
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Task Oriented Vision

Katsushi Ikeuchi Martial Hebert
July 1991

C M U - C S - 9 1 - 1 6 3 2

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

An earlier version appeared in Proc. of 1990 DARPA Image Understanding
Workshop

This research was sponsored in part by the Avionics Laboratory, Wright Research and Devel­
opment Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB,
Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597 and in part by NASA
under Grant NAGW 1175.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the U.S.
government.

C. 2-

Keywords: vision paradigm, hand-eye, grasping, shape representation,
picking, rock sampling, unstructured environment

Abstract

This paper overviews two recently completed vision systems (a rock sampling
system for planetary rovers and a bin-picking system for industrial robots). Then,
we will examine the reason why these two systems have different architectures
although their goals are roughly same, picking up something by visual observation.
Based on this discussion, we will develop the task-oriented vision paradigm,
and examine the difference between the task-oriented vision paradigm and the
traditional Marr 's paradigm. We will also explore the research issues necessary
for completing the task-oriented vision paradigm.

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Contents
1 Introduction

2 Rock Sampling System

3 Bin Picking System

4 System Analysis
4.1 Rock-Sampling System

4.2 Bin-picking system

5 Task Oriented Approach

6 Conclusion

7 Acknowledgement

1 Introduction
A critical issue in designing a robot vision system is how to organize the relevant
components into a vision program. Such components include object representa­
tions, features, segmentation methods, image acquisition strategies, and sensors.
The choice of such vision components governs the quality of resulting vision
programs.

There are two approaches to the problem of organizing the components: gen­
eral purpose oriented and task-oriented. Researchers in the general purpose ori­
ented school claim that we should build the vision system to be able to solve all
the vision tasks using a single architecture, that is, an architecture in which a fixed
selection of components is executed in a fixed order. They also claim that we
should avoid to use any task specific constraints to build a vision system.

We, researchers in the task oriented school, claim that we should prepare
different architectures of vision systems and that, depending on the task (the goal
of the system and the environment in which such a task is achieved), a robot vision
system should change its architectures so that it has the optimal selection of the
components to achieve a given task.

In the task-oriented approach, however, few attempts have been made to clarify
and establish theories for the task oriented vision and methodologies to implement
the theories for building a vision system of the optimal architecture beyond several
ad hoc trials.

This paper proposes a task-oriented vision approach and investigates the design
of vision systems in a systematic way. We will focus on the design of robotics
systems that involve the localization and grasping of objects because it is a good
illustration of the task oriented approach. In order to illustrate this approach,
this paper will overview two vision systems recently completed: rock sampling
vision for planetary rover robots and bin picking vision for industrial robots. We
will illustrate the task oriented approach in designing these two vision systems.
Then, we will derive a general framework for designing vision systems under the
task-oriented approach.

2

2 Rock Sampling System
One of the most important goals of a planetary exploration mission is to collect
and analyze terrain samples. As part of the CMU Ambler project [5], we are
investigating techniques to collect small rocks in the sand. This section overviews
the architecture of the rock sampling system.

Image Acquisition Sensor The upper left figure in Figure 1 shows a typical
scene to the system. From this scene, a range image is acquired using a range
finder [20]. Each pixel in a range image possesses its 3D coordinate system
measured with respect to the sensor.

Segmentation From a range image, three types of features are extracted:

• shadows,

• orientation discontinuities, and

• range discontinuities.

These features give an indication of where the boundaries of the rocks may be
located in the scene. These features are, unfortunately, not sufficient for reliably
extracting rocks from the scene, because these features are fragmentary due to
that the rocks are partially buried in the sand. Therefore, we cannot use a simple
region extraction technique that would assume that the features are grouped into
closed boundaries.

The existence of features are taken as a rock hypothesis. Since we know the
configuration of the sensor, we can derive the approximate location of the center
of a rock from the distribution of the corresponding shadow regions and depth
discontinuities.

We implemented an iterative segmentation algorithm, similar to the "snake"
algorithm [17]. A snake has a close deformable boundary, such as a rubber band,
which is attracted by features and tries to shrink to its original size. The algorithm
grows the boundary of the snake until it connects features "reasonably well".

In order to implement the attractive and shrinking forces, we use two kinds of
energy field: external (attractive) and internal (shrinking).

The external energy is given by the following three forces:

3

• shadow attractor,

• orientation discontinuity attractor, and

• range discontinuity attractor.

