NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Towards a Theory of Parallel Algorithms on
Concrete Data Structures

Stephen Brookes Shai Geva
July 1991
CMU-CS-91-157 5

School of Computer Science
Carnegie Mellon University
Pittsburgh. PA 15213

To appear in Theoretical Compuler Science

Supersedes Technical Report CMU-CS-90-170

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (ATSC), U.5. Air Force. Wright-Patterson AFB, Ohio 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 75397 and in part by NSF/DARPA Grant CCR-8906483.

The views and conclusions contained in thiz document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied. of the U.S. government.

Keywords: théory, algorithms. applicative (functional) programming, semantics, parallelism

Abstract

Building on Kahn and Plotkin’s theory of concrete data structures and sequential functions, Berry
and Curien defined an intensional model of sequential algorithms between concrete data structures.
In this paper we report on an attempt to develop a similar intensional model of concurrent com-
putation. We present a notion of parallel algorithm between concrete data structures, together
with suitable application and currying operations. We define an intensional strictness ordering on
parallel algorithms, with respect to which application is well behaved (at first order types). We
define the input-output function computed by a parallel algorithm, and we show that every parallel
algorithm computes a continuous function. Thus, a parallel algorithm may be viewed as a continu-
ous function together with a parallel computation strategy. In contrast, a Berry-Curien sequential
algorithm may be viewed as a sequential function together with a sequential computation strategy.
The intensional strictness ordering on parallel algorithms corresponds to the pointwise ordering on
the functions they compute, in the same sense that the set inclusion ordering used by Berry and
Curien on sequential algorithms corresponds to the stable ordering on the functions they compute.
We believe that the ideas and results presented here constitute a first step towards a fuller under-
standing of the intensional semantics of parallelism. even though the model presented here is not
vet general enough to provide a satisfactory account of higher order algorithms, and lacks a notion
of composition for algorithms. We present some ideas for overcoming these deficiencies, and some
directions for further research.

University Lihraries
Carnegie Mellon University

¥

Pittsburgh, Pennsylvania 15213

1 Introduction

The search for a satisfactory syntactic and semantic account of sequential computation, in particular
the desire to achieve full abstraction, has led to a considerable body of research. In the classic
paper [Plo77], Plotkin showed that under its standard interpretation the programming language
PCF is inherently sequential, and that its standard continuous functions semantic model is not fully
abstract because the model contains inherently parallel functions (such as parallel-or) that cannot
be defined in PCF. The continuous functions model is, however, fully abstract for a parallel version
of PCF obtained by including a parallel conditional primitive. A substantial body of work has
been directed at obtaining a trulv sequential model for the original PCF with a suitably restricted
notion of function [BCL85].

Milner [Mil77], Sazonov {Saz75], and Vuillemin [Vui73] proposed notions of sequential functions;
however, their constructions make essential use of the number of arguments to a function but do not
adequately reflect the internal structure of these arguments, so that their notions of sequentiality
are not general enough. Kahn and Plotkin [KP78] defined conerete data structures, or CDSs,
together with their order-theoretic counterparts, concrete domains, which made possible a more
general definition of sequentiality of functions. Berry {Ber78] introduced the notion of stubility,
a property of functions intermediate between sequentiality and continuity. However, Berry and
Curien [BC82, Cur86] showed that the category of concrete domains fails to be cartesian closed when
the morphisms in the category are taken to be the continuous functions, or the stable functions, or
the sequential functions. These negative results paved the way for the development of an intensional
model, since no suitable extensional maodels were found.

Berry and Curien were able to define an exponentiation for concrete data structures, by replacing
functions by a notion of sequential algorithms. The resulting category of determinisiic concrete
data structures (DCDSs) and sequential algorithms is cartesian closed. Furthermore, a notation
for elements of DCDSs is a basis for a functional language CDS0 [BC85], for which the sequential
algorithms model provides a semantics with several interesting properties: The semantics is fully
abstract with respect to a notion of observability that is sensitive to computation strategy; the
model is intensional rather than extensional: sequential algorithms, ordered by set inclusion, form
a concrete domain; a sequential algorithm may be viewed as a sequential input-output function
paired with a computation strategv. The operational semantics is based on an extension of Kahn-
MacQueen’s coroutine mechanism [KM77]. employving lazy evaluation.

Although it does not solve the original full abstraction problem for PCF, the Berry—Curien
model of sequential algorithms is interesting in its own right. It provides deep insights into the
nature of deterministic sequential computation. We propose here a generalization of Berry and
Curien’s notion of algorithm that incorporates deterministic concurrency into the framework. We
believe that there are fundamental insights into the semantic treatment of parallelism to be gained
by doing this. Like Berry and Curien. we restrict attention to deterministic computation', although
we do allow non-determinism in the scheduling of parallel computations.

In section 2, based on [C'ur86], we summarize the background material on DCDSs, sequential
algorithms, and stable and sequential functions.

In section 3 we present our notion of parallel algorithm between deterministic concrete data
structures. We explain how our construction arises out of an attempt to generalize the Berry-
Curien concepts. The kev idea is to replace the "valof” command of a sequential exponentiation

1 -) - . ’ .
Berry and Curien also discussed bricily an attemptl to introduce non-determinism intoe their model [Curgs,
section 2.7], but they were nnable to obtain a cartesian closed category for non-deterministic sequential computation.

with a “query” command that spawns parallel sub-computations; the formal treatment of this and
its consequences leads naturally to the use of a powerdomain. We present a variety of example
algorithms, and we define currying and uncurrying operations for parallel algorithms.

In section 4 we formalize what it means to execute a parallel algorithm by defining a suit-
abie application operation. We show that our notion of parallel application is intuitively right by
discussing the applicative behavior of several example algorithms. We explain how our notion of
application generalizes the sequential application of Berry and Curien. We define the input-output
function computed by a parallel algorithm.

Application for parallel algorithms, unlike its sequential counterpart, is not continuous with
respect to set inclusion. This is not a defect of our model or of our definition of application, but
rather shows that set inclusion is not an appropriate ordering on parallel algorithms. In section 5
we identify the causes of this failing and introduce a more appropriate ordering, which we call the
intensional striciness order. Informally. an algorithm a’ is above another algorithm a in this order
if @’ needs less information, at an earlier stage of the computation, to achieve at least the same
output as a. We regard intensional strictness as a natural generalization to the intensional setting
of the standard extensional ordering on continuous functions. In contrast, the set inclusion ordering
on algorithms used by Berry and Curien corresponds to the stable ordering [Ber78] on sequential
functions. We show that, at first order types. with suitable countability assumptions, the intensional
strictness order is a directed-complete w-algebraic pre-order on parallel algorithms. We show that
application and currying are continuous with respect to the new ordering. This implies that the
input-output function computed by an algorithm is continuous, suggesting that parallel algorithms
can be viewed as continuous functions paired with parallel computation strategies, by analogy with
the result of Berry and Curien that their sequential algorithms correspond to sequential functions
paired with sequential computation strategies.

In section 6 we point out some limitations of our model and outline how we intend to overcome
them in future work. We discuss a number of topics for further investigation.

2 Background

2.1 Concrete Data Structures

A concrete data structure, or C'DS, (C.V .E.F) consists of a set C of cells, a set V of values, a set
E C C x V of events, and an enabling relation b between finite sets of events and cells. Events are
denoted either (¢,v) or e = ».

For a CDS M = (Car. Vas EarFag). oy C© Ear. and ¢ € Cyy, if y Fas ¢ we say that y is an
enablingof ¢, If y Far ¢ and y C x we say that yis an enabling of cin z and write y b, ¢. If @ ka7 ¢
we say that ¢ is initial

We define F{y), the cells filled in y. to be the collection of cells in the events of y. E(y), the
cells enabled in y, is the collection of cells that have an enabling in y. A(y), the cells accessible in
y, is the collection of cells which are enabled in y but not filled; that is, A(y) = E(y) \ F{y).

For ¢,¢’ € Cpy, we say that ¢ immediately precedes ¢/, denoted ¢ €, ¢, iff there is an enabling
y Fas ¢! such that ¢ € F(y). If. moreover, y C 2 we say that ¢ immediately precedes ¢’ in z, denoted
¢ &, ¢. Taking the reflexive and transitive closure of < ,,, we say that ¢ precedes ¢’ iff ¢ <, ¢/,
and analogously < defines precedence in x. M is well founded iff <, is well founded.

For a well founded CDS M. we sav that y C Eay is _,y’_t.c.ncL‘z:’o-m:z[2 iff any cell is filled in y with at

2Berry and Curien nse the term consistent instead of [unctional,

most one value; let F(M) be the collection of functional sets of events. If F(y) C E(y) we say that
y is safe, and y is a state of M iff it is functional and safe. Let D(M) be the collection of states
of M. We add a subscript to indicate finiteness, e.g., Dan(M) for the collection of finite states.
(D(M),C) is a concrete domain®.

A well founded CDS is stable iff for any state z and cell ¢ enabled in z, ¢ has a unique enabling
in z. A CDS is a deterministic CDS. or DCDS for short, iff it is well founded and stable. We will
work from now on exclusively with DCDSs, although some of the development could be carried out
more generally. Throughout the paper, 3/, M’, M, and so on range over DCDSs.

Example 2.1 The DCDS Null has no cells, values. events, or enablings; its only state is the empty
state 0.

The DCDS Bool has a single initial cell b, which may be filled with either of the values tt
or £f, representing the hoolean truth values: its states are 0, {b = tt} and. {b = tf}, and thus
(D{Bool), C) is isomorphic to the conventional flat hoolean cpo.

The DCDS Nat has a single initial cell n. whiclh may be filled with a natural number; its states
are § and {n =k} for k € IN. so that (D{Nat),C) is isomorphic to the conventional flat natural
numbers ¢po.

The DCDS LNat has cells {b, | # > 0}. values 0 and 1, and enabling relation given by the rules
D FLNat bo and {b; = 1} FpNat big1, for i > 0. Thus, the cells are accessed in increasing order of
index. We denote the states as follows: S™(L) = {b; = 1|7 < n} and S™(0) = {bi=1]i<n} U
{bp =0}, for n > 0; and $~(L) = {b; =1|i>0}. Thus (D{LNat},C) is isomorphic to the lazy
naturel numbers cpo. described for example in [('0l89). .

2.2 Product of DCDSs

If ¢is a cell and 7 is a tag or label. we write ¢.7 for the the labelled cell (¢,4). This notation
extends to sets of cells and sets of events: for ' € Ca and ¥ € Ear, Cd = {ci|ceC} and
y.t = {{c.d,v)]{(c,v) € y}. In defining products we use the labels 1 and 2.

The product of M| and My, M; x M, is the DCDS obtained by taking a “disjoint union”
of My and M;, in that cells are labelled by 1 or 2 to indicate where a cell, event’or enabling
originated; Cas, xar, = Car, LuCyy, 2, Vianxan = Vg, UV, EMlng =Ey 1 U Ear, .2, and for
t=1,2, y.‘i Fi\[,x;"»h c.iiff i F’_”, C.

Pairs of sets of events are obtained similarly: (2, z3) = £1.1Uz5.2. Projections are easily defined
to satisfy fst{(zy,29)) = 21 and snd({z,.2,)) = z,. We use z, ¥, etc. to denote pairs.

The product trivially preserves well foundedness and stability, and pairing and the projections
preserve functionality. safety and finiteness. F{1fy x My) = {{z1.20) | z1 € F(My), 5 € F(M)},
and set inclusion on F(M, x M) coincidos with compouentwise set inclusion.

Example 2.2 Bool x Bool has two initial cells. b.1 and b.2, each of which may be filled with a
value of tt or ££. It has 9 states. one of which is {b.1 = tt,b.2 = ££}, alternatively denoted by
({b:tt},{b:ff}). .

2.3 Stable and Sequential Functions

We now define stability and sequentiality of functions from D(M) to P(A"). The definition of
sequentiality uses the cells of a concrete data structure in a manner similar to the use of occurrences
of a syntactic term in a syntactic delinition of sequentiality [Plo77].

*When suitable conntability requirements are imposed. See [[NP78] and [Cur86, section 2.2] for details.

3

A continuous function f: D(M) — D(M") is stable if for any z € D(M) and ' € D(M’) below
f{x) there exists a least stale M(f.z,2") € D(M) below x on which f attains or surpasses ', i.e.,
for any z C z, &' C f(z) iff M(f.z.2")C =.

A continuous function f : D(M) — D(M’) is sequential at z € D(M) i, for any ¢’ € A(f(zx)),
one of the following holds:

(1) Either A(z) =0, and thus x has no super-sta‘teq;

(2) Or there exists some ¢ € A(r) that must be filled in any y that increases x such that ¢ is
filled in f(y), that is-)

Jec Az). VyeDIM) . (2 Cy& e F(fly))) = ceFyh
In case (2), a cell ¢ € A(z) as described there is called a sequentia-iity indez of f at z for ¢’.
f:D(M) — D(M’) is sequential il it is continuous and it is sequential at every x € D(M}.

A sequential function is stable. The converse, however, does not hold.

