
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Towards a Theory of Parallel Algorithms on
Concrete Data Structures

Stephen Brookes Shai Geva

July 1991
CMU-CS-91-157 ^

School of Computer Science
Carnegie Mellon University

Pit tsburgh. PA 15213

To appear in Theoretical Computer Science
Supersedes Technical Report CMU-CS-90-170

T h i s r e s e a r c h w a s s p o n s o r e d in p a r t b y t h e A v i o n i c s L a b o r a t o r y , W r i g h t R e s e a r c h a n d D e v e l o p m e n t C e n t e r ,

A e r o n a u t i c a l S y s t e m s D i v i s i o n (A F S C) , U . S . A i r F o r c e , W r i g h t - P a t t e r s o n A F B , O h i o 4 5 4 3 3 - 6 5 4 3 u n d e r C o n t r a c t

F 3 3 6 1 5 - 9 0 - C - 1 4 6 5 , A R P A O r d e r N o . 7 5 9 7 a n d in p a r t b y N S F / D A R P A G r a n t C C R - 8 9 0 6 4 8 3 .

T h e v i e w s a n d c o n c l u s i o n s c o n t a i n e d in t h i s d o c u m e n t a r e t h o s e o f t h e a u t h o r s a n d s h o u l d n o t b e i n t e r p r e t e d a s

r e p r e s e n t i n g t h e o f f i c i a l p o l i c i e s , e i t h e r e x p r e s s e d o r i m p l i e d , o f t h e U . S . g o v e r n m e n t .

e t

K e y w o r d s : theory, algorithms, applicative (functional) programming, semantics, parallelism

Abstract

Building on Kahn and Plotkin's theory of concrete data structures and sequential functions, Berry
and Curien defined an intensional model of sequential algorithms between concrete da ta structures.
In this paper we report on an a t tempt to develop a similar intensional model of concurrent com­
putation. We present a notion of parallel algorithm between concrete da ta structures, together
with suitable application and currying operations. We define an intensional strictness ordering on
parallel algorithms, with respect to which application is well behaved (at first order types). We
define the input-output function computed by a parallel algorithm, and we show that every parallel
algorithm computes a continuous function. Thus, a parallel algorithm may be viewed as a continu­
ous function together with a parallel computation strategy. In contrast, a Berry-Curien sequential
algorithm may be viewed as a. sequential function together with a sequential computation strategy.
The intensional strictness ordering on parallel algorithms corresponds to the pointwise ordering on
the functions they compute, in the same sense that the set inclusion ordering used by Berry and
Curien on sequential algorithms corresponds to the stable ordering on the functions they compute.
We believe that the ideas and results presented here constitute a first step towards a fuller under­
standing of the intensional semantics of parallelism, even though the model presented here is not
yet general enough to provide a satisfactory account of higher order algorithms, and lacks a notion
of composition for algorithms. We present some ideas for overcoming these deficiencies, and some
directions for further research.

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

1 I n t r o d u c t i o n
The search for a satisfactory syntactic and semantic account of sequential computation, in particular
the desire to achieve full abstraction, has led to a considerable body of research. In the classic
paper [Plo77], Plotkin showed that under its standard interpretation the programming language
P C F is inherently sequential, and that its standard continuous functions semantic model is not fully
abstract because the model contains inherently parallel functions (such as parallel-or) that cannot
be defined in P C F . The continuous functions model is, however, fully abstract for a parallel version
of PCF obtained by including a parallel conditional primitive. A substantial body of work has
been directed at obtaining a truly sequential model for the original P C F with a suitably restricted
notion of function [BCL85].

Milner [Mil77], Sazonov [Saz75], and Vuillemin [Vui73] proposed notions of sequential functions;
however, their constructions make essential use of the number of arguments to a function but do not
adequately reflect the internal structure of these arguments, so that their notions of sequentiality
are not general enough. Kahn and Plotkin [KP78] defined concrete data structures, or CDSs,
together with their order-theoretic counterparts, concrete domains, which made possible a more
general definition of sequentiality of functions. Berry [Ber78] introduced the notion of stability,
a property of functions intermediate between sequentiality and continuity. However, Berry and
Curien [BC82, Cur86] showed that the category of concrete domains fails to be cartesian closed when
the morphisms in the category are taken to be the continuous functions, or the stable functions, or
the sequential functions. These negative results paved the way for the development of an intensional
model, since no suitable extensional models were found.

Berry and Curien were able to define an exponentiation for concrete da ta structures, by replacing
functions by a notion of sequential algorithms. The resulting category of deterministic concrete
da ta structures (DCDSs) and sequential algorithms is cartesian closed. Furthermore, a notation
for elements of DCDSs is a basis for a functional language CDSO [BC85], for which the sequential
algorithms model provides a semantics with several interesting properties: The semantics is fully
abstract with respect to a notion of observability that is sensitive to computation strategy; the
model is intensional rather than extensional; sequential algorithms, ordered by set inclusion, form
a concrete domain; a sequential algorithm may be viewed as a sequential input-output function
paired with a computation strategy. The operational semantics is based on an extension of Kahn-
MacQueen's coroutine mechanism [KM77], employing lazy evaluation.

Although it does not solve the original full abstraction problem for P C F , the Berry-Curien
model of sequential algorithms is interesting in its own right. It provides deep insights into the
nature of deterministic sequential computation. We propose here a generalization of Berry and
Curien's notion of algorithm that incorporates deterministic concurrency into the framework. We
believe that there are fundamental insights into the semantic treatment of parallelism to be gained
by doing this. Like Berry and Curien, we restrict attention to deterministic computat ion 1 , although
we do allow non-determinism in the scheduling of parallel computations.

In section 2, based on [Cur86], we summarize the background material on DCDSs, sequential
algorithms, and stable and sequential functions.

In section 3 we present our notion of parallel algorithm between deterministic concrete data
structures. We explain how our construction arises out of an a t tempt to generalize the Berry-
Curien concepts. The key idea is to replace the "valof' command of a sequential exponentiation

1 B e r r y a n d C u r i e n a l s o d i s c u s s e d b r i e f l y a n a t t e m p t , t o i n t r o d u c e n o n - d e t e r m i n i s m i n t o t h e i r m o d e l [C u r 8 6 ,

s e c t i o n 2 . 7] , b u t t h e y w e r e u n a b l e t o o b t a i n a c a r t e s i a n c l o s e d c a t e g o r y f o r n o n - d e t e r m i n i s t i c s e q u e n t i a l c o m p u t a t i o n .

1

with a "query" command that spawns parallel sub-computations; the formal treatment of this and
its consequences leads naturally to the use of a powerdomain. We present a variety of example
algorithms, and we define currying and uncurrying operations for parallel algorithms.

In section 4 we formalize what it means to execute a parallel algorithm by defining a suit­
able application operation. We show that our notion of parallel application is intuitively right by
discussing the applicative behavior of several example algorithms. We explain how our notion of
application generalizes the sequential application of Berry and Curien. We define the input-output
function computed by a parallel algorithm.

Application for parallel algorithms, unlike its sequential counterpart, is not continuous with
respect to set inclusion. This is not a defect of our model or of our definition of application, but
rather shows that set inclusion is not an appropriate ordering on parallel algorithms. In section 5
we identify the causes of this failing and introduce a more appropriate ordering, which we call the
intensional strictness order. Informally, an algorithm a' is above another algorithm a in this order
if af needs less information, at an earlier stage of the computation, to achieve at least the same
output as a. We regard intensional strictness as a natural generalization to the intensional setting
of the standard extensional ordering on continuous functions. In contrast, the set inclusion ordering
on algorithms used by Berry and Curien corresponds to the stable ordering [Ber78] on sequential
functions. We show that , at first order types, with suitable countability assumptions, the intensional
strictness order is a directed-complete u;-algebraic pre-order on parallel algorithms. We show that
application and currying are continuous with respect to the new ordering. This implies that the
input-output function computed by an algorithm is continuous, suggesting that parallel algorithms
can be viewed as continuous functions paired with parallel computation strategies, by analogy with
the result of Berry and Curien that their sequential algorithms correspond to sequential functions
paired with sequential computation strategies.

In section 6 we point out some limitations of our model and outline how we intend to overcome
them in future work. We discuss a number of topics for further investigation.

2 Background

2.1 Concrete Data Structures
A concrete data structure, or CDS, (C, V, E, h) consists of a set C of cells, a set V of values, a set
E C C x V of events, and an enabling relation h between finite sets of events and cells. Events are
denoted either (c,v) or c = v.

For a CDS M — (CM, Vm,Em.Ky/K x,y C Em, and c € Cm, if V C we say that y is an
enabling of c. If y \~M c and y C .7: we say that y is an enabling of c in x and write y h r c. If 0 \~M C
we say that c is initial.

We define F(y), the cells filled in y, to be the collection of cells in the events of y. E(y), the
cells enabled in y, is the collection of cells that have an enabling in y. A(y), the cells accessible in
y, is the collection of cells which are enabled in y but not filled; that is, A(y) = E(y) \ F(y).

For c,c' G Cm, w e say that c immediately precedes c', denoted c < i V / c', iff there is an enabling
y \~M c' such that c 6 F(y). If, moreover, y C x we say that c immediately precedes c' in x, denoted
c <CX cf. Taking the reflexive and transitive closure of <m> w e s a y that c precedes c' iff c <m c ^
and analogously <C£ defines precedence in x. M is well founded iff < M is well founded.

For a well founded CDS M. we say that y C Em is functional iff any cell is filled in y with at

B e r r y a n d C u r i e n u s e t h e t e r m consistent\nx\e<u\ o f f u n c t i o n a l .

2

most one value; let ^(M) be the collection of functional sets of events. If F(Y) C E(Y) we say that
Y is SAFE, and Y is a STATE of A/ iff it is functional and safe. Let V(M) be the collection of states
of M. We add a subscript to indicate finiteness, E.G., X>fin(M) for the collection of finite states.
(V(M),C) is a concrete domain 3 .

A well founded CDS is STABLE iff for any state a; and cell C enabled in X, C has a unique enabling
in X. A CDS is a DETERMINISTIC CDS, or DCDS for short, iff it is well founded and stable. We will
work from now on exclusively with DCDSs, although some of the development could be carried out
more generally. Throughout the paper, M, MF, M\ and so on range over DCDSs.

E x a m p l e 2.1 The DCDS Nul l has no cells, values, events, or enablings; its only state is the empty
state 0.

The DCDS B o o l has a single initial cell b, which may be filled with either of the values t t
or f f , representing the boolean truth values; its states are 0, {b = t t } and. {b = f f } , and thus
(P (B o o l) , C) is isomorphic to the conventional flat boolean cpo.

The DCDS N a t has a single initial cell n, which may be filled with a natural number; its states
are 0 and {n = K} for K € IN. so that (P (N a t) , C) is isomorphic to the conventional flat natural
numbers cpo.

The DCDS LNat has cells { b n | n > 0}, values 0 ancl 1, and enabling relation given by the rules
0 ^L]\fat bo and {bj = 1} l~LNat b*+i, for / > 0. Thus, the cells are accessed in increasing order of
index. We denote the states as follows: SN(L) = {b z = 1 | I < N} and 5 n (0) = {b, = 1 | I < N) U
{ b n = 0} , for N > 0; and .$,u;(_L) = {b, = 1 | I > 0} . Thus (D (L N a t) , C) is isomorphic to the LAZY
NATURAL NUMBERS cpo, described for example in [Col89]. •

2 .2 P r o d u c t o f D C D S s

If c is a cell and I is a tag or label, we write C.I for the the labelled cell (C,I). This notation
extends to sets of cells and sets of events: for C C Cm and Y C Em, C.I — {C.I \ C 6 C} and
Y.I = {(C.I,V) | (C,V) £ Y}. In defining products we use the labels 1 and 2.

The product of MI and A/2, Mi x A/ 2, is the DCDS obtained by taking a "disjoint union"
of MI and A/2, in that cells are labelled by 1 or 2 to indicate where a cell, event 'or enabling
originated; C M I X M 2 = Ca/,.1 U Cm 2 .2. Y'm i Xm 2 - V M l U \ ; m 2 , E m i X m 2 = Em^I U Em 2-2, and for
1 = 1,2, Y.I \ - \ I I X M 2

 C-I iff U ^MR C -

Pairs of sets of events are obtained similarly: (~I, Z2) — Z\.\\JZ2-2. Projections are easily defined
to satisfy IST((ZI,Z2)) = 1̂ and snd({Z\ . Z2)) = c 2 . We use X, Y, etc. to denote pairs.

The product trivially preserves well foundedness and stability, and pairing and the projections
preserve functionality, safety and finiteness. P(M\ x A/ 2) = {(ZI,Z2) \ ZX £ jF(A/i) ,^ 2 € T(M2)},
and set inclusion on T(M\ x A/ 2) coincides with componentwise set inclusion.

E x a m p l e 2.2 Boo l x Bool has two initial cells, b . l and b.2, each of which may be filled with a
value of t t or f f . It has 9 states, one of which is {b . l = t t , b . 2 = f f } , alternatively denoted by
<{b = t t } , { b = ff}>.

2 .3 S t a b l e a n d S e q u e n t i a l F u n c t i o n s

We now define stability and sequentiality of functions from T)(M) to T)(M'). The definition of
sequentiality uses the cells of a concrete data structure in a manner similar to the use of OCCURRENCES
of a syntactic term in a syntactic definition of sequentiality [Plo77].

3 W h e n s u i t a b l e c o u n t a b i l i t y r e q u i r e m e n t s are i m p o s e d . S e e [K P 7 8] a n d [C u r 8 6 , s e c t i o n 2 . 2] f o r d e t a i l s .

3

A continuous function / : V(M) -+ V(M') is stable if for any x € V(M) and x1 6 V(M') below
f(x) there exists a least state M(f,x,x') 6 V(M) below x on which / at tains or surpasses x', i.e.,
for any z C x, a ' C /(2) iff A/(/,.x\.i-') C z.

A continuous function / : V(M) — 'D(M') is sequential at x £ V(M) if, for any c' € A (/ (x)) ,
one of the following holds:

(1) Either A(x) = 0, and thus x has no super-state 4 ;

(2) Or there exists some c 6 A(.r) that must be filled in any y that increases x such that c' is
filled in f(y), that i s -

3c € A(x) . Vy € V(M) . (x C y & cf € F (/ (y))) =• c € F(y).

In case (2), a cell c € A(ar) as described there is called a sequentiality index of / at x for c'.
f : V(M) -+ V(M') is sequential if it is continuous and it is sequential at every x £
A sequential function is stable. The converse, however, does not hold.

