
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Communication Complexity for
Parallel Divide-and-Conquer

I-Chen Wu and H. T. Kung
July 1991

C M U - C S - 9 1 - 1 6 5 ^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

To appear the 32nd Annual IEEE Conference on Foundations of Computer Science,
San Juan, Puerto Rico, October 1 -4 , 1 9 9 1 .

T h i s research was supported in part by the Defense Advanced Research Projects Agency , Informat ion
Science and Techno logy Office, under the t i t le Research on Parallel Computing i ssued by D A R P A / C M O
under Contract M D A 9 7 2 - 9 0 - C - 0 0 3 5 , A R P A Order N o . 7330 , in part by the Nat iona l Science Foundat ion
and the Defense Advanced Research Projec t s A g e n c y under Cooperat ive A g reem ent N C R - 8 9 1 9 0 3 8 w i t h the
Corporat ion for N a t i o n a l Research Init iat ives , and in part by the Office of Naval Research under Contract
N 0 0 0 1 4 - 9 0 - J - 1 9 3 9 .

T h e v iews and conclus ions conta ined in this d o c u m e n t are those of the authors and should not b e
interpreted as represent ing the official pol ic ies , either expressed or impl ied , of D A R P A , C N R I , O N R or the
U . S . government .

C2fc<""

Keywords: communication complexity, divide-and-conquer, communication cost, par­
allel computation cost, cross node, scheduling algorithm

Abstract

This paper studies the relationship between parallel computation cost and communication
cost for performing divide-and-conquer (D&C) computations on a parallel system of p pro­
cessors. The parallel computation cost is the maximal number of the D&C nodes that any
processor in the parallel system may expand, whereas the communication cost is the total
number of cross nodes. A cross node is a node which is generated by one processor but
expanded by another processor. A new scheduling algorithm is proposed, whose parallel
computation cost and communication cost are at most \N/p] and pdh, respectively, for any
D&C computation tree with N nodes, height h, and degree d. Also, lower bounds on the
communication cost are derived. In particular, it is shown that for each scheduling algorithm
and for each positive ec < 1, which can be arbitrarily close to 0, there are values of N, h,
d, p, and CT(> 0), for which if the parallel computation cost is between N/p (the minimum)
and (1 + €T)N/P, then the communication cost must be at least (1 — ec) • pdh. Therefore,
the proposed scheduling algorithm is optimal with respect to the communication cost, since
the parallel computation cost of the algorithm is near optimal.

Untversrty Lroraries
Carnegie Mellon University

Dittsbyrgh:i Pennsylvania 15213

1 Introduction
Divide and conquer (D&C) is a common computation paradigm, in which the solution to
a problem is obtained by solving subproblems recursively. Examples of D&C computations
include various sorting methods such as quick sort [6], computational geometry procedures
such as convex hull calculation [12], AI search heuristics such as constraint satisfaction
techniques [5], adaptive data classification procedures such as generation and maintenance
of quadtrees [13], and numerical methods such as multigrid algorithms [10] for solving partial
differential equations.

A D&C computation can be viewed as a process of expanding and shrinking a tree. Each
node in the tree corresponds to a problem instance, and children of the node correspond to
its subproblems. During the computation, each internal (non-leaf) node goes through two
phases. The first phase is the divide phase during which the problem instance associated
with the node is divided into subproblems. The second phase is the combine phase during
which the solution of the problem instance associated with the node is derived by combining
solutions of the subproblems associated with the node's children. After its creation each leaf
will perform some computation and return the results to its parent. At a given time, nodes
on a wavefront that cuts across all paths from the root to leaves can be active in performing
divide, combine, or compute operations. Along each path the wavefront first moves down
from the root to its leaf and then up from the leaf to the root.

At first glance, one might think that it should be straightforward to perform D&C in
parallel, because nodes on the wavefront can all be processed independently. However, if
one wants to achieve good load balancing between the processors, then parallelizing D&C
becomes nontrivial. In fact, doing efficient D&C on any real parallel machine has been a
major challenge to researchers [3, 4, 9, 14] for many years.

The difficulties are due to the fact that many D&C computations are highly dynamic
in the sense that these computations are data-dependent. During computation, a problem
instance can be expanded into any number of subproblems depending on the data that have
been computed so far. In fact, the trees of many D&C computations can be expected to be
sparse and irregular, and as a result, load balancing must be adaptive to the tree structure
and must be done dynamically at run time. This implies that computation loads need to
be moved around between processors during computation. The challenge is then to devise
efficient scheduling algorithms which can achieve good load balancing while minimizing the
communication cost for moving computations around.

In general there is a tradeoff between balancing computation loads and minimizing com­
munication costs. The results of this paper quantify this tradeoff. In particular, the paper
establishes lower bounds on the communication cost for any scheduling algorithm based on
how well it performs load balancing.

2 Summary of Results of This Paper

2.1 Definitions and Notat ion
The tree of a D&C computation is called a (N,h,d)-tree, if

1

• N is the number of nodes in the tree,

• h is the height of the tree, and

• d is the maximal number of children of a node. (We assume that d is at least 2, to
allow parallel processing of the tree.)

A node is said to be at tree level i if it is the z-th node on the path from the root to the node.
Therefore, the root is at level 1, and the height of the tree is the maximal level number.

For the parallel system which will carry out the D&C computation, we assume that

• p is the number of processors in the system, and

• it takes one time step for a processor to expand a node, i.e., to perform the divide
operation for an internal node, or to perform the compute operation for a leaf node. For
simplicity, we assume that a processor takes no time to perform a combine operation.