Example 2.3 The doubly-strict-or function sor : D(Bool x Bool) — D{Bool) is the least mono-
tone function satisfying;:

sor{{{b = tt},{b = tt})) = {b = tt}
sor({{b = tt},{b = £f})) = {b = tt}
sor({{p = £2),{b = te})) = {b = 11}
sor({{b = ££}.{b = ££})) = {b = ff}.

sor is stable and sequential. Both b.1 and b.2 are sequentiality indices at @ for b.
The left-strict-or function lor : D(Bool x Bool) — D(Bool) is the least monotone function
satisfying:

for(({o =1tt}, @) ={b=rtt}
lor({{v = ££},{b = tt}}) = {b =1t}
lor{({b = ££},{b = ££}}) = {b = £f}.

Jor is stable and sequential. with b.1 as sequentiality index at @ for b.
The right-strict-or function ror : Di{Bool x Bool) — D{Bool) is defined analogously, and has
b.2 as sequentiality index at @ for b.

The parallel-or function por : D(Bool x Bool} — D(Bool) is the least monotone function
satisfving:
por({ ® J{o=rtt})) ={b=rtt}
por({{p =tt}, @)} = {b=1tt}
por({{v = ££},{b = ££})) = {b=£ff}.
por is neither stable nor sequential — it has no sequentiality index at @ for b; and there is no

unique minimal state of Bool x Bool below ({b = tt}, {b = tt}) for which por attains {b = tt}.

*The definition in [Curse] uses {1') instead:
{1'} ¢ is not filled in f(y) for any y above r. that s- Vg e DIM) . r Cy=c ¢ Flfly)

The overall definitions (1.2} and (1.2) are egnivalent. but we prefer to use (1), since it is disjoint from (2).

Let gf : D((Bool x Bool) x Bool) — DP(Bool) be the least monotone function satislying:

gf(({{b=rt}{b=1£}), 0)) = {b=rt}
sf({({ 0 {p=teh){b=1f})) = {b=rtt}
gf({{{b=1f}, @){b=1tt})) = {b=rct})
gf({({({b = £1}.{b = ££}).{b = £1}}) = {b=11}.

This is a variant of “Gustave’s function” (attributed to Berry [Ber78] by Huet (Hue86]}: gf is
stable, but not sequential — it has no sequentiality index at @ for b.

Let min : D(LNat x LNat) — D(LNat) be the least continuous function such that. for all
r.y € D(LNat),

min({ z , 0 }) = 0.
min({ 0 , x }) =0,
min({S(x).S(y))) = Siminte.y)).

For all m,n > 0, min({5™ (L), 57(L)}) = §¥(L), and min{{S™(0),57(0)}) = S¥(0), where &k
is the minimum of m and n. In a fairly obvious sense min generalizes the parallel-or function by
iteration, and it computes the minimun of two numbers presented in unary form. The function
has no sequentiality index at (L. L) for bg. In fact. for each n > @ it has no sequentiality index at
(S™(L),5™(L)) for b,. .

The DCDSs and sequential functions form a category, but it is not cartesian closed, because
the collection of all sequential functions from a DCDS to another need not define a DCDS. The
same is true for DCDSs and stable functions. and for DCDSs and continuous functions.

2.4 Sequential Exponentiation of DCDSs
The sequential exponentiation M ~ sy M is the DCDS (C,V.E,+) defined as follows:
C = Dan(M) x Crpr. We denote a cell (z.¢) € C as ac'.
V = {valof ¢|c € Cy;} U{output /| v/ € V).
E={lac.valof ¢c) &€ O x V |re Alr)}U{(ac output o'y € C x V(') € Ea}.
(zc',valof ¢) by il y = ru {{c.r}} for some v € Vyy.
{(z;c;,output ¢)}j=l = T {{ch pj)}i:l Fape ¢ and @ = U{a, };:1.

We call a state of Af —seq M’ a sequential algorithm.
For @« € D(M —,., M) and + € DM). the sequential application of a to 2. denoted a “seq T. 18
given by

@seg t = {(¢.¢") |y C v . (y'.output ') € a}.

A sequential algorithm between DCDSs mav be viewed as a sequential function plus a computa-
tion strategy for that function. The function is embodied in the algorithm’s input-output behavior;
we sayv that a € D{\f —ey M) compntes the imput-output function Az € D(M) . a ‘seq . The
computation strategy is embodied in the choice of the sequentiality index to be computed.

Intuitively, when a sequential algorithm is executed, computation is demand driven. For in-
stance, an external observer’s information about the result of applying an algorithm to an input
state may be gradually increased by filling the cells of the result state, with each demand for the
value of a result cell spawning a new computation. A cell of the exponentiation consists of a finite
state z, describing the information currently known about the input, and a request for computation
of a value for a cell ¢/ in the output. The events of an algorithm associate with such a cell z¢’ a
command: either an output v’ command that terminates the computation and determines that
(¢/,v') is in the output, or a valof ¢ command that attempts to increase the current input state x
at ¢. This ¢, naturally enough. is a sequentiality index (of the algorithm’s input-output function)
at z, so that the choice of ¢ among all sequentiality indices at z (if not unique) determines the
computation strategy. If the sub-computation for ¢ terminates with the value v, the main compu-
tation resumes with the enabled cell (z U {(e.v)})c’, and so on until a value is output for ¢!. The
sub-computation for ¢ proceeds in the same manner: hence the overall coroutine-like flavor. Note
that if one of the sub-computations fails to terminate, so does the main computation.

Sequential exponentiation preserves well foundedness and stability, and sequential application
is well defined and continuous with respect to set inclusion. The category of DCDS and sequential
algorithms is cartesian closed.

1sor € D{Bool x Bool —,., Bool)
(fb=valof b.1)

{ v.1=tt }b=valof b.2 lor € D(Bool x Bool —,., Bool)
b.1=tt fb=valof b.1)
b.2=tt b=output tt b.1=tt ;b=output tt
b.l1=tt b=output tt b.i=ff ;b=valof b.2

lsor = b.2=ff lor = b.1=ff ’

{ b.1=ff }b:valof b.2 b.2=tt b=output tt
b.1=£ff b.i=£f

= ttt =
b.O=1t .b outpu bo—ff b=output ff J
b.1=1ff
b o= ff b=output ff

s

Figure 1: The sequential algorithms 1sor and lor

Example 2.4 To display sequential algorithms we use vertical stacking to list elements of sets,
e.g., the events of a state,

There are two sequential algorithms that compute the doubly-strict-or function sor: lsor,
shown in figure 1, which evaluates the two sequentiality indices in left-right order; and rsor {not
shown) which evaluates in right-left order. lor in figure 1 is the unique sequential algorithm that
computes the left-strict-or function lor. There is a similar unique sequential algorithm ror for the
right-strict-or function ror. No sequential algorithm computes por. .

We have now summarized enough of Berry and Curien’s work on sequentiality to establish a
coherent background from which to develop our ideas on parallelism.

3 Parallel Algorithms between DCDSs

We want to be able to express algorithms for non-sequential functions, such as por, while retaining
as far as possible suitable analogues to the semantic properties of sequential algorithms.

Sequential algorithms operate sequentially because a valof command may only start one sub-
computation, and only after that sub-computation returns may the main computation proceed. A
natural first step towards a generalization, then, would be to allow a valof command to start a num-
ber of sub-computations in parallel. and to specify a number of conditions, each based on the results
of a finite subset of these sub-computations, under which the main computation may be resumed
(without waiting for the completion of the remaining parallel sub-computations). For example, a
parallel-or algorithm should, when nothing is yet known about its input, start sub-computations
for the input cells b.1 and b.2, and the main computation may resume once the information about
the input has been increased-to either of {v.1 = tt}, {b.2 = tt} or {b.1 = ££,b.2 = ££}. We call
this generalization of the valof a query command.

We can represent a query value ¢ as a set of finite functional sets of events: each element y of ¢
represelits a sufficient condition for resumption. A state x is said to satisfy a query g iff there exists
¥ € ¢ such that y C 2. Given this interpretation it is natural to identify ¢ with its upwards-closure:
if y € gand y C ¥ then every state satisfving ¢ because of ¥’ also satisfies ¢ because of y. Moreover,
if gy and g are queries such that gy 2 . every state satisfying ¢, will also satisfy ¢p; intuitively, it
may require less input information to satisfy ¢ than to satisfy q;. This leads us to model queries
as members of the Smyth powerdomain [Smy78] over a poset of finite functional sets of events
{ordered by inclusion}. Before we continue. we summarize some relevant details concerning the
powerdomain.

Definition 3.1 The Smyth powerdomain (P,{D),C) of a poset { D, <} is the set of all non-empty,
upwards-closed subsets of D. ordered by reverse set inclusion. That is, for all pC D pe P (D) iff
Vex'e Divep& o <o’ =2 e pyand forall pi.ps € (D). C 2 iff pr 2 po. .

A subset P of a Smyth powerdomain is consistent (denoted f# P) iff it has a non-empty in-
tersection, in which case the least upper bound UP is NP. We write p; f} p2 when p; and P2
are consistent. The union of a non-empty subset P of a Smyth powerdomain is its glb in the
powerdomain. NP = UP. The least element of the powerdomain is the underlving set D.

Definition 3.2 A query ¢ over a DCDS M is a non-trivial element of the Smyth powerdomain
(Ps{ Frnl M)). T) over the poset (Fp,(). C). .

The non-triviality condition is imposed since a query is meant to represent a non-trivial incre-
ment in information. It amounts to requiring that ¢ ¢ ¢ for any query q. Note that for all M,
(Fan(M),C) is a well founded poset. It follows that each query can be identified with its set of
minimal elements, which we may call its branches. \We write trim(q) for the set of minimal elements
of ¢, and up{q) for the upwards closure of ¢. For all queries g we have ¢ = up(trim(q)).

In order to ensure that our parallel algorithms compute deterministically, we need to guar-
antee that an algorithm issue the same output command for a given output cell whenever it is
applied to consistent input states. For instance. the parallel-or algorithim associates the same
command output tt with both of the input states {b.1 = tt}, and {b.2 = tt}, and the result
is therefore unambiguous when the algorithn is applied to input {b.1 = tt.b.2 = tt}. We en-
force determinism by using sefs of states rather than single states to approximate the input.
and by ensuring that consistent stales are grouped together. Lor instance, the set of states

{{v.1 = tt},{b.2 = tt},{b.1 = ££.b.2 = ££}} should be partitioned into {{b.1 = tt},{b.2 = tt}}
and {{b.1 = £ff,b.2 = ££}}.

More generally, the considerations that led us to use the Smyth powerdomain for queries lead us
to use the Smyth powerdomain again. this time over the poset of finite states ordered by inclusion;
and we give the following definition.

Definition 3.3 Given a DCDS M and subset p of Dg,(M), define a relation of equivalence over
p as follows: for all y,y’ € p, y = y iff there is a finite sequence of states in p that includes both
y and y’ such that each pair of consecutive states is consistent in {Dan(M), C). Write p/x for the
set of equivalence classes of p.

A elass over M is an element p of Py(Dan{ M)) such that p/~ = {p}. .

Clearly =~ partitions any p € Ps(Dga(M) into classes with the property that states in distinct
classes are inconsistent, as needed in order to guarantee determinism. Moreover, it produces the
finest partitioning with this property. so that expressivity is not lost.

Whereas a sequential algorithm associated a command with cells of the form a¢’, a parallel
algorithm will associate commands with cells of form pe, where p is a class. Intuitively, the elements
of a class are states that an algorithm is forced, by determinism, to treat the same.

Up to this point it might seem that we are going to build the DCDS M — M’ by using classes
of M instead of single states and by replacing valof commands by queries over M. Indeed, such a
simple generalization would be adequate for defining a parallel-or algorithm of type Bool x Bool —
Bool. However, this example is not general enough. Consider, for instance, the curried type
Bool — {Bool — Bool). Our determinism requirement would prevent any non-strict algorithm
of this type from having both strict and non-strict results®. But a curried parallel-or algorithm
should produce a strict result when applied to the empty input state, and a non-strict result when
applied to {b = tt}, and therefore cannot be expressed using the framework described so far.

To permit a more general treatment we let algorithms issue queries that involve not only their
immediate input state, but also the successive (or residual} arguments to which the algorithm may
be applied. For the curried parallel-or example, an input of @ with a residual {b = tt} or an input
of {b = tt} with a residual @ both lead to a ground result {b = tt}, once fully applied, while an
input {b = ££} with a residual {b = ££} is inconsistent with both previous alternatives, and leads
to a ground result of {b = £f}. '

While this structuring idea does permit us to express curried algorithms, it could be argued
that our solution is somewhat ad hoc. Indeed. as a vesult of this structure currying and uncurrying
operations are “built in” and become simple operations on the internal structure of algorithms. We
will return briefly at the end of the paper to the advantages and disadvantages of this approach.

We formalize these ideas hy associating to each DCDS name M a representation DCDS rep(M)
and a base DCDS base(). We assume that DCDS names are built from a given collection of
atomic DCDSs that contains at least Null. using the binary operators x (product) and — (arrow).
We blur the distinction hetween a DCDS name and the DCDS it is intended to denote. We assume
that atomic DCDSs mentioned earlier and the product of DCDSs are interpreted as given above.

Definition 3.4 A DCDS name is basic iff its outermost constructor is not —.
If M is basic let rep(Af) = Null and base(M) = M.