E x a m p l e 2.3 The doubly-strict-or function sor : Z>(Bool x B o o l) P (B o o l) is the least mono­
tone function satisfying:

sor(({b = t t } , { b = t t } » = {b = t t }
sor(({b = t t } , { b = «}» = {b = t t }
sor(({b = « } , { b = t t } » = (b = t t }
sor(({b = f f } , { b = «})) = {b = « }

sor is stable and sequential. Both b . 1 and b . 2 are sequentiality indices at 0 for b.
The left-strict-or function lov : P f B o o l x Boo l) X>(Bool) is the least monotone function

satisfying:

Ior(({b = t t } , 0)) = {b = t t }
/or(({b = f f } , { b = t t })) = {b = t t }
/or(({b = f f } , { b = f f })) = {b = f f } .

ior is stable and sequential, with b . 1 as sequentiality index at 0 for b.
The right-strict-or function ror : P (B o o l x Boo l) P (B o o l) is defined analogously, and has

b . 2 as sequentiality index at 0 for b.
The parallel-or function par : P (B o o l x Boo l) — P (B o o l) is the least monotone function

satisfying:

por({ 0 ,{b = t t })) = {b = t t }
por(({b = t t } , 0)) = {b = t t }
por(({b = f f } , { b = ff}>) = { b = f f } .

por is neither stable nor sequential — it has no sequentiality index at 0 for b; and there is no
unique minimal s tate of B o o l x B o o l below {{b = t t } , {b = t t }) for which por at tains {b = t t } .

4 T h e d e f i n i t i o n i n [C u r 8 6] u s e s (T) i n s t e a d :

(1 ') c i s n o t filled i n f(y) f o r a n y y a b o v e x. t h a t i s - Vy € V(M) . x C y =• c £ F(f(y)).
T h e o v e r a l l d e f i n i t i o n s (1 . 2) a n d (l \ 2) a r e e q u i v a l e n t , b u t w e p r e f e r t o u s e (1) , s i n c e i t i s d i s j o i n t f r o m (2) .

4

Let gf : P ((B o o l x Boo l) x Boo l) —> D(Boo l) be the least monotone function satisfying:

g f (« { b = t t } , { b = ff}>, 0)) = { b = t t }
gf(((0 ,{b = tt}>,{b = f f } » = {b = t t }
g f (« { b = f f } , 0 >,{b = t t } » = {b = t t }
g f (« { b = f f },{b = f f }>,{b = f f } » = {b = f f } .

This is a variant of "Gustave's function" (at tr ibuted to Berry [Ber78] by Huet [Hue86]); gf is
stable, but not sequential — it has no sequentially index at 0 for b.

Let min : D (L N a t x L N a t) — P (L N a t) be the least continuous function such that , for all
x.y G P (L N a t) ,

min((x , 0)) = 0,
min((0 , x)) = 0,
min((S(x),S(y))) = S(min(x.y)).

For all 771,77 > 0, m i i i ((S m (±) , S n U))) = Sk(L), and m i n « 5 m (0) , 5 n (0) » = S*(0), where k
is the minimum of m and n. In a fairly obvious sense min generalizes the parallel-or function by
iteration, and it computes the minimum of two numbers presented in unary form. The function
has no sequential ly index at (J L) for bo. In fact, for each 77 > 0 it has no sequentially index at
(5 n (X) , 5 n (±)) f o r b n .

The DCDSs and sequential functions form a category, but it is not cartesian closed, because
the collection of all sequential functions from a DCDS to another need not define a DCDS. The
same is true for DCDSs and stable functions, and for DCDSs and continuous functions.

2 .4 S e q u e n t i a l E x p o n e n t i a t i o n of D C D S s

The sequential exponentiation A/ — s e < l M' is the DCDS (C , V , E , h) defined as follows:

C = P f i n (M) x C A / / . We denote a cell (.x\c') £ C as xc'.

V = {valof c | c G C M } U { o u t p u t v' \ v € \\\r}-

E = {(xc\valof c) e C x V | c G A(.r)} U {(xc\output v') G C x V | [c\v') G EM'}>

[xc, valof c) h yc i f r y = x U {(c. r)} for some v G V,\/.

{(xjc'j,output v^)}l

j = [h xc' iff {(c'rv^)}l

j=i \-M> c' and x = U{.xv}- = 1 .

We call a s tate of A/ — s e 7 A/' a sequential algorithm.
For a G P (A / — s e q A/') and .r G P(A/), the sequential application of a to , T , denoted ' <jf?q x, I S

given by

a -seq x = {(c\v) | 3y C .r . (T / C ' , o u t p u t -t/) G a}.

A sequential algorithm between DCDSs may be viewed as a sequential function plus a computa­
tion strategy for tha.t function. The function is embodied in the algorithm's input-output behavior;
we say that a G "P(M —sfq A/') computes the input-output function A a; G V(M) . a -seq x. The
computation strategy is embodied in the choice of the sequentiality index to be computed.

Intuitively, when a sequential algorithm is executed, computation is demand driven. For in­
stance, an external observer's information about the result of applying an algorithm to an input
state may be gradually increased by filling the cells of the result s tate, with each demand for the
value of a result cell spawning a new computation. A cell of the exponentiation consists of a finite
state x, describing the information currently known about the input, and a request for computation
of a value for a cell c' in the output . The events of an algorithm associate with such a cell xc' a
command: either an o u t p u t v1 command that terminates the computation and determines that
(c 7, vl) is in the output , or a valof c command that a t tempts to increase the current input s tate x
at c. This c, naturally enough, is a. sequentiality index (of the algorithm's input-output function)
at x, so that the choice of c among all sequentiality indices at x (if not unique) determines the
computation strategy. If the sub-computation for c terminates with the value v, the main compu­
tation resumes with the enabled cell (x U {(e,v)})c\ and so on until a value is output for c'. The
sub-computation for c proceeds in the same manner: hence the overall coroutine-like flavor. Note
that if one of the sub-computations fails to terminate, so does the main computation.

Sequential exponentiation preserves well foundedness and stability, and sequential application
is well defined and continuous with respect to set inclusion. The category of DCDS and sequential
algorithms is cartesian closed.

l s o r e I>(Bool x B o o l — s e q Boo l)
{ 0b=valof b . l Ì

e.g., the events of a s tate .
There are two sequential algorithms that compute the doubly-strict-or function sor: l s o r ,

shown in figure 1, which evaluates the two sequentiality indices in left-right order; and r s o r (not
shown) which evaluates in right-left order, l o r in figure 1 is the unique sequential algorithm that
computes the left-strict-or function lor. There is a similar unique sequential algorithm ror for the
right-strict-or function ror. No sequential algorithm computes por. •

We have now summarized enough of Berry and Curien's work on sequentiality to establish a
coherent background from which to develop our ideas on parallelism.

Figure i: The sequential algorithms l s o r and l o r

E x a m p l e 2.4 To display sequential algorithms we use vertical stacking to list elements of sets

6

3 Para l le l A lgor i thms be tween D C D S s

W E W A N T T O B E A B L E T O E X P R E S S A L G O R I T H M S FOR N O N - S E Q U E N T I A L F U N C T I O N S , S U C H A S P O R , W H I L E R E T A I N I N G

AS FAR A S P O S S I B L E S U I T A B L E A N A L O G U E S T O T H E S E M A N T I C P R O P E R T I E S O F S E Q U E N T I A L A L G O R I T H M S .

S E Q U E N T I A L A L G O R I T H M S O P E R A T E S E Q U E N T I A L L Y B E C A U S E A V A L O F C O M M A N D M A Y O N L Y S T A R T O N E S U B -

C O M P U T A T I O N , A N D O N L Y A F T E R T H A T S U B - C O M P U T A T I O N R E T U R N S M A Y T H E M A I N C O M P U T A T I O N P R O C E E D . A

N A T U R A L FIRST S T E P T O W A R D S A G E N E R A L I Z A T I O N , T H E N , W O U L D B E T O A L L O W A V A L O F C O M M A N D T O S T A R T A N U M ­

B E R O F S U B - C O M P U T A T I O N S I N PARALLEL , A N D T O S P E C I F Y A N U M B E R O F C O N D I T I O N S , E A C H B A S E D O N T H E RESULTS

O F A FINITE S U B S E T O F T H E S E S U B - C O M P U T A T I O N S , U N D E R W H I C H T H E M A I N C O M P U T A T I O N M A Y B E R E S U M E D

(W I T H O U T W A I T I N G FOR T H E C O M P L E T I O N O F T H E R E M A I N I N G PARALLEL S U B - C O M P U T A T I O N S) . F O R E X A M P L E , A

P A R A L L E L - O R A L G O R I T H M S H O U L D , W H E N N O T H I N G I S Y E T K N O W N A B O U T I T S I N P U T , S T A R T S U B - C O M P U T A T I O N S

FOR T H E I N P U T CELLS B . L A N D B . 2 , A N D T H E M A I N C O M P U T A T I O N M A Y R E S U M E O N C E T H E I N F O R M A T I O N A B O U T

T H E I N P U T H A S B E E N I N C R E A S E D - T O E I T H E R O F { B . L = T T } , { B . 2 = T T } O R { B . L = F F , B . 2 = F F } . W E CALL

T H I S G E N E R A L I Z A T I O N O F T H E V A L O F A query C O M M A N D .

W E C A N R E P R E S E N T A Q U E R Y V A L U E q AS A SET O F FINITE F U N C T I O N A L SETS O F E V E N T S : E A C H E L E M E N T y O F q

R E P R E S E N T S A S U F F I C I E N T C O N D I T I O N FOR R E S U M P T I O N . A S T A T E x IS S A I D T O satisfy A Q U E R Y q IFF T H E R E E X I S T S

y £ q S U C H T H A T y C x . G I V E N T H I S I N T E R P R E T A T I O N I T IS N A T U R A L T O I D E N T I F Y q W I T H ITS U P W A R D S - C L O S U R E :

I F y 6 q A N D y C y' T H E N E V E R Y S T A T E S A T I S F Y I N G q B E C A U S E O F y' ALSO S A T I S F I E S q B E C A U S E O F y. M O R E O V E R ,

I F q\ A N D q2 A R E Q U E R I E S S U C H T H A T R/I D R/2, E V E R Y S T A T E S A T I S F Y I N G q2 WILL ALSO S A T I S F Y q\ \ I N T U I T I V E L Y , I T

M A Y R E Q U I R E LESS I N P U T I N F O R M A T I O N T O S A T I S F Y q\ T H A N T O S A T I S F Y q2. T H I S L E A D S U S T O M O D E L Q U E R I E S

AS M E M B E R S O F T H E S M Y T H P O W E R D O M A I N [S M Y 7 8] O V E R A P O S E T O F FINITE F U N C T I O N A L SETS O F E V E N T S

(O R D E R E D B Y I N C L U S I O N) . B E F O R E W E C O N T I N U E , W E S U M M A R I Z E S O M E R E L E V A N T D E T A I L S C O N C E R N I N G T H E

P O W E R D O M A I N .

D E F I N I T I O N 3 . 1 T H E S M Y T H P O W E R D O M A I N (VS(D), C) O F A P O S E T (J D , <) I S T H E SET O F ALL N O N - E M P T Y ,

U P W A R D S - C L O S E D S U B S E T S O F D. O R D E R E D B Y R E V E R S E SET I N C L U S I O N . T H A T I S , FOR ALL p C D , p £ VS{D) IFF

V A \ . R ' 6 D.(x € p k x < x' => x1 € p): A N D . FOR ALL p\.p2 6 VS(D), p\ C p2 IFF p\ 2 P2> •

A S U B S E T P O F A S M Y T H P O W E R D O M A I N IS C O N S I S T E N T (D E N O T E D FF P) IFF I T H A S A N O N - E M P T Y I N ­

T E R S E C T I O N , I N W H I C H C A S E T H E LEAST U P P E R B O U N D UP IS DP. W E W R I T E p\ FF p2 W H E N p\ A N D p2

A R E C O N S I S T E N T . T H E U N I O N O F A N O N - E M P T Y S U B S E T P O F A S M Y T H P O W E R D O M A I N IS ITS G I B I N T H E

P O W E R D O M A I N , HP = U P . T H E LEAST E L E M E N T O F T H E P O W E R D O M A I N IS T H E U N D E R L Y I N G SET D.

D E F I N I T I O N 3 . 2 A Q U E R Y q O V E R A D C D S M I S A N O N - T R I V I A L E L E M E N T O F T H E S M Y T H P O W E R D O M A I N

CPs(Ffin(M)),Q) O V E R T H E P O S E T (J F F I L L (A /) , C) . •

T H E N O N - T R I V I A L I T Y C O N D I T I O N IS I M P O S E D S I N C E A. Q U E R Y IS M E A N T T O R E P R E S E N T A N O N - T R I V I A L I N C R E ­

M E N T I N I N F O R M A T I O N . I T A M O U N T S T O R E Q U I R I N G T H A T 0 ^ q FOR A N Y Q U E R Y q. N O T E T H A T FOR ALL M ,

(^Rn(M)^C) I S A WELL F O U N D E D P O S E T . I T FOLLOWS T H A T E A C H Q U E R Y C A N B E I D E N T I F I E D W I T H ITS S E T O F

minimal E L E M E N T S , W H I C H W E M A Y CALL ITS branches. W E W R I T E T R I M (< 7) FOR T H E SET O F M I N I M A L E L E M E N T S

O F </, A N D U P (R /) FOR T H E U P W A R D S C L O S U R E O F q. F O R ALL Q U E R I E S q W E H A V E q = U P (T R I M (< /)) .

I N O R D E R T O E N S U R E T H A T O U R PARALLEL A L G O R I T H M S C O M P U T E D E T E R M I N I S T I C A L L Y , W E N E E D T O G U A R ­

A N T E E T H A T A N A L G O R I T H M I S S U E T H E S A M E O U T P U T C O M M A N D FOR A G I V E N O U T P U T CELL W H E N E V E R I T I S

A P P L I E D T O C O N S I S T E N T I N P U T S T A T E S . F O R I N S T A N C E , T H E P A R A L L E L - O R A L G O R I T H M A S S O C I A T E S T H E S A M E

C O M M A N D O U T P U T T T W I T H B O T H O F T H E I N P U T S T A T E S { B . L = T T } , A N D { B . 2 = T T } , A N D T H E RESULT

I S T H E R E F O R E U N A M B I G U O U S W H E N T H E A L G O R I T H M IS A P P L I E D T O I N P U T { B . L = T T , B . 2 = T T } . W E E N ­

FORCE D E T E R M I N I S M B Y U S I N G sets O F S T A T E S R A T H E R T H A N S I N G L E S T A T E S T O A P P R O X I M A T E T H E I N P U T , *

A N D B Y E N S U R I N G T H A T C O N S I S T E N T S T A L E S A R E G R O U P E D T O G E T H E R . F O R I N S T A N C E , T H E SET O F S T A T E S

{{b. l = t t } , { b . 2 = t t } , { b . l = f f . b . 2 = f f } } should be partitioned into {{b. l = t t } , { b . 2 = t t } }
and { {b . l = f f , b . 2 = f f } } .

