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Abstract 

This paper overviews two recently completed vision systems (a rock sampling 
system for planetary rovers and a bin-picking system for industrial robots). Then, 
we will examine the reason why these two systems have different architectures 
although their goals are roughly same, picking up something by visual observation. 
Based on this discussion, we will develop the task-oriented vision paradigm, 
and examine the difference between the task-oriented vision paradigm and the 
traditional Marr 's paradigm. We will also explore the research issues necessary 
for completing the task-oriented vision paradigm. 
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1 Introduction 
A critical issue in designing a robot vision system is how to organize the relevant 
components into a vision program. Such components include object representa­
tions, features, segmentation methods, image acquisition strategies, and sensors. 
The choice of such vision components governs the quality of resulting vision 
programs. 

There are two approaches to the problem of organizing the components: gen­
eral purpose oriented and task-oriented. Researchers in the general purpose ori­
ented school claim that we should build the vision system to be able to solve all 
the vision tasks using a single architecture, that is, an architecture in which a fixed 
selection of components is executed in a fixed order. They also claim that we 
should avoid to use any task specific constraints to build a vision system. 

We, researchers in the task oriented school, claim that we should prepare 
different architectures of vision systems and that, depending on the task (the goal 
of the system and the environment in which such a task is achieved), a robot vision 
system should change its architectures so that it has the optimal selection of the 
components to achieve a given task. 

In the task-oriented approach, however, few attempts have been made to clarify 
and establish theories for the task oriented vision and methodologies to implement 
the theories for building a vision system of the optimal architecture beyond several 
ad hoc trials. 

This paper proposes a task-oriented vision approach and investigates the design 
of vision systems in a systematic way. We will focus on the design of robotics 
systems that involve the localization and grasping of objects because it is a good 
illustration of the task oriented approach. In order to illustrate this approach, 
this paper will overview two vision systems recently completed: rock sampling 
vision for planetary rover robots and bin picking vision for industrial robots. We 
will illustrate the task oriented approach in designing these two vision systems. 
Then, we will derive a general framework for designing vision systems under the 
task-oriented approach. 
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2 Rock Sampling System 
One of the most important goals of a planetary exploration mission is to collect 
and analyze terrain samples. As part of the CMU Ambler project [5], we are 
investigating techniques to collect small rocks in the sand. This section overviews 
the architecture of the rock sampling system. 

Image Acquisition Sensor The upper left figure in Figure 1 shows a typical 
scene to the system. From this scene, a range image is acquired using a range 
finder [20]. Each pixel in a range image possesses its 3D coordinate system 
measured with respect to the sensor. 

Segmentation From a range image, three types of features are extracted: 

• shadows, 

• orientation discontinuities, and 

• range discontinuities. 

These features give an indication of where the boundaries of the rocks may be 
located in the scene. These features are, unfortunately, not sufficient for reliably 
extracting rocks from the scene, because these features are fragmentary due to 
that the rocks are partially buried in the sand. Therefore, we cannot use a simple 
region extraction technique that would assume that the features are grouped into 
closed boundaries. 

The existence of features are taken as a rock hypothesis. Since we know the 
configuration of the sensor, we can derive the approximate location of the center 
of a rock from the distribution of the corresponding shadow regions and depth 
discontinuities. 

We implemented an iterative segmentation algorithm, similar to the "snake" 
algorithm [17]. A snake has a close deformable boundary, such as a rubber band, 
which is attracted by features and tries to shrink to its original size. The algorithm 
grows the boundary of the snake until it connects features "reasonably well". 

In order to implement the attractive and shrinking forces, we use two kinds of 
energy field: external (attractive) and internal (shrinking). 

The external energy is given by the following three forces: 

3 



• shadow attractor, 

• orientation discontinuity attractor, and 

• range discontinuity attractor. 

Following the attractive forces, the boundary moves towards the surrounding 
features. At the same time, over-growing is avoided by using the internal energy 
of the contour. We implemented the following internal energy field: 

• center attractor and 

• region attractor. 

