 43) (x 1Y) (x4 3) Figure 10: Figure 11:
Figures 8a-8b: Right folded Figures 9a-9b: Left folded Disjoint Folded half
surface-fragments. surface-fragments. surface- surface-
fragments. fragments.

5 Generating a topology from a line-drawing

Generating a surface topology - a list of the vertices forming each face in the proposed object - from
a line-drawing is a four step process. First, restrictions on the possible labels for each line are found using
features in the line-drawing. Second, the valid labelings for each intersection in the line-drawing are found
using the algorithm given in Section 4. Third, the entire line-drawing is consistently labeled using a branch
and bound search. Fourth, a surface topology is found using the labeling found in the previous step.

Once a surface topology has been found, it is displayed to the user. The user can then either accept or
reject the topology. If the user accepts it, the surface topology is used to create a new object. Otherwise,
steps three and four are repeated and a new topology is generated.

5.1 Restricting the possible labelings for a line

For any given line-drawing, some labelings which might be valid based solely on an analysis of the
intersections might be inappropriate based on global features in the line-drawing. In Figure 13, for example,
line ab partially obscures two other lines. In order for this to occur, line @b must have one or more surfaces
extending to its upper right and no surfaces extending to its lower left. As a result, any labeling for
intersections a or & in which line ab fails to meet this condition is considered inappropriate. The following
rules can be used to reject inappropriate labelings:

b a ¢ b b b
g /'/ L E /
/ b : Figure 12f;
Figure 12a: Fi b, Figure 12c: Figure 12d: c T3
Arrow.1. 1gure 12b: Straight.2 Arrow.3 Figure 12e: (Zca = 180° and
Arrow.2 (éba = 1800). (Lca > 1800). Fork.3. Lba > 180°).

(Zba > 180°).



d
b ¢ b b
C d ¢
C
d ;b
d
a ab

Figure 12¢g: d )
: . Figure 12k:
Arrow .4 Figure 12h: Figure 12i: Figure 12j: g <4
(£da > 180°). Fork.4 Psi4 K4 .
o s : (Lea = 180° and
{£ea > 180° and _ o _ o
/bd > 180° (Lca = 180° and ({da = 180° and /bd = 180°).
£bd > 180°). £db > 180°). Lch > 180°).
b o b b
Y c c
N
a
Figure 13: Discarding Figure 14a: Two Figure 14b: Four
inappropriate labelings. surface-fragment merge : surface-fragment merge

1. Crossing-rule 1
If two lines cross and one of the line-segments adjacent to the crossing is hidden, then the obscuring
line must have one or more adjacent surfaces extending over the obscured line-segment and no adjacent
surfaces extending over the exposed line-segment.

2. Crossing-rule 2 .
If two lines cross and evéry line-segment adjacent to the crossing is visible, then at least one of the
lines must not be adjacent to any surfaces.

These rules assume that intersections, where two or more lines meet at a point, can be distinguished
from crossings, where two lines pass over one-another in the line-drawing. In Viking, this is easy to
do because there is a one to one mapping between intersections in the line-drawing and vertices in the
current object.

3. Perimeter-rule
A line-segment on the perimeter of the line-drawing can only be adjacent to surfaces extending to the
inside of the line-drawing.

This rule assumes that the entire object is contained within the boundaries of the line drawing and
that none of the object’s faces contain holes.

5.2 Generating the correct topology

An object’s topology normally is not uniquely specified by the line-drawing. For example, the line-
drawing Figure 13 has 19 different topologies. Viking handles this problem by using heuristics to assign a
cost to each possible labeling for each intersection. Topologies are then generated in order of increasing total
cost.

5.2.1 Assigning costs to the labelings

Three heuristics are used to determine the cost of an intersection’s labeling. The first heuristic penalizes
labelings which are different from the labeling for the intersection in the current object description. The
second heuristic factors in a bias towards topologies preferred by the user. For example the user can set
a preference for solid topologies, in which case labelings which have non-continuous surfaces are penalized.