More generally, the considerations that led us to use the Smyth powerdomain for queries lead us
to use the Smyth powerdomain again, this time over the poset of finite states ordered by inclusion;
and we give the following definition.

Definit ion 3.3 Given a DCDS M and subset p of 2?fi n(M), define a relation of equivalence over
p as follows: for all y, yf £ p, y « y' iff there is a finite sequence of states in p that includes both
y and y' such that each pair of consecutive states is consistent in (Vftn(M),C). Write p/^ for the
set of equivalence classes of p.

A class over Ad is an element p of Vs(Vf[n(M)) such that p / ~ = {p}. •

Clearly « partitions any p 6 Ps('Dru\(M)) into classes with the property that states in distinct
classes are inconsistent, as needed in order to guarantee determinism. Moreover, it produces the
finest partitioning with this property, so that expressivity is not lost.

Whereas a sequential algorithm associated a. command with cells of the form xc', a parallel
algorithm will associate commands with cells of form pc, where p is a class. Intuitively, the elements
of a class are states that an algorithm is forced, by determinism, to treat the same.

Up to this point it might seem that we are going to build the DCDS M —• A/' by using classes
of M instead of single states and by replacing valof commands by queries over M. Indeed, such a
simple generalization would be adequate for defining a parallel-or algorithm of type B o o l x B o o l —*
Bool . However, this example is not general enough. Consider, for instance, the curried type
B o o l —> (Bool -+ Boo l) . Our determinism requirement would prevent any non-strict algorithm
of this type from having both strict and non-strict results 5 . But a curried parallel-or algorithm
should produce a strict result when applied to the empty input state, and a non-strict result when
applied to {b = t t } , and therefore cannot be expressed using the framework described so far.

To permit a more general treatment we let algorithms issue queries that involve not only their
immediate input s tate , but also the successive (or residual) arguments to which the algorithm may
be applied. For the curried parallel-or example, an input of 0 with a residual {b = t t } or an input
of {b = t t } with a residual 0 both lead to a ground result {b = t t } , once fully applied, while an
input {b = f f } with a residual {b = f f } is inconsistent with both previous alternatives, and leads
to a ground result of {b = f f } .

While this structuring idea does permit us to express curried algorithms, it could be argued
that our solution is somewhat ad hoc. Indeed, as a result of this structure currying and uncurrying
operations are "built in" and become simple operations on the internal structure of algorithms. We
will return briefly at the end of the paper to the advantages and disadvantages of this approach.

We formalize these ideas by associating to each DCDS name M a representation DCDS rep(M)
and a base DCDS base(A/). We assume that DCDS names are built from a given collection of
atomic DCDSs that contains at least Null , using the binary operators x (product) and —• (arrow).
We blur the distinction between a DCDS name and the DCDS it is intended to denote. We assume
that atomic DCDSs mentioned earlier and the product of DCDSs are interpreted as given above.

Definit ion 3.4 A DCDS name is basic iff its outermost constructor is not
If M is basic let rep (A/) = Nul l and base(A/) = A/.

5 T h e s a m e o u t p u t c o m m a n d t h a t i s a s s o c i a t e d w i t h t h e e m p t y i n p u t s t a t e w o u l d n e e d t o b e a s s o c i a t e d

o t h e r p o s s i b l e i n p u t s t a t e s .

X

For M -> M', let

rep(M - A/') = A/ x rep(A/')
base(M — M') = ba.se(A/ /).

We let both x and —» associate to the right so as to correspond to the argument structure of an
algorithm; for instance, if A/ 0 is basic, the DCDS Mk -» • • • -* Mi M0 has Mk x • • • x Afi x Nul l
for its representation and MQ for its base. Note that base(A//) is always basic.

The classes used in constructing M —• M1 will be sets of finite states of M x rep(M') ; the M
component embodies an approximation of the input, and the rep(M') component, or residual, will
"make sense" in building a result of type M'. The cells of M — M' will be formed by pairing
such classes with cells of base(A/ /). which represent the demands for computation of a result at
base type. Similarly, the queries used in building algorithms of type M —* M1 will be sets of finite
functional sets of events of M x rep(A/').

Now that we use a representation, our query command generalizes both the valof and the output
commands of the sequential exponentiation; operationally, a query only starts sub-computations
for cells of the input type M; and the residuals may contribute to query events in the output
algorithm. Again this is illustrated by the curried parallel-or algorithm. Its query may, obviously,
only start one sub-computation, corresponding to the single cell of its argument; when the algorithm
is applied to the input state 0. the corresponding residual {b = t t } will become (part of) a query
of the result algorithm.

We extend the notions of a cell being filled, enabled and accessible in a natural way.

Definit ion 3.5 For q G VS(T(M)), a cell is filled in q iff it is filled in any of ry's branches; F(q) =
U 2 / € t r j m (9)F (2 /) . A cell is enabled in q iff it is enabled in all of r/'s branches; E(q) = ^y£tr\m(q)F(y).
A cell is accessible in q iff it is enabled in q and not filled in q; A(q) = E(q) \ F(q). Equivalently, a
cell is accessible in q Iff it is accessible in all of q's branches; A(q) = ^y£tv[m(q)A{y). •

Definit ion 3.6 Let M and M' be DCDSs. Then M — M' is the DCDS (C , V , E , h) defined as
follows. Let Mx abbreviate rep(A/ — Mf) and let A/ 0 abbreviate base(A/ — A / ') .

C = Vs{Vfin{Mx)) x (\\/0. We denote a cell (p,c) of C as pc.

V = {query q \ q G ' P , (^ f m (Mx)) fc 0 $ q) U {output v | v G V M o }

E = {(pc.query q) G C x V | F(q) C A{p)} U {(/ ;c ,output v) G C x V | (c,v) G E M o }

(pic, query q) h /;c iff G U

{ (/ W , o u t p u t ^) } ; = 1 I- pc iff' {(Cj.vj)}1^ h M o c , i r { / ^ } ; = 1 a n d p e (U { P j } J . = 1) / „ .

We call a state of M — M' a parallel algorithm* or just an algorithm. •

Note that an initial cell of A/ — \I* is of the form up({0})c, with c an initial cell of A/ 0 . Note
also that the construction guarantees that for each cell pc enabled in an algorithm p is indeed a
class.

There are several obvious points that show how we have generalized the sequential definition. It
is straightforward to define an embedding of sequential algorithms into the parallel algorithms that
preserves operational behavior, producing a parallel algorithm that issues queries about a single

9

por = <

por € P (B o o l x B o o l -* Boo l)

[(0,0)] b=query

[{{ b = t t } • 0)]

[(0 •{ b = t t })]

[({ b = f f } •{ b = f f })]

[({ b = t t } . 0)1

[(0 , | b = t t })]
[({ b = f f } ,{ b = f f

to=output f f

Figure 2: The algorithm por for por

cell at a time. A sequential valof c command corresponds to a query whose branches are of the
form {(c,v)} (with an empty residual). The condition that a query q command can only be issued
from cell pco if F(q) C A(p) corresponds to the requirement that a valof c command can only be
issued from cell xc' if c 6 A(.r).

E x a m p l e 3.7 In addition to the notation used for sequential algorithms, for parallel algorithms
we use the following conventions. Classes and queries are framed in boxes, and we list only their
minimal elements - branches. The branches themselves are enclosed in square brackets, using a
shorthand notation for pairs: 0 £ 'P(Null) is denoted as [], and (yo, [t / i , . . . , yd]) is denoted as
[z /o ,2 / i , . . . ,^] for d > 0.

The unique algorithm for the parallel-or function is presented as por in Figure 2.

l o r = <

l o r e P (B o o l x B o o l — Bool)

[(0.0)] b=query
[((b = t t j,0>]

[({ b = f f j,0>]

[(| b = t t },0)] b = o u t p u t t t

[({ b = f f },0>] b= =query
[(0,1 b = t t)]

ml b = « }>]

[({ b = f f } .{ b = t t })] b = o u t p u t t t

[({ b = M } •{ b = « })] b = o u t p u t f f

Figure :$: The algorithm l o r for lor

The (parallel) algorithms corresponding to the sequential algorithms l o r and l s o r from Figure 1
are shown in Figures 3 and 5. A second algorithm p lor , for the function /or, presented in Figure 4,
initiates computations for both input cells together. These three algorithms have corresponding

10

plor e P (B o o l x Boo l — Bool)

p = q u e r y

p lor = {
[({ b = « },0>]

[<{ b = j b = t t })]

b = f f })]

|b=output t t

>utput t t

Figure 4: The algorithm p lor for lor

l s o r = <

l s o r e P (B o o l x Boo l — Bool)

[(0,0

) = t t j .

[({ b = t t } . { b = t t }

b = t t } . { b = f f I

b = f f } . { b = t t }

[{{ b = f f } . { b = f f }

p = q u e r y

p = q u e r y

b = o u t p u t t t

b = o u t p u t t t

p = q u e r y

b = o u t p u t t t

b = o u t p u t f f

•'igure o: The algorithm l s o r for sor

11

psor e P (B o o l x B o o l —r Boo l)

[(0,0)] to=query

[<{ b = t t } { b = t t })] b

[({ b = t t } •{ b = « })] b

[({ b = f f } .{ b = t t })] b

[({ b = f f } •{ b = f f })] b

p = o u t p u t t t

Figure 6: The algorithm psor for sor

p l s o r = <

p l s o r e P (B o o l x B o o l — Bool)

[(0,0)] fo=query

[({ b = t t },0)] b=query

b = t t 1 { b = t t })] b

b = t t 1 •{ b = f f })] b

l({ b = f f } .{ b = t t })] b

b = f f } •{ b = f f }>] b

b = t t

b = f f

b = f f

0>]
b = t t J>]

b = f f })]

0,1 b = t t J)]

0,{ b = f f)>]

Fig;nre 7: The algorithm p l s o r for sor

12

plsor ' = <

p l sor ' e P (B o o l x Boo l -* Bool)

to=query

[({ b = f f },0)] b=query

[({ b = f f J, 0)]

[<i b = t t | , | b = t t J)]

[<{ b = t t } , { b = f f }>]

[<0,j b = t t J)]

[<0,{ b = f f })]

b = t t }•{ b = t t b = o u t p u t t t

b = t t }•{ b = f f b=output t t

b = f f }•{ b = t t b=output t t

b = f f }•{ b = f f b=output f f

Fig u re S: The algoi •ithm p l sor ' for

right-handed versions: ror. r sor and pror. respectively (not shown).
For the doubly-strict-or function sor, there are several algorithms which employ a parallel

computation strategy, initiating computations for both input cells together. Figure 6 presents the
algorithm psor, in an obvious sense the ''most eager" algorithm for sor; additional algorithms
for sor that compute in parallel are p l s o r and p l sor 7 , presented in figures 7 and 8, and the
corresponding right-handed versions prsor and prsor' (not shown). •

E x a m p l e 3.8 Figure 9 presents an algorithm gf for the function gf. Note that every class of gf

function gP : P ((B o o l x Boo l) x Bool) -- P (B o o l) ,
satisfying:

{b - t t } , { b = f f }) . 0)) = {b = t t }
&(((0 .{b = t t }) . { b = « } » = {b = t t }
gf'((({b = f f } . 0)-{b = « })) = {b = t t }
g f ' (« { b = f f } . { b = t t }) . 0)) = {b = t t }
g f (« 0 .{b = f f }) . {b = t t } }) = {b = t t }
s H « { b = t t } . 0).{b = f f } » = {b = t t }
g/'((({b = f f } , { b = f f }) . {b = f f } » = {b = f f } .

Like gf, gP has no sequentialitv index at 0. In contrast to gf, gP is also not stable — there
is no unique minimal state below (({b = t t } , {b = f f }) , = f f }) for which gP at tains {b = t t } ;
correspondingly, not all classes of gf ' have a least element. •

E x a m p l e 3.9 Figure 11 presents the identity algorithm on the DCDS N a t . Note that this involves
a query containing an infinite number of (mutually inconsistent) branches, and an infinite number
of output events. •

13

gf 6 P ((B o o l x Boo l) x B o o l -<• Boo l)

[«0-0>-0>] p = q u e r y

[{({ b = t t } , | b = f f J) , 0)]

[{(0 ,{ b = t t }) , | b = f f j>]

[« / b = f f J, 0) , | b = t t)]

[(({ b = f f } , { b = f f }) , { b = f f }>]

[{({ b = t t } , { b = f f }).0)]

[«0 , { b = t t }>,{ b = f f })]

[(({ b = f f }.0).{ b = t t })]

[{{{ b = f f } , { b = f f }) . { b = f f })]

p = o u t p u t t t

Figure 9: The algorithm gf for gf

E x a m p l e 3.10 The parallel algorithm min G Z>(LNat x LNat — L N a t) for computing the
function min on pairs of lazy natural numbers is given in Figure 12.

3.1 Elementary Properties of M —> A/'
We now prove some simple properties of A / — il/' leading to the proof that M A / ' is well
defined: whenever M and Mf are DCDSs so is A/ — A/ ; .

Propos i t ion 3.11 If y \-\j-.\j> i)\c. y p2c and px ft p2, then pi = p2.

Proof: Intersecting equivalence classes are equal. •

Propos i t ion 3.12 If [pc. query q) h ; V /_ : \ / ' p'c t , l c n P C p' and for every x' G p' there exists x G p

such that x C xf.

Proof: If x' G ; / then x' G p U q. For some x G trim(/>) and y G trim(ry), x U y C x'. Since y ^ 0
and F(i/) Ç A (. T) , it follows that x C x 7. •

Propos i t ion 3.13 M — M' is a well founded CDS.