When a node is expanded, zero or more children may be generated. More precisely, if
a node does not generate any children, the node is a leaf; If a node generates one or more
(up to d) children, the node is an internal node. Each newly generated node will in turn
be expanded by some processor in the future. A frontier node is a node which has been
generated but has not been expanded.

A scheduling algorithm for a D&C computation schedules nodes (i.e., frontier nodes) on
processors for expansion. We assume that scheduling algorithms cannot "lookahead". This
non-lookahead assumption is reasonable when dealing with irregular D&C trees. In this type
of tree, the number of children a parent may have (if any) is typically data-dependent and
is therefore not known a priori.

The parallel computation cost T^(H) of a scheduling algorithm A for a D&C computation
tree H is the maximum number of the nodes that any processor may expand. Since there
are N nodes and p processors, a lower bound on TA(H) is T m t n = \N/p\. The parallel
computation cost T4 of algorithm A is defined as the maximum TA(H) for all (JV, h, d)-trees
H.

The communication cost CA{H) of a scheduling algorithm A for a D&C computation
tree H is the total number of cross nodes. A cross node is a node which is generated by one
processor but expanded by another processor. Note that the processor expanding a cross
node needs to receive information from the processor generating the node. Therefore, CA(H)
is a reasonable measure for capturing the interprocessor communication cost in performing
the divide phase of all the internal nodes. (A similar definition of communication cost is
used by Papadimitriou and Ullman in [11].) The communication cost CA of algorithm A is
defined as the maximum CA(H) for all (JV, /*,d)-trees H.

2 . 2 Main Results
T h e o r e m 1 For each scheduling algorithm A for a parallel system of p processors, for each
integer pf, 0 < pf < p, and for each N, h, and d with the following two restrictions,

SI. N > 3pd2h, and

2

S2. h > \\ogdN] + \\ogdpdK] + 1 ,

there exists some (N,h,d)-tree H for which at least one of the, following two properties is
true:

P I . the parallel computation cost of the algorithm is T^{H) > Nf/pf;

P 2 . the communication cost of the algorithm is CA(H) > C,

where N'= N - 3pd2h, C = J/K, ac = (d - l)h', and h' = h - \\ogd N] - \\ogdpdh] - 1.

Many D&C computations are expected to satisfy restrictions SI and S2. Since TV is usu­
ally an exponential function of /i, restriction Si is easily satisfied in these cases. Restriction
S2 roughly requires that N < dh~2/ph. If a tree is perfectly balanced and each node has
exactly d children, then TV would be Q(dh~1) instead. A perfectly balanced tree is easy for
load balancing because the subtrees of each node have the same computation load. Restric­
tions SI and S2 basically capture those interesting D&C computations with irregular trees.
This class of D&C computations are exactly those for which one finds it difficult to achieve
good load balancing without paying much in communication overheads. The lower bound
on CA{H), stated in P2 of the theorem, provides an explanation of why this must be the
case.

The two properties P I and P2 in Theorem 1 can be expressed in terms of the quantities
TV, A, d (associated with the D&C tree) and p (associated with the parallel system) as
follows. One can check that Nf > (1 — ejy)N and h! > (1 — e^)h for each positive ejy < I
and eh < 1, provided that h > ^Ph^og^e-\og,cN ^ n d 0L > N > (Note: i f

h > ^ o g , p W o y + 6 - i o g , € J V ? t h e n > 3 ^ ; * i f > ^ > l Q g d N + l o g d p d h + 3 >

\\ogd N] + \\ogd pdh] + l = h-h', i.e., h' > (1 - eh)h; if N > then N' > (1 - eN)N.)
From this and the fact that N' < N and h' < A, we note that A^and h1 approach N and h
respectively, when both e;v and e^ approach 0. Therefore, P I and P2 in Theorem 1 become
TA(H) = Q(N/p) and C^{H) = Vt{pdh) for large /*, when p' is close to p. Furthermore, we
can slightly change the theorem as Corollary 1.

Corollary 1 For each scheduling algorithm for a parallel system of p processors, for each
positive ec < 1, which can be arbitrarily close to 0, there are values of N, h, d> p, and
er(> 0), for which if the parallel computation cost is between ^ and (1 + CT)^> then the
communication cost must be at least (1 — ec)Cu, where CU = pdh.

Proof. Let p > and d > f^. Then, let ex = ^ . And, let N and h be in the range as shown
above with eh = f and eN = i One can check that (1 + tT)f < = ^ g ^ l < g
and p'(d - l)h' > (1 - - - eh)Cu > (1 - f fCu > (1 - ec)Cu when p' = p - 1.
Thus, if ^ < T4 < (l + e r) ~ (< ^zi)? the communication cost must be at least (1 — ec)CU. •

Theorem 1 also implies an important tradeoff result: if a scheduling algorithm wants
to achieve a good load balancing by parallel processing, then it must pay a high price in
communication cost. We can express the tradeoff between T4 and CU explicitly by showing a

3

lower bound on their product: TA • (CA + K). If (p* - 1)AC < CU < p*>c, where 0 < < p, then
by Theorem 1, TA must be at least N'/p*. Therefore, TA • (CU + /c) > (W/p*) • p*K = N'- K.
Note that because of TA > JV/p > N'/p this tradeoff is also satisfied when CA > p/c. This
tradeoff result is summarized in the following corollary.

Corollary 2 For any scheduling algorithm A for a parallel system of p processors, for all
N, h, and d with restrictions SI and S2 as defined in Theorem 1,

TA • (CA + *)>N'-K,

where NF and K are defined in Theorem 1.