Following the attractive forces, the boundary moves towards the surrounding
features. At the same time, over-growing is avoided by using the internal energy
of the contour. We implemented the following internal energy field:

• center attractor and

• region attractor.

A snake is attracted by its center position. It is also attracted by itself; a snake
tries to form a compact shape.

A small snake is initially located at the hypothesized center of a rock region. It
grows iteratively while deforming its shape until it sits along the features where the
external forces from the features and its own internal forces are in equilibrium. The
bottom left figure in Figure 1 shows the schematic diagram of our segmentation
algorithm.

The segmentation result in Figure 1 shows the rock region, shown in blue,
which has been extracted by this algorithm. Because this approach interpolates
the missing gaps between features, it allows us to locate rocks in the scene even
when only a very small number of visual features are extracted from the image.
This departs from other vision systems which implicitly assume that strong and
reliable features can always be extracted, and therefore would not perform well in
the type of unstructured environment that we are considering.

Representation In order to grasp a rock, we need parameters based on 3 dimen­
sional information of a rock, such as the mass center and the inertia axis direction.
A snake segmentation provides us the 2 dimensional contour of a rock. The range
data within the extracted contour give the 3 dimensional shape of a rock. How­
ever, it only gives the 3D shape of one side (visible side) of the rock. We have to
infer the whole shape of a rock from this visible side shape for obtaining the 3D
parameters necessary for grasping.

We will use a superquadric surface to approximate the whole rock shape from
the range data. A superquadric is a generalization of an ellipsoid that can represent
a wide variety of shapes with a small number of parameters [19, 3].

4

r 2 V 2 *2 Z 2
(((-) * + (£) *) • ! + (") ' T = 1 (1)

a b c
where a, 6, c are the size parameters. By changing the parameters, e\ and e2, we
can represent several shapes as shown in the bottom center of Figure 1.

We chose superquadrics as our representation for two reasons:

• Superquadrics are appropriate for blob-like shapes.

• Fitting superquadrics to a set of points from a partially visible object gives
an estimate of the whole shape of the object, whereas more local surface
representations would provide a representation of only the visible part of
the object.

We implemented a standard gradient descent method to fit a superquadric
surface to range data [21]. The upper center figure in Figure 1 shows a superquadric
representation of the rock.

Grasping Strategy The superquadric fitting module provides the following pa­
rameters of a rock:

• mass center position,

• size, and

• axis direction.

Once an object has been represented by a superquadric, the system examines its
size parameters to decide whether the rock is small enough to be picked up by the
gripper.

If so, the grasping strategy is set up so that the gripper orientation direction
is aligned with the rock inertia axis direction, and the gripper approach direction
is along the z axis and goes through the mass center of the rock. See the grasp
strategy in Figure 1.

This configuration yields the minimum potential field given by the relationship
between the gripper and the rock represented by the superquadric. The upper right
figure in Figure 1 shows the actual grasping.

5

Figure 1: Rock sampl ing system

3 Bin Picking System
The bin-picking task is defined as picking up the top most object from a pile of
the same kind of objects randomly oriented. The input scene in Figure 2 shows a
typical example of a bin.

We have developed a bin-picking system using the CMU vision algorithm
compiler for object localization [14, 11]. The central issue in the research is
how to build the compiler, which automatically converts a geometric and sensor
model into a localization program. In this section, however, we will emphasize
the architecture of the run-time system generated by the compiler rather than the
compiling techniques.

Image Acquisition Sensors The range data is acquired using a dual photometric
stereo system [13].

Segmentation From a range image, two types of features are extracted:

• shadows:
A photometric stereo system projects three lights onto scene; each light
generates a shadow region around an industrial part. Since we distribute
three lights in a triangle shape, the part located at the top of the bin is
surrounded by shadow regions.

• orientation discontinuities:
From a geometric model of an industrial part, we can determine the an­
gle between two adjacent faces. We can find the minimum angle among
these adjacent angles, and use this angle as the threshold for determining
orientation discontinuities.

A simple segmentation method based on shadows and orientation disconti­
nuities works quite well in this case due to the characteristics of the scene; in a
bin of industrial parts, each part is enclosed by a clear occluding boundary. It
is not necessary to use a more detailed segmentation method such as the snake
segmentation method in the previous system. The segmentation result in Figure 2
shows the one given by the simple segmentation method; the parts (dotted regions)
are separated from each other by shadows and orientation discontinuities (white
regions).