Proof: Define the relation <^CV /__W, omv P f i n (A / X) x C<Y/ 0 as follows:

xc ^ M — M ' X'C' l f I either (x Ç x' k c < A / o

It is easy to establish t he following implications:

c') or (x C x' k c = c').

g f e P ((Boo l x Boo l) x B o o l — Boo l)

[«0.0).0>] p = q u e r y

[(({ b = f f } , { b = f f

p = o u t p u t t t

b = f f })] b = o u t p u t f f

>>]

• >]

• >]

FIGURE 10: THE ALGORITHM gf' FOR gf1

I D N A T e P (N a t — N a t)

I D N AT — [0T^i=query U , 6 l N [{ n=k }] }

U < U A - E I N [{ n=A: }] p = o u t p u t k

FIGURE 1 1 : THE IDENTITY ALGORITHM ON N a t

mm, = <

min € P (L N a t x LNat -» LNat)

min = U'/L0min t-, where, for each I > 0,

i<{ b 2 =0 } . 0>]

{(S'(±).S'(L))} b,=query [<0 ,{ b t = 0 }>]

b,- = l } ,{ b> = l }>]

[(5'(0).5*"(±)>]
[^ (l l ^ ' f O))]

[(5 , , + 1 (-L) .5 '" + 1 (±)>]

b; = OLLTPUT 0

b 2 = o u t p u t 1

Figure 12: The min algorithm

(1) If <C,y/0 has an infinite descending chain, then so does <CA/_^A//. This is because if
C < M q C' then up({0})c « ; W _ A / , up({0})c'.

(2) If <C ,V/_A / / has an infinite descending chain, then so does < ^ V / - * A / ' * This is because,
when PC < C M _ A / / P'C'. for each .i*' G y/ there exists X G such that ^ C A / / ^ y V / / # 'c '
(using proposition 3.12).

(3) If ^ A / — A / ' has an infinite descending chain, then so does <^LM . This follows from the
finiteness of the states involved.

By these implications, well foundedness of any CDS coincides with well foundedness of its
base, and hence A/ — M' is well founded iff A/' is. •

We now prove the Tree Lemma, a technical result corresponding to an analogous lemma proven
by Berry and Curien for sequential algorithms. Our proof is similar to theirs. This lemma is
the basis for a tree-like notation for algorithms and is useful in reasoning about the structure of
algorithms. As an added benefit, the tree lemma establishes stability of M —- A/'.

L e m m a 3.14 (Tree L e m m a) LET A BE A STATE OF M — A/'.

(1) IF PC,P'C € E(A) AND P ft y/ THEN:

(LA) EITHER PC P'C. OR P'C <* PC.

(LB) AND IF [PC, o u t p u t /;),(y/c. o u t p u t V') € A THEN P = y/ (AND V = V').

(2) EVERY CELL PC £ E(A) LIAS A UNIQUE ENABLING IN A.

Proof: By induction on C in < v / o > where we take MQ = b a s e (M —* A/ ') .

Let PC,P'C € E(a) , such that P ft / / . Let /) = P U y/. Examine the last few enablings in A

leading to PC (respectively y/c), starting with the last output enabling. There must be such
an output enabling, by well foundedness of A/ — A/'. Let us name the constituents of these
enablings as follows:

output "./•)};= i h " (Y ^ . query QX) HTT • • • Va {PK-\C,query QK) H A PKC = PC

16

{ (r ^ - , o u t p u t ^)} /
/ = L H A (p 0 c , query q[) H A • • • H A (p ^ c , q u e r y ry£,) H A p ^ c = pc.

Assume that k < k'. We show by induction on m that , for all m < k, pm = p'm.

— For the base case, we show that po = p'0.
Let x = {(d,v) | d < c | / o c fc 3r . (rr/, o u t p u t v) G a & r C /)}. Clearly, x is a set of
events of A/ 0 . We show that ;i- G X>(A/0):

Safety: If (d, v) € a; then rr/ G F(a) for some r • p. Let { (^c^ , o u t p u t w/)}™-! ^ a r'd,
with r ' C r. Such an enabling exists, because vd has a proof in a, and that proof
must have a last output enabling. Therefore { (CJ , Wj)}J=l d.

Functionality: If (d*v)*(dw>f) G a: then (rd,output TJ) , (r ' c / ,output v') G a for some
i\r' C /3, so that , by induction hypothesis (l b) , r = r ' , and i> = v'.

The state .r contains both {(</;, ^) } J = 1 and { (/ / J , ^) } / _ 1 , two enablings of c, which must
be equal by stability of A/ 0; so / = and, without loss of generality, Vj < I . dj = d'j.
Now, for any j < L dl — d,

j <C*/0 c, and rj ft r^, and by induction hypothesis (lb) we
have rj — r'j. Consequently, by proposition 3.11, po = p'0.

- For the inductive step, assuming 77?, + 1 < A; and pm = ; / m , we get qm+\ = q'm+i by
functionality. It follows by proposition 3.11 that p m + i = p ' m +i-

From the above, it follows that (assuming k < kr) pk = p'/,, so yjc <C^ p'c, and there exists a
query chain in a from pc to p'c (of length A:' - k > 0). If A:' < A:, we can similarly show that
p'c <C* pc. Therefore (l a) holds.

Assume that (pc ,output r) . (p 'c .output c') G a. If A; < k' then (pc, query) G a,
contradicting functionality. So / / < A;. By symmetry, A; < k'\ thus A: = k' and p — p ' , and
(l b) holds.

Finally, to show uniqueness of the enabling for pc, take p = p' in the above argument for (l a)
and suppose there are two enablings for pc in a. Since <C is well founded, we must get k = k\
and the argument shows that the enablings are equal. •

Corollary 3.15 A/ — M' is a DCDS.

3 .2 C u r r y i n g

Currying and uncurrying operators on algorithms are easy to define, given our use of rep in struc­
turing the components from which an algorithm is built. Recall that

rep(A/x X A/ 2 — A / ') = (\IX X A/ 2) x r e p (A Z ') ,

rep(A/i A/-2 — A / ') = My X (A/ 2 X rep(A/ /)) .

Definit ion 3.16 Define the map curry : /"(repfA-A X A/2 — A/')) — jF(rep(A/i — A/ 2 — A/')) by

curry(((; (/ ! , 7/2) , </')) = . (// 2 . / /)) .

This function extends to queries, cells, commands, and algorithms as follows:

curry(ry) = {curry(/y) I y G R/}. curry(pc) = ciirry(p)c,

curry(query q) = query curry (RY). curry (output v) = o u t p u t t \

curry(a) = {(curry(p)c.curry(u)) \ (pea) G a} .

The uncurrying function may B E defined similarly. •

17

Propos i t i on 3.17 The map curry : V(MX x M2 — M') — V{MX M2 — M') is an isomorphism
and preserves enablings.

Proof: Straightforward. •

cpor £ P (B o o l — B o o l — Bool)

cpor = <

[0,0] b=query

[{ b = t t } . 0]

[0 .{ b = t t }]

[{ b = f f } . { b = f f }]

b = o u t p u t t t

b = o u t p u t f f

Figure 13: The curried parallel-or algorithm, cpor = curry(por)

E x a m p l e 3 .18 Figure 13 presents cpor = curry(por), the curried version of por. Figure 14
presents the fully curried version of gf'. •

Note that currying the parallel-or function por to cpor reduces parallelism, in an informal sense,
shown by a comparison of the por and cpor algorithms, por 's query initiates two parallel sub-
computations, while cpor\s query initiates a single sub-computation. Even though cpor does not
compute in parallel, the cpor function is not sequential (as defined in section 2.3) since it is not even
monotone with respect to set inclusion - contrast cpor{^) and cpor({b = t t }) . This observation is
a premonition of problems we will encounter with application.

4 A p p l i c a t i o n

Recall that for a sequential algorithm a of M — s a i M' and a state x of A/, Berry and Curien
defined the application of a to ./• by

a -seq x = {{c'.v') | 3y C . (yc\ ou tput */) £ a } .

One might read this as saying that the events (c',vf) of a ' s e q x are obtained by "projection"
from output events {yc\output //) of a whose state component y is below x, and thus may be an
accurate partial description of the input x.

Consider the application of a parallel algorithm a £ V(M A/') to x £ P (M) , producing a
result which we will write as a • x. Intuitively, there ought to be an operational correspondence
between the events of a and the events of a • .i\ in the rough sense that for each event (pc,u) £ a
there are some events of a which are responsible for a-x exhibiting the same behavior that {pc,u)
entails when the argument to a is known to be .r. Given our use of residuals in constructing the
events of A/ — A/', p is a set of finite states of M x rep(A/') and each query q in a is a set of finite

cgf' =

c g f G P (B o o l -> B o o l Boo l — Boo l)

p = q u e r y

p = o u t p u t t t

[{ b = f f } , { b = f f } . { b = f f }] b=output f f

FIGURE 14 : THE CURRIED ALGORITHM FOR G F , cgf' = CURRY(CURRY(gf'))

19

functional sets of events of M x rep(A/'). By analogy with the sequential case, given a class p and
an input state x we will be interested in the set of residuals derived from elements of p whose input
component approximates x; and similarly for a query q. We therefore define a projection operator
7rx on queries (and classes) as follows.

Definit ion 4.1 For x € 2?(M), and q 6 P s (j F f i n (r e p (M — M'))) , define

*x{q) = {ffl 3» C ar . {y,y) € (/}.

7 T ; r (^) is either empty, or in P s (j F f m (r e p (M '))) . •

An event (pc, u) of a for which xx(p) = 0 is irrelevant when a is applied to input s tate x, because
x is not approximated by any element of p. Even when 7rx(p) is not empty it need not be a single
equivalence class of states: the residuals obtained from equivalent but inconsistent states of p need
not remain equivalent in irx(p). When this happens we must split nx(p) into its equivalence classes;
in this way, a single cell of a may project onto more than one cell of a • x.

Now consider a query event (pc .query q) of a, and suppose that 7T x (p) is not empty. There
are three possibilities: either Kx(q) is itself a query over rep(M') ; or irx(q) contains the empty
set; or else 7rx(q) is the empty set. If irx(q) is a proper query, then we should obtain an event
(p'c, query irx(q)) in a • x for each equivalence class p ' of nx(p). If 0 € Xx(q)i then when applying
a to x the query q is satisfied by the input state alone, and no further query needs to be issued
concerning the residual arguments. However, some events following pc in a may contribute events
to a - x. Such a query is said to be fully satisfied by application of a to x. Finally, if Tx(q) = 0 then
when a is applied to x the computation can progress up to a point where the query q is issued,
but cannot go further because q cannot be satisfied; there should therefore be no events in a • x
corresponding to (pc,query q) or any event following it in a.

Similarly, an output event (pc ,output v) of a projects iff irx(p) is not empty, in which case we
obtain an event (p'c, o u t p u t v) of a • x for each equivalence class p1 of nx(p).

We therefore extend irx to a (partial) map from VX/—M' to VJ^I as follows, and give a formal
definition of application that makes these ideas precise:

TTX(query q) = query 7rx(q) and irx(output v) = o u t p u t v.

Definit ion 4.2 Let a £ P(M — A/') and x 6 'D(M). The application of a to x is defined by 6

a -x = {(p'c,irx(u)) € E A / / | 3(pc.u) € a . / / G 7r^(p) / % }.

The requirement that events of a -x belong to E M / filters out empty projections and trivial queries.
We remark that when the Berry-Curien algorithms are embedded in the parallel framework,

a valof command is either not projected by an application, or else it is fully satisfied, since all
residuals are vacuous. Correspondingly, the sequential application need only project the output
events.

6 W h e n M' i s b a s i c , t h i s d e f i n i t i o n o f a • x p r o d u c e s n o t a s t a t e o f M' b u t a d e g e n e r a t e " n u l l a r y a l g o r i t h m " b u i l t

f r o m r e p N u l l a n d b a s e A / ' . I t s e v e n t s a r e o f t h e f o r m ({ 0 } c , o u t p u t v) , w i t h (c,v) a n e v e n t o f M \ s i n c e t h e r e a r e n o

l e g a l q u e r i e s o v e r N u l l . S u c h n u l l a r y a l g o r i t h m s a r e i s o m o r p h i c t o s t a t e s o f M' b y r e p l a c i n g e a c h ({ 0 } c , o u t p u t v)

b y (c,v); w e w i l l o m i t e x p l i c i t m e n t i o n o f t h i s i s o m o r p h i s m in t h e d e f i n i t i o n o f a p p l i c a t i o n a n d r e l a t e d d e v e l o p m e n t

f o r s i m p l i c i t y o f p r e s e n t a t i o n .

20

E x a m p l e 4.3 Consider the application of the curried parallel-or algorithm cpor to {b = f f } . The
result is the identity algorithm on Bool . There is a clear one-to-one correspondence between the
events of cpor and cpor • {b = f f } : each event of cpor projects onto a unique event of cpor •
Ib = f f) .

cpor • I b = f f | =

[0] p = q u e r y

[{ b = t t j] b=output t t

[{ b=f f }] b=output f f

E x a m p l e 4.4 Consider the application of cpor to 0. The resulting algorithm does not have (or
need) an event with an ou tput f f command, because projection of the o u t p u t f f event of cpor
does not produce a valid class or event.

cpor •
[0] b=query [{ b = t t }]

[{ b = t t }] b=output t t

E x a m p l e 4.5 The query of cpor is fully satisfied when cpor is applied to {b = t t } , and the result
is a non-strict constant algorithm.

cpor • I b = t t } = | [0] b = o u t p u t t t

E x a m p l e 4.6 Splitting occurs when we apply the algorithm c g f (figure 14) to 0.

cgf' - 0 = 4

[0.0] b = q u e r y

[{ b = t t j . j b = f f }] b = o u t p u t t t

[{ b = f f | , | b = t t j] b=output t t

4 .1 E l e m e n t a r y P r o p e r t i e s of A p p l i c a t i o n

We now show that application is well defined. We begin by introducing two maps r o o t a ^ and
s o u r c e ^ to make precise the correspondence between events of a • x and a. These maps are not
generally surjective, since some events fail to project. They are also not injective, because of
possible splitting.

2 1

Definit ion 4.7 For a G V(M — M') and x G 2?(M), define r o o t a , x : F(a • x) — F(a) and
s o u r c e ^ : F(a • x) F(a) by:

i 'oot a ^(; /c) = p 0 c where p0 = П{р \ pc G E(a) & p' G 7 Г г (р) / » } ,

source a v Z 7(y/c) = iff 3w . (p i cw) G a f e (у/с, тг г(м)) G a • x к p' G 7r r (p i) / « .

Propos i t i on 4.8 r o o t a , x r/nc/ source^ , are we// defined. Moreover, for any p'c G F(a • x),

fi^i roo t a ^(p 'c) < * source a a . (y/c) . and

(2) For any pc G E(a) , у/ G тгАр)1ъ iff Toota,x(p'c) <* pc < * s o u r c e ^ y/c).