T h e o r e m 2 A scheduling algorithm A can be devised to have the property that the parallel
computation cost is TA = Tmt-n and the communication cost is CA < Cu(= pdh) for any
(N,h,d)-tree.

The algorithm satisfying Theorem 2 has the minimum parallel computation cost. By
Corollary 1, the algorithm is optimal with respect to the communication cost, since the
parallel computation cost of the algorithm is near optimal. These results also imply that
the lower bound on TA • (CA + K) in Corollary 2 is tight when both ê v and Ch are arbitrarily
close to 0.

Note that Theorems 1 and 2 are so formulated that their results are system-independent
That is, the results are independent from the interconnection topology of the processors and
various control overheads such as data structure maintenance and reading/writing messages.
Therefore, our upper and lower bounds on CA are intrinsic to any parallel system. These
bounds give insights into actual communication cost in a real implementation, but exactly
how they are related to the actual cost is a separate matter depending on the implementation
(see [15]).

Section 3 describes the algorithm of Theorem 2. Section 4 presents a simplified version
of Theorem 1 and its proof to help the reading of this paper. A complete proof of Theorem
1 is given in Section 5.

2.3 Relation to Past Work
There have been several approaches in performing parallel D&C. A simple approach (e.g., in
[2]) is to expand all the nodes above a fixed level on one processor and then distribute nodes
at this level to other processors. Load balancing would be done poorly in this approach when
the tree is irregular. Another approach [14] is to distribute generated nodes, and to have
each processor perform load balancing based on load status information from its neighbor
processors. For this scheme, the communication cost can be very high in the worst case.

Recently, some researchers have made efforts to reduce communication overhead. A
popular approach [4, 9, 16] is based on the "donate-highest-subtree" strategy, in which an
idle processor will be given frontier nodes as near to the root as possible. Since a subtree
rooted near the top usually has many nodes and these nodes can all be expanded locally,
this strategy tends to reduce the amount of interprocessor communication. Ferguson and
Korf [3] presented a D&C scheme with several processors scheduled first to a node and then

4

to their children. The idea behind their scheme is also that of distributing frontier nodes
near the root to idle processors.

Although the methods described in the previous paragraph all at tempt to reduce commu­
nication overhead, they do not use global information to balance the load. It turns out that
the communication cost for these methods can still be high in the worst case. For example,
we estimate that the communication cost is 0(dhlogdP) for Ferguson and Korf's scheme, and
is 0(mm(p2h,pdh2)) for the scheme in [4] with round-robin scheduling.

In contrast, the communication cost for the scheduling algorithm of this paper (Section
3) is as low as 0(pdh) (Theorem 2). This is partly due to the fact that our algorithm is able
to make effective use of global information (i.e., "global pool" in Section 3).

Most importantly, we note that none of the previous work has any lower bound results on
the communication cost for parallel D&C computations. It appears that our lower bounds
in Theorem 1 and Corollaries 1 and 2 are the first lower bound results for those D&C
computations whose tree structures are dynamic in the sense that the tree structure is
determined only at run time. Previous results on computation and communication cost
tradeoffs such as those in [7, 8, 11] deal with only static computation graphs, whose topologies
are known before the computation starts.

3 A Scheduling Algorithm and Upper Bounds
This section describes a new scheduling algorithm which can achieve the upper bounds in
Theorem 2 for both parallel computation cost and communication cost. The bounds hold
for any D&C computation, i.e., for any (TV, h,d)-tree no matter how irregular it is.

Proposed Schedul ing Algor i thm

The scheduling algorithm uses a data structure, called a Global Pool (abbr. CP), to keep
track of frontier nodes at a particular tree level which have not been taken by any processor
for expansion. This level, identified by a variable gl, has the property that nodes at higher
levels have all been taken by processors. Every processor will try to take a node from the GP
to work on whenever it becomes idle. For the proof of Theorem 2, it suffices to assume that
the GP is maintained by some single processor. (See [15] for a distributed scheme where the
GP is maintained by multiple processors.)

Initially, the GP contains only the root and the value of gl is one. The GP becomes
empty when all of its nodes at level gl have been taken by the processors. At this moment,
all the processors are requested to send in their frontier nodes at level gl+1 in the next time
step when all the nodes at level gl + 1 have been generated. Then the GP is filled with this
set of new nodes, and gl is increased by one. This process is repeated until all the nodes
have been expanded.

The key idea of this algorithm is what each processor will do after it has taken a node
from the GP. The processor will do a depth-first traversal. Consequently, the processor can
exhaust all possible work locally before asking for a new node from the GP. As a result,
we can prove (below) that the communication cost can be as low as Cu. While not related
to parallel computation cost and communication cost, an important advantage of this local
depth-first strategy is that it uses the minimum amount of memory.

5

In essence the scheduling algorithm described here uses a breadth-first scheme to dis­
tribute big chunks of computations to processors, and has each processor after receiving a
computation follow the depth-first strategy locally. Therefore; the algorithm is a hybrid
method, which interestingly will do a purely depth-first traversal of the tree in the case that
only one processor is used.

Suppose that we define the parallel computation time to be the time (in terms of number
of time steps) when the last node is expanded by a processor. Then the parallel computation
time of the algorithm described here is at most \N/p + h~\. To see this, we note that some
processors may become idle only when the number of nodes in the GP is smaller than the
number of idle processors. In the worst case all the p processors may become idle at the
end of some time step, but at this time there is only one node in the GP. Thus, in the next
time step, as many as p — 1 processors may be idle. This situation can happen at most h
times. Therefore, in the entire D&C computation, additional h(p— 1) nodes could have been
expanded if there were no idle processors at any time step. This implies that the parallel
computation time is at most \(N + h(p — l))/p] < \N/p + h].