7

The highest region is determined among the regions extracted by the segmen­
tation program. From this highest region, the object localization process begins.
This is because the highest region usually corresponds to the top-most part, and
the top-most part is usually the most easiest one to pick up.

Representation The object localization process is performed by the program
which is generated by the CMU vision algorithm compiler. The compiler auto­
matically generate a localization program from the object and sensor model. The
program generated can perform object localization in the least amount of compu­
tational time among several possible localization programs. See the bottom left
figure in Figure 2.

Several geometric features such as area, inertia and distance between two
adjacent regions, are extracted by the localization program in the predetermined
order by the compiler. The program compares the extracted features with those
from the model and determines the attitude and position of the part.

Using the resulting position and attitude, the program generates a part repre­
sentation using the geometric model as shown in the recognition results in Figure 2.
The neighboring regions are represented by dodecahedral prisms. These dodec-
ahedral prism representations are used for collision check while constructing a
grasping strategy.

Grasping strategy The grasp configuration should satisfy the following two
conditions [16]:

• It should produce a mechanically stable grasp, given the gripper's shape and
the part's shape. Such configurations will be called legal grasp configura­
tion,

• The configuration must be achieved without collisions with other parts.
Grasp configurations are limited by the relationship between the shape of
the gripper and the shapes of neighboring obstacles. Such configurations
will be called collision-free grasp configuration.

In compile mode, possible legal grasp configurations are compiled and stored
at each representative attitude of the part in a grasp catalogue as shown in the
bottom center figure in Figure 2.

8

In execution mode, the system determines to which representative attitude the
current attitude of the top-most part belongs. Then, the legal grasp configurations
corresponding to the representative attitude are retrieved from the grasp catalogue.
These configurations are then converted into the world coordinate system based
on the observed configuration of the industrial part.

The system has to find a collision-free grasp configuration among these con­
figurations. It generates a cube representation corresponding to the work-space
of each legal grasp configuration in the geometric representation as shown in the
collision check in Figure 2. Then, the system examines whether the intersec­
tion exists between the gripper work space cube and the obstacle prisms in the
geometric representation.

Among the possible collision free configurations found by the system, the
optimal configuration (currently the one nearest to the part's mass center) is chosen.
The system picks up the industrial part using the configuration as shown in upper
right most figure in Figure 2.

9

input
scene

segmentation
result

recognition program
generated automatically

by Vision Algorithm Compiler

recognition
results

grasp
plan

0

ft

grasp plan from a CAD model

grasp
execution

g r i p p e r
work space

(collision)

collision check

Figure 2: Bin picking sysiem

4 System Analysis
The tasks, the two systems, rock-sampling and bin-picking, aim to achieve, are
roughly same; observing a scene, determining a grasp strategy and picking up
something based on the analysis. However, the two systems have completely
different architectures. This section will examine the reason why such different
architectures are necessary.

4.1 Rock-Sampling System
Figure 3 shows the design flow of the rock sampling (RS) system. The design be­
gins from the task specification of the rock sampling through the image acquisition
method.

Task specification The task of this system is to grasp a rock in the sand under
the following conditions:

• The rocks are far enough away from each other. It is not necessary to
consider the collision betwe.en the gripper and the neighboring rocks, when
picking up a rock.

• We can allow the collision between the gripper and the neighboring sand.
This is because

- damaging the neighboring sand grains is not important,

- the collision between the gripper and neighboring sand does not cause
the configuration change of the rock.

• We do not know the exact shape of a rock beforehand.

Grasping Under this task specifications, it is appropriate to use a spherical grasp­
ing. See the bottom left figure in Figure 3. This grasping has the characteristics
that

• it requires a large empty volume around an object to be grasped, because all
the fingers approach the object from all directions.

• it may grasp the neighboring materials of the object, if any, as well as the
object,

11

• it does not require the precise attitude and position of the object, because it
grasps an object as if it wrapped the object.

In order to realize this spherical grasping, we built a clam-shell gripper. See
the bottom right figure in Figure 3.