10




The third and final heuristic factors in a bias towards plausible configurations of surfaces. In particular,
labelings are penalized in which one or more vertices must move in order to satisfy the image constraints.

5.2.2 Searching for a consistent labeling

Once a cost has been assigned to each labeling for each intersection, a search is conducted for the least
expensive, consistent labeling for the entire line-drawing. This search is performed creating a branch and
bound search tree. This tree is created by repeatedly expanding the leaf which has the lowest cost. There are
two types of leaves: intermediate leaves and terminal leaves. The former correspond to partial labelings for
the line-drawing. The latter are leaves in which a labeling has been assigned to every intersection in the line-
drawing. Intermediate leaves are expanded by finding an unlabeled intersection and generating a new leaf
for each of the intersection’s labeling that is consistent with the labelings selected for the leaf’s antecedents.
Terminal leaves are expanded by generating the topology corresponding to the assigned labelings and allowing
the user to accept or reject the topology.

A leaf’s cost is an estimate of the total cost to label every intersection in the line-drawing. This cost can
be calculated by adding the costs of the labelings already selected for a leaf’s antecedents to an estimate of
the remaining cost. This remaining cost is found by adding the cost of finding the least expensive labelings
for the remaining intersections which are consistent with the leaf’s antecedents (but which may be mutually
inconsistent}. This cost estimate is optimistic (ie. the true cost will always be as high or higher than the
estimate). As aresult, this algorithm is guaranteed to generate consistent labelings for the entire line-drawing
in order of increasing total cost?.

5.2.3 Generating a topology from a labeling

The labeling selected for each intersection describes the intersection’s adjacent surfaces. This description,
however, is very limited: for each surface, the labeling contains only the left and right bounding lines for the
surface at the intersection. Creating a surface topology requires merging the individual surface-fragments
into closed, polygonal surfaces, which then become the object’s faces. In Figure 14a, for example, the
surface-fragments adjacent to intersections 6 and ¢ can be merged to form a larger surface-fragment. If, as
in Figure 14b, a line has two or more surfaces extending to a side, there are two possible ways to merge the
surfaces. Viking solves this problem by trying both combinations. Only one of the combinations will lead
to a valid set of surfaces (selecting the other combination will result in one or more open surfaces after all
surface-fragments have been combined).

While this algorithm will always find the topology which corresponds to a labeling, not every topology
is reasonable. If a topology contains a face in which an edge extends across the inside of the face between
two of the face’s vertices, then the topology is considered unreasonable and is rejected. The reason for this
is that an edge between two of a face’s vertices must be co-planar with the face. If the edge also extends
across the inside of the face then it is impossible to satisly either the in front of or the behind constraints
used by the geometric constraint solver.

5.3 Selecting the topology

Once a reasonable topology has been found, it is displayed to the user and he or she is given a chance
to accept or reject it. In the former case, an attempt is made to find a satisfactory object geometry for
the topology. In the latter, a new topology is found. There are three ways in which the user can reject a
topology. First, the user can simply reject the labeling, in which case the next least expensive labeling is
found. Second, the user can reject the labeling, but accept the labeling for a single line. In this case, the
next least expensive labeling is found in which the number of surfaces adjacent to the selected line does
not change. Third, the user can reject the labeling for a single line, forcing the system to find the next

*Proof: The cost of a terminal leaf is the true cost for labeling the line-drawing. In order for a terminal leaf to be expanded,
its cost must be as low or lower than the cost of any other leaf in the tree. And, since the cost of intermediate leaves are
optimistic, the true cost of any other labeling must be at least as high as the cost of the terminal leaf.

11



least expensive labeling in which the number of surfaces adjacent to the selected line changes. The latter
technique seems to be the most effective one for finding a desired topology.