Note that parallel computation time defined in the previous paragraph is different from
parallel computation cost defined in Section 2.1. Being able to take into account processor
waiting time induced by inter-node dependency, parallel computation time may be of more
practical interest than parallel computation cost.

However, to prove Theorem 2, we need to establish an upper bound on the parallel com­
putation cost of the algorithm. We will do this and also establish an upper bound on the
communication cost of the algorithm.

Figure 1: At most d frontier nodes at each level on a processor (d = 3).

Proof of T h e o r e m 2. To achieve the \N/p\ upper bound on parallel computation cost, we
will need to add some fair scheduling feature to the algorithm described above. Whenever
the number of nodes in the GP is smaller than the number of idle processors, we will select
the active processors for the next time step from all the p processors in a fair way. That
is, processors take turn to become active using a round-robin scheme. This ensures at the
end of any time step that the total number of nodes expanded by a processor so far will
not exceed that expanded by any other processor by more than one. Thus when all the N

6

nodes are expanded, each processor will have expanded at most \N/p\. This proves that the
parallel computation cost of the scheduling algorithm with the fair scheduling feature is at
most \N/p\.

The communication cost of the algorithm is at most the number of frontier nodes enter­
ing the GP, as this represents the only interprocessor communication activity for the entire
algorithm. Since by using depth-first search each processor has at most d local nodes at
each level (as illustrated in Figure 1), the GP can collect at most pd nodes each time that
gl increases. This will happen at most h times, so the total number of nodes entering the
GP is bounded above by Cu = pdh. •

Note that in a practical implementation, the fair scheduling feature may not be used since
minimizing parallel computation cost may not be important. Without the fair scheduling
feature, the parallel computation cost would become \N/p+h~\. However, the communication
cost can be reduced to p(d — if a processor right after expanding a node will schedule
one child, if any, of the node for expansion at the next time step.

The scheduling algorithm described in this section is being used as a basis for developing
a parallel programming model for D&C computations. To obtain practical insights, we plan
to implement a programming system based on the model on the 26-host Nectar network
system [1] developed at Carnegie Mellon University.

4 A Simplified Version of Theorem 1
This section presents Theorem 3 (see below), which is a simplified version of Theorem 1
dealing with only two processors. A relatively simple proof of Theorem 3 is given. This
simple proof captures the essence of a more complicated proof of Theorem 1 given in Section
5. It is advised that the reader read this simple proof first to understand the ideas.

T h e o r e m 3 For each scheduling algorithm A for a parallel system of two processors, for
each N, h, and d with the following three restrictions,

5 1 . TV > 3dh,

5 2 . h > |"logdTV] + 2 , and

53 . h — \logd TV] — 2 is an even integer,

there exists some (TV\h,d)-tree H for which at least one of the following two properties is
true:

Q l . the parallel computation cost of the algorithm is T^{H) > TV — 3dh;

Q2. the communication cost of the algorithm is C^{H) > h'(d— I),

where hf = (h - \\ogd TV] - 2) /2 .

7

Note that restrictions SI and S2 correspond to those in Theorem 1. Restriction S3 is for
a minor technical convenience, namely, ensuring that h! an integer.

Theorem 3 implies, for example, that if the communication cost is small (in the sense that
Q2 does not hold), then the parallel computation cost must be large (in the sense that Ql
holds). In particular, if CA{H) < h'(d — 1) and if 3dh <C N , then the parallel computation
cost will be close to TV.

Proof of T h e o r e m 3. Suppose that we are given a scheduling algorithm A for performing
a D&C computation on processors Pi and P 2 . For algorithm A, we will prove the existence
of a (JV, A,d)-tree H for which at least one of Ql and Q2 must hold.

By playing an adversary game with algorithm A, we will construct the tree by growing it
from the root one step at a time. A time step consists of two phases, node scheduling phase
and node expansion phase. In the node scheduling phase, algorithm A schedules a node or
no node for each processor to execute. Then, in the node expansion phase, these scheduled
nodes are expanded. In this phase we will determine the number of children each scheduled
node will generate.

We will first define a special class of subtrees which will be used to describe some sufficient
conditions under which a tree can grow to a (N, /i, d)-tree. We will then give the main part
of the proof including a description of the tree construction procedure.

H F D - S u b t r e e

Definit ion 1 At any given time during the tree construction, a High-and-Full-Degree subtree
(abbv. HFD-subtree) is a subtree, which is rooted at a node at or above level h — [log d N],
and which has been constructed using the following rules:

A l . nodes above level h generate d children; and

A 2 . nodes at level h generate no children.

Note that rules Al and A2 imply that a node which is above level h and has no children
must be a frontier node.

L e m m a 1 At any given time during the tree construction, if the current tree satisfies the
following four properties:

11. the total number of generated nodes is at most N — h — d (generated nodes include the

root);

12. the height is at most h;

13. the degree of any node is at most d; and

14. the tree contains an HFD-subtree,

then a construction procedure can be devised to grow the tree to a (N,h,d)-tree:

8

Proof. We first note that in the HFD-subtree of 14 there exist nodes which are above level
h and have no children. Otherwise, the subtree would have been "fully grown" to level h,
according to rules Al and A2. Since its root is at and above level h — \logd AT], this fully
grown HFD-subtree would have at least d^ogdN^(> N) nodes. This contradicts I I . As noted
above, those nodes in the current HFD-subtree which are above level h and have no children
must all be frontier nodes.

Let Hi be the current tree. We will identify a set of "padding nodes" which can be added
to Hi to make it a (N, h, d)-tree.