Proof: Let (y/c,u') G a • x, С = {pc G E(a) | p' G т г ^ р) / » } , P = {p | pc G'C} and p 0 = ПР; С is
non-empty, by definition of application.
All classes in P are consistent, so that , by the tree lemma, the cells in С form a <C-chain.
By well foundedness of <C. С has <-minimal element, and that must be pqc roo t a v r (p ' c) is
uniquely determined to be рос. Moreover, рос is clearly filled, so that r o o t a v r is well defined.

By definition of application, there exists some (p\c,u) G a such that p' G ftx(Pi)/& and
и' = 7гх(и); obviously, pic G С. Assume that there exists pc G С such that p\c <C pc, i.e.,
such that и = query q and (p ic .query </) h a pc. But since p' G пх(р)/ъ, this necessarily
implies 0 G л\г(<у), a contradiction. It follows that p\c must be <C-maximal in С. source a ? J 7 (p / c)
is uniquely determined to be p[C so that source a ? x- is well defined.

Moreover, we have shown that root a . r (y/c) and source a i X (p 'c) are <C-minimal and <C-maximal,
respectively, in C, and С С {pc G E(a) | r o o t ^ Q / c) < * pc < * s o u r c e ^ p ' c) } . The converse
inclusion follows from monotonicity of projection. •

Propos i t i on 4.9 For a G V(M — M'') and x G V(M), a • x is a state of A/'.

Proof: Clearly, a • x С Ед/'.
To show functionality of a • x, note that , for (y/c, u') G a • x, w' is uniquely determined to be
жх(и) where (source f l i J.(y/c), a) G a.

We now show that a • x is safe. Let y/c G F(a • x) . pc = root a 4 t r (y/c) and {{pjCj,Uj)}lj=l \-a yjc.

For every j < /, y^ С ул and by monotonicity of projection, ftx(Pj) E т М р К
 s o there must

exist a unique p'j G ^x(Pj)/'^ s n c n that р§- С у/.

If pc has an output enabling, i.e., each u3 has form o u t p u t v¿, then p G (U { p j } ^ = 1) / « , and
it must be that у/ G (U{yj /

/ }^_ 1) /- . so that {(p^-Cj,output tfj)}j=1 ^axp'c.
If pc has a query enabling then / = 1, u\ = query ry for some a, and (pic, query q) h a pc, i.e.,
p G (pi U </)/«. Clearly, 7Гг(гу) ^ 0 . and further, by <-minimal i ty of roo t a , x (p ' c) , p\ ф у/ so
that 0 ^ ^ (r /) , and (p\c. query 7гл.(г/)) G a -x . It is easy to show that (p[c, query wx(q)) ha.x

y/c, i.e., that у/ G (p\ U тг г (г /)) / % . -

Now that a • x has been shown to be a state, we extend root a v 2 7 : F(a • x) —• F(a) to roo t a i > r :
E (a - x) —- E(r¿), using the same definition given above, and complement proposition 4.8 as follows:

Corol lary 4.10 root a yX : E{a • x) — E(a) -is tve 1.1 defined. Moreover, for any p'c G E(a • x) ,

y' ^ a - x p'c iff source a .j.(i/') h , root a > x (y /c) ,

w/iere s o u r c e ^ / /) = {(source f,.. r(//c), </.) G a \ (р'с,жх(и)) G t / '} .

22

5.1 The Intensional Strictness Order
Definit ion 5.2 The intensional strictness pre-order < l

M on V{M) is defined by induction on M
as follows.

For an atomic DCDS M let < ' v / be set inclusion.
For a product Mi x M 2 let <\IlX\j0 be defined componentwise: (xi,x2) <m1XM2 (x í ' X 2) ^

Xl < A / I x l A N D X*2 <M2

 x2'
For an arrow type M — M1 and x,.r ' G P (M — M') , let a; < l

M ^ M , X1 iff there exists a function
/ : E(ar) —* E(xf) such that the following hold:

(1) If f(pc) = p V then c = c' and / / C p.

(2) If (P C , o u t p u t v) G x then (/ (pc) ,output y) G x'.

(3) If { (P J C J , o u t p u t Y J) } Y = i h j ' / ; E T H E N { (/ (P J C J) , o u t p u t ^) } ' = 1 r - x / / (pc) . Note that , by
taking / = 0, / must map initial cells into initial cells.

(4) If (pc ,query q) G .r then one of the following holds:

(WKN) There exists qf C q such that (/ (pc) ,query q') G a:;, and if (pc ,query q) h x ;^c then
(/ (pc) ,query qf) \-x> / (p i c) .

In such a case we say that / weakens (pc ,query q).

(ABS) If (p c q u e r y q) h r Pic then f(p\c) = / (pc) .
In such a case we say that / abstracts (pc ,query q).

We call such an / a inorpliisin. We say that x <l xf by / in cases where we need to mention the
morphism explicitly. We will often drop the subscript M from < l

M . •

In other words, a morphism / preserves basic cells, output commands and output enablings,
and may either weaken a query or abstract it. Roughly speaking, if x <l x' then x' is less strict
than x in the sense that it may require less information about the inputs, and may ask for it at an
earlier point of the computation, in order to produce at least the same outputs as x.

E x a m p l e 5.3 Note that our previous counter-examples to monotonicity (example 5.1) become
examples of algorithms related by < ' . since cpor-0 <' cpor-{b = f f } and cpor-0 <l cpor-{b = t t } .
We also have gf < l gf'. by weakening. •

E x a m p l e 5.4 We further illustrate < ' by relating the algorithms introduced in example 3.7. These
algorithms differ in strictness of the computed function, and in their computation strategies. We
have psor < l p l o r < l por by weakening, and p l s o r < 2 p l o r by abstraction; p l sor ' < l l o r by
weakening; and on the sequential algorithms we have l s o r l o r by abstraction. The remaining
relationships may be inferred by left-right symmetry and transitivity. Figure 15 summarizes the
relationships between these algorithms. Note that the algorithms for sor are pairwise incomparable,
and the two algorithms for lor are incomparable.

In each of these simple examples a suitable morphism is easy to construct. •

4 .2 I n p u t - O u t p u t F u n c t i o n s

Our definition of the input-output function computed by a parallel algorithm is similar to the Berry-
Curien definition for sequential algorithms. In fact, the embedding of the sequential algorithms into
the parallel algorithms mentioned earlier preserves the function computed by an algorithm. Again
this shows that our notion of application is a sensible generalization of the sequential definition.

Definit ion 4.11 The input-output function of an algorithm a G V(M Mf) is the function
\x G V(M) . a • x, mapping states of M to states of A/'. •

E x a m p l e 4 .12 Each of the algorithms discussed in example 3.7 computes the corresponding func­
tion: for instance, por computes por; both l o r and p l o r compute lor; each of l s o r , p l s o r , p lsor' ,
and psor computes sor. Similarly, the min algorithm (example 3.10) computes min. •

We can also show now that currying and application interact correctly.

Propos i t ion 4.13 For any a G V((MX x A/ 2) — A/'), xx G V(Mi) and x2 G P (M 2) ,

(curry(a) -x{)- x2 = a • (x{.x2) .

Proof: Immediate. •

In other words, if a computes / . then curry(a) computes cu r ry (/) . Again, a corresponding
property holds for uncurrying.

5 O r d e r i n g A l g o r i t h m s

Application as defined above is monotone and continuous in its first argument with respect to the
set inclusion ordering on algorithms, but not even monotone in its second argument. This is caused
by two phenomena, which we call weakening and abstraction of queries.

Contrast a - x and a • x\ for an algorithm a and x C x'. Clearly, increasing the argument from
x to x' may increase the set of elements of a query q of a whose input conditions are satisfied, so
that 7Tx{q) C 7rx>(q) (and xx>(q) C nv(q)). If 7rx(q) is a valid query then 7Tx>(q) is non-empty, and
we need to ask whether fully satisfies q.

• If 7rx>(q) is a valid query, i.e.. 0 ^ xx>(q), then we say that the query Tx(q) of a-x is weakened
into the query 7rx>(q) of a • xf.

• If a:' fully satisfies q. i.e.. 0 G ~/'(f/), then we say that the query Tx(q) is abstracted.

E x a m p l e 5.1 Consider, e.g.. cpor • 0 £ cpor • {b = f f} and cpor • 0 % cpor • {b = t t } , owing to
weakening and abstraction, respectively. •

The counter-examples above cannot be resolved by modifying the definition of application,
since they are simple and intuitively correct, and serve as guidelines to which any definition of
application must conform. The desire for monotonicity and continuity of application therefore
motivates a coarser order than inclusion on states; we define a pre-order < l based on the existence of
a morphism between algorithms that preserves enabling structure up to weakening and abstraction.

23

Figure 15: The or-algorithms related by < l

5.2 F i r s t o r d e r D C D S s

Strictly speaking, now that we have determined that set inclusion is not appropriate as the under­
lying order for our model, we should go back and examine what happens to our construction of
M M' when we employ <* instead of set inclusion. However, it is easy to see that this would
make no difference in the construction of first order DCDSs, defined to be the Ms generated by
the following grammar, where A is atomic:

M : : = P \ P — M P : : = ,1 \ P x P.

Algorithms of first order type may return algorithms as results but do not take algorithms
as arguments. All examples of algorithms discussed so far have been first order, and the class
of first order DCDSs is closed under currying and uncurrying. When M is first order the set
inclusion ordering on rep(A/) coincides with the intensional strictness ordering, so that the first
order algorithm space and the definition of application remain unchanged if we use <* instead of
C as the underlying order. For the rest of this development we focus on first order DCDSs, and we
show that our model provides a satisfactory account of first order algorithms. At the end of the
paper we will discuss briefly why a more radical solution is needed at higher order types.

5 .3 O r d e r - t h e o r e t i c P r o p e r t i e s

Propos i t i on 5.5 / / a <l a' by f then f(a) = {(/(pc) , u') € a'\ pc 6 F(a)} is a state. For any
pc £ E(a), if f(pc) — pc then no (rent that precedes pc in a is abstracted.

Proof: Functionality of f(a) is inherited from a'. Safety o f / (a) may be shown by induction on the
number of abstracted query events below a cell pc £ E(a) . The same proof may be adapted
to show that no abstraction may occur below pc if f(pc) = pc. •

Propos i t ion 5.6 <' contains the set inclusion relation, and, in particular, is reflexive. The empty
set is a least element in <'.

Proof: If a C a' then the identity embedding of E(a) into E(a') is clearly a morphism showing
that a <l a'. m

Note that the intensional order properly contains set inclusion, since (for instance) l s o r < l l o r
but l s o r % l o r .

25

Propos i t ion 5.7 If a <l a' by f and a1 <l a" by /' then a <l a" by / ' o / .

Proof: Properties (1), (2) and (3) in definition 5.2 are obviously preserved by composition of
morphisms. We check property (4). Let (pc ,query q) G a.

• If / abstracts (pc ,query q) then so does / ' o / .

• If / weakens (pc ,query q) into (/ / c ,query q') G a' which is then abstracted by / ' then f'of
abstracts (pc ,query q).

• If / weakens (pc ,query q) into (p'c, query qf) G a! which is then weakened by / ' into
(p"c ,query q") G a!'. then / ' o / weakens (pc ,query q) into (p"c, query q"). •

Thus, < l is reflexive and transitive. However, <* is not anti-symmetric in general. Intuitively,
this is because queries that do not have an output event following them may be abstracted and
re-introduced at will, thus generating distinct but <'-equivalent algorithms.

E x a m p l e 5.8 Consider < B o o l — B o o l * ^ e n a v e

<l 0, [0] b=query [{ b = t t }]

by inclusion and abstraction respectively. •

However, < l is anti-symmetric, and hence a partial order, on algorithms all of whose queries
lead to output events, since in such cases abstraction cannot be "undone". We make this precise
as follows.

Definit ion 5.9 A cell pc G E(a) is observable in a iff there is an output event (poc,output v) G a
such that pc <C* poc An event is observable iff its cell is observable, and an algorithm is observable
iff all of its events are observable. •

Propos i t ion 5.10 <' is antisymmetric on observable algorithms.

Proof: Assume a and af are observable algorithms, a <l a* by / , and a1 <l a by g.

For any output event (pc ,output v) of a. (g o / (p c) , o u t p u t v) is also an output event of
a. By the tree lemma, g o f(pc) = f(pc) = pc. By proposition 5.5, no event preceding
(pc ,output v) may be abstracted by g o / . Therefore g o f may not abstract any observable
event. Since a is observable go f may not abstract at all. It is easy to adapt the case analysis
in the proof of proposition 5.7 to deduce that / itself may not abstract .

Let (pc,query q) G a be a query event that is weakened by g o / . It is weakened by / to
(/ (pc) ,query q') G a', which is in turn weakened by g to (g o / (p c) , q u e r y q") G a, with
cl" Q q' E q> But by the tree lemma and since q" • q, (pc,query q) = (g o / (p c) , q u e r y q"),
and consequently (pc. query q) — (/ (pc) .query </).
Therefore / may not abstract any of the events of a, and all weakenings are identities. We
thus have a C a'. and. symmetrically, a' C a. •

Corol lary 5.11 <l is a pn-order, and it is a partial order on observable algorithms.

Every algorithm has a unique observable algorithm to which it is < f-equivalent, by abstraction
of the non-observable queries, and by inclusion, respectively. This means that we lose no generality
if we concern ourselves mainly with observable algorithms.

26

5.4 D i s t i n g u i s h e d M o r p h i s m s

There may be several morphisms between two algorithms, as in the following example.

E x a m p l e 5.12 Let a i ,a3 G P (B o o l x Boo l Bool) be the following algorithms:

0 b=query

ai = < [{ b . l = t t p = query

b . l = t t
b . 2 = t t

[{ b . l = t t }]

[{ b .2= t t }]

p = o u t p u t t t

a 3 =

p = q u e r y
b.l = t t j]

N b . 2 = t t j]

p = o u t p u t t t

There are two morphisms showing that ai < f a.3.- one morphism weakens the first query and
abstracts the second, while the other morphism abstracts the first query and weakens the second
query. •

We may, however, characterize a unique distinguished morphism 6aa> whenever a <l ex'. Intu­
itively, a distinguished morphism is defined inductively so that it always weakens whenever possible.
Thus, in the previous example, only the morphism that weakens the initial cell is a distinguished
morphism. We make these ideas more precise as follows.

First, let a, a' G V(M — Mf). with a an observable algorithm.