6 Finding the geometry from a line-drawing

Once a topology has been accepted by the user, the next problem is to find appropriate positions for
all of the vertices in the new object description. In Viking, this is done by solving a system of non-linear
equations which correspond to geometric constraints on the new object. These geometric constraints fall
into three broad categories:

World The constraint that each face in the proposed object description in planar.
Image The constraint that the visible/hidden relations implied by the image are satisfied.

e At any crossing (where two lines cross one another without physically intersecting), the visible
line must be in front of the hidden or partially hidden line.

e At any visible intersection, visible lines must be in front of any spanning surfaces and hidden lines
must be behind at least one spanning surface. This is similar to the first two validity criteria
given in Section 4.1.

User Any geometric constraints placed by the user.

If a solution is found to the system of geometric constraints, then the new interpretation becomes the new
current object and the user can continue the modify and interpret cycle. Otherwise, the user can either
search for a new topology or abort the search for a geometry. In the latter case, the topology from the
new interpretation is combined with the geometry from the current object (and, as a result, some of the
geometric constraints will not be satisfied). The user can then modify the object (by moving a vertex closer
to its desired position, for example) and re-run the constraint solver on the modified object.

6.1 Equations used to represent the constraints

Currently, Viking supports five different types of constraints. These constraints are listed below, along
with the equations used to represent them. A constraint is satisfied when all of its corresponding equations
are satisfied.

o Planarity constraint: Planar(#, vz, ... , Un)
U1, 02,...,0n all lie in the same plane.

To add a planarity constraint, create four new variables: a,b,¢,d,
add the equation: a? + % +¢? =1 and
for each i such that 1 < i < n, add the equation:

azx, +by; +ez+d=0.

e Line in froni of line: LineFront(7;, ¥y, ¥3, ¥a, T)

Line #;7» passes in front of line #37y after applying view transform T.
To add a line in front of line constraint, add the equation: p > €
Where: .

p equals (7 - (7 — ¥3))/(7 - T2),

n equals ((72 — 71) x (¥4 — ¥3)),

T, is vector pointing to the eye in T’ and

¢ is the minimum separation distance.

+ Point in front of plane: PointFront('E'p,f)'l,ﬁ'g,ﬁ';;,T)
#, is in front of the plane defined by 7, Ta& s after applying view transform T.

12



To add a point in front of plane constraint, add the equation: p > ¢
Where: .

pequals (77 - (7, — )/ (77 - T, ),

n equals ((#1 - 72) X (#3 — T2)),

T, is vector pointing to the eye in T and

€ is the minimum separation distance.

¢ Distance constraint: D(ky, ¥, %2,...,kn, Tan_1, U2n,
kn+1 ) 7-"‘2n+1, '-72n+2, 62?1-}-3: R
d
' kn+mn "-72n+3m—2; 1721’1-{-3!‘11—[? U2n+3m) d

d

The distances between the given pairs of vertices must satisfy the linear equation shown below.

AVART I 4N

To add a distance constraint, add the following equation:
ki 0 =02 | +. ..+ kn | Fony — Tan | +
kny1L{(Tont1, Vong2, Tanss) + .. +

kntm L(V2n43m—2, T2n+3m—1, U2ntam)

VI IA
|

Where:
L(va, v, v) equals | (v, — v) x (ve —w) | /| ve —wp |
(L(va, v, v.) is the distance between v, and the line defined by v and v,).

+ Angular constraint: Angle(,, ), %2, 53) = a
The angle between lines 7, and 37y is a.

To add an angular constraint, add the following équation: (V12 - U34) — cos{a) | Tz | - | a4 |= 0
where:
V12 equals (¥ — 71) and
a4 equals (¥y — 7).
6.2 Solving a system non-linear equations

An iterative algorithm is used to solve for a solution to a system of non-linear equations. In each cycle
of the iteration, the following steps are performed:

1. a displacement is found by creating and solving a linear optimization problem,
2. an optimal displacement is then found, and
3. the positions of the vertices is updated.

The iteration continues until either all of the equations are satisfied (to within an error tolerance) or no
more progress is being made towards a solution.