A snake is attracted by its center position. It is also attracted by itself; a snake 
tries to form a compact shape. 

A small snake is initially located at the hypothesized center of a rock region. It 
grows iteratively while deforming its shape until it sits along the features where the 
external forces from the features and its own internal forces are in equilibrium. The 
bottom left figure in Figure 1 shows the schematic diagram of our segmentation 
algorithm. 

The segmentation result in Figure 1 shows the rock region, shown in blue, 
which has been extracted by this algorithm. Because this approach interpolates 
the missing gaps between features, it allows us to locate rocks in the scene even 
when only a very small number of visual features are extracted from the image. 
This departs from other vision systems which implicitly assume that strong and 
reliable features can always be extracted, and therefore would not perform well in 
the type of unstructured environment that we are considering. 

Representation In order to grasp a rock, we need parameters based on 3 dimen­
sional information of a rock, such as the mass center and the inertia axis direction. 
A snake segmentation provides us the 2 dimensional contour of a rock. The range 
data within the extracted contour give the 3 dimensional shape of a rock. How­
ever, it only gives the 3D shape of one side (visible side) of the rock. We have to 
infer the whole shape of a rock from this visible side shape for obtaining the 3D 
parameters necessary for grasping. 

We will use a superquadric surface to approximate the whole rock shape from 
the range data. A superquadric is a generalization of an ellipsoid that can represent 
a wide variety of shapes with a small number of parameters [19, 3]. 
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where a, 6, c are the size parameters. By changing the parameters, e\ and e2, we 
can represent several shapes as shown in the bottom center of Figure 1. 

We chose superquadrics as our representation for two reasons: 

• Superquadrics are appropriate for blob-like shapes. 

• Fitting superquadrics to a set of points from a partially visible object gives 
an estimate of the whole shape of the object, whereas more local surface 
representations would provide a representation of only the visible part of 
the object. 

We implemented a standard gradient descent method to fit a superquadric 
surface to range data [21]. The upper center figure in Figure 1 shows a superquadric 
representation of the rock. 

Grasping Strategy The superquadric fitting module provides the following pa­
rameters of a rock: 

• mass center position, 

• size, and 

• axis direction. 

Once an object has been represented by a superquadric, the system examines its 
size parameters to decide whether the rock is small enough to be picked up by the 
gripper. 

If so, the grasping strategy is set up so that the gripper orientation direction 
is aligned with the rock inertia axis direction, and the gripper approach direction 
is along the z axis and goes through the mass center of the rock. See the grasp 
strategy in Figure 1. 

This configuration yields the minimum potential field given by the relationship 
between the gripper and the rock represented by the superquadric. The upper right 
figure in Figure 1 shows the actual grasping. 
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Figure 1: Rock sampl ing system 



3 Bin Picking System 
The bin-picking task is defined as picking up the top most object from a pile of 
the same kind of objects randomly oriented. The input scene in Figure 2 shows a 
typical example of a bin. 

We have developed a bin-picking system using the CMU vision algorithm 
compiler for object localization [14, 11]. The central issue in the research is 
how to build the compiler, which automatically converts a geometric and sensor 
model into a localization program. In this section, however, we will emphasize 
the architecture of the run-time system generated by the compiler rather than the 
compiling techniques. 

Image Acquisition Sensors The range data is acquired using a dual photometric 
stereo system [13]. 

Segmentation From a range image, two types of features are extracted: 

• shadows: 
A photometric stereo system projects three lights onto scene; each light 
generates a shadow region around an industrial part. Since we distribute 
three lights in a triangle shape, the part located at the top of the bin is 
surrounded by shadow regions. 

• orientation discontinuities: 
From a geometric model of an industrial part, we can determine the an­
gle between two adjacent faces. We can find the minimum angle among 
these adjacent angles, and use this angle as the threshold for determining 
orientation discontinuities. 