*The same ountput command that is associated with the empiy input state would need to be associated with the
. . N
other possible input states.

For M — M/ let

rep(M — M)
base(M — M)

M o< vep(M)
base().

i

We let both x and — associate to the right so as to correspond to the argument structure of an
algorithm; for instance, if /g is basic, the DCDS Ay — -+ — M; — My has My, X --- x My x Null
for its representation and 3o for its base. Note that base(M) is always basic.

The classes used in constructing M — M’ will be sets of finite states of M x rep(M’); the M
compouent embodies an approximation of the input. and the rep(M’} component, or residual, will
“make sense” in building a result of type M'. The cells of M — M’ will be formed by pairing
such classes with cells of hase(.M/’). which represent the demands for computation of a resuit at
base type. Similarly. the queries used in building algorithms of type M — M’ will be sets of finite
functional sets of events of M x rep{ /).

Now that we use a representation. our query command generalizes both the valof and the output
commands of the sequential exponentiation: operationally, a query only starts sub-computations
for cells of the input type A/: and the residuals may contribute to query events in the output
algorithm. Again this is illustrated by the curried parallel-or algorithm. Its query may, obviously,
only start one sub-computation, corresponding to the single cell of its argument; when the algorithm
is applied to the input state). the corresponding residual {b = tt} will become (part of }y a query
of the result algorithm.

We extend the notions ol a cell being filled, enabled and accessible in a natural way.

Definition 3.5 For ¢ € Py(F{1])), a cell is filled in ¢ iff it is filled in any of ¢’s branches; Fig) =
Uyetrim()F(w). A cell is enabled in ¢ iff it is enabled in all of ¢’s branches; E(q) = Nyetrimig) E(¥)-
A cell is accessible in ¢ iff it is enabled in ¢ and not filled in ¢; Algq) = E(¢) \ F(q). Equivalently, a
cell is accessible in ¢ iff it is accessible in all of ¢"s branches; Alg) = NyeprimnAlY). .

Definition 3.6 Let 3/ and 1/’ be DCDSs. Then M — AM' is the DCDS (C,V,E.F) defined as
follows. Let M, abbreviate rep(l/ — 1/} and let My abbreviate base(M — M').

C =P Dral M)) x Oy We donote a cell {pe) of C as pe.
V = {query q|q & P,(Fi,(M) & 0 ¢ ¢} U{output v|ve Vy,}
E = {(pc.query ¢) € C x V| F(q) € Aip}} U {(pc.output v) e C x V | (c.v) € Epry}
(pre.query ¢) F pe ill p&(pUqg)/=.
{(pjc;.output L-‘J')}i:l Fope A0 ey, v_,‘)}j.:l Far, €. 1 {f)j}f;:r and p € (u{g)j}ﬁzl)/z.
We call a state of M — M’ a parallc! algorithm. or just an algorithm. .

Note that an initial cell of MW — M’ is of the form up({@})e, with ¢ an initial cell of M. Note
also that the construction guarantees 1hat for each cell pe enabled in an algorithm p is indeed a
class.

There are several obvious points that show how we have generalized the sequential definition. It
is straightforward to define an embedding of sequential algorithms into the parallel algorithms that
preserves operational hehavior. producing a parallel algoritlun that issues queries about a single

9

por € D(Bool x Bool — Bool)

({o=tt }, 0)]
[(0.8)] p=query (0, v=tt)]
({ b=tt }.{ b=t£ })]

por = «

b=output tt

({ o=t }. 0}
(0 b=ve J]

({ b=tz }.{ b=t })] p=output £z

Figure 2: The algorithm por for por

cell at a time. A sequential valof ¢ command corresponds to a query whose branches are of the
form {(c,v)} {(with an empty residual). The condition that a query ¢ command can only be issued
from cell peg if F(g) € A(p) corresponds to the requirement that a valof ¢ command can only be
issued from cell ze’ if ¢ € A{x).

Example 3.7 In addition to the notation used for sequential algorithms. for paraltel algorithms
we use the following conventions. Classes and queries are framed in boxes. and we list only their
minimal elements — branches. The branches themselves are enclosed in square brackets, using a
shorthand notation for pairs: B € D(Null) is denoted as [}, and (yo,{y1,..-,4a]) is denoted as
(yo,91,--. ya) for d > 0.

The unique algorithm for the parallel-or function is presented as por in Figure 2.

lor € P(Bool x Bool — Bool)

B ({ b=tt 1.0y | |
(0.0)] p=query [(} - i@)]

{({ b=tt }@)] b=output tt

lor = (8.4 b=tt })] | ¢
[({ b=ff }@)] b=query [(@} btf {)}

({ b=tf }.{ b=tt })] p=output tt

({ b=t }.{ b=t£ })] p=output s

Figure 3: The algorithm lor for lor

The (parallel) algorithms corresponding to the sequential algorithms lor and lsor from Figure 1
are shown in Figures 3 and 5. A second algorithm plor, for the function Jor, presented in Figure 4,
initiates computations for both input cells together. These three algorithms have corresponding

]

plor € D{Bool x Bool — Bool)

—

({ b=tt }, 0]
[(8.0)] b=query| [{{ b=tff $ b=tt {)]

—_—

{{ b=£f ;9 b=ff })]

plor = [({ b=tt },@)] =output tt

[({ b=£ff }{ b=tt })] b=output tt

[({ v=t2 }.{ b=£f })] p=output £z

Figure 4: The algorithin plor for lor

lsor € P(Bool x Bool — Bool)
[({ b=tt ;.0}]
[{{ b=ff }.,0)]
(04 b=tt ;}]
(0.4 b=ff)]

[({ b=tt }{ b=tt })] =output tt

[(0.0)] b=query

} [({ b=tt }(D)] =query

lsor = [<{ b=tt }{ b=ff })] b=output tt
((0.{ b=tz)]
[({ o=#2 J0)] p=query [(@} b=t 1)]

[({ b=ff }{ b=tt })] b=output tt

[({ b=t£f |{ b=tf })] b=output £f

Figure 50 The algorithm 1sor for sor

psor =

plsor=

psor € D(Bool x Bool — Bool)

{({ b=tt .9 b=tt)]
T be [({ b=tt },{ b=ff })]
(0)] fp=query ({ b=f£ }.{ b=tt })]
((3 b=ff {,4 b=ff }}]
[({ b=tt }{ b=tt })] b=output tt
[({ b=tt }{ b=ff })] b=output tt
[({ b=ff }{ b=tt })] b=output tt
[({ b=t }.{ b=z£ })] p=output £z
Figure 6: The algorithm psor for sor
plsor € P(Bool x Bool — Bool)
{{§ b=tt ¢, B3]
[(0.0)] p=query| [{{ b=ff [,{ b=tt ¢)]
({ b=£f }.{ b=ff })]

[({ o=tz }.0))

(0.
(9,

b=query

b=tt ;)
b=ff)]

[({ b=tt }{ b=tt })]

b=ocutput tt

[({ b=te 14 b=tt |5

b=output tt

[({ b=tf }.{ b=tt P

b—=output tt

{({ b=ff .{ b=t: bl

b=output ff

Figure 7: The algorithm plsor for sor

plsor’ € D(Bool x Bool — Bool)

o=tz V. 0

(
[(0.0)] p=query | {{{ b=tt }{ b=t })]
({ b=te 1. b=tr 1))

-) [(0.4 b=tt 1]
[{{ b=ff },@)] b=query [(@_} b=ff 1)]

plsor’ =

b=tt })] =output tt

b=tt })] b=output tt

{
{ b=tz })] p=output tt
{
{

b=ff |}] p=output £f

Figure %0 The algorithm plsor’ for sor

right-handed versions: ror. rsor and pror. respectively {(not shown).

For the doubly-strict-or function sor. there are several algorithms which employ a parallel
computation strategy, initiating computations for both input cells together. Figure 6 presents the
algorithm psor. in an obvious sense the ~most eager” algorithin for sor; additional algorithms
for sor that compute in parallel are plsor and plsor’, presented in figures 7 and 8, and the
corresponding right-handed versions prsor and prsor’ (1ot shown). .

Example 3.8 Figure 9 presents an algorithm gf for the function gf. Note that every class of gt
has a least element. A variant for which this is not true is the algorithm gf’ (Figure 10) for the
function gf’ : P{{Bool x Bool) x Bool) — DP{Bool}. defined to be the least monotone function
satisfving:

g/({i{{b=tt}fo=f£}. #) = {b=1t}
g"{(C 0 {b=tt}){b=1£f})) = {b=r1t}
gl'l(({b=1f}. 0)ib=rte})) = {b =1t}
s(({{p=tthfb=tt)). 0 }) = {b= e
gl't{t 0 fo=zf}){b=1tt})) = {b=rte}
gff({({fe=tt}. 0 HY{b=1£})) = {b=rtt}
s"((({b = £2).{b = ££}).4b = ££})) = {b = £1)

Like gf, gf’ has no sequentiality index at §. In contrast to af, gf’ is also not stable — there

is 1o unique minimal state below {{{b = tt}.{b = ££}),{b = ££}) for which gf’ attains {b=1tt};

correspondingly. not all classes of g€’ have a least clement. .

Example 3.9 Figure 11 presents the identity algorithm on the DCDS Nat. Note that this involves
a query containing an infinite nunmiber of (mutually inconsistent) branches. and an infinite number
of output events. .

gf € D{(Bool x Bool) x Bool — Bool)

) (@ { b=tt }).{ b=ff })]
[((0.0).0)] b=query (o=t} 0 b=ttt}
{ v=t1 }). b=ff })]

(({ b=t }i b=ff {), 0] ‘

[(({ b=tt }{ b=ff }).@)] b=output tt
[((0,{ b=tt }){ b=ff })] b=output tt
[(({ b=ts }.m.{ b=tt })] p=output tt
((f o=tz }.{ v=ts }).{ b=tf 1) b=output £f

Fignre 9: The algorithm gf for gt

Example 3.10 The parallel algorithm min € D(LNat x LNat — LNat) for computing the
function min on pairs of lazy natural numbers is given in Figure 12.

L}
3.1 Elementary Properties of 1/ — Af’
We now prove some simple properties of M — A’ leading to the proof that M — M’ is well
defined: whenever M and 1/’ are DUDSs so is M — M.
Proposition 3.11 [yFy—y pre. g by—ap pee and pyft pa. then py = pa.
Proof: Intersecting equivalence classes are equal. .

Proposition 3.12 If (pc.query) Fy—ay e then p T p' and for every 2’ € p' there exists T € p
such that C &',

Proof: If # € p/ then # € pUq. For some T € trim{p) and § € trim(q), EUJ S . Since § # 0
and F(§) C A(z). it follows that & C &' .

Proposition 3.13 M — M’ is a well founded C'DS.
Proof: Define the relation < ;_ ,, ower Dg, (M) x Cazy as follows:
re <<<i\]_._‘lf .i"f'l]” (‘]1]]("]' (E (;_ f’ &: I <<‘,\[O CI) ar (1_,' [i’ & c = C’).

It is easy to establish the following implications:

I

gf’ € D((Bool x Bool) x Bool —

gt =

b=query

Bool)
[(({ b=tt }E b=ff 1) 0)]
[{{d 4 b=tt ;)4 b=ff)]
[{{3 b=£ff », 3} E b=tt {)]
[((} b=ff 1 b=tt),)]
[((® % b=ff {). b=tt 3}
[l b=tt b, 0 { b=ff })]
[((} b=ff 1{ b=tf }){ b=ff })]

[(({ b=tr }

]

:%::iiiié

[{(@ b=1f ;)]
[{{s b=ff ;. 0y .4 b=tt %)]
{((} bu=ff % b=tt ;). 0)]

{((® $ b=ff }). b=tt }}]
[(({ b=tz }.) b=ff)]

[b= ff}{b £f }).{ b= ££ })]

b=cutput tt

b=cutput ff

Figure 10: The algorithm gf’ for gf”

idyay € D{Nat —

idya = { 0]

n=query UkEIN

Nat)

{ n=i 11 [}

UAel\{ [{ n=>~k }] n:output k })

Figure 11: The identity algorithm on Nat

nin € D(LNat x LNat — LNat)
min = U, min,, where, for each i > 0,
[({b:=0 },)]
[(S${L).5(L))] pi=query (0 .4 5;=0 ¢}
[({ o=t }{ b=t)]

min,— =

[(S7(0).5°(L))]
[(S*(L1S0))]

(S L).5" T (L))} pi=output 1

b;=output 0

Figure 12: The min algorithm

(1) If <,;, has an infinite descending chain, then so does &4, ;. This is because if
¢ &y, ¢ then up({0})e <y up({B})c”.

(2) If €,;_y has an infinite descending chain, then so does <4, _;p. This is because,
when pe <y P/ Tor cach &' € pf there exists & € p such that e <&, p ¢
{using proposition 3.12),

(3) If «,;_y; has an infinite descending chain, then so does <. This follows from the

finiteness of the states involved.

By these implications. weil foundedness of any CDS coincides with well foundedness of its
base. and hence M — M is well founded iff M’ is. .

We now prove the Tree Lenma. a technical result corresponding to an analogous lemma proven
by Berry and Curien for sequential algorithms. Our proof is similar to theirs. This lemma is
the basis for a tree-like notation for algorithms and is useful in reasoning about the structure of
algorithms. As an added henefit. the tree lemma establishes stability of Af — M.