If Hi has height less than h or degree less than d, we will grow it by extending the current
HFD-subtree from one of its frontier nodes which are above level h. Let v be this frontier
node, as shown in Figure 2. We generate d children for v and create a path from i ? t o a node
at level as shown in Figure 2 (a). The resulting tree, called H2, has height /i, degree d,
and no more than (N — h — d) + d+h = N nodes.

If H2 has less than N nodes, we will pad it with nodes in the fully grown HFD-subtree
which are reachable from the current frontier nodes and other padding nodes, as illustrated
in Figure 2 (b). Since the fully grown HFD-subtree has at least N nodes, it has sufficient
nodes which can be added to H2 to make it a (N, /i, d)-tree.

After having identified all these padding nodes, we now have a "blueprint" for a con­
struction procedure to follow. More precisely, the construction procedure will just generate
all those padding nodes in the dark region in Figure 2 (b). •

N nodes

at most h nodes on the path
(a)

Figure 2: Growing the current tree to a (N,h,d)-tiee.

Figure 3: Two areas in the constructed tree.

9

Main Part of Proof of T h e o r e m 3

The tree construction procedure consists of three stages. Each stage uses an independent
set of rules in constructing the tree.

I n stage 1, we expand each node with exactly d children. Stage 1 terminates at t ime T\
when a total of 2h' or 2hf +1 nodes have just been expanded. (Note that at this t ime the tree
is completely inside area 1 of Figure 3.) Since the number of frontier nodes increases by d — 1
each time when a node is expanded, there are exactly 2h'(d — 1) + 1 or (2h* + l)(d — 1) + 1
frontier nodes at t ime 7\ . Without loss of generality, we assume that processor Pi has
generated at least h'(d — 1) frontier nodes.

Stage 2 starts right after 7 \ . In this stage every node above level h expanded by processor
Pi will have d children, while every node at level h or expanded by processor P2 will have no
children. Stage 2 terminates at time T2 when one of the following two conditions becomes
true:

CI At least h\d — 1) cross nodes have been scheduled.

C2 At least N — h — 2d nodes have been generated.

The following shows that CI or C2 must become true sometime, i.e., T 2 exists. Recall
that by the end of stage 1 processor Pi has generated at least h\d — 1) frontier nodes. In
stage 2 processor Pi will generate nodes in the subtrees rooted at those frontier nodes which
are still in P i . For each of these subtrees, since its root is in area 1 of Figure 3, the subtree
can have at least N — h — 2d nodes unless some of these nodes are moved to processor P 2
from processor P i . If Cl does not hold, then fewer than h'(d — 1) nodes can be moved from
Pi to P 2 . Consequently, some subtree will have at least N — h — 2d nodes, and thus C2 will
be true.

Stage 3 starts right after time T^. Lemma 2 below shows that properties 11-14 of Lemma
1 hold for the tree at time T 2 . In stage 3, we follow the procedure described in the proof of
Lemma 1 to grow the tree to a (TV, h, d)-tree.

L e m m a 2 At any time in stage 1 or 2, including time T 2 , the tree satisfies properties 11-14
of Lemma 1.

Proof, It is obvious from the descriptions of stages 1 and 2 that 12 and 13 are satisfied. For
II , we note that the total number of nodes generated in stage 1 is at most (2hf + l)d + 1,
and thus at most N — h — d by restriction SI of Theorem 3. In stage 2, II obviously holds
when C2 is not true. Suppose that C2 becomes true at time J T 2 . Since the tree has no more
than N — h — 2d nodes in the previous time step and since at most d nodes can be generated
(in processor Pi) in one time step, there are at most N — h — d nodes at t ime T 2 .

Property 14 clearly holds for stage 1 by examining its description. It remains to prove
that 14 holds for stage 2. The proof is similar to the earlier proof of the fact that Cl or
C2 must become true in stage 2. Recall that in stage 1 processor Pi has generated at least
h'{d — 1) frontier nodes. We note that any of these subtrees rooted at these nodes is an
HFD-subtree if the subtree does not contain any expanded cross node. Since the number
of cross nodes expanded (not just scheduled) through time T 2 is less than h'{d — 1), one of
these subtrees must be an HFD-subtree. Note that if C2 becomes true at t ime T2 (in the

10

node scheduling phase), the node scheduled has not been expanded. •

To complete the proof of Theorem 3, we observe that if Cl- becomes true at some time
in stage 2 or 3, it will remain true for the rest of the tree construction process. Therefore
property Q2 of Theorem 3 will hold for the final (TV, /i, d)-tree.

Now assuming that Cl never holds at any time in stage 2 or 3, we want to show that
property Q l of Theorem 3 will hold for the final (TV, h,d)-tree. We derive an upper bound
on the total number of nodes expanded by processor P2. The upper bound is the sum of four
terms Ui, U2, U3 and U4. In stage 1, processor P2 has expanded at most U\ = 2h' + 1 nodes.
At time 7i , processor P2 can have generated up to {h' + l)(d — 1) + 1 frontier nodes, each
of which can be expanded at most once by processor P2 in stage 2 or 3. It is also possible
for processor P2 to expand nodes which are generated by P\ but subsequently moved to
P2. The total number of these nodes is at most CA(H) < U3 = h\d — 1). Moreover,
to take care of the nodes generated after T2 in stage 3, processor P2 may expand up to
U4 < h + 2d nodes. Therefore the total number of nodes expanded by processor P2 is at
most U = U\ + U2 + Us + U4 < 3dh. This implies that processor Pi has expanded at least
TV - U = TV - 3dh; that is, property Ql holds. •

5 Proof of Theorem 1
Suppose that we are given a scheduling algorithm A for performing a D&C computation on
a parallel system of p processors. For algorithm A, we will prove the existence of a (TV, h, d)-
tree H for which either only p' processors are active for expanding most of nodes (at least TV'
nodes) or at least C nodes are moved between processors to balance their computation loads.
For the former, the parallel computation cost will be high, i.e., TA(H) > TV'jp1 (property
P I) . For the latter, the number of cross nodes will be large, i.e., CA(H) > C (property P2).