A simple segmentation method based on shadows and orientation disconti­
nuities works quite well in this case due to the characteristics of the scene; in a 
bin of industrial parts, each part is enclosed by a clear occluding boundary. It 
is not necessary to use a more detailed segmentation method such as the snake 
segmentation method in the previous system. The segmentation result in Figure 2 
shows the one given by the simple segmentation method; the parts (dotted regions) 
are separated from each other by shadows and orientation discontinuities (white 
regions). 
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The highest region is determined among the regions extracted by the segmen­
tation program. From this highest region, the object localization process begins. 
This is because the highest region usually corresponds to the top-most part, and 
the top-most part is usually the most easiest one to pick up. 

Representation The object localization process is performed by the program 
which is generated by the CMU vision algorithm compiler. The compiler auto­
matically generate a localization program from the object and sensor model. The 
program generated can perform object localization in the least amount of compu­
tational time among several possible localization programs. See the bottom left 
figure in Figure 2. 

Several geometric features such as area, inertia and distance between two 
adjacent regions, are extracted by the localization program in the predetermined 
order by the compiler. The program compares the extracted features with those 
from the model and determines the attitude and position of the part. 

Using the resulting position and attitude, the program generates a part repre­
sentation using the geometric model as shown in the recognition results in Figure 2. 
The neighboring regions are represented by dodecahedral prisms. These dodec-
ahedral prism representations are used for collision check while constructing a 
grasping strategy. 

Grasping strategy The grasp configuration should satisfy the following two 
conditions [16]: 

• It should produce a mechanically stable grasp, given the gripper's shape and 
the part's shape. Such configurations will be called legal grasp configura­
tion, 

• The configuration must be achieved without collisions with other parts. 
Grasp configurations are limited by the relationship between the shape of 
the gripper and the shapes of neighboring obstacles. Such configurations 
will be called collision-free grasp configuration. 

In compile mode, possible legal grasp configurations are compiled and stored 
at each representative attitude of the part in a grasp catalogue as shown in the 
bottom center figure in Figure 2. 
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In execution mode, the system determines to which representative attitude the 
current attitude of the top-most part belongs. Then, the legal grasp configurations 
corresponding to the representative attitude are retrieved from the grasp catalogue. 
These configurations are then converted into the world coordinate system based 
on the observed configuration of the industrial part. 

The system has to find a collision-free grasp configuration among these con­
figurations. It generates a cube representation corresponding to the work-space 
of each legal grasp configuration in the geometric representation as shown in the 
collision check in Figure 2. Then, the system examines whether the intersec­
tion exists between the gripper work space cube and the obstacle prisms in the 
geometric representation. 

Among the possible collision free configurations found by the system, the 
optimal configuration (currently the one nearest to the part's mass center) is chosen. 
The system picks up the industrial part using the configuration as shown in upper 
right most figure in Figure 2. 
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4 System Analysis 
The tasks, the two systems, rock-sampling and bin-picking, aim to achieve, are 
roughly same; observing a scene, determining a grasp strategy and picking up 
something based on the analysis. However, the two systems have completely 
different architectures. This section will examine the reason why such different 
architectures are necessary. 

4.1 Rock-Sampling System 
Figure 3 shows the design flow of the rock sampling (RS) system. The design be­
gins from the task specification of the rock sampling through the image acquisition 
method. 

Task specification The task of this system is to grasp a rock in the sand under 
the following conditions: 

• The rocks are far enough away from each other. It is not necessary to 
consider the collision betwe.en the gripper and the neighboring rocks, when 
picking up a rock. 

• We can allow the collision between the gripper and the neighboring sand. 
This is because 

- damaging the neighboring sand grains is not important, 

- the collision between the gripper and neighboring sand does not cause 
the configuration change of the rock. 

• We do not know the exact shape of a rock beforehand. 

Grasping Under this task specifications, it is appropriate to use a spherical grasp­
ing. See the bottom left figure in Figure 3. This grasping has the characteristics 
that 

• it requires a large empty volume around an object to be grasped, because all 
the fingers approach the object from all directions. 