Definit ion 5.13 Define a partial function b(lM> : E(a) — E(ei') by induction on pc G E(a):

if { (/ ^ . O U t p i l t Vj)Yj=l \~a PC & p' • p p'c

PC

k {iKa'(PjCj)* OUtput Vj)}l

j = l \-a< p'c

if (p\t\ query ([) h a pc k p' • p
k 3(/' Ç (j . iK,a'(Pic),query q') h a / p'c

K.u'(P\c) if (Pic. query q) ha pc k - i (3ç ' Q q . (tf a,a'(pic), query q') G a'}

undefined otherwise

We say that baM, preserves the output event (pc ,output v) G a iff {6a,a*(pc),output v) G a'.

Propos i t ion 5.14 fiaM, is well defined as a partial function, and its domain is downwards closed
with respect to <*. If baM, preserves all output events of a that precede pc then Sa,a, is defined on
pc: ifSa%a, preserves all output c rents of a then b<lM> is a toted function.

27

Proof: By induction on pc € E(a). •

Propos i t ion 5.15 6a^at preserves all output events of a iff a <l a' by fta,a'-

Proof: By definition of 6aM>. •

Propos i t ion 5.16 / / a <l a' by f then, for every pc 6 E(a),

(1) There exists pc <C~ pc such that f{pc) = fta,a'(pc).

(2) 6a,a' preserves all output events that precede pc in a.

(3) For any pc e E(a), f{pc) < Q b(l^(pc).

Proof: By induction on pc 6 E(a).

We assume the following immediate properties of fta,a':

(a) If ba,a>(pc) is defined and p'c — ba,at(pe) then pf Q p.

(b) If 6a%a'(pc) is defined and pc pc then 6tl,a'(pc) <l* K,aApc)-

Let pc 6 E(a). Note that by induction hypothesis (2) and Proposition 5.14, fta,a'(Pc) is
defined.

(1) If {{pjCj,output Vj)}lj=l K , pc then, by induction hypothesis (2), the enabling is preserved
in a', so that {(fta,a'(pjCjoutput ^) } j = 1 r- t t' fta,a'(Pc). Similarly, since / is a morphism,
{(f(PjCj),output Vj)}l

j={ \-at f(pc). For j < /, the classes 6a,a'(PjCj) and f{PjCj) are both
upper-bounded by p ; . so that , by the tree lemma, fta,a'{Pjcj) = f(Pjcj) for each j . Also, the
classes ftaja'(Pc) and f(pc) are upper-bounded by p, so by proposition 3.11, fta,a'(Pc) = f{Pc)-
If (p ic ,query r/) h„ pc then, by induction hypothesis (1), there exists pic <C* Pic such
that f(pic) = 6a,a*(P\c) < * , ^ . a ' (p ic) . If / (pc) = / (p i c) then we have shown (1). If, on
the other hand. (f (p \c) . q u e r y q") h a / / (p c) , with <y" • r/, then it is also the case that
(fta,a'{p\c), query <Y") H,,/ f(pc). We cannot assume that pxc is <5a a/-weakened, but there is
certainly such a cell on the query chain from pic to pic (since pic itself qualifies). By well-
foundedness, there is a first such cell, say p2c: it is the first cell on the query chain whose
query is above q". Since p 2 c is baM/-weakened, then (p 2 c, query C[2) \-a pc <C* pc, with q" • e[2,
so that (ba^(p2c),query q") \-a, < W (/) c) , and f(pc) = fta,a'(pc), again by proposition 3.11.

(2) Let (pc ,output v) 6 a. Then (/ (pc) ,output v) 6 a' and by (1) there exists pc < * pc such
that / (pc) = baM>(pe). It follows that baat(pc) — <$a.u'(Z>c).

(3) Follows from (1) and (b). •

Corollary 5.17 / / a <l a' then a <' a' by baM>. Moreover, ba%a> is the unique morphism ej theit
weakens whenever possible. i.e.. such that whenever (pc,query ry) £ a, '(g(pc),query qf) € a1 and
q' C q then ej weakens pc.

Proof: Whenever a <l a', bUJl> preserves all output events and thus is a morphism. Note that
ft a,a' weakens whenever possible. It is easy to show by induction on pc G E(a) , that for any
morphism (j that weakens whenever possible. <y(pc) = ba,a'(pc). •

The definition of distinguished morphisms ba,ai can be extended to the case where a is not an
observable algorithm, by making bajli abstract all non-observable events of a.

The composition of distinguished morphisms is not necessarily distinguished, as in the following
example.

E x a m p l e 5.18 Consider the algorithms ai and a,3 in example 5.12 above and the algorithm a2
given here,

a 2 =
0 b=query [{ b . 2 = t t }]

[{ b . 2 = t t }] b = o u t p u t t t

Clearly, ai < l a 2 < l a3. and c>ai>a., is morphism which weakens the first query and abstracts
the second; but <5 a j ? a ? ^ â->.a:> °^ai.a 2* because ^ a i , a 2 abstracts the initial query and therefore the
composition is "forced" to abstract too early. •

However, the following can be said concerning composition of distinguished morphisms.

Propos i t ion 5.19 If a <l a' and a' <l a", and ba,a> does not abstract at any cell preceding pc, and
<*V,a" does not abstract at any cell preceding ba^a>(pc), then bay(pc) = 6a\a» o ba%a*(pc).

Proof : By induction on pc. •

5.5 L i m i t s of D i r e c t e d S e t s
A subset A' of a partial order or pre-order (D,<) is directed iff it is non-empty and every pair of
elements of A' has an upper bound in X. (D,<) is said to be directed complete iff every directed
subset has a lub.

We start by defining directed complete partial orders on values and events, which we denote < l

again. We then show, using distinguished morphisms, that the intensional strictness order < l on
algorithms is directed complete.

Definit ion 5.20 For values u and u! of M — A/', let u <l u* iff a = ul = o u t p u t u, or u — query q
and u' = o u t p u t v. or u — query ej and uf — query e/ with e{ C r/.

For events (pc, u) and (pV 7. u') of 1/ — A/', let (pc. a) <l (p'c',u') iff / / C p, c = c' and u <l u'.

Propos i t ion 5.21 For all M and M'. <l is a directed complete partial order on values and events
of M - Ml.

Proof: Clearly, <* is a partial order on values and on events.

The lub of a directed set of values U is given by

yiy — J o u t p u t v if ou tput v € U,
1 query n {q \ query q 6 U} otherwise.

The lub is well defined by dircctedness of [i.

The lub of a directed set of events E is (p e a) where c is the unique basic cell mentioned
in £ , p = n{p' | p'c e F(£')}. and a = VlU for U = {v! \ 3(p,c,ur) 6 E}. Directedness of U
follows from directedness of E. (pc. a) is a valid event if u is an output . If u is query q and
c' € F(q) then, by directedness. e' is filled in all queries of E from some point on, so that it
is accessible in all classes of E from some point on, and therefore c' € A(p). •

29

Throughout this section, let A be a directed set of algorithms. For a £ A, let Aa be the subset
{ a ' € A\a<{ a'}.

The key concept in constructing limits is persistence. A cell is persistent if it, all cells preceding
it, and their images by distinguished morphisms in .4, are never abstracted.

Definit ion 5.22 A cell pc is persistent from a if it is filled in a and for every p'c' <C* pc, a' £ Aa

and a" £ Aa', Sa',a" does not abstract at ba%ai(p'c').

A cell pc is persistently enabled from a if it has an enabling y h a pc such that all cells filled in
y are persistent from a. •

If a cell is persistent (respectively, persistently enabled) then so is any cell preceding it, and so
is its image by a distinguished morphism in A. Every persistent cell is persistently enabled. Note
that , since every cell has a finite proof and abstraction decreases proof height, only a finite number
of abstractions may be performed below a cell pc £ E(a) , so that there must exist an a' € Aa such
that Sa.a'(Pc) is persistently enabled. Moreover, it follows from proposition 5.19 that distinguished
morphisms in .4 compose on persistently enabled cells. Our use of the term "persistently enabled"
is justified by virtue of the following result.

Propos i t ion 5.23 For any pc persistently enabled from a, if y ha pc then ba^ai(y) ha/ 6a,a'(Pc)> for

each a' £ Aa.

Proof: Follows from definition of morphisms and persistence of events in y. •

Propos i t ion 5.24 Ferr any pc persistent from a. $a(pc) = {(6aiai(pc),u) £ a1 \ a1 £ .4 a } is a di­
rected set of events.

Proof: For any two events (p\c\u.\) and (P2C.U2) in $ a (p c) there exist a\,ei2 £ Aa such that
(PiC,Ui) £ di and pic = ba.a,(pc) I'01' ' = 1*2- By directedness of .4, there is an arj £ Aai fl Aa2.
Since distinguished morphisms compose on persistent cells, 6a^ao(pc) — Satjao(pic) for / = 1,2.
Hence, (Sa,a.0(Pc)iu) € a0 is an upper bound of (p ic ,^ i) and (;>2<VW2) in Va(pc). •

As a consequence, whenever pc is persistent from a we may identify an event iJ

a{pc) = V 2 $ a (pc).
It is from these events that we construct a limit for A.

Propos i t i on 5.25 / / ,4 C P(M — Mf) is a directed set of algorithms then (using the eibove
notation),

ylA = {ipaipc) | <i € -l k pc is persistent frerrn a}

is a least upper bejund for A in P{M — M').

Proof: V1 A is certainly a set of events of M — M'. We show that it is a s tate , and a least upper
bound for .4 as follows.
For each a £ /4 define oa : E(a) — E(V\4) by <t>a(pc) = na,eAa6aya>(pc)7'. By proposition 5.21,
for any pc persistent from a. L\,(pc) lias the form ((j>a(pc),u) for some u. We show

(1) For any pc persistently enabled from a. if y ha pc then 4'a(y) h V '.4 <t>a(pc)-

7 V V e s h o u l d r e a l l y p u t 0tl(pc) = {nlJ)c\ w h e r e P = {pi | a € Aa pic = ̂ a>a/{pc)}. T h e a b u s e o f n o t a t i o n i s

c o n v e n i e n t .

30

(2) For any p\c and p2c persistent from a\ and a2, respectively, if </>AI(PIC) = 4>A2(P2C) then
there exists a' £ Aa[FL .4 a.2 SUcll that 6AI.A'(.P\C) = <*>A2,A'(P2C), a n (l 0ai(PLC) = 0 a 2 (P 2 C) .

For (1) we give details for the case when PC is has an output enabling. The reasoning for a
query enabling is similar. We make essential use of proposition 5.23.

If {(PJCJ,output VJ)}L

J=L \~A /;c then {(SA^(PJCJ),output ^ J) } ^ = 1 HV Sa^(pc) for each a' 6
.4. Hence £ a, a '(/>c) € (UJ = 1 ^ a t r , . / (p.yCj))/ a s . Since l~l is union and morphisms decrease classes,
NA'€AAH.A'(PC) E (N A . / G , 1 (J U ^ - = 1 I a , a / (7 ^ C j)) / a . Therefore

N A / € / L T T U ; = 1 tf a ,„/(pjr;) C UL

J = L N A , E A A K.A'(PJCJ)'

The converse inclusion can be shown using directedness of A and the finiteness of the enabling.
It follows that {((J)A(PJCJ;).output VJ)}L

J=L \ - W , A <PA(PC)? a s required for (1).

For (2), suppose <PAI(P\C) — Oao{p2c). There must exist a[€ Aai and a2 6 / l a 2 such that
^A 1 ,A' 1 (/) i c) FT ^) A 2 ,A ; (/ > 2 C ') - directedness of ,4, there exists a' £ A A / FL /L a^. Let p\c — 8AT,A'{PC)

for ?' = 1,2; clearly p\ ff- // 2 . By the tree lemma, p\C <C*/ p-2 C O R P 2 C ^ A ' PIC^ s o ^hat, by (1),
<T>A'(P\C) = 0 a ' (P 2 C > implies / / t c = / / 2 c.

Note that , by directedness. if PC is persistent from a then for any a' 6 /i a? *LJA(PC) —

^A /(^A..A. /(/^')) (a.nd 0A(PC) = OA>((\,M>(PC))). Therefore we have

^ M (^ K) = <A; ' (^ M = ^<*A 2 .<i . '0>2<0) = ' 0 a , (P 2 C) ,

as required for (2).

Safety and functionality of V ' 4 are corollaries of (1) and (2), respectively, so that V1 A is
indeed a state.

To show that V \ 4 is an upper bound of .4, observe that cf>a is a morphism from a to V l 4 , for
each a £ A; it preserves all output events and output enablings, it weakens persistent queries,
and it abstracts all other queries. The range of <PN is indeed E(V*.4), as a. corollary of (1).

Finally, to show that V ' . l is a least upper bound of .4, let b be an upper bound of / 1 . Define
O : E(V' .4) - K(b) by

0(POC) = N{6LLMB(PC) | a E A K PC £ E(a) & p0c = (T>A{PC)}.

It is easy to show that O is a morj)hism, and that \ILA <l b by (P. •

E x a m p l e 5.26 Consider the sequence of algorithms idwat™ € Z>(Nat — N a t) for m > 0,

M i i ^ q u e r y U A < M [{ n=k }]

V
I [{ n=fc }] n = o u t p u t k 1

This is an increasing sequence, and its lub is i d N a t , the identity algorithm on Na t . In this case,
all filled cells are persistent and the distinguished morphisms never abstract . •

:J1

E x a m p l e 5.27 Consider the sequence of algorithms rainm : X>(LNat x L N a t — L N a t) for m > 0,
defined by:

_ « _ m i tin _ • _

mm = U/ = 0niin t-,
using the notation of Figure 12. This again is an increasing sequence, and its lub is min. Again

all filled cells persist and the distinguished morphisms do not abstract . •

E x a m p l e 5.28 Recall the algorithms a i , a 2 , a 3 of examples 5.12 and 5.18. Since a i < l a2 <* a3,
they form a chain. All filled ceils of a2 and a3 are persistent, but only the output cell of ai is
persistent. The lub of this chain, as expected, is a3. •

5.6 C o u n t a b l e D C D S s a n d A l g e b r a i c i t y

Following Berry and Curien. we now restrict attention to DCDSs having a countable set of cells
and values. We show that if M and M' are countable then so is M —> M'. Since all of our atomic
DCDSs were countable, the countability restriction does not affect any of the results or definitions
given so far. From here on we will work exclusively with first order countable DCDSs.

An element of a pre-order is isolated iff whenever it is below a least upper bound of a directed
set it must be below some element of that set. Recall that a query is uniquely determined by its
minimal elements; we refer to these as the query's branches. We say that an observable algorithm
is finite and finitely breinching (or ffb) iff it has a finite number of events, and each of its queries
has a finite number of branches. We will show that the isolated algorithms are precisely the ffb
algorithms, that there are countably many isolated algorithms in any countable DCDS, and that
every algorithm is a lub of its isolated approximations, thus establishing that algorithms ordered
by intensional strictness form an wj-algebraic pre-order.