By playing an adversary game with algorithm . 4 , we will construct the tree by growing
it from the root one step at a time. The definition of time step is the same as that in the
proof of Theorem 3.

We will give some more definitions in Section 5.1 and then give the main part of this
proof in Section 5.2. All the related lemmas are in Section 5.3.

5.1 Definitions
To help derive a lower bound on the number of cross nodes, we introduce the following
relation between subtrees.

Definit ion 2 A set of subtrees is processor-or-ancestry independent (abbr. PA-independent)
if for each pair of subtrees in the set at least one of the following two properties is satisfied:

1. Processor Independence: the roots of these two subtrees are generated on different pro­
cessors;

2. Ancestry Independence: neither is a subtree of the other. That is, there is no ancestor-
descendant relationship between the two roots.

11

S t a g e 1 = ^
A p p l y the fol lowing four rules:

R l . N o d e s in area 1 (shown in Figure 5) will generate d children.
R 2 . Cross nodes in areas 2 and 3 (shown in Figure 5) wil l not generate any children.
R 3 . Non-cross nodes in areas 2 and 3 (exc luding level h) wil l generate d children.
R 4 . N o d e s at level h wil l not generate any children.

R e p e a t rules R 1 - R 4 u n t i l t i m e T\ when any of the fol lowing three condi t ions holds:
C l . For s o m e p' processors, at least h' non-cross nodes have been e x p a n d e d on each processor.
C 2 . A t least C cross nodes have been scheduled.
C 3 . A t least N — (pd + d + h) nodes have been generated.

S t a g e 2 (cont inued from t i m e T\ when C l holds) = >
F i n d a set V of p' processors w i th the fol lowing two properties:

B l . There are at least C PA- independent H F D C - s u b t r e e s in T.
B 2 . There are at m o s t h' non-cross nodes expanded on each of the other p — p' processors

in the set T.
A p p l y the fol lowing three rules:

R 5 . N o d e s (exc luding those at level h) in T will generate d chi ldren.
R 6 . N o d e s in T wil l no t generate any children.
R 7 . N o d e s at level h will not generate any children.

R e p e a t rules R 5 - R 7 u n t i l t i m e T 2 when either of the fol lowing two condi t ions holds:
C 4 . A t least C cross nodes have been scheduled.
C 5 . A t least N — (pd + d + h) nodes have been generated.

S t a g e 3 (cont inued from t i m e T\ when C2 or C3 holds or from t i m e T 2 w h e n C 4 or C5 holds .)
U s e the construct ion procedure described in the proof of L e m m a 1 t o grow the tree

t o a (TV, h, d)-tree.

Figure 4: Tree construction procedure.

Note that for two PA-independent subtrees rooted at nodes r\ and r 2 , if node r\ is an
ancestor of node r 2 , then both nodes must be generated on different processors. This implies
that there must exist at least one cross node on the path from node ri (inclusive) to the
parent (inclusive) of node r 2 . Therefore, from this property, if there are k PA-independent
subtrees each of which has at least one expanded cross node, then there are at least k
expanded cross nodes in the tree. This is shown in Lemma 3 (in Section 5.3).

Definit ion 3 An HFDC-subtree is an HFD-subtree (as defined in Definition 1) or a subtree
with at least one cross node already expanded. If the root of an HFDC-subtree is generated
on processor P, the subtree is called an HFDC-subtree on processor P.

By Lemma 3 and Definition 3, if there are k PA-independent HFDC-subtrees and fewer
than k expanded cross nodes, then there exists an HFD-subtree, as shown in Lemma 4. We
will use this lemma to show the existence of an HFD-subtree during some periods of the tree
construction procedure.

5.2 Main Part of Proof of Theorem 1
The tree construction procedure consists of three stages. Basically, this procedure, summa­
rized in Figure 4, is similar to that in Section 4. The main difference is that in stage 1 of this

12

\LOGDPDH\

H'+L

Figure 5: Three areas in the constructed tree.

procedure we uses more sophisticated rules to prove a better lower bound of the number of
cross nodes. (Note that if h ^> \ogd N, p = 2, and p1 = 1, the lower bound of communication
cost in this theorem is approximately twice as large as that in Theorem 3.)

In stage 1, we will repeatedly apply rules R1-R4 (in Figure 4) until t ime T\ when one
of the conditions C1-C3 holds. Rules R1-R4 ensure that each subtree rooted in area 1 or 2
is always an HFDC-subtree because in constructing the subtree either rules Al and A2 are
followed (using R l , R3, and R4) or some cross nodes are expanded (using R2). Basically,
the procedure in stage 1 attempts to produce at least C PA-independent HFDC-subtrees on
some p' processors (property B l) while preventing each of the other p — p' processors from
expanding more than h' non-cross nodes (property B2). (Recall that in the proof of Theorem
3 subtrees rooted at frontier nodes at time T\ are PA-independent HFDC-subtrees.)

• P p r o c e s s o r s -
Time

TR2-\-&2 holds, but Cl does not.

7 Y - 1 - I - B 2 holds, but Cl does no i

•P-P

| :Each processor expands at least H' non-cross nodes.