• it may grasp the neighboring materials of the object, if any, as well as the 
object, 
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• it does not require the precise attitude and position of the object, because it 
grasps an object as if it wrapped the object. 

In order to realize this spherical grasping, we built a clam-shell gripper. See 
the bottom right figure in Figure 3. 

Representation Using a clam-shell gripper imposes two constraints on the rep­
resentation: 

• the expected mass center of a rock should be inside of the gripper 

• the expected size of a rock should be smaller than the inner hull of the 
gripper 

While working from only a partial observation of a rock and without any prior 
knowledge of the rock shape, we still need to recover the above information. We 
do not need to recover a precise shape representation of a rock, however. From this 
consideration, the superquadric representation was chosen, because it is described 
by a few parameters which can be recovered by using a fitting method such as the 
gradient descent method. 

Segmentation For a rock partially buried in the sand, orientation discontinuities 
and depth discontinuities are small. Thus, it is usually difficult to detect these 
discontinuities reliably and extract a closed boundary based on them. 

Because there is no a priori rock model available, the segmentation cannot be 
guided by a model as in the bin-picking system. The only available information 
is that a rock forms a closed boundary. Along this closed boundary, the following 
three boundary elements exist: 

• shadow boundaries 

• orientation discontinuities 

• depth discontinuities 

Thus, it is necessary to use a segmentation method which connects these 
boundary elements and extracts a closed boundary. For this purpose, a model-
based segmentation method based on the snake algorithm described in Section 2 
was employed. 
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4.2 Bin-picking system 

Figure 4 shows the design flow of the bin-picking (BP) system. The design flow 
starts with the task specification of the bin-picking and specifies all the components 
down to the image acquisition method. 

Task-specification The task of this system is to grasp the topmost industrial part 
in a bin of parts under the following conditions: 

• The parts are close to each other. Some collisions may occur between the 
gripper and the neighboring parts if a random grasping strategy is chosen. 

• It should be avoided to have the collision between the gripper and the 
neighboring parts. This is because 

- the collision may cause damage to the neighboring parts, 

- the collision may cause configuration change of the part to be grasped, 
because the part is supported by the neighboring parts, and thus, it may 
fail to grasp the part. 

• The exact shape of a part is known beforehand. 

Grasping Under these task-specifications, it is appropriate to use a tip grasping. 
See the bottom left figure in Figure 4. This grasping has the characteristics that 

• it requires only a small volume around an object to be grasped compared to 
other grasping strategies because only two fingers approach the object from 
two opposite directions 

• it grasps only the object 

• it requires the precise attitude and position of the object, because grasping 
occurs as the contact of two fingers at the same time 

In order to realize this tip grasping, we built a parallel-jaw gripper. See the 
bottom right figure in Figure 4. 
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Representation In order to grasp a part using the parallel-jaw gripper, 

• the precise position of two parallel planes should be known. 

This constraint implies a polyhedral representation of the object. A sensor 
typically gives a partial observation of an object. A pair of parallel planes has two 
opposite surface normals. If one plane is visible from the sensor, it is likely that 
the other plane is self-occluded from the sensor. Even though the two planes are 
visible, it is necessary to have an n2 search out of n observed planes. Thus, we 
decided not to find such parallel plane pairs at run time. 

Instead, we decided to represent a part by a polygonal approximation given 
by a geometric model, to search such plane pairs in the representation at compile 
time, and to make the relationship between such pairs and observed part attitude. 
At run time, we concentrate on recovering the attitude of the part, and recovering 
the pairs attitude using this relationship. 

Segmentation Distinct depth discontinuities can be observed around an object, 
because an industrial part sits on other parts, as opposed to the rock-sampling case 
in which a rock may be partially buried in the sand. Also from the geometric 
model of the object, the threshold value used to find surface discontinuities can be 
found from the minimum angle between adjacent faces. 