Representation Using a clam-shell gripper imposes two constraints on the rep­
resentation:

• the expected mass center of a rock should be inside of the gripper

• the expected size of a rock should be smaller than the inner hull of the
gripper

While working from only a partial observation of a rock and without any prior
knowledge of the rock shape, we still need to recover the above information. We
do not need to recover a precise shape representation of a rock, however. From this
consideration, the superquadric representation was chosen, because it is described
by a few parameters which can be recovered by using a fitting method such as the
gradient descent method.

Segmentation For a rock partially buried in the sand, orientation discontinuities
and depth discontinuities are small. Thus, it is usually difficult to detect these
discontinuities reliably and extract a closed boundary based on them.

Because there is no a priori rock model available, the segmentation cannot be
guided by a model as in the bin-picking system. The only available information
is that a rock forms a closed boundary. Along this closed boundary, the following
three boundary elements exist:

• shadow boundaries

• orientation discontinuities

• depth discontinuities

Thus, it is necessary to use a segmentation method which connects these
boundary elements and extracts a closed boundary. For this purpose, a model-
based segmentation method based on the snake algorithm described in Section 2
was employed.

12

rock in the sand no a priori model1

spherical
grasping

imperfect
boundary

superquadric
representation

snake
segmentation

Task specification 1

Figure 3: Design flow of Rock-sampling System

13

4.2 Bin-picking system

Figure 4 shows the design flow of the bin-picking (BP) system. The design flow
starts with the task specification of the bin-picking and specifies all the components
down to the image acquisition method.

Task-specification The task of this system is to grasp the topmost industrial part
in a bin of parts under the following conditions:

• The parts are close to each other. Some collisions may occur between the
gripper and the neighboring parts if a random grasping strategy is chosen.

• It should be avoided to have the collision between the gripper and the
neighboring parts. This is because

- the collision may cause damage to the neighboring parts,

- the collision may cause configuration change of the part to be grasped,
because the part is supported by the neighboring parts, and thus, it may
fail to grasp the part.

• The exact shape of a part is known beforehand.

Grasping Under these task-specifications, it is appropriate to use a tip grasping.
See the bottom left figure in Figure 4. This grasping has the characteristics that

• it requires only a small volume around an object to be grasped compared to
other grasping strategies because only two fingers approach the object from
two opposite directions

• it grasps only the object

• it requires the precise attitude and position of the object, because grasping
occurs as the contact of two fingers at the same time

In order to realize this tip grasping, we built a parallel-jaw gripper. See the
bottom right figure in Figure 4.

14

Representation In order to grasp a part using the parallel-jaw gripper,

• the precise position of two parallel planes should be known.

This constraint implies a polyhedral representation of the object. A sensor
typically gives a partial observation of an object. A pair of parallel planes has two
opposite surface normals. If one plane is visible from the sensor, it is likely that
the other plane is self-occluded from the sensor. Even though the two planes are
visible, it is necessary to have an n2 search out of n observed planes. Thus, we
decided not to find such parallel plane pairs at run time.

Instead, we decided to represent a part by a polygonal approximation given
by a geometric model, to search such plane pairs in the representation at compile
time, and to make the relationship between such pairs and observed part attitude.
At run time, we concentrate on recovering the attitude of the part, and recovering
the pairs attitude using this relationship.

Segmentation Distinct depth discontinuities can be observed around an object,
because an industrial part sits on other parts, as opposed to the rock-sampling case
in which a rock may be partially buried in the sand. Also from the geometric
model of the object, the threshold value used to find surface discontinuities can be
found from the minimum angle between adjacent faces.

The following facts are utilized for segmentation:

• An object boundary is surrounded by a shadow. Since the current imple­
mentation of the photometric stereo system employs three light sources, the
top-most object in the bin is always surrounded by a shadow.

• The threshold value that defines the surface discontinuities can be defined
by computing angle differences of every face pairs in the model.

Since these two classes of boundaries are distinct and connected, we do not
need a method, such as the snake-based segmentation used in the rock sampling,
to connect them.

As shown in this section, in order to construct a vision system, it is not
enough to investigate algorithms for each vision modules, such as representation
methods or segmentation methods, individually. It is also necessary to investigate
the constraints and interactions among vision modules. Such constraints and
interactions provide valid assumptions from which each vision module should
be developed and the expected performance which each vision module should
generate.