E x a m p l e 5.29 The identity algorithm on N a t is not ffb, since it has infinitely many output events
and its query has infinitely many (mutually inconsistent) branches. The min algorithm is not ffb,
because it has infinitely many events. The following algorithm of N a t x N a t — B o o l is not ffb,
since it is finite but its query has infinitely many (equivalent) branches:

[(0,0)] b = query U A : d N

U p = o u t p u t t t

In examples 5.26 and 5.27 each of t he i d N a t m and m i n m algorithms (???. > 0) is ffb. •

Propos i t ion 5.30 /1 first order countable DCDS has countably many ffb algorithms.

Proof: There are countably many events in an atomic DCDS, hence countably many finite sets
of events in the representation of a first order DCDS. It follows that there are countably
many finitely branching queries and countably many finite classes, and hence that the ffb
algorithms are countable. •

Propos i t i on 5.31 The ffb approximations to an algorithm form a directed set.

32

Proof: Let a be an algorithm, and let ci\ and a2 be two fFb approximations to a. By proposition 5.5,
a' = ^ A I , A (^ i) U ¿ 0 2 , 0 (^ 2) i-s a u algorithm; it is an approximation to a by inclusion, and it has
a finite number of events, a' is not necessarily finitely branching, but we may derive from it
an fFb algorithm a such that a{.a2 <l a <l a! <l a. The key idea is to perform the following
operation (inductively): if q' is a query of a! that weakens the queries q\ oiet\ and q2 of a2, then
replace q' in a by a query q that contains only those branches of q' that are below branches
of qi or q2. q will necessarily be finitely branching, since branches are themselves finite sets
of events. Similarly if q' weakens a query from either ci\ or a2. Note that replacement of
queries of a' by finitely branching subsets may lead to splitting of equivalence classes, which
needs to be handled by the construction of a (or, alternatively, some extra elements of qf may
be retained so as to prevent splitting). It is straightforward to show that an algorithm a so
obtained satisfies the required properties. •

Propos i t i on 5.32 Every algorithm is the lab of its ffb approximations.
Proof: First, we fix, for every query q. an enumeration of its branches, and we define a sequence of

finite queries { < / N } n > i - such that qn is the upwards closure of the first n branches of q. Thus
the sequence is decreasing with respect to C, and we have q = n n > 0 r / n .

For any algorithm a, given an enumeration of queries as above, we define a sequence-of finitely
branching approximations to a.

F B N («) = { (/ / c , f l) „ (W .)) £ F .A/- .A/ ' I (pen) £ a k pc £ fba%n(pc)}

where, for 7? > 1, the functions fb.„ : Y\\/__\// — VM^M* are defined by

fb n (query q) = query qn fb„(output v) = ou tput v

and the functions fb,;>/< : E(a) — V(C\i^\f) are inductively defined by

^a,n(pe) = {pc I !J H , pc k fh(lJl(y) r - A / _, v / / pc k p C p}

(where thaM(y) = {(/ / / ' , . fl)yl(ut•)) | 3(pjCj.Uj) £ y . pfa £ f b T T , N (P J C J) }) . Note that fb a , n (pc)
may be empty.

For any algorithm a. we define a sequence of finite depth approximations to a: (a)0 = 0 and
for each n > 0. (r/ .) 7 l + 1 = {(pc. a) £ a | pc £ E ((a) n) } .

Now we combine these two ideas: for each /?., (f b n (a)) n is finite and finitely branching. It
is straightforward to show that the sequence { (f b n («)) n } n > 0 is an increasing chain of ffb
approximations to a. whose lub is a. •

Propos i t i on 5.33 The isolated elements of(V(M — A/ ') ,< \) are the ffb algorithms.
Proof:

• We show that every fi'b algorithm is isolated. Let a be the lub of a set A of algorithms, and
let a be an ffb algorithm such that a <l a.

For each pc £ E(a), d(lA{pc) £ F(a) . so that there exist a' £ .4 and p'c £ E(a') such that
<PA'(z>'c) = 6(ltd(pc). But df,s,(pc) C p, and p is finitely branching; hence, by directedness, we
can choose a' and p'c such that additionally p' C p. •

33

Now, if a! £ A has a suitable cell p'c € E(a ') that satisfies the above, then so does every
a" £ Aa>\ therefore, since a has only finitely many events, and A is directed, there exists an
a" £ A that satisfies the above requirements for all pc £ E(a) simultaneously. But now it is
easy to show that a <l a". and therefore a is isolated.

• We show that every isolated algorithm is ffb. Let a be an isolated algorithm. Since a is
the lub of the directed set of its ffb approximations, there must exist some UQ <l a, an ffb
approximation to a, such that a <l a$. Without loss of generality assume that both cio and
a are observable, and it follows by anti-symmetry that a = a$ is ffb. •

Corol lary 5.34 (V(M —* A / ') , < ') is a directed-complete and UJ-algebraic p-re-order, and its iso­
lated elements are the ffb algorithms.

The fact that the intensional strictness ordering enjoys these order-theoretic properties enables
us to adapt the usual semantic account of recursively defined objects to the algorithmic setting. It
is well known that every continuous function on a directed-complete partial order has a (unique)
least fixed point, which can be constructed explicitly as the limit of a chain of iterates. A similar
result holds for a directed-complete pre-order, except that the least fixed point is only unique up
to equivalence. While we do not intend to explore recursion deeply in this paper, we give a simple
example to show that parallel algorithms may be defined recursively.

E x a m p l e 5.35 Let inc : C L N - U — ^ LNat be the function which adds 1 to each cell index; this
extends to the queries and classes involved in the construction of LNat x LNat — LNat in the
obvious way, so that for example

m c ((S n (±) , S n (0))) U (S(±).S(±)) = < 5 n + 1 (±) , S n + 1 (0)) .

Let $: £>(LNat x LNat — LNat) — P (L N a t x LNat -* L N a t) be the function defined by

4>(a) = mino U inc(a).

referring to Figure 12 for the definition of mino- Clearly, <I> is continuous and has a least fixed
point V ^ > o $ n (0) = min. This example formalizes the intuition that min is obtained by "iterating"
a parallel-or like kernel. •

5.7 M O N O T O N I C I T Y A N D C O N T I N U I T Y

Proposition 3.17 states that currying and uncurrying are isomorphisms with respect to the set
inclusion ordering. We now show further that they are order-isomorphisms with respect to the
intensional strictness order.

Propos i t i on 5.36 Currying and uncurrying are monotone and continuous with resect to the
intensional strictness order.

Proof: Observe that , for all a.a' £ P{M{ X A/ 2 — A/'), if a <l a' by / then curry(a) < l curry(a /)
by the morphism curry o / o uncurry. •

We next show that application is monotone with respect to < \ Let a,a' £ V(M — A/')
with a <L a' by / : E(a) — E(a') , and x.x' £ 'P(M) with x <l x'. We must find a morphism
h : E(a • x) E(a' • x'). To construct such a morphism, we need to focus on the events of a • x
whose source events in a correspond (under /) to events in a! which project by x'\ each such event
of a - x will thus determine an event of a' • xf. .We call these the f -presented events of a • x.

DEFINITION 5 . 3 7 All output events of a - x are /-preserved. A query event (pc, QUERY q) £ a • x
is /-preserved if / weakens its source event (source a v r (pc) ,QUERY q) £ a, with q = 7 T R (G) , into
(/ (source a f J ? (pc)) ,QUERY q') £ «/. with </' C ry, and 0 ^ 7Rr/(Yy7). Cells filled in /-preserved events of
a • x are also said to be /-preserved.

Given pc £ E(a • ;ir), define P\{pc) to be the set of maximal /-preserved cells below pc,

Pi(pc) = {rrf | <Ca.ar pc & rr/ is /-preserved & }.
. re/ <C+,. •/• ir/ C^.^ pc => is not /-preserved

Define h : E(r¿ • -+ E(« 7 • .r7) by

p'c if { (P J C J , OUTPUT V J) } J - = 1 pc
{(ll(pjCj). O U T P U T Vj)}l

j = l) - a : x i p'c & p' C p

/?,(pc) = ^ j / c if (P ^ - , Q U E R Y r/) h a . x pc pic is /-preserved
(h(p\c).QUERY r/) h,/.,./ p 7c & p 7 C p

h(p\c) if (P I C Q U E R Y r/) h a .^ pc pic is not /-preserved

For pc £ E(<7, • x) let P){pc) - {r'd | r'd <C(l,.a,/ h{pc)} be the set of cells in a' • a;' that enables
h(pc). •

Next we show some properties of /7. which establish that h is a morphism.

PROPOSITION 5 . 3 8 For pc £ E{a x).

(1) The Junction h is ire 11 defined on pc.

(2) h maps the maximal J 'preserved cells below pc onto the enabling of h(pc) in a! • x':

{h(rd)\rele Pi(pc)} = P2(pc).

(3) If pc is f' -preserved then li(pc) £ F{ei' • x') and h(pc) £ 7 R r (/ (s o u r c e a i X (p c))) / % .

(4) / / (p c , O U T P U T v) £ a • x then (h(pc)* OUTPUT v) £ a1 • x', and if (pc, QUERY q) £ a • x is
f-preserved then (/ / (P C) . QUERY ' / ') £ a' • .r' / O R .SRRME q' C R/.

PROOF: By induction on P C .

(i) , (2) Consider the unique enabling of P C in a -x.

If { (; ^ - C J , O U T P U T V j) } l

J = [h,.. r pc* then, by induction hypothesis (1) and (4), for any 1 < j < /,
/7 is defined on pjCj and (h(pjCj).OUTPUT vj) £ a' • x'. Therefore li(pc) is the unique p'c such
that {{h(pjCj:),OUTPUT C ,) } ^ , (-„/. , ,/ P 7 c and P 7 C P . Moreover, P\{pc) = {pjCj}lj=l, so (2)
follows.

If (p\c, QUERY r/) K,.,. P C then, by induction hypothesis (1), h(pic) is well defined. If
(p ic ,QUERY q) is not /-preserved, then h(pc) is taken to be h(p\c); thus P\(pc) = P\{p\c)
and P-2(pc) — P){p\c). Property (2) for P C follows by induction hypothesis (2) for p\c.
If, on the other hand, (p\c\ QUERY q) is /-preserved, then, by induction hypothesis (4),
(/?(pic),QUERY q') £ a' • . 7 : 7 for some e/ C. q. Then li(pc) is defined to be the (uniquely deter­
mined) p'c such, that (h(p\c).QUERY 7R,./(r/7)) h (,/. r/ P 7 c and P 7 • P . Moreover, P\(pc) - {p\c}
and P 2 (/ ^) = {/'(pi' ')}, so (2) holds.

3 5

(3) Assume that pc is filled in a • .v. There exists p 0 c < * a . x p c such that Pi(pc) \ - a . x p 0 c . By 4.8
and 4.10 we have

source, l i < r(Pi(/wr)) K root„„ r (p 0 c) < * source a v r (pc).

Since the cells in P \ (p c) are /-preserved, by applying / we get:

/ (sou rce a , x (P 1 (pc))) h,> / (r o o t a , x (p 0 c)) <0 / (source a , x (pc)) .

For x £ 7Tr(r), we write 7Tx^(i'd) for the cell rrf such that r 6 nX(R)/SS and .T 6 r; r is uniquely
determined. We also use the obvious extension to a set of cells or events.
Choose any x £ p . Clearly, x £ 7r r >(/(source a v r (pc))) . Now, since the cells in P \ (p c) are
/-preserved, we have.

^M - (/ (so i i r ce t t t J . (F i (pc)))) h,/..r> *X'MF{VOOTA,X(Poc))) <*#. x , ^x ' , i ; (/ (source a ^(pc))) .

But if the query chain for 7 iv^(/ (root a > > r (p 0 c))) <Z,.X, xX'M.f{sovLrceaiX(pc))) is of non-zero
length, then some cell p x c such that p 0 c <C*.̂ P\c <^*X Pc i S /-preserved, contradicting the
definition of P\(pc). Therefore TTr>j(f{voot<ux(poc))) = n x > , x (f (s o u r c e a , x (p c))) , and

^ M - (/ (s o u r c e a . , . (P\(pc))))r-.,,.x, 7r r , , j .(/(source a f i .(pc))).

By induction hypothesis (3) and (2). P - i i p c) r - a i . x i 7rx^x(f (s o \ i Y c e a , x (p c))) , while, by definition
of P-2(pc), P-2(pc) h t t ' . j . ' h(pc). But li(pc) and ^ r / ^ (/ (s o u r c e a . t X . (7 9 c))) are upper bounded by p,
so that , by proposition 3.11. they must be equal.

(4) Follows immediately from (3). Note that if x C x' and q' C </ then Kx'(ql) Q XX((l)- •

Corollary 5.39 Application is monotone in both arguments: if a <l a' by f and x <l xl then
a - x <* a' • x' by li, as defined above.

Definit ion 5.40 The input-output appmximatiem order < €

M on V(M) is defined by induction on
AI as follows.

For an atomic DCDS XI let <'\ y be set inclusion.
For a product XI\ x M2 let <*\/ l X i\/,, be defined componentwise.
For an arrow type M — XI' let a <f a' iff V.r £ 'P(M) . a • x <e ei' • x. •

Input-output approximation orders algorithms by the pointwise order on their input-output
functions. It is a pre-order, and two algorithms are input-output equivalent whenever they compute
the same function. For instance, the or algorithms in figure 15 fall into four equivalence classes,
corresponding to the functions s o i \ l o r . r o r and p o r . and the diagram collapses to the pointwise
ordering on these functions.

Propos i t ion 5.41 For a FIRST order DCDS Xf. <l

Af is contained in <%f.

Proof: An easy corollary of monotonicily of application with respect to < \ ' •

3()

Thus, whenever a <% a! we also have a < e a'. The converse fails, because the input-output
approximation order is not properly sensitive to computation strategy. For instance, l s o r < e r sor
but these two algorithms have incompatible computation strategies and are incomparable under the
intensional order. Put t ing this result together with the earlier remark that intensional strictness
properly includes set inclusion (proposition 5.6), we may summarize by saying that the intensional
order is strictly coarser than set inclusion and strictly finer than input-output approximation.

Next we prove that with the intensional ordering application is indeed continuous.