6.2.1 Finding the displacement

The goal of each iteration cycle is to reduce the global error in the system of non-linear equations. The
first step in this process is to find a displacement in which the global error decreases. This is done by creating

13



and solving the following linear optimization problem:

Minimize: Y7 |es |+ a8 + 0 Lo (wier [ de )

Such that: hi(Z) + Vhi(Z) -d+e = 0 0<i<n,
gi(£) + Vgi(&)-d+s; 2 0 0<j<n
si =2 0 0<j<ny
lde]l < (bjwp) 0<k<nm
Solve for: d,&, 5

Where:
e n is the number of variables.
e n. is the number of non-linear equations of the form: hi(Z) = 0.
e n; is the number of non-linear equations of the form: ¢;(Z) > 0.
e T is the initial position vector.
e d is the displacement vector.
e & and § are the remaining error variables.
e wy is the weight for variable k (typically, 1 < we < 10).
e v is the displacement bias (currently, 1073).
e bis the maximum step size (currently, 5% the length of the diagonal of the object’s bounding box).

This LP is similar to the one developed by Bullard and Biegler [3] to solve systems of non-linear equations®

This LP is not in standard form, since the absolute value function is used in the objective function. It is,
however, easy enough to convert this LP to standard form by:

e replacing e; with ¢ — i,
o replacing | e; | with ¢; + r; and
e adding the equations ¢; > 0 and 7; 2 0.

And using a similar substitution for d.

Since the displacement is found using a linear approximation of a non-linear system, it may not be
optimal for reducing the global error. Indeed, for some systems, the global error will increase if the vertices
are moved by the displacement. Viking uses two techniques to mitigate this problem. First, because the
linear approximations are more accurate for small displacements, the objective function favors solutions with
smaller displacements. Second, Viking searches along the displacement vector to find the distance which
produces the smallest global error.

5The only significant differences are that, in Bullard and Biegler's LP, v = 0 and a different strategy is used to find the
optimal displacement.

14




6.2.2 Finding the “optimal” displacement

A binary search along the vector defined by the displacement is used to find the displacement with the
smallest global error. The displacement found by the search is not strictly optimal, since the search is limited
to searching along a single vector which may not contain the true optimal displacement. The algorithm used
to perform the binary search is given below (where u(z) is the global error at z):

Starting with: /<0
h«l

Loop:
m< (I +h)/2 . B B
if ((u(2 + hd) < p(z + 1d) A (u(z + hd) < p(z + md)) [1]
exit loop, (hcf) is the optimal displacement.

else if (u(z + Id) < p(z + hd))

h<m 2]
else

il&sm (3]

The benefit of using the binary search is most clearly seen when r is close to a solution for the system
of equations. In this situation, the initial displacement may be too large and, without the binary search,
the vertices would be displaced beyond the solution. On the next iteration, the displacement may overshoot,
the solution again and the constraint solver will oscillate around the solution without finding it. Using the
binary search described above mitigates this problem: if the displacement steps too far beyond the solution,
then the global error will not decrease, the test on line [1] will be false, and the search will continue on either
the first half of the displacement vector (line [2]) or the second half (line [3]). Normally only two or three
iterations of the loop are required to find an optimal displacement.

6.2.3 Updating the position of the vertices

Once an optimal displacement has been found, updating the positions of the vertices is trivial: simply add
the corresponding displacement to each coordinate of cach vertex. Determining whether sufficient progress
is being made is slightly more complicated. Viking currently bases progress on the slope of the change in
global error over the past ten iterations. If this slope is close to zero or positive (which would indicate an
increasing global error), the search for a solution aborts.

7 Performance

Two critical aspects of an interactive system are how quickly it can react to the user’s actions and how
performance degrades as the problem size increases. Viking’s performance was tested by creating several
faceted spheres, such as the one shown in Figure 15, and modifying the line-drawing by making all of the
line-segments obscured by one face visible. Table 3 lists the times required to perform the steps required to
find a surface-topology corresponding to the modified line-drawing.

Currently, Viking’s algorithm for sketch interpretation is uncomfortably slow, often taking one or two
minutes to find a surface-topology. Most of this time, however, seems to be spent allocating memory
and page-swapping. Switching to more efficient data-structures could dramatically reduce the memory
requirements and improve performance., That and improved workstation performance should allow future
versions of Viking to provide the fast response times needed for an interactive system, especially when used
with relatively small objects.