Lemma 3.14 (Tree Lemma) Lol a e a state of M — M".
(1) If pe,p'c € E{a) and pft p' then:
(la) Either pc < ple. or ple & pe.
(1b) And if (pc.output r).(p/c.output v') € ¢ then p = p (and v =v').
(2) Every cell pe € E{a) has a unique enabling in a.

Proof: By induction on ¢ in &y . where we take My = base(M — Al’).

Let pe,p'e € E(a). such that p £ p'. Let p = pup’. Examine the last few enablings in «
leading to pe (respectively pe). starting with the last output enabling. There must be such
an output enabling, by well foundedness of M — M’. Let us name the constituents of these
enablings as follows:

{(r;d,.output r,)}i=l F, (poe.query qi) by - - Fo (Pr_10.query i) Fy prc = pe

16

{(+id}, output l'.’i)}I,'J:1 Fa (poc.query qy) b - o (plo_ c,query gh) Fq phoc = ple.

Assume that & < &', We show by induction on m that, for all m < k, Pm = Py

— For the base case. we show that po = pj,.

Let = {(d,v)]|d <<T!0 ¢ & dr . (rd,output v) € a & r C p}. Clearly, z is a set of

events of My. We show that v € D(Ay):

Safety: If (d,v) € & then rd € Fia) for some r I p. Let {{s;c,.output wj)};?‘:l F, r'd,
with » © r. Sucl an enabling exists, because rd has a proof in a, and that proof
must have a last output enabling. Therefore {lewy) bl Fod.

Functionality: If (d.v).(d.v') € 2 then (rd,output v),(r'd.output v') € « for some
r.r" € p.so that, by induction hypothesis (1b), r = v/, and ¢ = ¢'.

The state » contains both {{d;. v;)}i=1 and {(d. Ufi)}i;l, two enablings of ¢, which must

be equal by stability of My: so { = ', and. without loss of generality, ¥j < [. d; = dj.

Now. for any j < /. d, = d_’l <<f!0 coand r; r:,. and by induction hypothesis (1b) we

have r; = . Cousequently, by proposition 3.11. pg = 75

— For the inductive step. assuming m + 1 < &k and p,, = p,.. we get Gm4l = (ppp DY
functionality. It follows by proposition 3.11 that p,,,, = Prgl-

From the above. it follows that {assuming & < &) pg = Pi. 50 pc €5 p'e, and there exists a

query chain in « from pe to p'e (of length &' — & > 0). If & < k. we can similarly show that

p'c < pe. Therefore (1a) holds.

Assume that (pc,output ri.{p'c.output ') € a. If & < &' then (pc,query g} € a.

contradicting functionality. So & < k. By svimmetry, & < k'; thus & = &' and p=p, and

(1h) holds.

Finally. to show wuniqueness ol the enabling for pe. take p = p’ in the above argument for (la)
and suppose there are two enablings for pe in «. Since < is well founded. we must get kb = L,

and the argument shows that the enablings are equal. s

Corollary 3.15 M — M/ is a DCDS.

3.2 Currying
Currying and uncurrying operators on algorithms are easy to define, given our use of rep in struc-
turing the components from which an algorithm is built. Recall that

rep{ Af; x My — M%) (M x My« rep(M),
vep(My — My — M) = M) x (M, x vep(M),

It

Definition 3.168 Define the map currv : Flrep(M, x My — M')) — Flrep(My — My — M")) by

cary((neg2) 7)) = (oo 3')).

This function extends to queries. cells. commands., and algorithms as follows:
curry(q) = {curry(y) | y € ¢}. curry(pel = curryv(p)e,
curry(query ¢) = query currvig). curry(output v) = output o,

curry{a) = {{curry(p)r.c'lzl'l')'(w)) [ipe.u) € a}.

The uncurrving function mayv he defined similarly. .

17

Proposition 3.17 The map curry : D(Myx My — M') — D(M;, — My — M') is an isomorphism
and preserves enablings.

Proof: Straightforward. : .

cpor € D(Bool — Bool — Bool)
\
[{ b=te }, 0!

[0.0] p=query U 4 b=tt ¢]
{ b=t h{ v=tt })
cpor =
[{ b=tt }] B
0 { bott }] b=output tt
| [{ b=ff }{ b=ff }} b=output ff

Figure 13: The curried parallel-or algorithm, cpor = curry(por)

Example 3.18 Figure 13 presents cpor = curry(por), the curried version of por. Figure 14
presents the fully curried version of gf’. .

Note that currying the parallel-or function por to cpor reduces parallelism. in an informal sense,
shown by a comparison of the por and cpor algorithms. poer’s query initiates two parallel sub-
computations, while cpor’s query initiates a single sub-computation. Even though cpor does not
compute in parallel, the cpor function is not sequential (as defined in section 2.3) since it is not even
monotone with respect to set inclusion — contrast cpor() and cpor({b = tt}). This observation is
a premonition of problems we will encounter with application.

4 Application

Recall that for a sequential algorithm @ of M —,, M’ and a state x of M, Berry and Curien
defined the application of @ 1o by

@seqt = {(c ")} 3y C v . {y output o'y € al.

One might read this as saying that the events (', v') of @ -5eq @ are obtained by “projection”
from output events (ye’, output i’} of @ whose state component y is below &, and thus may be an
accurate partial description ol the input .

Consider the application of a parallel algorithm « € D(M — M") to x € D{(M), producing a
result which we will write as @ - . Intuitivelv, there ought to be an operational correspondence
between the events of @ and the events of @ - o, in the rough sense that for each event (pe,u) € @
there are some events of @ -+ which are responsible for « - x exhibiting the same behavior that (pe,u)
entails when the argument to « is known to be v. Given our use of residuals in constructing the
events of M — M. pis a set of linite states of M x rep{ M’) and each query ¢ in a is a set of finite

I~

cgf’ € D(Bool — Bool — Bool — Bool)

(@ .4 b=tt ;.4 b=ff 3]
[} b=ff 1, 0 4 b=tt ;]

[0.0.0) b=query | [{ b=ff },i b=tt .]
(@ < b=ff ;4 b=tt }]

[{ b=tt , @ 4 b=ff }]
[{ b=tf { b=ff } b=ff }]

[{ b=tt }} b=ff } 0]

b=output tt
1 b=tt 1 0]

[{ b=tf }{ v=t1 }.{ bots }] b=output £z

Figure L1: The curried algorithun for gf’, cgt’ = curry(curry(gf’))

19

functional sets of events of M X rep(A’). By analogy with the sequential case, given a class p and
an input state z we will be interested in the set of residuals derived from elements of p whose input
component approximates z; and similarly for a query ¢. We therefore define a projection operator
7 on queries (and classes) as follows.,

Definition 4.1 For 2z € D(M), and ¢ € Py Fanlrep(M — M'))), define

mlg)={F|3yCx. (y.0) € q}.

To(q) is either empty, or in Py Fr,(rep(M'))). N

An event (pe,)} of a for which 7.(p) = B is irrelevant when a is applied to input state z, because
z is not approximated by any element of p. Even when 7 (p) is not empty it need not be a single
equivalence class of states: the residuals obtained from equivalent but inconsistent states of p need
not remain equivalent in 7.(p). When this happens we must split 7-(p) into its equivalence classes;
in this way, a single cell of @ may project onto more than one cell of a - z.

Now consider a query event {pc.query q) of a, and suppose that 7.(p) is not empty. There
are three possibilities: either m,(q) is itself a query over rep(M’); or m,{q) contains the empty
set; or else 7.(¢) is the empty set. If m,(q) is a proper query, then we should obtain an event
{(p’c,query 7-(¢)) in ¢ -z for each equivalence class p’ of m,(p). If € m.(g¢), then when applying
a to = the query ¢ is satisfied by the input state alone, and no further query needs to be issued
concerning the residual arguments. However, some events following pc in ¢ may contribute events
to @ -z. Such a query is said to be fully satisfied by application of o to z. Finally, if 72(¢) = @ then
when @ is applied to x the computation can progress up to a point where the query ¢ is issued,
but cannot go further because ¢ cannot be satisfied: there should therefore be no events in a + 2
corresponding to (pc,query ¢) or any event following it in a. ‘

Similarly, an output event (pc.output v) of a projects iff 7z(p) is not empty, in which case we
obtain an event {p’c,output v} of « - x for each equivalence class p' of m.(p).

We therefore extend 7, to a (partial) map from Vys_ap to Vap as follows, and give a formal
definition of application that makes these ideas precise:

rz{query q) = query =,(¢) and 7 (output v)= output v.
Definition 4.2 Let « € (M — ') and @ € D{M). The application of @ to z is defined by®

a-x={(pemlu))€Eap|Ipen)ea. pem(p)/=}

The requirement that events of a-x belong to Eay filters out empty projections and trivial queries.

We remark that when the Berrv-Curien algorithms are embedded in the parallel framework,
a valof command is either not projected by an application, or else it is fully satisfied, since all
residuals are vacnous. Correspondingly. the sequential application need only project the output
events.

EWhen Af' is basic, this definition of u - & produces not a state of M’ but a degenerate “nullary algorithm” built
from rep Null and base A'. [ts events are of the lorm ({#}c. output v}, with (¢, 2} an event of M', since there are no
legal queries over Null Such nullary algotithms are isomorphic to states of M’ by replacing each ({#}c,output v)
by (c,v); we will omit explicit mention of this isomorphism in the definition of application and related development
_ for simplicity of presentation.

20)

Example 4.3 Consider the application of the curried parallel-or algorithm cpor to {b = ff}. The
result is the identity algorithm on Bool. There is a clear one-to-one correspondence between the
events of cpor and cpor - {b = ff}: each event of cpor projects onto a unique event of cpor -
{b=ff}.

_ [{ b=tt }] \
[ﬁ] p=query [b=ff]
Cpor-{ b=1ff }-_- [{ b=tt }] b=output tt
[{ b=ft }] p=output £f

Example 4.4 Consider the application of cpor to . The resulting algorithm does not have {or
need) an event with an output £f command, because projection of the output £f event of cpor
does not produce a valid class or event.

@] p=query [{ b=tt }]

cpor -0 =

[{ b=tt }} b=output tt

Example 4.5 The query of cpor is fully satisfied when cpor is applied to {b = tt}, and the result
is a non-strict constant algorithin.

cpor-{ b=tt }: { 0] b=output tt }

*
Example 4.6 Splitting occurs when we apply the algorithm cgf’ (figure 14) to 0.
[{ b=tt ;.3 b=ff]
0.0] b=query
[b=ff >.{ b=tt ;]
cgt’' -0 =
[{ b=tt }{ b=ff }] b=output tt
{ b=z }.{ b=tt }] p=output
[]

4.1 Elementary Properties of Application

We now show that application is well defined. We begin by introducing two maps root,, and
source, ; to make precise the correspondence between events of @ - x and «. These maps are not
generally surjective. since some ovents fail to project. They are also not injective, because of
possible splitting,.

Definition 4.7 For « € D(M — 3M') and z € D(M), define root,; : Fla - z) — F(a) and
source, ; : Fla - 2) — F(a) by:

roote (p'e} = poc where pp = M{p{pc € E(a) & peEmp)/x}s
sourceg {p'c) = prc iff Ju . (prew) €a & (Pemlu))ea-z & p' € mi(p)/a

Proposition 4.8 root, . and source, , are well defined. Moreover, for any p'e € Fla -),
{1) rooty (p'c) € source, .(p'c). and
(2) For any pc € E(a). p' € m,(p)/~ iff root, »(p'c) K pe L5 source, {p'e).

Proof: Let (p'c,w’) € a-z. C = {pc € E(a}|p' € TpY/x}, P={pipc€C}and po = NP; Cis
non-empty, by definition of application.
All classes in P are consistent. so that, by the tree lemma, the cells in C' form a <-chain.
By well foundedness of <. (' has < -minimal element, and that must be poc. root, .(pc) is
uniquely determined to be pge. Moreover. pgc is clearly filled, so that root, ;- is well defined.

By definition of application. there exists some (pic,u) € a such that p € m(p)/~ and
W' = my(u); obviously. pre € C'. Assume that there exists pe € C such that pic < pe, i.e.,
such that & = query ¢ and (pic.query q) b, pc. But since p' € 7.{p)/~, this necessarily
implies 0 € m.(q). a contradiction. It follows that pjc must be < -maximal in C. source, ,(p'c)
is uniquely determined to be pjc. so that source, , is well defined.

Moreover, we have shown that root, .(p'c} and source, »(p'c) are < -minimal and < -maximal,
respectively, in C. and ' C {pc € £(a)|root, (p'c) €7 pc <3 source, »{p'c)}. The converse
inclusion follows from monotonicity of projection. .

Proposition 4.9 For e« € D(M — M*) and v € D(M). «- & is a state of M'.

Proof: Clearly, a-a G L.
To show functionality of a - x. note that, for (p'c,w’) € a -z, v’ is uniquely determined to be
r.(1) where (source, ,(p'c). 1) € a.

We now show that a -« is safe. Let p/c € Fla-z), pc = root, o(p'e) and {(1chj,uj)}£. k. pe.