"2 :Each processor expands fewer than ti non-cross nodes.

-B2 andCl hold.

t " \
Each processor expands exactly K non-cross nodes.

Figure 6: Around the time when condition Cl becomes true.

If condition Cl holds at time 7 \ , then from Figure 6 we can find a set T of pf processors
for which condition Cl and property B2 hold. According to Lemma 5, there are at least
zc(= (d — l)h') PA-independent HFDC-subtrees on each processor which has expanded h!
non-cross nodes. So there are at least C"(= p1 K) PA-independent HFDC-subtrees in T at
this time. Therefore, property Bl holds, and we are ready for stage 2.

In stage 2, we will repeatedly apply rules R5-R7 until t ime T2 when condition C4 or
C5 holds. (Note that these rules are exactly the same as those of stage 2 in Section 4.)
According to property B l , initially, there are at least C PA-independent HFDC-subtrees in
T. In stage 2, these subtrees continue to be HFDC-subtrees, because either rules Al and A2

13

are followed (using R5 and R7) or some cross nodes are expanded (using R6). In addition,
by rule R6, the set T of the other p — p' processors will not generate any new nodes.

Now, we want to show that one of the conditions C2-C5 must become true at t ime T\ or
T 2 . According to Lemma 6 (in Section 5.3), at any time in stage 1 or 2 properties 11-14 of
Lemma 1 hold; so, at any time in stage 1 or 2 the tree will be able to grow to a (T V , / i , d)-tree
by Lemma 1. Hence, if C2 or C4 never hold, C3 or C5 becomes true.

Stage 3 starts right after one of the conditions C2-C5 becomes true. (If C2 or C3 holds
at Ti, this implies that stage 2 is empty.) Since Lemma 6 also shows that properties 11-14 of
Lemma 1 hold for the tree at time T\ or T 2 , in stage 3 we will follow the procedure described
in the proof of Lemma 1 to grow the tree to a (J V , h, d)-tree H.

To complete the proof, we observe that if CA(H) > C it will remain true for the rest of
the tree construction process. Therefore property P2 of Theorem 3 will hold for H.

Now, assuming that CA(H) < C", we want to prove that property P I holds for H. Since
C2 and C4 never hold, either C3 will become true at time Ti or C5 will become true at time
T 2 . First, suppose that condition C5 becomes true at time T 2 . To prove that property P I
holds in this case, we will derive an upper bound on the total number of nodes expanded in
T. The upper bound consists of five terms <7i , £/2, C/3, £/4, and U5. Assume that there are
Ci < U\ = C cross nodes expanded in T in stage 1. In stage 1, the processors in T have
expanded at most U2 = (p-p')h' non-cross nodes due to property B2. These nodes expanded
in stage 1 will generate at most £/3 = ((p — p')h' + C\)d frontier nodes in T at time Ti, each of
which can be expanded at most once in T. After time Ti, it is also possible for the processors
in T to expand nodes moved from the processors in T. The total number of these nodes is
UA < CA(H) — C\. Moreover, to take care of the nodes generated after T 2 , processors in T
may expand up to Us < pd + d+h nodes. Therefore, the total number of nodes expanded in
T is at most U = U\ + U2 + U3 + U\ + Us < 3pd2h. This implies that the processors in T have
expanded at least N -U = N - 3pd2h nodes; therefore, TA(H) > (N — 3pd2h)/pf > N'/p',
i.e., property P I holds.

Suppose that condition C3 becomes true at time T\. Since condition Cl does not hold
in stage 1, we can find a set T of pl processors with property B2 (see Figure 6 also). Since
stage 2 is empty for this case, we can let time T 2 be the same as Ti. Thus, we can use the
same technique as above to prove that property PI holds. •

5.3 Relevant Lemmas
L e m m a 3 Suppose that there are k PA-independent subtrees at some time during the com­
putation. If each of these subtrees has at least one expanded cross node, then the total number
of expanded cross nodes in the whole tree constructed so far is at least k.

Proof. This proof is not trivial because among these subtrees those with ancestry relation­
ship may contain the same expanded cross node.

In this proof, we will prune the k PA-independent subtrees one by one under the restric­
tion that the subtree being pruned contains no other subtrees which have not been pruned
yet. (For the example illustrated in Figure 7, we can prune the subtrees in the order: 7 ^ ,
7 3 , 7 ^ , and T\.) For this proof, it suffices to prove that each pruned subtree has at least one
expanded cross node.

14

q-j, T2, % :PA-independent subtrees.

Figure 7: Expanded cross nodes corresponding to PA-independent subtrees.

Initially, the first pruned subtree obviously has at least one expanded cross node by the
assumption of the lemma. As mentioned in Section 5.1, for any two PA-independent subtrees
T and T rooted at nodes r and r' respectively, if r is an ancestor of r ' , there must exist
at least one expanded cross node on the path from r (inclusive) to the parent (inclusive) of
r' due to processor independence. Therefore, if we prune T' at r ' , T still has at least one
expanded cross node. Hence, after we prune each subtree under the above restriction, each
of the remaining subtrees will still have at least one expanded cross node. This implies that
the next pruned subtree also has at least one expanded cross node. So, each pruned subtree
has at least one expanded cross node. •

L e m m a 4 At some time, if there are k PA-independent HFDC-subtrees and fewer than k
expanded cross nodes, there exists an HFD-subtree. •

Proof. Assume that there exists no HFD-subtree. Thus, each of these PA-independent
HFDC-subtrees has at least one expanded cross node according to the definition of HFDC-
subtree. By Lemma 3, there are at least k expanded cross nodes. This is contradictory to
the assumption of the lemma. •

L e m m a 5 In stage 1, if a processor has expanded h! non-cross nodes, then there are at least
K PA-independent HFDC-subtrees on the processor.