Propos i t ion 5.42 For any x £ V(M) and non-empty Q C Vs(J^fin(rep(A/ — A/'))),

^ { n Q) = n{irx(q)^9\qeQ}.

where the right hand side is to be taken as the empty set in case the gib is undefined, i.e.,
Kx(q) = 0 for every q £ Q.

Proof: Immediate: recall that the gib is just set union. •

Propos i t ion 5.43 Application is continuous in both arguments: if A is a directed set of algorithms
of M — M' and X is a directed set of states of M. then (V ¿/l)-(V X) and Vl'{« • x \ a£ A k x £ A'}
are equivalent.

Proof: Let Z — {ei • x \ ei £ .-I «fc x £ A'}. This is easily seen to be a directed set of states of M',
by monotonicity of application. Let a. x and z be the lubs of .4, A' and Z, respectively.
By monotonicity of application, z <l a • x. We show that a • x C z. We use notations and
definitions as in the proof of directed-completeness (proposition 5.25), and indicate .4, X or
Z to select the appropriate context. We also use the notation nx,x(pc) as in proposition 5.38
for the cell p'c such that // £ 7rx(p)/^ and x £ p ' (provided x £ ftx{p)).
We prove by induction on p'c £ F(a • x) that :

If (p'c, iV) £ a - x and x £ p' then there exist a £ .4, pc persistent from a in .4, and
x £ A', such that

(1) o^(pc) - source^.¿(p'c).

(2) Kx,x(pc) is persistently enabled from a • x in Z, and p'c = <!>a.x(nz\x(Pc))-

(3) XxMl)C) 1 8 persistent from a • in Z. and [p'c,it') = xb^.x(xxMPc))•
(4) (p 'c,» ') £ z.

Note that if a, pc and x satisfy the above, then so do any ei' £ / t a , óaM.'(pr) and x' £ A^; we
rely on this to make successive assumptions about a and x that can be met by increasing a
and x without invalidating any of the preceding conclusions.

Let (p'c,u') £ a • with .ir £ p'. Then (source¿.¿(p,c),i¿) £ a with v! - TTX(U). By definition
of a (proposition 5.25), there exist a £ .4 and pc persistent from a in ,4 such that i^(pc) =
(source¿,i;(p'c), f/), and (1) holds.

Since ;?J £ p' , there must exist some finite .i-0 C x such that (x0,x) £ ep^(pc). By algebraicity,
there exists x £ A' such that x{) C x. Without loss of generality, we can choose a so that (xQ,x) £ p, and x £ 7r.r(p).

Let ?/' h¿.¿. p'c. The re fon^

. source¿,;.(//) \-n root,-,..;•(p'c) source,-,j.(p'c).

37

Now, by the induction hypothesis, for any (p^Cj^u'j) G Y' there exist appropriate aj G A, pjCj
persistent from aj in A, and Xj G A' that verify the induction hypothesis for p'jCj. Since y'
is finite, we can choose a and x larger than each aj and Xj, respectively, so that a and x
verify the induction hypothesis for each pjCj. Therefore, there exists a set y C a of persistent
events with i^{Y) = source,},^?/'), such that y h a p 0 c < * pc, where (f>a(Poc) = roota^(p 'c) .
The enabling i^^Y) h i r o o t ^ p ' c) is not fully satisfied by i , while each of the enablings in
the (finite) query chain root,} j.(p'c) <C£ sourcea,f(p'c) is fully satisfied by x. It is therefore
possible to choose x sufficiently large so that it projects the enabling Y h a p 0 c and fully
satisfies all the enablings in the chain poc <* pc; note that y h a pc may not be fully satisfied
by x C x. We thus obtain TRX,X(Y) r - a . r 7TXyX(pc), and by induction hypothesis (3), irx,x{pc) [S

persistently enabled from a • x in Z. Moreover, from (3) we have

y' = 4>L(*xMy))t-: oL(x^Ape)),
and since p'c and (p^r(-x%x(pe)) are consistent (both contain x), then, by proposition 3.11,
they must be equal, and we have established (2).

If u' = o u t p u t v choose a so that (pc ,output v) G a. Then (Kx,x(pc),output v) G a •
T T ^ p c) is clearly persistent from <7 • .t in Z, and (p 'c ,output v) = ^a-x(wx1x(Pc))f establish­
ing (3) for the output rase.
If it' = query q' things are somewhat more complicated. First, note that z is also the lub of
Z' — {a1 • x' | a! G An k. x1 G A'.,.}, so that , without loss of generality, we may assume that if
a - x <l a' - x1 in Z then a <' a' and x C .r'.
We choose x so that Kx(q) / 0. where f/ is the query that fills pc in a. Since pc is persistent
from a in A, for every a' 6 .-la and a" € .-4a', ba',a" does not abstract at 6aja*(pc). But
since projection by x does not fully satisfy at </>^(pc), then for every a' G /4 a and a*' € A' x ,
^a,a ; (pc) is projected by .*;', but is not fully satisfied, so that 6a'x',a"-x" does not abstract at
fta'x,a''x'(^x,x{pc)) f ° r a < ' a ' < ' a " and .i* C .r' C x"', and 7 R x ^ (p c) is persistent from a • x.
It remains to show that p'c is filled with the same queries in both a • x and f, i.e., that

^ (n g (f (pc)) = n{7R , ,(r/) I q G Q*(pc) & 6 A ' x } ,

where Q'^(pc) = {qf | a 7 G .4 a ^: (b (l l i t (pc) .query q') G a ' } . But by proposition 5.42,

AnQ(pc)) = n{7R,-.(r/) | ,/ G Q^fpc)}

and the rest follows from the directedness of A' and the finiteness of query elements.

We have established (3), and (4) is an immediate consequence, thereby completing the proof
by induction. Finally, from (I) we conclude that a • x C z. •

Corol lary 5.44 The input-output function of every algorithm in V{M —- Ad') is a continuous
function from (V(AI), <;v/) to (P(A/'), < \ r).

E x a m p l e 5.45 The input-output function of the algorithm min is min. For each n > 0 we have

m i n - < S n U) , . 5 , , l U) > = min" - (S^(1.),S^(±)) = 5 M (±) .

Hence,

m i n . (^ (±) . ^ (±)) = v;;> 0 min.(.S' n (-L)-S" l (±)> = K>Qminn
 • (S"(±) , S"(±)) = S w (-L).

3 S

6 F u t u r e Research Direc t ions

We regard this paper as a. first step towards a general theory of determinate parallelism. We
have developed intuitively appealing notions of parallel algorithms, the input-output function of
an algorithm, application and currying of algorithms. We have introduced an intensional strictness
ordering on first order algorithms that appears to be a natural generalization of the usual extensional
order on continuous functions, in the sense that whenever a <l a! the input-output function of
a approximates the input-output function of a! extensionally. The class of first order parallel
algorithms is closed under currying and uncurrying, and contains many interesting algorithms for
non-sequential functions; it is already significantly different from the class of first order sequential
algorithms.

We have tried to stay close in spirit to the foundational work of Berry and Curien, and have to
a large extent emulated their development: beginning with algorithms, defining application, then
constructing input-output functions. As we have pointed out, there is a simple embedding of their
(first order) sequential algorithms into our parallel algorithms that preserves the function computed
by an algorithm. Sequential algorithms correspond to parallel algorithms with trivial parallelism:
each query involves a single cell. However, the generalization to the concurrent setting has forced
us to depart from set inclusion as the underlying order and to adopt a new order with respect to
which application is well behaved. It is interesting to look back and determine to what extent the
phenomena of abstraction and weakening, upon which our ordering is based, occur in the Berry-
Curien model. Weakening in the sequential setting is reduced to set inclusion, but abstraction
is not. Our intensional strictness pre-order induces a pre-order on the Berry-Curien model, still
(strictly) coarser than set inclusion and (strictly) finer than input-output approximation. All of
this is not surprising: a conjecture we would like to substantiate is that the relationship between
the set inclusion and intensional strictness orderings on algorithms is analogous to the relationship
between the stable and the pointwise orderings on functions.

One of the key features in our model is the use of queries instead of valof commands. We regard
queries as generalized sequentiality indices, perhaps better called computation indices, since they
are applicable to the parallel setting. We can characterize the class of parallel algorithms which
have a stable input-output function, in Berry's sense, in terms of their computation indices: an
algorithm computes a stable function iff the branches of each of its observable queries are mutually
inconsistent, or, equivalentlv. iff each of its observable classes has a least element. We intend to
develop these ideas and to investigate the new notions of stability and sequentiality obtained by
employing intensional strictness as the underlying order on states. We conjecture that (in line
with remarks made earlier) the curried parallel-or cpor will turn out to be sequential in this new
sense, since its input type has a single cell, while the uncurried por remains parallel (as it should).
This example also suggests that we should regard as "fully" sequential only those algorithms which
remain sequential under currying and uncurrying.

The intensional strictness order seems to be a natural outcome of our definition of application,
which in turn seems quite intuitive. This new ordering, however, only makes application well
behaved for first order DCDSs. Our proofs of monotonicity and continuity for application do not
extend to the higher order case, where intensional strictness on the representation departs from set
inclusion. A reason for the failure at higher order types is that addition of non-observable query
events to an algorithm no longer constitutes an increase in the information content of the algorithm
(as shown in example 5.8) : therefore, a higher order algorithm is not able to build incrementally
an internal representation of an argument which itself is an algorithm simply by issuing queries
about the query structure of that argument. A modification is needed to the way in which the

39

internal representation is built; one possibility is to change the values of M —* M' to be trees whose
internal nodes correspond to queries, and whose leaves correspond to output events.

In addition to our present limitation to first order types, we do not have yet a satisfactory notion
of algorithm composition. This has not prevented us from defining application and input-output
functions, but of course without composition we cannot use our algorithms to define a category.
Perhaps it is worth remarking that Berry and Curien [BC82, Cur86] present application and input-
output functions before constructing a suitable composition for sequential algorithms, and even
in the sequential case the definition of composition is given indirectly, by means of "abstract
algorithms". It may not then be surprising that we have found it difficult to find a suitable parallel
generalization.

We have used representation and base DCDSs in our formulation of parallel algorithms so as
to be able to express curried algorithms. While this rather complicates the internal structure of
algorithms, it does facilitate the definition of currying and uncurrying as operations on algorithms.
Nevertheless, the use of rep and base seems to be at least partially responsible for our difficulty
in formulating a notion of composition for algorithms, and we would like to explore alternative
ways to define algorithms. For instance, we might try to define M — M' using events of form
(pc,a) with p a class over M. c a cell of j l / ' , and u either an output over M' or a query over M ,
but requiring that consistent inputs lead to consistent output commands, instead of the current
requirement that consistent inputs lead to the same output command. In order to allow this we
would need to endow CDSs with an order structure so that we can define what it means for inputs
or outputs to be consistent. In a related paper [BG] we explore properties of a generalized form of
CDS in which cells and values are equipped with partial orders, with appropriate modifications to
the notion of state.

Much more remains to be done. Ultimately we would like to construct a model of parallel
algorithms that makes sense at all types and yields a cartesian closed category, so as to provide
an intensional semantics for the A-calculus. In such a semantics the denotation of a term would
reflect accurately the efficiency with which it computes its results, or other intensional aspects.
This should allow us to formalize the sense in which (for example) our min algorithm computes the
min function in complexity 0(m//.(m./*)).

We can also formulate an intuitively natural ordering that reflects the degree of parallelism (or
eagerness) exhibited by an algorithm, so that , for instance, psor is indeed the most parallel of the
algorithms for soi\ while the two sequential algorithms l s o r and r sor are local minima for this
ordering. There appears to be a natural hierarchy among parallel algorithms, based on our notion
of degree of parallelism. We plan to investigate this parallelism order and the structure of this
hierarchy, in the hope that our ideas may help in assessing the relative expressive power of various
parallel primitives.

7 Acknowledgement s

We thank the anonymous referees, who made helpful suggestions that led to improvements in the
presentation of the paper.

References

[BC82] G. Berry and P.-L. Curien. Sequential algorithms on concrete da ta structures. Theoretical
Computer Science. 20:2(Jo-.T21. 1982.

10

[BC85] G. Berry and P.-L. Curien. Theory and practice of sequential algorithms: the kernel of
the applicative language CDSO. In Maurice Nivat and John Reynolds, editors, Algebraic
Methods in Semantics, chapter 2, pages 35-87. Cambridge University Press, 1985.

[BCL85] G. Berry, P.-L. Curien, and J.-J. Levy. Full abstraction for sequential languages: the
state of the art . In M. Nivat and J. C. Reynolds, editors, Algebraic Methods in Semantics,
chapter 3, pages 89-132. Cambridge University Press, 1985.

[Ber78] G. Berry. Stable models of typed A-calculi. In Proc. 5th Coll. on Automata, Languages
and Programming, number (j2 in Lecture Notes in Computer Science, pages 72-89, Berlin,
New-York, July 1978. Springer-Verlag.

[BG] S. Brookes and S. Geva. Continuous functions and parallel algorithms on concrete da ta
structures. In Mathematical Foundations of Programming Semantics, 7th International
Conference. Carnegie Mellon University. Pittsburgh, March 1991, Lecture Notes in Com­
puter Science. Springer-Verlag.

[BG90] S. Brookes and S. Geva. Towards a theory of parallel algorithms on concrete data struc­
tures. In Semantics for Concurrency. Leicester 1990, pages 11(3-136. Springer-Verlag,
1990.

[Col89] Loi'c Colson. About primitive recursive algorithms. In Proceedings of ICALPS9, volume
372 of Lecture Notes in Computer Science, pages 194-206. Springer-Verlag, 1989.

[Cur86] P.-L. Curien. Categorical Conibinators. Sequential Algorithms and Functional Program­
ming. Research Notes in Theoretical Computer Science. Pi tman, London, 1986.

[Hue86] G. Huet. Formal structures for computation and deduction. Class notes for graduate
course at CMU, May 1986.

[KM77] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In Infor­
mation Processing 1977. pages 993-998. North Holland, 191 fit.

[KP78] Gilles Kahn and Gordon Plotkin. Domaines concrets. Rapport 336, IRIA-LABORIA,
1978.

[Mil77] R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science,
4:1-22, 1977.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,
5(3):223-255, 1977.

[Saz75] V. Yu. Sazonov. Sequentially and parallelly computable functionals. In Proc. Symp. on
Lambda-Calculus and Computer Science Theory, number 37 in Lecture Notes in Computer
Science. Springer-Verlag, 1975.

[Smy78] M. B. Smyth. Power domains. Journal oj Computer and System Sciences, 16(1):23—36,
February 1978.

[Vui73] J. Vuillemin. Proof techniques for recursive programs. Ph. D. thesis, Stanford University,
1973.