=1
For every j < [. p; C p. and by monotonicity of projection, mz(p;) C x.(p). so there must

exist a unique p, € 7.{p;)/~ such that p’ T p'.
If pe has an output enabling. i.e.. each u; has form output v;, then p € (U{pj}fi:l }/=~. and
oz ple.

it must be that p’ € (U{y/ }1_ }/ = so that {(pjc;.output uJ)}i1 X

If pc has a query enabling then I = 1. u; = query ¢ lor some ¢, and (pic,query q) b, pe. e,
p€ (pmUgq)/x. Clearly. m.{¢) # 0. and further, by <-minimality of root, (p'c), py # p' so
that @ ¢ x.(¢), and (pje. query =,.(4)}) € a-x. Ttis easy to show that (pie,query m.(q)) F

ple, ie. that p' € (P UT A4}/ ~. .

Now that a -z has been shown to be a state. we extend root, » : F{e-2) — F(a) to root, ;- :
E(a-2) — E(a), using the same delinition given above, and complement proposition 4.8 as follows:

Corollary 4.10 root, . : E(a -] — L) s wcll defined. Moreover, for any p'c € E(a -),
¢ Far ple iff source, (y')F., root, (pc).

where source, (1) = {{(source, (pe)ou) € a|{(pe.me(u)) € y'}

22

5.1 The Intensional Strictness Order

Definition 5.2 The intensional siriciness pre-order <, on D{M) is defined by induction on M
as follows,

For an atomic DCDS M let </, be set inclusion. _

For a product M; x M, let <A1 x a1, De defined componentwise: (z,z;) <y xar, (21, 2h) iff
Ty <hy, 21 and g iy, 5. ‘

For an arrow type M — M’ and x.2' € D(M — M"), let 2 Lhyr_ap ' iff there exists a function
f i E(x) — E(2') such that the following hold:

(1) If f{pc)=p'e’ then ¢ = ¢ and p' T p.

(2} If (pe.output v) € & then (f{pe).output v) € 2.

(3) If {(pjc;.output ".i)}:=a Fo pe then {{ f(pjc;),output Ui)}gzg Fo f(pc). Note that. by

taking { = 0. f must map initial cells into initial cells.
(4) If {pc,query 4) € .« then one of the following holds:

{WKN) There exists ¢’ C q such that { f(pc).query ¢') € 2’, and if (pc, query ¢) b, pyc then
(f(pe).query ¢') Fpr f(ine).
In such a case we say that [weakens (pe,query g).

(ABS) If {pc.query) k. pic then f{pe) = fipe).
In such a case we say that [abstracts (pc, query ¢).

We call such an f a morphism. We say that © <* 2/ by f in cases where we need to mention the
morphism explicitly. We will often drop the subscript M from < .

In other words, a. morphism f preserves basic cells, output commands and output enablings,
and may either weaken a query or abstract it. Roughly speaking, if z <' 2’ then z' is less strict
than 2 in the sense that it may require less information about the inputs, and may ask for it at an
earlier point of the computation. in order to produce at least the same outputs as .

Example 5.3 Note that our previous connter-examples to monotonicity {example 5.1) become
examples of algorithms related by <. since cpor-) <' cpor-{b = £f} and cpor-@ <' cpor-{b = tt}.
We also have gf <' gf’. by weakening,. .

Example 5.4 We further illustrate < by relating the algorithms introduced in example 3.7. These
algorithms differ in strictness ol the computed function, and in their computation strategies. We
have psor <* plor <‘ por bv weakening, and plsor <! plor by abstraction; plsor’ <! lor by
weakening; and ou the sequential algorithms we have l1sor <! lor by abstraction. The remaining
relationships may be inferred by left-right symmetry and transitivity. Figure 15 summarizes the
relationships between these algorithms. Note that the algorithms for sor are pairwise incomparable,
and the two algorithws for lor are incomparable.

In each of these simple examples a suitable morphism is easy to construct. .

'S]

4.2 Input-Output Functions

Our definition of the input-output function computed by a parallel algorithm is similar to the Berry-
Curien definition for sequential algorithms. In fact, the embedding of the sequential algorithms into
the parallel algorithms mentioned earlier preserves the function computed by an algorithm. Again
this shows that our notion of application is a sensible generalization of the sequential definition.

Definition 4.11 The input-oulpul function of an algorithm « € D{M — M) is the function
Az € D(M) . a-x. mapping states of M to states of M". .

Example 4.12 Each of the algorithms discussed in example 3.7 computes the corresponding func-
tion: for instance, por computes por; both lor and pler compute for; each of 1sor, plsor, plsor’,
and psor computes sor. Similarly. the min algorithm (example 3.10) computes min. .

We can also show now that currying and application interact correctly.
Proposition 4.13 for any a € D{{ 3y x My) — M'). 21 € D(My) and £y € D(M3),
(curry(a)-z,) - x3 = a-{ry.2a).
Proof: Immediate. .

In other words, if @ computes f. then curry{a) computes curry{ f). Agaiu, a corresponding
property holds for uncurrying.

5 Ordering Algorithms

Application as defined above is monotone and continuous in its first argument with respect to the
set inclusion ordering on algorithins. but not even monotone in its second argument. This is caused
by two phenomena, which we call weakening and abstraction of queries.

Contrast @ - x and a - 2’, for an algorithm a and @ C z’. Clearly, increasing the argument from
x to ' may increase the set of elements of a query q of « whose input conditions are satisfied, so
that 7.(q) C wplq) (and 7o (q) T 7o(g)). I 7.(q) is a valid query then m,+{¢} is non-empty, and
we need to ask whether 2/ fully satisfies 4.

o If7.(q)isa valid query. ic..) ¢ 7,(q). then we say that the query w:(q) of a-x is weakened
into the query m,(q) of - 2",

o If 2’ fully satisfies q. ie.. B € 7,5(q). then we say that the query 7.(q) is abstracted.

Example 5.1 Consider, c.g.. cpor - € cpor - {b = £f} and cpor - £ cpor - {b = tt}, owing to
weakening and abstraction. respectively, .

The counter-examples above cannot be resolved by modifying the definition of application,
since they are simple and intuitively correct, and serve as guidelines to which any definition of
application must conform. The desire for monotonicity and continuity of application therefore
motivates a coarser order than inclusion on states: we define a pre-order <* based on the existence of
a morphism hetween algorithms that preserves enabling structure up to weakening and abstraction.

lor pror ror

lsor plsor’ lplsor prsor Tsor’ rsor

Figure 15: The or-algorithms related by <¢

5.2 First order DCDSs

Strictly speaking, now that we have determined that set inclusion is not appropriate as the under-
lying order for our model. we should go back and examine what happens to our construction of
M — M' when we employ <' instead of set inclusion. However, it is easy to see that this would
make no difference in the construction of first order DCDSs, defined to be the s generated by
the following grammar. where A is atomic:

M= P|P— M Poeo= 1] Px P

Algorithms of first order type may return algorithms as results but do not take algorithms
as arguments. All examples of algorithms discussed so far have been first order, and the class
of first order DCDSs is closed under currying and uncurrying. When M is first order the set
inclusion ordering on rep(Af) coincides with the intensional strictness ordering, so that the first
order algorithm space and the definition of application remain unchanged if we use <’ instead of
C as the underlying order. For the rest of this development we focus on first order DCDSs. and we
show that our model provides a satisfactory account of first order algorithms. At the end of the
paper we will discuss briefly why a more radical solution is needed at higher order types.

5.3 Order-theoretic Properties

Proposition 5.5 If a <" ' by [then fla) = {(fipe)ow') € | pec € F(a)} is a state. For any
pe € Ela), if fipe) = pe then na cocnt that precedes pe in o is abstracted,

Proof: Functionality of f(«}is inherited from ', Safety of f(a) may be shown by induction on the
number of abstracted query events below a cell pe € E{a). The same proof may be adapted
to show that no abstraction may occur helow pe if f(pe) = pe. .

Proposition 5.6 <' contains the sel inclusion relation. and. in particular, is reflexive. The empty
set is a least element in <'.

Proof: If & C o' then the identity embedding of () into E(a’) is clearly a morphism showing
that o < ' .

Note that the intensional order properly contains set inclusion. since (for instance) 1sor <‘ lor
but 1sor Z lor.

Proposition 5.7 If e <' &' by [and o’ <'a” by f' then a <ta" by flof.

Proof: Properties (1), (2) and (3) in definition 5.2 are obviously preserved by composition of
morphisms. We check property {4). Let (pe.query ¢) € a.

o If f abstracts {pc,query ¢) then so does f'o f.

o If f weakens (pe,query ¢) into (p'c,query ¢') € ¢’ which is then abstracted by f’ then f'o f
abstracts { pe,query ¢).

o If f weakens (pe,query ¢) into (p'c,query ¢') € «' which is then weakened by f’ into
(p"c.query ¢") € a”. then [o f weakens (pc.query g) into (p”c.query ¢“). .

Thus, <' is reflexive and transitive. However. <! is not anti-symmetric in general. Intuitively,
this is because queries that do not have an output event following them may be abstracted and
re-introduced at will, thus generating distinct but <*-equivalent algorithms.

Example 5.8 Consider <{ . i_Boolr *Ve have

@g‘{ 8] b=query| [{ b=tz)] }gm.

by inclusion and abstraction respectively. : .

However, <! is anti-symmetric. and hence a partial order, on algorithms all of whose queries
lead to output events. since in such cases abstraction cannot be “undone”. We make this precise
as follows.

Definition 5.9 A cell pc € L(a) is observable in « iff there is an output event (poc, output v)E€a
such that pe €2 poc. An event is observable iff its cell is observable, and an algorithm is observable
iff all of its events are obscrvable. .

Proposition 5.10 <' is anli-symmetric on observable algorithms.

Proof: Assume a and «’ are observable algorithms, ¢ <* @' by f, and &’ <" a by g.

For any output event (pc.output r}of a. (geo f(pc),output v} is also an output event of
a. By the tree lemma, g o f(pc) = fipe) = pe. By proposition 5.5, no event preceding
(pc.output v) may be abstracted by go f. Therefore g o f may not abstract any observable
event. Since a is observable go [may not abstract at all. It is easy to adapt the case analvsis
in the proof of proposition 5.7 to deduce that f itself may not abstract.

Let (pc,query ¢) € a be a query event that is weakened by g o f. It is weakened by f to
(fipe).query ¢') € «'. whicl is in turn weakened by ¢ to (g o f(pc).query ¢ € a, with
¢" C ¢’ C q. But by the tree lemma and since ¢” C ¢, (pc,query ¢} = (g o f(pc),query ¢},
and consequently (pc.query ¢} = (f(pc).query).

Therelore f may not abstract any of the events of a, and all weakenings are identities. We
thus have ¢ € «'. and. symmetrically, o' C a. .

Corollary 5.11 <' ix a pro-orde v, and il is a partial order on observable algorithms.

Every algorithm has a unique observable algorithm to which it is <‘-equivalent, by abstraction
of the non-observable queries. and by inclusion. respectively. This means that we lose no generality
il we concern ourselves mainly with observable algorithins.

20

5.4 Distinguished Morphisms

There may be several morphisis hetween two algorithms, as in the following example,

Example 5.12 Let aj, a3 € DP{Bool x Bool — Bool) be the following algorithms:

N

§ b=query [{ b.l=tt }}

[{ b.i=tt }] b=query [{ b.2=tt }]

a] =
b.l=tt
=out
[{ b.o—tt }] b=output tt
[b [{ b.i=tt]
=quer
P po=ee |
az =
[§ b.1=tt }]
b=output tt
[{ b.2=tt }]

There are two morphisms showing that a; <‘ ay: one morphism weakens the first query and
abstracts the second. while the other morphism abstracts the first query and weakens the second
query. .

We may. however. characterize a unique distinguished morphism 8, ,» whenever a <' a'. Intu-
itively, a distinguished morphism is defined inductively so that it always weakens whenever possible.
Thus, in the previous example. only the morphism that weakens the initial cell is a distinguished
morphism. We make these ideas more precise as follows. :

First. let a.a’ € DL — M) with o an observable algorithm.

Definition 5.13 Define a partial function &, : Fa) — E(«") by induction on pe € E(a):

e if {{p;c,.output «,)}!;:; Fope & p' Cp
& i, or(p;c;).output UJ,-)}'!,=1 Fople
pe if (pyc.query ¢) b, pc & p/ Cp
8y r{pe) = N3 Cog . (b ipie).query ¢) by ple

buwtlpne) i (pre.query q) b, pe & ~(3¢' Cq . (6,.0(pic).query ¢) € o)

undefined otherwise

We say that 6, .+ preserves the ontput event {pe.output v) € a iff (6, ,(pc),output v) € a'.
Proposition 5.14 6, . is woll defined as o partial Junetion, and its domain is downwards closed

with respect to <. If b, ., prescrees all output cvents of that precede pe then 8, .0 is defined on
pe: if bg e prescrves all oulpul o ecnits of a then b, . s a total function.

27

Proof: By induction on pec € E(«).]
Proposition 5.15 6, . preserves all output events of a iff a <tal by by
Proof: By definition of é, .. .
Proposition 5.16 [fa <'«’ by [then. for every pe € E(a),

(1) There erists pe < pe such that f(pe) = b, 40(pe).