8 Future work

Viking was written as a test-bed for developing a user-interface based on sketch interpretation. As
such, it is an uneven implementation of a solid modeler. Many of the capabilities found in conventional

15



# of Vertices 9 16 25 36 49 64 81 100
# of leaves in tree 15 34 56 | 107 | 164 233 311 399
Total memory (MB) | 07] 1.3] 20| 38 6.3 84! 11.0| 146
Check time 004 1004]000[013[0.19] 024 033 0.41
Load time 051 0601 1.10 | 246 | 4.19 | 575 | 7.58 ) 9.98
Filter time 005 T 024|047 | 0671078 095 1031 1.09
Setup time 007 1015030080 [158] 2221 3.00 4.21
Search time 006 10151023038 | 062} 090 127) 189
Total time 042 | 118 | 2.19 | 4.36 | 7.36 [ 10.06 | 11.23 | 17.58
# of leaves is the total number of leaves in the search tree.

Total memory is the amount of memory used for Viking during the search.
Check time time required to check for obvious inconsistencies.

Load time time required to load the valid labelings for each intersection.
Filter time time required to perform Waltz-filtering {15].

Setup time time required to initialize the search tree.

Search time time required to search for the surface topology.

Total time total time required to find the surface topology.

All times are in CPU seconds on a Sun SPARC station 1+

“Table 3: Time requires to generate a surface topology.

10.00
8.00
8.00
7.00
6.00
5.00%-
4.00
3.00
200
1.00

0.00 it —t
0 10 20 30 40 50 60 70 80 90 100

Number of vertices
Figure 16: Graph of CPU time vs. number of vertices

T 1 F 1

CPU time (seconds)

testing system performance.

solid modelers are not present in Viking. For example, Viking does not support constructive solid geometry
using boolean operations, Adding support for conventional solid modeling to Viking will allow for a direct
comparison between interactive sketch interpretation and conventional solid modeling techniques.

8.1 Sketch interpretation

Viking uses an intersection library which contains all distinct intersections of four or fewer lines. Cur-
rently there is no provision for generating the valid labelings for more complex intersections, although this
will change in future versions of Viking. The program used to generate Viking’s intersection library is able
to find the valid labelings for arbitrarily complex intersections. It is a simple matter to move this algorithm
into Viking and use it to find the valid labelings for intersections with more than four adjacent lines.

Another change planned for Viking is to allow objects with non-planar faces. Viking’s sketch interpreta-
tion algorithm is robust enough to analyze sketches of objects containing non-planar faces with only minor
changes. For example, the algorithm used to generate the valid labelings for an intersection assume that
surface-fragments are planar in only two places: the expansion of the @ predicate and the equations used to

16




represent the { and |} predicates in Section 4.1.1. Non-planar surface-fragments can be accommodated by
simply modifying the © predicate and assuming that any f} and |} predicate involving them can be satisfied.

8.2 Constraint satisfaction

Two major changes are planned for Viking’s constraint satisfaction user-interface. First, several new
types of constraints will be supported. These new constraints will allow the user to control the shape of
a group of vertices. For example, the user could place a rectangular constraint on four vertices, and the
vertices will be constrained to form a planar rectangle. Second, the way in which dragging by the user is
done when the constraints are initially satisfied will be changed to use the constrained dynamics techniques
developed by Witkin and Welch [16]. Constrained dynamics is faster and more robust than the non-linear
constraint solver currently used.

8.3 Constraint inference

One problem with Viking is that it can be exceedingly tedious to make a sketch and then place all of the
appropriate constraints. The Snap-dragging user-interface developed by Bier [1] and modified by Gleicher
and Witkin [7] allows the user to place constraints with no extra work as the model is being created.
Incorporating Snap-dragging into Viking could simplify the task of creating constrained models.