15

industrial part
on other parts

tip
grasping

Task specification

exact model

stable
boundary

geometric model
representation

region-based
segmentation

16

5 Task Oriented Approach
An important goal for computer vision research is the development of a vision
system which can serve as a complete and self-contained artificial vision unit. Cur­
rently, the majority of vision community adheres to an approach which emphasizes
general purpose vision machines being constructed under the same architecture -
an approach which is epitomized by Marr 's paradigm. Researchers in this school
try to design a general purpose vision machine which performs all vision tasks
using the single architecture.

Figure 5 shows the architecture in Marr's paradigm [18]. An intermediate
representation (2 — j D representation) is generated from several 2D image clues
such as shading, texture, and motion. Then, a final 3D representation, based on the
object-centered coordinate system is generated from this 2 — | D representation.
Independent of the nature of the tasks, the visual information is processed in a
bottom-up fashion. Research focuses on each module in the system rather than
on the overall system; accordingly, intermodule interactions and the system's
connections to specific tasks is less emphasized.

We propose to investigate task-oriented vision systems. We assume that with­
out aiming to see a target object (without having some specific task), we cannot
see it (we cannot achieve the task). Under this assumption, we claim that one
particular visual task should govern the choice of representations, vision modules,
and image acquisition sensors. Thus, a task determines the optimal architecture
for the vision system.

Figure 6 shows the paradigm of the system we are proposing. The basic
collection of modules are the same as Marr's with the exception of a box labeled
as TASK. The figure indicates that the interaction among several modules. This
interaction will change as a result of the "decisions" from the TASK box and will
compose the optimal architecture for the vision task at hand. We will refer to this
paradigm as a task-oriented approach.

Our approach emphasizes developing not only intra-module algorithms within
vision modules, which is emphasized by the traditional approach, but also inter­
module interactions which depend on tasks. In other words, we consider a vision
system as a whole, and under a particular task, we investigate how each vision
module interacts. The key element is the logical order in which the vision com­
ponents are selected and built. From the previous examples we can see that this
task-oriented approach is critical in building a working system. For example, the
bin-picking system would not work if a superquadric representation were used:

17

object-centered
representation

viewer-centered
representation

(3D representation j

shading

GC

(2-1 /2D representation

interpolation
fusion

texture line
drawing

binocularl
stereo

3D feature extraction
(shape-from-x) c 2D image

Figure 5: Marr's paradigm

18

The difference between the superquadric surface and the actual surface may cause
the contact of one finger to occur before the other, thus causing the object to move,
and even possibly to fall from the top of the bin.

In order to investigate architectures of vision systems under the task-oriented
paradigm, we have to consider the following inter-module interactions:

• task specifications

• functional capabilities of a representation required by the task

• representations having such functional capabilities

• features appropriate for extracting such representations

• segmentation methods appropriate for extracting such features and repre­
sentations

• image sensors and their strategies appropriate for obtaining such segmenta­
tion methods and features

Under this framework, first, we have to analyze the taxonomy of visual tasks.
Figure 7 is an example of such a taxonomy. Clearly, the required representations
are different for navigation and for manipulation, and the architectures of such
vision systems differ accordingly. Even within the manipulation task, what to
grasp and how to grasp need different architectures; what to grasp belongs to a
class of object identification problems, and how to grasp belongs to a class of
object representation problems.

As an example of the Task-oriented paradigm, in the remainder of this section,
we will consider the issues inherent in analyzing interactions between grasping
strategies and architectures. Task oriented vision starts from task-specification. In
this example, task specification can be translated into grasping strategies.

Taylor and Schwarz [22] classified human grasping strategies into the following
six categories:

• Spherical grasping - grasps an object by closing all fingers from all direc­
tions. Very stable grasping can be achieved as the contact occurs at several
points on the whole surface of the object.

• Cylindrical grasping - grasps a cylindrical object from all directions in one
plane. The contact occurs at the points along the cross-sectional circle.

19

c 3D short-term
representation

C 2-1/2D representation

shd sti

motion
rang&
fincjjphotometriq |

stereo

Q 2D image ^

Task
L . 1

deformable
template

aspect

snake

3D
long
term
model

EGI

generalized
cylinder

super
quadrics

short-term
representation
template

Figure 6: Task-oriented paradigm

20

• Hook grasping - pulls an object toward particular directions. The contact
occurs at the points along the cross-sectional hemicircle.

• Lateral grasping - pushes an object on a soft side surface of one finger by
the other fingers. The contact occurs at a point and points on a plane.

• Palmar grasping - grasps the end of bar by closing three fingers. The
contact occurs at the three points.