(2) 8440 preserves all oulpul coenls that precede pe in a.

{3} For any pc € E{a). flpe) <5 b,q1(pc).

Proof: By induction on pc € E(a).

We assume the following immediate properties of &, 4/

(a) If 8, or(pe) is defined and p'c = d,.0(pe) then p' T p.
{by I &, .. (pe) is deflined and pe < pe then 4, o(pe) <5, bo.0r(pc).

Let pc € E{a). Note that by induction hypothesis (2) and Proposition 5.14, 6, ,(pc) is
defined.

(1) If {(p;c;,output 15)}5.:1 F, pe then. by induction hypothesis (2), the enabling is preserved

in «, so that {{04..(p;c;).output t?,')]i*':] For dq.0(pc). Similarly, since f is a morphism,
{(f(pjc;),output UJ)}’Fl k. fipe). For j €1, the classes 8, ,(pjc;) and f(p;c;) are both
upper-hounded by p;. so that. by the tree lemma, &, o«(pjc;) = fipje;) for each j. Also, the

classes &, ,(pc) and f(pe) are upper-bounded l)y_ p. so by proposition 3.11, &, .(pc) = f(pc).

If {pic.query ¢) F, pe then. by induction hypothesis (1), there exists pre < pic such
that fipic) = bqa(Prey <5 by ripe). I fipe) = f(pie) then we have shown (1). If, on
the other hand. (f(pic).query ¢”) koo f(pe), with ¢" C g, then it is also the case that
{(60.q:(frc),query ¢") b fipc). We cannot assume that pyc is 8, o-weakened, but there is
certainly such a cell on the query chain from pic to pye (since pye itself qualifies). By well-
foundedness, there is a first such cell. say pac: it is the first celi on the query chain whose
query is above ¢"”. Since pycis b, ,-weakened. then {pzc, query q2) o pe < pe, with ¢ C g2,
50 that (8, . ec).query ¢") o 8y w{pe) and f{pc) = 8,.0(Pc), again hy proposition 3.11.

(2) Let (pc,output v} € . Then (f{pc).output v) € @' and by (1) there exists e <, pec such
that f{pe) = &, o (pc). I follows that 6, ,{pe) = &, or(Pe)

(3) Follows from (1) and {h). -

Corollary 5.17 {f a <' o then a <ol by &, . Moreover, bq.q is the unique morphism g that
weakens whenever possible. i.c.. such that whenever (pe.query q) € a. (g{pc),query 7)€ ad and
¢ C q then g weakens pe.

Proof: Whenever a < a’. 8, preserves all output events and thus is a morphisin. Note that
b, weakens whenever possible. It is easy to show by induction on pe € E(«), that for any
morphism g that weakens whenever possible. g(pe) = dq 4(pe). .

28

The definition of distinguished morphisms &, ,/ can be extended to the case where a is not an
observable algorithm, by making 8, . abstract all non-observable events of «.

The composition of distinguished morphisms is not necessarily distinguished, as in the following
example,

Example 5.18 Consider the algorithms a; and a3 in example 5.12 above and the algorithm aj
given here,

0 b=query [{ b.2=tt }]

4, =

[{ b.2=tt }] b=output tt

Clearly, a; <! ay <* a3. and 0a,.a, is the morphism which weakens the first query and abstracts
the second; but 65, a, # da,a, 04,2, hecause %a, a, abstracts the initial query and therefore the
composition is ~forced” to abstract too earlv. .

However. the following can be said concerning composition of distinguished morphisms.

Proposition 5.19 Ifa <' o' and o’ <' o, and b, does not abstract at any cell preceding pe. and
byt g does not abstract at any ccll preceding b, o pe). then Sgan(pe) = g1y 0 &, 4i(pe).

Proof: By induction on pr. .

5.5 Limits of Directed Sets

A subset X of a partial order or pre-order (. <) is directed iff it is non-empty and every pair of
elements of X' has au upper bound in X, (D.<) ix said to be directed complete iff every directed
subset has a lub.

We start by defining directed complete partial orders on values and events. which we denote <!
again. We then show. using distinguished morphisms, that the intensional strictness order <' on
algorithms is directed compiete.

Definition 5.20 For values wand «' of M — 3, et u <' o' iffu = o' = output v, or ¥ = query ¢
and u' = output v. or v = query ¢ and «' = query ¢ with ¢/ C q.
For events (pe.u) and (/e u') of M — M. let (pe.ou) <! (P w)it p'Epoe=c¢ and v < o

Proposition 5.21 For all M and M. < is a directed complete partial order on values and events
of M — Af'.
Proof: Clearly, <' is a partial order on values and on events.
The lub of a directed set of values {7 is given by
Vil = output r if output v € U,
~ | query M{q|query qe ('} otherwise.
The lub is well defined by directedness of .

The lub of a directed set of events £ is {pe.u) where ¢ is the unique basic cell mentioned
m £, p=0{p | pee Ui} and v = vl for 7 = {u"| IHp'c,w’') € E}. Directedness of {7
foilows from directedness of L. (pe.u) is a valid event if w is an output. If « is query ¢ and
¢" € Flg) then, by directedness. ¢ is filled in all queries of E from sonte point on, so that it
is accessible in all classes of £ from some point on, and therefore ¢’ € Alp). a

)

Throughout this section. let -1 be a directed set of algorithms. For a € A, let A4, be the subset
{a/ € Ala < '}

The key concept in constructing limits is persistence. A cell is persistent if it, all cells preceding
it. and their images by distinguished morphisms in A, are never abstracted.

Definition 5.22 A cell pe is persistent from a if it is filled in ¢ and for every p'c’ <7 pe, a’ € 4,
and @’ € Ags, 8y, does not abstract at §;.4(p'c’).

A cell pe is persistently enablcd from o if it has an enabling y b, pe such that all cells filled in
y are persistent from «. J

If a cell is persistent (respectively. persistently enabled) then so is any cell preceding it, and so
is its image by a distinguished morphism in A. Every persistent cell is persistently enabled. Note
that, since every cell has a finite proof and abstraction decreases proof height, only a finite numhber
of abstractions may be performed below a cell pe € E{a), so that there must exist an a' € A such
that 8, ,«(pe) is persistently cnabled. Moreover, it follows from proposition 5.19 that distinguished
morphisms in 4 compose on persistently enabled cells. Our use of the term “persistently enabled”
is justified by virtue of the following result.

Proposition 5.23 For any pc persistently enabled from a, if y o pe then 8, 41(y) byor 6400 (pe), for
each o' € A,.

Proof: Follows from definition of morphisms and persistence of events in y. ' .

Proposition 5.24 For any pe persistend from a. W (pe) = {{8p0r(pe),u) € &' | @ € Ag} is a di-
rected set of events.

Proof: For any two events (pyc.uy) and {pacouz) in V¥, (pc) there exist ¢j.ap € Ag such that
(pic, ;) € a; and pic = &, (pe)lor i = 1,2. By directedness of A, there is an ag € A, N Ag,.
Since distinguished morphisms compose on persistent cells, &, .00(pc) = &a, ap{pic) for ¢ = 1,2,
Hence, (8, 4o(pe).) € ag is an upper hound of (prc,ur) and (pac, ug) in Wy (pc). "

As a consequence, whenever pe is persistent from « we may identify an event ¥,(pc) = Viw,(pec).
It is from these ovents that we construct a timit for A.

Proposition 5.25 [f A C D(M — M') is o divccled set of algorithms then (using the above
notation),

VA = {wa(pe)a € A K peis persistent from a
is a least upper bound for -\ in DM — M').

Proof: ViA is certainly a set of events of 3 — M'. We show that it is a state, and a least upper
hound for A as follows.

For each « € A define o, : () —EB(VIA) by @a(pe) = F'lafe‘_tcéa_u.(pc)?. By proposition 5.21,
for any pe persistent [rom a. ¢, {pc} has the form (@q(pe),u) for some u. We show

(1) For any pe persistently cuabled from w. il y =, pe then w,(y} Fyryq @alpch

"We should really put o.(pe) = (M. where P = {m [e' € A, & pic = 4,a{pc)}. The abuse of notation is
convenient.

30

{2) For any prc and pye persistent from a; and aq, respectively, if Do, (P1€) = @a,(poc) then
there exists a’ € A,, N A, such that &, 4 (pic) = bayar(pac), and g (pre) = Ug,(pac).

For {1) we give details for the case when pe is has an output enabling. The reasoning for a
query enabling is similar. We make essential use of proposition 5.23.

If {{pjc;, output vj)}{_l . pe then {(8, 4(p;c;),output Uj)}_l",":I Far by q(pe) for each o' €
A. Hence 8, ,+(pe) € (Llf,_lb,;,,,r(p_,cj-))/z. Since M is unton and morphisms decrease classes.
Nurgd,faor(pe) € (Myea, U ‘[;:13’4.':’(7’;'0,"))/-"'-- Therefore

{ N {
r]u.'E.-\“ U_j=1éa.n’[1"_,r('_j) - I—I.,-:l ﬂu’E.—L, b’l.flr(])jcj)‘

The converse inclusion can be shown using directedness of A and the finiteness of the enabling.
[t follows that {{o,(p;c;).output "’.f'}}izl Fyiq @adpe), as required for (1).

For (2), suppose @, (p1¢) = 0,,(pac). There must exist a’l € Ay, and af € Aaz such that

&y, Y {;me) &, u}(])zt] By directedness of A. there exists o' € Ay Ny, Let pie =8y o(pc)
for i = 1.2; clearly p} 1 Py By the tree lemma. ple <, phe or pzc <0 , ple, so that, by (1).
Ou(pie) = @, (phe) implies ple = phe.

Note that. by directedness. if pe is persistent from « then for any o € A,, w,(pe) =
Ear(d, ol pe)) (and o, (pe) = 0, (6, 0 (pe))). Therefore we have

wu.l(])l(l) = le':'u’(b«l).';’(l)lr)) = L ((51 (PJC)) = wul(PQC)-

as required for (2).
Safety and functionality of V.0 are corollaries of (1) and {2), respectively, so that v'A is
indeed a state.

To show that Vi is an upper bound of .1, observe that ¢, is a morphism from « to ViA. for
each @ € A it preserves all output events and output enablings, it weakens persistent queries,
and it abstracts all other queries. The range of o, is indeed E(vtd), as a corollary ol (1).

Finally. 1o show that v'.1is a least upper bound of A. let b be an upper bound of A. Define
o E{vi)y — Eid) by

Plpoe) = o, u(pe)fa e L& pe € Ela) & poe = Qalpe)}.
[t is easy to show that o is a morphism. and that vi4 <' b by o. .

Example 5.26 Consider the sequence of algorithms idyae™ € D(Nat — Nat) for m > 0,
{ [0 p=avery uicul ({ n=t }] }
U Uken { [{ n=»4k }] =output & })

idNatm -

This is an increasing sequence. and its lub is idya¢. the identity algorithm on Nat. In this case.
all filled cells are persistent and 1he distingnishod morphisms never abstract. .

3

Example 5.27 Consider the sequence of algorithms min™ : D(LNat x LNat — LNat) for m > 0,
defined by:

min™ = UL min;,
using the notation of Figure 12. This again is an increasing sequence, and its lub is min. Again

all filled cells persist and the distinguished morphisms do not abstract. .

Example 5.28 Recall the algoritluns ayg,ag, a3 of examples 5.12 and 5.18. Since a; <! ap <! aa,
they form a chain. All filled cells of ap and a3 are persistent, but only the output cell of ay is
persistent. The lub of this chain. as expected, is a3. .

5.6 Countable DCDSs and Algebraicity

Following Berry and Curien. we now restrict attention to DCDSs having a countable set of cells
and values. We show that if 1/ and M’ are countable then sois A/ — M’. Since all of our atomic
DCDSs were countable. the countability restriction does not affect any of the results or definitions
given so far. From here on we will work exclusively with first order countable DCDSs.

An element of a pre-order is isolated iff whenever it is below a least upper bound of a directed
set it must be below some element of that set. Recall that a query is uniquely determined by its
minimal elements; we refer to these as the query's branches. We say that an observable algorithm
is finite and finitely branching {or ffb) iff it has a {inite number of events, and each of its queries
has a finite number of branches. We will show that the isolated algorithms are precisely the ffb
algorithms, that there are countably many isolated algorithms in any countable DCDS, and that
every algorithm is a lub of its isolated approximations, thus establishing that algorithms ordered
by intensional strictness form an w-algebraic pre-order.

Example 5.29 Theidentity algorithim on Nat is not fib, since it has infinitely many output events
and its query has infinitely many (mutuaily inconsistent) branches. The min algoritlun is not ffb,
because it has infinitely many cvents. The following algorithm of Nat x Nat — Bool is not fth.
since it is finite but its query has indinitely many (equivalent) branches:

({ n=k },

(D

)i

{ n=t D

[(0.0}] b=query U, N

({ o=k }. 0]
UreN (o { I })} b=output tt
. n=n
\ /
In examples 5.26 and 5.27 cach of the idyze™ and min™ algorithms (m > 0) is ffb. .

Proposition 5.30 A first ordcr countable DCDS has countably many ffb algorithms.