The following facts are utilized for segmentation: 

• An object boundary is surrounded by a shadow. Since the current imple­
mentation of the photometric stereo system employs three light sources, the 
top-most object in the bin is always surrounded by a shadow. 

• The threshold value that defines the surface discontinuities can be defined 
by computing angle differences of every face pairs in the model. 

Since these two classes of boundaries are distinct and connected, we do not 
need a method, such as the snake-based segmentation used in the rock sampling, 
to connect them. 

As shown in this section, in order to construct a vision system, it is not 
enough to investigate algorithms for each vision modules, such as representation 
methods or segmentation methods, individually. It is also necessary to investigate 
the constraints and interactions among vision modules. Such constraints and 
interactions provide valid assumptions from which each vision module should 
be developed and the expected performance which each vision module should 
generate. 
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5 Task Oriented Approach 
An important goal for computer vision research is the development of a vision 
system which can serve as a complete and self-contained artificial vision unit. Cur­
rently, the majority of vision community adheres to an approach which emphasizes 
general purpose vision machines being constructed under the same architecture -
an approach which is epitomized by Marr 's paradigm. Researchers in this school 
try to design a general purpose vision machine which performs all vision tasks 
using the single architecture. 

Figure 5 shows the architecture in Marr's paradigm [18]. An intermediate 
representation ( 2 — j D representation) is generated from several 2D image clues 
such as shading, texture, and motion. Then, a final 3D representation, based on the 
object-centered coordinate system is generated from this 2 — | D representation. 
Independent of the nature of the tasks, the visual information is processed in a 
bottom-up fashion. Research focuses on each module in the system rather than 
on the overall system; accordingly, intermodule interactions and the system's 
connections to specific tasks is less emphasized. 

We propose to investigate task-oriented vision systems. We assume that with­
out aiming to see a target object (without having some specific task), we cannot 
see it (we cannot achieve the task). Under this assumption, we claim that one 
particular visual task should govern the choice of representations, vision modules, 
and image acquisition sensors. Thus, a task determines the optimal architecture 
for the vision system. 

Figure 6 shows the paradigm of the system we are proposing. The basic 
collection of modules are the same as Marr's with the exception of a box labeled 
as TASK. The figure indicates that the interaction among several modules. This 
interaction will change as a result of the "decisions" from the TASK box and will 
compose the optimal architecture for the vision task at hand. We will refer to this 
paradigm as a task-oriented approach. 

Our approach emphasizes developing not only intra-module algorithms within 
vision modules, which is emphasized by the traditional approach, but also inter­
module interactions which depend on tasks. In other words, we consider a vision 
system as a whole, and under a particular task, we investigate how each vision 
module interacts. The key element is the logical order in which the vision com­
ponents are selected and built. From the previous examples we can see that this 
task-oriented approach is critical in building a working system. For example, the 
bin-picking system would not work if a superquadric representation were used: 
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The difference between the superquadric surface and the actual surface may cause 
the contact of one finger to occur before the other, thus causing the object to move, 
and even possibly to fall from the top of the bin. 

In order to investigate architectures of vision systems under the task-oriented 
paradigm, we have to consider the following inter-module interactions: 

• task specifications 

• functional capabilities of a representation required by the task 

• representations having such functional capabilities 

• features appropriate for extracting such representations 

• segmentation methods appropriate for extracting such features and repre­
sentations 

• image sensors and their strategies appropriate for obtaining such segmenta­
tion methods and features 

Under this framework, first, we have to analyze the taxonomy of visual tasks. 
Figure 7 is an example of such a taxonomy. Clearly, the required representations 
are different for navigation and for manipulation, and the architectures of such 
vision systems differ accordingly. Even within the manipulation task, what to 
grasp and how to grasp need different architectures; what to grasp belongs to a 
class of object identification problems, and how to grasp belongs to a class of 
object representation problems. 

As an example of the Task-oriented paradigm, in the remainder of this section, 
we will consider the issues inherent in analyzing interactions between grasping 
strategies and architectures. Task oriented vision starts from task-specification. In 
this example, task specification can be translated into grasping strategies. 