• Tip grasping - grasps an object by closing two fingers from two opposite
directions. We can achieve very fine grasping. The contact occurs at the
two opposite points.

Spherical, cylindrical and hook graspings are grouped as power grasping fam­
ily, while lateral, palmar and tip graspings are grouped as precision grasping
family.

Once a grasping strategy is given, we have to choose one particular represen­
tation suitable to the strategy. Here, the issue is to investigate the relationship
between required functional capabilities, representations, and grasping strategies.

Figure 8 summarizes the required functional capabilities for representations by
these six grasping strategies. In the figure the sign " ~ " indicates approximated.
Thus, the figure reads as that the spherical grasping requires approximated radius
and approximated center of the object grasped.

We can summarize that the three power grasping strategies - spherical, cylin­
drical, and hock - require only approximated parameters rather than detailed
parameters. For these grasping strategies, weak models such as superquadric
representations are suitable for representing the object grasped.

The three precision grasping requires the existence of such detailed models as
a geometric model. The lateral grasping requires the exact position of the two
planes. The palmar grasping requires the knowledge of the exact position of the
cross-section, while the tip grasping requires knowledge of the exact position of
two contact points. In order to extract such exact information, we need an exact
object model which is represented using polyhedrons. Since it is difficult to extract
such information precisely in run time, we need a polyhedral approximation such
as the one provided by a geometric model of the object.

The next important intermodule constraint is how to determine an appropriate
group of feature for extracting such a representation. Let us focus on the case of
precision graspings. For this grasping, the existence of a geometric model is a

21

task

Figure 7: Taxomony of task

22

grasp
strategy required functional capabilities representation

(* 4 \
V ° J

-center
-radius

superquadrics

-center
<T . €) L - -radius
V / -axis direction

generalized
cylinder

^^^^^^

-center
fjL -radius
t jT -axis direction

-pulling direction

superquadrics
+ pulling direction

orientation
' position of two planes

width

two parallel
planes
(geometric model)

H

I
center
radius

cross-sectional
shape
(geometric model)

position of points
orientation

two contact
positions
(geometric model)

Figure 8: Required functional capabilities by grasping strategies

23

prerequisite. Then, the issue can be translated into the one how to select optimal
features automatically from a geometric model. Goad proposes a method for
selecting appropriate edges for object localization [9]. Bolles and Cain propose a
focus feature method which selects important features and less important secondary
features [6]. We have been developing a CMU vision algorithm compiler which
chooses the optimal set of features for object localization [11].

For further segmentation and image acquisition, such issues as "what kind
of sensor should be used", "where it should be located to detect the necessary
features", and "what kind of features must be extracted" have been investigated
under active sensing strategy generations [15, 8, 23, 10, 7] .

By using Task-oriented vision paradigm as the design philosophy for vision
systems architectures, we can unify recent active-vision [1, 4, 2, 12] and vision
algorithm compiler [6, 23, 14] accomplishments toward the single unified goal,
accomplishments toward completion of the task-oriented vision paradigm.

24

6 Conclusion
This paper presented a task-oriented vision approach to the design of vision sys­
tems. The task-oriented vision approach proposes to change the architecture of a
vision system in a systematic fashion which depends on each task specification.
We have presented a task oriented approach for systems that involve the localiza­
tion and grasping of 3-D objects. In this case, the general methodology involves
analyzing the task specification to derive the constraints on and requirements of
the vision components. This starts with the type of representation, derived from
the type of grasping selected, and continues down to the type of sensor. The
task oriented approach is applicable to a wide range of vision systems. The task
oriented approach will not only build more robust systems but will also give a new
direction to vision research.

7 Acknowledgement
The authors wish to thank H. Delingette, T. Choi and Y. Yen for building some of
the rock-sampling softwares, K.S. Hong and K.D. Gremban for building some of
the bin-picking softwares. Takeo Kanade and Raj Reddy provided many useful
comments and encouragements. Kathryn Porsche and Fredric Solomon proofread
drafts of this paper and provided many useful comments which have improved
the readability of this paper. The authors also thank Shree Nayar, Hideichi Sato,
Yoshimasa Fujiwara and the members of the Task-oriented Vision Laboratory, the
Robotics Institute, Carnegie Mellon University, for their valuable comments and
suggestions.