Proof. As mentioned in Section 5.2, each subtree rooted in area 1 or 2 is always an HFDC-
subtree in stage 1. Thus it suffices to prove that at least K nodes with ancestry independence
in areas 1 and 2 will be generated on the processor after h' non-cross nodes have been ex­
panded. By rules R1-R3, for any non-cross node, all of its ancestors in area 2 (with hi + 1
levels) must be non-cross nodes as shown in Figure 8. So, all the nodes generated by the
first h1 non-cross nodes must be in areas 1 and 2. Since each of the hf non-cross nodes will
generate d children and can remove at most one ancestor, these non-cross nodes will, in total,
generate at least {d — \)h'(= K) nodes with ancestry independence. •

15

Area 1

Area 2

Generated on a single Processor
M : Non-cross node

Area 3

Figure 8: In stage 1, any non-cross node's ancestors in area 2 must have been generated on
the same processor.

L e m m a 6 At any time in stage 1 or 2, including time T\ or T2, the tree satisfies properties
11-14 of Lemma 1.

Proof. It is obvious from rules R1-R7 that 12 and 13 are satisfied. In addition, it is also
obvious that II holds before condition C3 or C5 becomes true. Consider the first time step
when at least N — (pd + h + d) nodes have been generated (i.e., condition C3 or C5 holds).
Since the tree has no more than N — (pd + h + d) nodes in the previous time step and since
at most pd nodes will be generated in each time step, there are at most N — h — d nodes in
the current t ime step. In the rest of this proof, we will show that 14 always holds (i.e., there
always exists an HFD subtree) in each stage.

In stage 1, all the nodes in area 1 will generate d nodes by rule R l . So, before all the
nodes in area 1 have been expanded, there must exist one frontier node in area 1, of which
the subtree (with only one node) is an HFD-subtree. After all the nodes in area 1 are
expanded, there are at least d^°ZdPdh^ > pdh > C subtrees rooted at the top level of area 2.
Obviously, these subtrees are PA-independent. They are also HFDC-subtrees because each
subtree rooted in area 1 or 2 in stage 1 is always an HFDC-subtree as described in Section
5.2. Since the number of expanded cross nodes is always less than C (due to condition C2),
there has always been an HFD-subtree up to time T\ by Lemma 4. Thus, we can conclude
that there always exists an HFD-subtree in stage 1.

In stage 2, initially, there are at least C PA-independent HFDC-subtrees in T (property
B l) . These subtrees will continue to be HFDC-subtrees in this stage as described in Section
5.2. In stage 2, due to condition C4 the number of expanded cross nodes is always less than
C"; so, there always exists an HFD-subtree by Lemma 4. •

Acknowledgement
Comments from Robert Cohn, Routo Terada, and Shang-Hwa Teng are appreciated.

16

References
[I] E. A. Arnould, F. J. Bitz, E. C. Cooper, H. T. Kung, R. D. Sansom, and P. A. Steenkiste. The

design of Nectar: a network backplane for heterogeneous multicomputers. In Third Intern.
Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS
III), Boston, Massachusetts, April 1989.

[2] H.E. Bal. The shared data-object model as a paradigm for programming distributed systems.
PhD thesis, Vrije Universiteit, Amsterdam, Netherlands, 1989.

[3] C. Ferguson and R.E. Korf. Distributed tree search and its application to alpha-beta prunning.
In Proceedings of the 7th National Conference on Artificial Intelligence (AAAI 1988), pages
128-132, Saint Paul, August 1988.

[4] R. Finkel and U. Manber. DIB - a Distributed Implementation of Backtracking. ACM Trans­
actions on Programming Languages and Systems, 9(2):235-256, April 1987.

[5] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction
problems. Artificial intelligence, 14(3):263-313, October 1980.

[6] C.A.R. Hoare. Quicksort. Computer Journal, 5:10-15, 1962.

[7] D.N. Jayasimha. Communication and Synchronization in Parallel Computation. PhD thesis,
Dept of CS, University of Illinois at Urban a-Champaign, September 1988.

[8] D.N. Jayasimha and M.C. Loui. The communication complexity of parallel algorithms. Tech­
nical Report CSRD 629, University of Illinois at Urbana-Champaign, 1986.

[9] V. Kumar and V. N. Rao. Parallel depth-first search, part I: implementation. International
Journal of Parallel Programming, 16(6):479-499, 1987.

[10] J.M. Ortega and R.G. Voigt. Solution of partial differential equations on vector and parallel
computers. SI AM Review, 27(2):149-240, 1985.

[II] C.H. Papadimitriou and J.D. Ullman. A communication-time tradeoff. SIAM J. Comput.,
16(4):639-646, August 1987.

[12] F.P. Preparata and M.I. Shamos. Computational Geometry: an Introduction. Springer-Verlag,
New York, 1985.

[13] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image processing, and
GIS. Addison-Wesley, Reading, MA., 1990.

[14] W. Shu and L. V. Kale. A dynamic scheduling strategy for Chare-Kernel system. In Proceedings
of Supercomputing '89, pages 389-398, New York, NY, November 1989.

[15] I.-C. Wu. Efficient parallel divide-and-conquer for a class of interconnection topologies. To
appear in the Second Annual International Symposium on Algorithms, Taipei, December 1991.

[16] Y. Zhang. Parallel Algorithms for Combinatorial search problems. PhD thesis, U.C. Berkeley,
November 1989.

17