Taylor and Schwarz [22] classified human grasping strategies into the following 
six categories: 

• Spherical grasping - grasps an object by closing all fingers from all direc­
tions. Very stable grasping can be achieved as the contact occurs at several 
points on the whole surface of the object. 

• Cylindrical grasping - grasps a cylindrical object from all directions in one 
plane. The contact occurs at the points along the cross-sectional circle. 
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• Hook grasping - pulls an object toward particular directions. The contact 
occurs at the points along the cross-sectional hemicircle. 

• Lateral grasping - pushes an object on a soft side surface of one finger by 
the other fingers. The contact occurs at a point and points on a plane. 

• Palmar grasping - grasps the end of bar by closing three fingers. The 
contact occurs at the three points. 

• Tip grasping - grasps an object by closing two fingers from two opposite 
directions. We can achieve very fine grasping. The contact occurs at the 
two opposite points. 

Spherical, cylindrical and hook graspings are grouped as power grasping fam­
ily, while lateral, palmar and tip graspings are grouped as precision grasping 
family. 

Once a grasping strategy is given, we have to choose one particular represen­
tation suitable to the strategy. Here, the issue is to investigate the relationship 
between required functional capabilities, representations, and grasping strategies. 

Figure 8 summarizes the required functional capabilities for representations by 
these six grasping strategies. In the figure the sign " ~ " indicates approximated. 
Thus, the figure reads as that the spherical grasping requires approximated radius 
and approximated center of the object grasped. 

We can summarize that the three power grasping strategies - spherical, cylin­
drical, and hock - require only approximated parameters rather than detailed 
parameters. For these grasping strategies, weak models such as superquadric 
representations are suitable for representing the object grasped. 

The three precision grasping requires the existence of such detailed models as 
a geometric model. The lateral grasping requires the exact position of the two 
planes. The palmar grasping requires the knowledge of the exact position of the 
cross-section, while the tip grasping requires knowledge of the exact position of 
two contact points. In order to extract such exact information, we need an exact 
object model which is represented using polyhedrons. Since it is difficult to extract 
such information precisely in run time, we need a polyhedral approximation such 
as the one provided by a geometric model of the object. 

The next important intermodule constraint is how to determine an appropriate 
group of feature for extracting such a representation. Let us focus on the case of 
precision graspings. For this grasping, the existence of a geometric model is a 
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prerequisite. Then, the issue can be translated into the one how to select optimal 
features automatically from a geometric model. Goad proposes a method for 
selecting appropriate edges for object localization [9]. Bolles and Cain propose a 
focus feature method which selects important features and less important secondary 
features [6]. We have been developing a CMU vision algorithm compiler which 
chooses the optimal set of features for object localization [11]. 

For further segmentation and image acquisition, such issues as "what kind 
of sensor should be used", "where it should be located to detect the necessary 
features", and "what kind of features must be extracted" have been investigated 
under active sensing strategy generations [15, 8, 23, 10, 7] . 

By using Task-oriented vision paradigm as the design philosophy for vision 
systems architectures, we can unify recent active-vision [1, 4, 2, 12] and vision 
algorithm compiler [6, 23, 14] accomplishments toward the single unified goal, 
accomplishments toward completion of the task-oriented vision paradigm. 
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6 Conclusion 
This paper presented a task-oriented vision approach to the design of vision sys­
tems. The task-oriented vision approach proposes to change the architecture of a 
vision system in a systematic fashion which depends on each task specification. 
We have presented a task oriented approach for systems that involve the localiza­
tion and grasping of 3-D objects. In this case, the general methodology involves 
analyzing the task specification to derive the constraints on and requirements of 
the vision components. This starts with the type of representation, derived from 
the type of grasping selected, and continues down to the type of sensor. The 
task oriented approach is applicable to a wide range of vision systems. The task 
oriented approach will not only build more robust systems but will also give a new 
direction to vision research. 
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