9 Summary

This paper describes a solid modeler, Viking, whose user-interface is based on interactive sketch inter-
pretation. This interface is designed around a cycle in which the user repeatedly:

¢ modifies a line-drawing of the current object and

® generates an interpretation of the modified line-drawing. This interpretation replaces the current
object.

The user can modify the line-drawing by adding or removing lines, by changing the visibility of a line-segment,
and by placing geometric constraints on the object represented by the line-drawing. Viking generates a new
interpretation by searching for one which is consistent with the modified line-drawing. Since line-drawings
typically have multiple valid interpretations, Viking uses heuristics to generate interpretations in order of
decreasing desirability to the user. These heuristics are so effective that the interpretation desired by the
user is normally the first interpretation generated by Viking.

The job of finding an interpretation of a modified line-drawing is broken into two parts: finding a
surface topology using arc-labeling and finding the vertex positions using constraint satisfaction. Are-
labeling combines an algorithm for finding the valid labelings of arbitrary intersections with heuristics for
evaluating the desirability of a labeling to the user. Constraint satisfaction uses a non-linear satisfaction
algorithm to solve systems of geometric constraints, where the constraints are either explicitly placed by the
user or inferred from the line-drawing. The combination of these two techniques creates a fast and flexible
sketch interpretation system.

References

(1] Eric Bier (1989) Snap-Dragging: Interactive Geometric Design in Two and Three Dimensions Technical
report EDL-89-2, Xerox Palo Alto Research Center, 1989

(2] Alan Borning (1979) Thinglab - A Constraint-Orienled Simulation Laboratory PhD thesis, Stanford
University, March 1979

(3] L.G. Bullard and L.T. Biegler (1989) LP Sirategies for Constraint Simulation, AIChE 89 conference
Proceedings, AIChE, San Francisco, November 1089. ‘

17



[4] R. T. Chien and Y.H. Chang (1974) Recognition of curved objects and object assemblies Proceedings
of the 2"¢ International Conference on Pattern Recognition, pp. 496-510

(5] M. B. Clowes (1971) On seeing things, Artificial Intelligence, vol 2, pp. 79-116

[6] Theresa Farrah and Alan Borning A User Interface for ThingLab Based on Direct Manipulation of
Physical Objects University of Washington, Technical report number 86-09-02

[7] Michael Gleicher and Andrew Witkin (1991) Creating and Manipulating Constrained Models Published
as CMU School of Computer Science technical report: CMU-C5-91-125.

(8] James Gosling (1983) Algebraic Constrainis PhD thesis, Carnegie-Mellon University, May 1983. Pub-
lished as CMU Computer Science Department tech report CMU-CS-83-132.

[9] D. A. Huffman (1971) Impossible objects as nomsense sentences, B. Mettzer, D. Michie (Eds.) Machine
Intelligence 6, pp 295-323 (Edinburgh University Press, Edinburgh, 1971)

{10] Takeo Kanade A Theory of Origami World Artificial Intelligence, vol 13, pp. 279-311

[11} Greg Nelson (1985) Junoe, a Constraini-Based Graphics System In B.A. Barsky (Ed.) SIGGRAFPH '85
conference Proceedings, pp. 235-243. ACM, San Francisco, July 1985,

[12] P. V. Sanker (1977) A wvertez coding scheme for interpreting ambiguous trihedral solids Computer
Graphics and Image Processing, vol 6, pp. 61-89 )

{13] Kokichi Sugihara (1986) Machine Interpretation of Line Drawings, The MIT Press: Cambridge,
Massachusetts

[14) Ivan Sutherland (1963) Sketchpad: A Man Machine Graphical Commaunications System PhD Thesis,
Massachusetts Institute of Technology, Jan 1963

[15] David Waltz (1972) Generating semantic descriptions from drawings of scenes with shadows MAC
AI-TR-271, MIT (1972) Also in: P. Winston (Ed.) The Psychology of Computer Vision (McGraw Hill,
New York 1975)

[16] Andrew Witkin and William Welch (1990) Fast Animation and Control of Non-Rigid Structures Com-
puter Graphics, vol 24, 1990

18