References
[1] J. Aloimonos. Purposive and qualitative active vision. In Proceedings of

DARPA Image Understanding Workshop, pages 816-828, Pittsburgh, PA,
1990. Morgan Kaufmann.

[2] R. Bajcsy, R. Paul, X. Yun, and V. Kumar. A multiagent system for intelligent
material handling. In Proceedings of 91 Intern. Conf on Advanced Robot,
pages 18-23, Pisa, Italy, 1991. IEEE Computer Society.

25

[3] R. Bajcsy and F. Solina. Three dimensional-object representation revisited.
Technical Report MS-CIS-87-19, Univeristy of Pennsylvania, Department
of Computer and Information Science, March 1987.

[4] D. Ballard. Animate vision. In Proceedings of Intern Conf on Artificial
Intelligence, 1989.

[5] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons, and
W. Whittaker. An autonomous rover for exploring mars. IEEE Computer,
(6), June 1989.

[6] R. Bolles and R. A. Cain. Recognizing and locating partially visible ob­
jects: the local-feature-focus method. The International Journal on Robotics
Research, l (3):57-82, 1982.

[7] C.H. Chen and A.C. Kak. A robot vision system for recognizing 3-d objects in
low-order polynomial time. IEEE Trans, on Systemsf Man, and Cybernetics,
19(6): 1535-1563, November/December 1989.

[8] C.K. Cowan and A. Bergman. Determining the camera and light source
location for visual task. In IEEE Intern Conf Robotics and Automation;
pages 509-514, 1989.

[9] C. Goad. Special purpose automatic programming for 3D model-based
vision. In Proc. ofDARPA Image Understanding Workshop, pages 94-104.
DARPA, 1983.

[10] C. Hansen and T. Henderson. CAGD-based computer vision. In Proc. IEEE
Computer Society Workshop on Computer Vision, pages 100-105, Miami
Beach, FL, December 1987. IEEE Computer Society.

[11] K.S. Hong, K. Ikeuchi, and K.D. Gremban. Minimum cost aspect classifi­
cation: a module of a vision algorithm compiler. In 10th Intern. Conf on
Pattern Recognition, Atlantic City, N.J., June 1990. (a slightly longer version
is available as CMU-CS-90-124).

[12] S.A. Hutchinson and A.C. Kak. Planning sensing strategies in robot work
cell with multi-sensor capabilities. IEEE. Trans. Robotics and Automation,
5(6):765-783, December 1989.

26

[13] K. Ikeuchi. Determining a depth map using a dual photometric stereo. The
International Journal of Robotics Research, 6(1): 15-31 , 1987.

[14] K. Ikeuchi and K. S. Hong. Determining linear shape change: Toward
automatic generation of object recognition programs. Computer Vision,
Graphics, and Image Processing: Image Understanding, 53(2), March 1991.
a longer version, containing programs, is avaiable as CMU-CS-88-188.

[15] K. Ikeuchi and T. Kanade. Modeling sensors: Toward automatic genera­
tion of object recognition program. Computer Vision, Graphics, and Image
Processing, (48):50-79, 1989.

[16] K. Ikeuchi, H.K. Nishihara, B.K.P. Horn, P. Sobalvarro, and S. Nagata.
Determining grasp points using photometric stereo and the prism binocular
stereo system. The International Journal of Robotics Research, 5 (l) :46-65 ,
1986.

[17] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
Intern. Journal of Computer Vision, 2(1):321-331, 1988.

[18] D. Marr. Vision. Freeman, San Francisco, 1982.

[19] A. P. Pentland. Perceptual organization and the representation of natural
form. Artificial Intelligence, 28(2):293-331,1986.

[20] K. Sato, H. Yamamoto, and S. Inokuchi. Range imaging system utilizing
nematic liquid crystal mask. In International Conf on Computer Vision,
pages 657-661 , London, 1987.

[21] F. Solina. Shape recovery and segmentation with deformable part model.
Technical Report MS-CIS-87-111, Univeristy of Pennsylvania, Department
of Computer and Information Science, December 1987.

[22] C.L. Taylor and R.J. Schwarz. The anatomy and mechanics of the human
hand. Artificial Limbs, 2:22-35, 1955.

[23] S. Yi, R.M. Haralick, and L.G. Shapiro. Automatic sensor and light source
positioning for machine vision. In Proceedings of the 10th Intern. Conf on
Pattern Recognition. IEEE Computer Society, 1990.

27