Proof: There are countably many events in an atomic DCDS, hence countably many finite sets
of events in the representation of a first order DCDS. It follows that there are countably
many finitely branching queries and countably many finite classes, and hence that the fib
algorithms are countable. a

Proposition 5.31 The [fb approvimalions lo an alyorithm form a directed set.

32

Proof: Let @ be an algorithm, and let a; and a; be two ffb approximations to @. By proposition 5.5,
a' =8, 4lar) U baz,a{@2} is an algorithm; it is an approximation to @ by inclusion, and it has
a finite number of events. «’ is not necessarily finitely branching, but we may derive from it
an fib algorithm a such that 4.y <' @ < @' <* é@. The key idea is to perform the following
operation {inductively): il 4" is a query of ¢’ that weakens the queries q; of ¢; and g, of ¢, then
replace ¢' in @ by a query ¢ that contains only those branches of ¢ that are below brauches
of g1 or ¢2. ¢ will necessarily be finitely branching, since branches are themselves finite sets
of events. Similarly if ¢’ weakens a query from either a; or «y. Note that replacement of
queries of & by finitely branching subsets may lead to splitting of equivalence classes, which
needs to be handled by the construction of @ (or, alternatively, some extra elements of ¢ may
be retained so as to prevent splitting). It is straightforward to show that an algorithm « so
obtained satisfies the required properties. .

Proposition 5.32 Every alyorithm is the lub of its ffb approzimations.

Proof: First. we fix, for every query . an enumeration of its branches, and we define a sequence of
finite queries {q”}n>l‘ such that ¢, is the upwards closure of the first n branches of . Thus
the sequence is decreasing with respect to C. and we have ¢ = M>0n -

For any algorithm a, given an enmueration of queries as above, we define a sequence-of finitely
branching approximations to a.

fhofa) = {(p'e.btu)) € Byoap [peou) € a & ple € by 1(pe)}
where. for n > 1. the functions (b, : Vy v — Vas_ap are defined by
fh,{query) = query ¢, (h,(output) = output v
and the functions ., , : I(«) — P(C o) are inductively defined by
o nlpe) ={pely b, pe & Dy, (y) Fy_ae ple & p' C rl
(where th, ,(y) = {(p_’lrj.l'l),,{ w0 I pie;u,) €y pj—cj € b, n(pje;)}). Note that fh, ,(pc)

may be empty.

For any algorithm a. we deline a sequence of finite depth approximations to a: (a)g =@ and

for each n > 0. (@)ye; = {{peou) € a|pee Eita)}.

Now we combine these two ideas: for each n, (fbp{a)), is finite and finitely branching. It
is straightforward to show that the sequence {(f'bn(a))n}n>0 is an increasing chain of fib
approximations to a whose fub is «. - .

Proposition 5.33 The isolaled clomenis of (DM — M), <Yy are the [fb algorithms.
Proof:

o We show that every {th algorithn is isolated. Let @ be the lub of a set A of algorithms. and
let @ be an fTh algorithiu suel that « <' 4.

For each pe € LE(a). 6, :(pe) € L{a). so that there exist ¢’ € A aund Yo € E(a') such that
op(ple) = o alpe). But b, 4(pe) C p.and pis finitely branching; hence, by directedness, we
can choose o' and p'e suclh that additionally p' C P

33

Now, if @ € A has a suitable cell p’c € E(a’) that satisfies the above, then so does every
a"” € Ay therefore, since « has only finitely many events, and A is directed, there exists an
a” € A that satisfies the above requirements for all pc € E(a) simultaneously. But now it Is

easy to show that a <' «”. and therefore a is isolated.

o We show that every isolated algorithm is ffb. Let @ be an isolated algorithm. Since a is
the lub of the directed set of its b approximations, there must exist some ag <t &, an fib
approximation to &, such that @ <P gg. Without loss of generality assume that both ae and
@t are observable, and it follows by anti-symmetry that @ = ag is ffh. "

Corollary 5.34 (D(M —). <iy is o directed-complete and w-algebraic pre-order, and its iso-
lated elements arve the ffbo algorithms.

The fact that the intensional strictness ordering enjoys these order-theoretic properties enables
us to adapt the usual semantic account of recursively defined objects to the algorithmic setting. It
is well known that everv continuous function on a directed-complete partial order has a (unique)
least fixed point. which can be constracted explicitly as the limit of a chain of iterates. A similar
result holds for a directed-complete pre-order, except that the least fixed point is only unique up
to equivalence. While we do not intend to explore recursion deeply in this paper. we give a simple
example to show that parallel algorithis may be defined recursively.

Example 5.35 Let inc : Cpnae — (LNat be the function which adds 1 to each cell index; this
extends to the queries and classes involved in the construction of LNat x LNat — LNat in the
obvious way, so that for example

e((S™(L), S (0))) U (S{L). STLI) = (§7F(L}, 5+1(0)).
Let ® : D(LNat x LNat — LNat) — D{LNat x LNat — LNat) be the function defined by
$(@) = ming U inc{a).

referring to Figure 12 for the definition of ming. Clearly, € is continuous and has a least fixed
point V¢, ®™(@) = min. This example formalizes the intuition that min is obtained by “iterating”
a parallel-or like kernel. *

5.7 Monotonicity and Continuity

Proposition 3.17 states that aurrying and uncurrying are isomorplisms with respect to the set
inclusion ordering. We now show further that they are order-isomorphisins with respect to the
intensional strictness order.

Proposition 5.36 (‘urrying and uncurrying are monotone and continuous with respect to the
intensional strictness ovder,

Proof: Observe that. for all a.o’ € DM, x My — M), ifa <'a' by f then curry{a) <! curry(a')

by the morphism curey o f o nncurry. .

We next show that application is monotone with respect to <'. Let a.a’ € DM — M)
with @ <* a’ hy [1 E(a) — E{a”). and w2’ € D{H) with » & 2'. We must find a morplism
h:E(a-z)— Ela -2"). To construct such a morphism, we need to focus on the events of a -z

whose source events in a correspond (under f) to events in @’ which project by 2’5 each such event
of @ - will thus detormine an event of o' - ', We call these the f-preserved events of a - x.

31

Definition 5.37 All output events of « -z are f-preserved. A query event {pc.query g} € ¢ -z
is f-preserved if f weakens its source event (source, .(pc),query ¢} € a, with ¢ = (g}, into
(f(sourceq z(pc)),query §') € o' with ¢/ C . and 0 ¢ 7,+(¢}). Cells filled in f-preserved events of
@ - & are also said to be f-preserved.

Given pe € E{a - 1), define Py(pe) to be the set of &I -maximal f-preserved cells below pe,

Pi(pe) = {rd| rd €F, pc & rdis f-preserved & }
Vrud . rd 5, rid €3, pe = rid is not f-preserved

Define i : E{a -2} — E(a’ - 2"} by

Ve if {(p,c,.output vj)}§=l Fo.o pe
& {(hip;e;).output v_,)};=1 Forg Plede o’ CTop
hipe)= < e il {pre.query gi b, pe & preis f-preserved

& (hipc).query ¢) b0 ple& p' T p

fi{ime) if (pre.query q) b, pe & pieis not f-preserved
For pe € E{a - x) let Pype) = {#'d}rd & o M pe)} be the set of cells in «' - 2’ that enables

fi pe). .
Next we show some propertios of A, which establish that % is a morphisn,

Proposition 5.38 [or pe € IN(a - v).
(1) The function h is well de fined on pe.

(2) b maps the mavimal f-preseread cells below pe onto the enabling of L{pe) in o' - 2':
{li(rdy| rd ¢ FPiipe)} = Py pe).

(3) If pe is f-preserved then hipe) € Fla'- 2"y and hipe) € 7o flsource, (pe)))/ .

(4) {f (peoutput vj € a - then (hipe).output ¢) € « - 2/, and if (pc.query ¢) € 0 -z is
S-preserved then (hipel.query ') € o' - o' for some ¢ Cyq.

Proof: By induction on pe.

(1).(2) Consider the unique enabling of pe in - .
I {{pjc;, output IT_,;)}i.:l Fo peothend by induction hypothesis (1) and (4, for any [<7 </,
fv is defined on p;c; and (f{p,c;).output r,) € a' - 2’'. Therefore h{pc) is the unique p’c such
that {(h(p,c,).output v‘,]}i:] =i pleand ' C p. Moreover, P(pe) = {pjcj-}f,:l. 50 (2)
follows.
Il {pre.query ¢) ... pe then. by induction hypothesis (1), h(pie) is well defined. If
(pre,query q) is not f-preserved. then hipe) is taken to be f{pye); thus Pi(pe) = Pi{me)
and Po{pe) = Po(pe). Properiy (2) for pe follows by induction hypothesis {2) for e,
If, on the other hand. (pe.query g) is f-preserved, then, by induction hypothesis (4),
(hipic).query ¢') € «' -4 [or some ¢ C . Then hipe) is defined to be the (uniquely deter-
mined) p'c such that (hipic).query (¢) pleand p' C p. Moreover, Py{pe) = {p1c}
and Py(pe) = {h(pe)}. so (2) holds,

35

(3) Assume that pc is filled in @ -+, There exists poc &5, pe such that P(pe) Fgr poc. By 4.8
and 4.10 we have

source, »{ P{pc)) k. root, [poc) & sourceq i pe).
Since the cells in Py(pc) are f-preserved, by applying f we get:
f(source, o(Pi(pc))) F. f(roote o(poc)) <5 flsourceq x(pe))-

For # € m,{#), we write 7, »(#d) for the cell rd such that r € 7z(7}/~ and & € r; ris uniquely
determined. We also use the obvious extension to a set of cells or events.

Choose any & € p. Clearly. r € 7(f{source, (pc))). Now, since the cells in P (pc) are
[f-preserved, we have.

Tor sl flsource, o (Pr{pe)))) Forr T 5 f(1oote 2(poc))) €ar e Ty 5(f(source, (pe))).

But if the query chain for 7 :(f{root, »(poc))) <5 7o z(f(source, o(pe))) is of non-zero
length, then some cell pye such that poe €5, pre &}, pcis f-preserved, contradicting the
definition of P(pec). Therefore 7, :(froot, +(poc)}) = 7 :(f(source, o(pc))), and

771"..1"(f(source, .| Pl (IW‘) N b 7"1"..1"([(-‘"'0“1'Cea‘x(PC))).

By induction hypothesis (3} and (2). Pz(pe) b T 3 f(source, ,{pc))). while, by definition
of Py(pc). Palpe) by h{pe). But h{pc) and 7 2 f{source, ..(pc))) are upper bounded by p.
so that. by proposition 3.11. they must be equal.

(4) Follows immediately from (3). Note that il v C 2 and ¢' © q then 7(¢') C 7(q). .

Corollary 5.39 Application is monolonc in both arguments: ifa <t a by f and x <t ! then
a-xz <t a2 by h. as defined abore.

Definition 5.40 The input-oulpal approvimation order <3, on D(M) is defined by induction on
M as foilows.

For an atomic DCDS 3/ let <, be set inclusion.

For a product My x My let €5y .y, be defined componentwise.

For an arrow type M — W' let o <" o il Ve € DIM) . a2 <° a -z .

[nput-output approximation orders algorithms by the pointwise order on their input-output
functions. It is a pre-order. and two algorithmus are input-output equivalent whenever they compute
the same function. For instance. the or algorithms in figure 15 fall into four equivalence classes,
corresponding to the functions sor. lor. ror and por. and the diagram collapses to the pointwise
ordering on these functions.

Proposition 5.41 for a jirst order DODS M. <Yy, s contained in <%;.

Proof: An easy corollary of monotonicity ol application with respect to <. © .

36

/ /

Thus, whenever a <! ¢’ we also have ¢ <° «’. The converse fails, because the input-output
approximation order is not properly sensitive to computation strategy. For instance, 1sor <°® rsor
but these two algorithms have incompatible computation strategies and are incomparable under the
intensional order. Putting this result together with the earlier remark that intensional strictness
properly includes set inclusion (proposition 5.6), we may summarize by saying that the intensional
order is strictly coarser thaun set inclusion and strictly finer than input-output approximation.

Next we prove that with the intensional ordering application is indeed continuous.

Proposition 5.42 For any v € D(M) and non-empty Q C Po(Fanlrep(M — M),

TANQ) = N{mx(a) # V| € Q}.

where the right hand side is 1o be taken as the empty set in case the glb is undefined, i.e.,
Tolg) = 0 for every ¢ € Q.

Proof: Immediate: recall that the 2Ib is just set union. .

Proposition 5.43 Application is continuous in both arguments: if A is a directed set of algorithms
of M — M and X is a diveeted sct of states of M. then (VPA)-(VIX) and Vi{a-z|lee A &z e X}
are equivalent.

Proof: Let Z = {a-x|a € A& r € X}. This is easily seen to be a directed set of states of M.
by monotonicity of application. Let &. # and 3 be the lubs of A. X and Z ., respectively.
By monotonicity of application. 2 <' @ &, We show that @-4 € 3. We use notations and
definitions as in the proof of directed-completeness (proposition 5.25), and indicate 4, X or
Z to select the appropriate context. We also use the notation Tp {pc) as in proposition 5.38
for the cell p'e such that p/ € 7,(p}/x and & € p' (provided z € TH{p)).

We prove by induction on j'r € (4 - &) that:

If{(pe.d’y € @& and o+ € ¥ then there exist a € A, pc persistent from a in A, and
r € X, such that

) oM pey = source; p(p'cl.

) oy e(pe)is persistentdy enabled from a - @ in Z, and ple = c_of_x[vrr'f(pc)).

Vo mpa(peyis persistent [rom a -0 in 7. and (ple.i’) = u*fr(r_,..j(pc)).

) (fe i) € &

Note that if «. pc and r satisty the above, then so do any a' € A, 8, p(pc)and r' € X,; we

rely on this to make successive assumptions about « and & that can he met by increasing a
and z without invalidating any of the preceding conclusions.

Let {p'c,i’) € @ &, with + € . Then (source;;(p'e), &) € @ with & = 7). By definition
of & (proposition 5.25). there oxist a € b and pe persistent from a in A such that ¥} {pe) =
(source; z(ple). i), and (1) holds.

Since & € p. there must exist some finite 2 C & such that (w0, %) € 0 (pec). By algebraicity,
there exists » € X such that v, C r. Without loss of generality, we can choose a so that
{(ro, &) € p.and & € 7, (p).

Let g' Fos e Therelure
-/ - - ~
< source; (50 By oroot, sl e) €5 souree; H(ple).

37

Now, by the induction hypothesis. for any {jc;, ;) € § there exist appropriate a; € A, pjc;
persistent from a; in A, and r, € X that verify the induction hypothesis for ﬁ;c]-. Since ¢’
is finite, we can choose a and x larger than each «; and z;, respectively, so that a and z
verify the induction hypothesis for each p;c)‘. Therefore, there exists a set y C a of persistent
events with v {y) = source; ;(§'), such that y o poc <5 pe, where ¢ (poc) = roota 3{p'c)-
The enabling ¥(y) Fa root, +(H'c) is not fully satisfied by &, while each of the enablings in
the (finite) query chain root; ;(j'c) €} source;;(p'c) is fully satisfied by &. It is therefore
possible to choose z sufficiently large so that it projects the enabling y +, poc and fully
satisfies all the enablings in the chain ppe < pc; note that y b, pc may not be fully satisfied
by z C &. We thus obtain 7, :(y) Fa.z Tpz(pc), and by induction hypothesis (3), 7. z(pc) is
persistently enabled from a - » in Z. Moreover. from (3) we have

§ = 02 (meay)) bz 0l A meslpe)),
and since p'c and a')f,_,.(ﬁ_,.,_;.(p(-)) are consistent (both contain #), then, by proposition 3.11,

they must be equal. and we have established (2).

If @' = output v choose « so that (pc.output v) € «. Then (7 z{pc),output v) € a -z,
7ez(pe) is clearly persistent from « - @ in Z. and (p'c,output v) = ¢Z (my z(pc)), establish-
ing (3) for the output case.

If i/ = query ¢ things are somewhat more complicated. First, note that % is also the lub of
Z' = {d -2’ |d € A, & &' € X, }. 5o that. without loss of generality, we may assume that if
& <ta o in Z thenwa < al and @ C ',

We choose & so that m,.(¢) # ¥. where ¢ is the query that fills pc in a. Since pe is persistent
from « in A. for every « € A, and " € Ay, 840w does not abstract at 84.0{pc). But
since projection by & does not fully satisfy at @ (pc), then for every @’ € A, and z' € X,,
6a.wr(pe) is projected by 'L bat is not fully satisfied, so that &,z g0y does not abstract at
buwaro(Trzlpe)) for a <0 d < a and @ G 2 C a”, and 7y 5(pc) is persistent from a - z.

It remains to show that p'c is filled with the same queries in both a -2 and 2. ie., that
ri(F‘IQ;‘,‘(])r)) =N{m,.{q)]| g€ Q;?(pc-) &' e X,
where @l (pe) = {4' |/ € L, & (0, ipc).query ¢') € a'}. But by proposition 5.42,

T PQ pey) = N{male) | g € QL ped}

and the rest follows [rom the directedness of X and the finiteness of query elements.

We have established (3). and (1) is an immediate consequence, thereby completing the proof
by induction. Finally. from (-1} we conclude that a- & C Z. .

Corollary 5.44 The inpul-oulput function of every algorithm in D(M — M') is a continuous
function from (DM). <4} to (DL <)

Example 5.45 The input-output function of the algorithm min is min. For each n > 0 we have
min- (S*(L), 5L =min" - (S¥(L).5¥(L)) = S"(L).
Hence,

min- ($¥(L). $*(L)) = Vi yomin- (5" (L).5" (L)) = Vigomin® « (§¥(L) S¥(L)) = §¥(L).

A8

6 Future Research Directions

We regard this paper as a first step towards a general theory of determinate parallelism. We
have developed intuitively appealing notions of parallel algorithms, the input-output function of
an algorithm, application and currying of algorithms. We have introduced an intensional strictness
ordering on first order algorithius that appears to be a natural generalization of the usual extensional
order on continuous functions. in the sense that whenever a <' a' the input-output function of
a approximates the input-output lunction of «’ extensionally, The class of first order parallel
algorithms is closed under currying and uncurrying, and contains many interesting algorithms for
non-sequential functions; it is alveady significantly different from the class of first order sequential
algorithms.

We have tried to stay close in spirit to the foundational work of Berry and Curien, and have to
a large extent emulated their development: beginning with algorithms, defining application, then
constructing input-output functions. As we have pointed out, there is a simple embedding of their
(first order) sequential algorithms into onr parallel algorithms that preserves the function computed
by an algorithm. Sequential algorithms correspond to parallel algorithims with trivial parallelism:
each query involves a single cell. However. the generalization to the concurrent setting has forced
us to depart from set inclusion as the underlying order and to adopt a new order with respect to
which application is well behaved. It is interesting to look back and determine to what extent the
phenomena of abstraction and weakening. upon which our ordering is based, occur in the Berry-
Curien model. Weakening in the sequential setting is reduced to set inclusion. but abstraction
is not. Our intensional strictuess pre-order induces a pre-order on the Berry-Curien model, still
(strictly) coarser than set inclusion and (strictly) finer than input-output approximation. All of
this is not surprising: a conjecture we would like to substantiate is that the relationship between
the set inclusion and intensional strictness orderings on algorithms is analogous to the relationship
hetween the stable and the poinlwise orderings on functions.

Oue of the key features in our model is the use of queries instead of valof commands. We regard
queries as generalized sequentiality indices. perhaps better called computation indices, since they
are applicable to the parallel setting. We can characterize the class of parallel algorithms which
have a stable input-output {unction. in Berry’s sense. in terms of their computation indices: an
algorithm computes a stable function iff the branches of each of its observable queries are mutually
inconsistent, or, cquivadently. il each ol its observable classes has a least element. We intend to
develop these ideas and to investigate the new notions of stability and sequentiality obtained by
employing intensional strictness as the underlving order on states. We conjecture that (in line
with remarks made earlier) the curricd parallel-or epor will turn out to be sequential in this new
sense, since its input type has a single celll white the uncurried por remains parallel {as it should).
This example also sugeests that we should regard as “fullv” sequential only those algorithms which
remain sequential under currving and wncurrving.

The intensional strictness order seems to be a natural ontcome of our definition of application,
which in turn seems quite intuitive. This new ordering, however, only makes application well
hehaved for first order DCDSs. Gur preofs of mouotonicity and continuity for application do not
extend to the higher order case. where intensional strictness on the representation departs from set
inclusion. A reason lor the failure at higher order tvpes is that addition of non-ohservable query
events to an algorithm no longer constitutes an increase in the information content of the algorithm
(as shown in example 5.%) ¢ therelore. a higher ovder algorithm is not able to build incrementally
an internal representation of an argument which itself is an algorithm simply by issuing queries
abott the query structure ol that argument. \ modification is needed to the way in which the

39

internal representation is built; one possibility is to change the values of M — M’ to be trees whose
internal nodes correspond to queries, and whose leaves correspond to output events.

In addition to our present limitation to first order types, we do not have yet a satisfactory notion
of algorithm composition. This has not prevented us from defining application and input-output
functions, but of course without composition we cannot use our algorithms to define a category.
Perhaps it is worth remarking that Berry and Curien [BC82, Cur86] present application and input-
output functions before constructing a suitable composition for sequential algorithms, and even
in the sequential case the definition of composition is given indirectly, by means of “abstract
algorithms”. It may not then be surprising that we have found it difficult to find a suitable parallel
generalization.

We have used representation and base DCDSs in our formulation of parallel algorithms so as
to be able to express curried algorithms. While this rather complicates the internal structure of
algorithms, it does facilitate the definition of currying and uncurrying as operations on algorithms.
Nevertheless, the use of rep and base seems to he at least partially responsible for our difficulty
in formulating a notion of composition for algorithms, and we would like to explore alternative
ways to define algorithms. For instance. we might try to define M — A’ using events of form
(pe,u) with p a class over M. ¢ a cell of M’ and u either an output over M’ or a query over M,
but requiring that consistent inputs lead to consistent output commands, instead of the current
requirement that consistent inputs lead to the same output command. In order to allow this we
would need to endow CDSs with an order structure so that we can define what it means for inputs
or outputs to be consistent. In a related paper [BG] we explore properties of a generalized form of
CDS in which cells and values are equipped with partial orders, with appropriate modifications to
the notion of state,

Much more remains to he done. Ultimately we would like to construct a model of parallel
algorithms that makes sense at all types and vields a cartesian closed category, so as to provide
an intensional semantics for the A-calculus. In such a semantics the denotation of a term would
reflect accurately the efficiency with which it computes its results, or other intensional aspects.
This should allow us to formalize the sense in which (for example) our min algorithm computes the
min function in complexity 0(min(mn. n)). '

We can also formulate an intuitively natural ordering that reflects the degree of parallelism (or
eagerness) exhibited by an algorithim, so that. for instance, psor is indeed the most parallel of the
algorithms for sor. while the two sequential algorithms 1sor and rsor are local minima for this
ordering. There appears to be a natural hierarchy among parallel algorithms, based on our notion
of degree of parallelism. We plan to investigate this parallelism order and the structure of this
hierarchy, in the hope that our ideas way help in assessing the relative expressive power of various
parallel primitives.

7 Acknowledgements

We thank the anonyntous referees. who made helplul suggestions that led to improvements in the
presentation of the paper.

References

[(BCR2] G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures. Theoretical
Computer Science, 200265-321. 1982,

-0

[BC83)

[BCLS3]

[Beris]

[BG]

[BG90]

[Col89]

[Curs6)

[Hues6]

[KM77]

[KP7s]

IMilTT]

(Plo77]

[Saz73]

[Smy 78]

[Vuit3]

G. Berry and P.-L. Curien. Theory and practice of sequential algorithms: the kernel of
the applicative language ('DS0. In Maurice Nivat and John Reynolds, editors, Algebraic
Methods in Semantics, chapter 2, pages 35-87. Cambridge University Press, 1985,

G. Berry, P.-L. Curien. and J.-J. Lévy. Full abstraction for sequential languages: the
state of the art. In M. Nivat and J. C. Reynolds, editors, Algebraic Methods in Semantics,
chapter 3, pages 89132, Cambridge University Press, 1985.

G. Berry. Stable models of typed A-caleuli. In Proe. ath Coll. on Automatae, Languages
and Programming, number 62 in Lecture Notes in Computer Science, pages 72-89, Berlin,
New-York. July 197K, Springer-Verlag.

5. Brookes and S. Geva. Continnous functions and parallel algorithims on concrete data
structures. In Mathemalical Foundations of Programming Semantics, 7" International
Conference. Carnegic Mellon Cniversity, Pittsburgh, March 1991, Lecture Notes in Com-
puter Science. Springer-Verlag.

S. Brookes and S. Geva. Towards a theory of parallel algorithms on concrete data struc-
tures. In Semantics for Concurrency. Leicester 1990, pages 116-136. Springer-Verlag,
1990.

Loic Colson. About primitive recursive algorithms. In Proceedings of ICALPS9, volume
372 of Lecture Notcs in Computer Seicnee. pages 194-206. Springer- Verlag, 1989.

P.L. Curien. Categorical Combinators. Sequential Algorithms and Functional Program-
ming. Research Notes in Theoretical Computer Science. Pitman. London, 1986.

G. Huet. Formal structures for computation and deduction. Class notes for graduate
course at CNT, Mav 1986,

G. Kaln and D. B. MacQueen. Coroutines and networks of parallel processes. In Infor-
mation Processing [977. pages 993-99%. North Holland, 1977.

Gilles Kalin and Gordon Plotkin., Domaines concrets. Rapport 336. [RIA-LABORIA,
1978,
R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science,

41122, 1977,

G. D. Plotkin. LCT considered as a programming language. Theoretical Computer Science.
3(31:223-255. 1977,

V. Yu. Sazonov, Sequentially and parallelly computable functionals. In Proe. Symp. on
Lambda-Caleulus and Compute r Seicnee Theory. number 37 in Lecture Notes in Com puter
Science. Springer-Verlag, [975.

M. B, Smyth. Power domains. Journal of Computer and System Sciences. 16(1):23-36,
February 1978,

FVuillemin. Proofl techniques for recursive programs. Ph. D. thesis, Stanford University,
1973,

