
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Practical Considerations for
Lock-Free Concurrent Objects

Brian N. Bershad
September 1991
CMU-CS-91-183 „

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
A n important class of concurrent objec t s are those that are lock-free, tha t is, whose

operat ions are not conta ined wi th in mutua l ly exclusive critical sect ions . A lock-free
object can be accessed by m a n y threads at a t ime , yet clever u p d a t e protocols based
on a t o m i c C o m p a r e - A n d - S w a p operat ions guarantee the object ' s consistency.

In th is paper we take a practical look at the C o m p a r e - A n d - S w a p operat ion in the
context of contemporary shared m e m o r y mult iprocessors . We first describe an operat
ing s y s t e m - b a s e d so lut ion tha t permit s the construct ion of a non-blocking C o m p a r e -
A n d - S w a p funct ion on processor architectures that only support lock-oriented a t o m i c
primit ives . We then eva luate several locking strategies that can be used to synthes ize a
C o m p a r e - A n d - S w a p operat ion . W e show that the c o m m o n techniques for reducing the
overhead of lock-oriented synchronizat ion in the presence of content ion are inappropri
a te when used as the basis for lock-free synchronizat ion. We then describe a s imple
modif icat ion t o an ex i s t ing synchronizat ion protocol which allows us to avoid much of
the overhead normal ly assoc iated wi th content ion.

This research was sponsored in part by a National Science Foundation Presidential Young Investigator
Award (PYI), the Defense Advanced Research Projects Agency, Information Science and Technology Office,
under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by DARPA/CMO under
Contract MDS972-90-C-0035 and in part by the Open Software Foundation (OSF).

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of NSF, DARPA, OSF, or the
U.S. government.

Keywords: Operating Systems, Mutual Exclusion, Performance

1 Introduction
Programs running on shared memory multiprocessors rely on low-level synchronization
mechanisms and protocols to ensure controlled access to concurrent objects. An important
class of concurrent objects are those that are lock-free, that is, whose operations are not
contained within mutually exclusive critical sections. A lock-free object can be accessed
by many threads at a time, yet clever update protocols based on atomic Compare-And-
Swap operations guarantee the object's consistency. Because threads are not forced to
queue while accessing a lock-free object, they are not vulnerable to the effects of schedul
ing convoys, priority inversion, and deadlock. Further, lock-free objects may be accessed
concurrently, resulting in a higher throughput for operations.

Several researchers have demonstrated the feasibility of lock-free objects. Wing and
Gong [Wing & Gong 90], and Mellor-Crummey [Mellor-Crummey 87] have designed a
library of lock-free concurrent objects and proven them correct. Herlihy has shown several
practical algorithms for wait-free — a restricted form of lock-free — objects [Herlihy 90].
Massalin and Pu have implemented an entire operating system kernel for shared memory
multiprocessors using only lock-free objects [Massalin & Pu 91].

The applicability of these results has been predicated on the assumption that an atomic
Compare-And-Swap instruction is available in hardware. Indeed, many of the papers de
scribing new lock-free algorithms contain a plea to hardware designers to include an atomic
Compare-And-Swap instruction in future architectures for shared memory multiprocessors.

In this paper, we consider various aspects of this plea. First, we assert that it has largely
gone unheard. Few of today's processor architectures (and therefore shared memory mul
tiprocessors) support an atomic Compare-And-Swap instruction. Second, we describe a
software approach for implementing Compare-And-Swap with a "less universal" [Herlihy
88] primitive such as Test-And-Set. Our approach relies on a small amount of operat
ing system support so as to not to lose the advantages of lock-free synchronization. We
then turn to the issue of performance, and explore various synchronization techniques
that can be used to implement lock-free concurrency primitives. We show that the es
tablished techniques for reducing synchronization overhead in the presence of contention
are not appropriate for lock-free synchronization. We then describe a set of alternatives
for implementing Compare-And-Swap on bus-based shared memory multiprocessors, and
demonstrate one strategy which works well in the the presence of contention by reducing
the frequency of synchronization. Our approach exploits a subtlety in the definition of
Compare-And-Swap that allows us to "guess" that a synchronized Compare-And-Swap is
likely to fail before doing the synchronization.

The remainder of this paper is structured as follows. In Section 2 we motivate this
work by describing some desirable properties of lock-free synchronization, and show that
few processors support it directly. In Section 3 we describe a simple operating system mech
anism which can be used to build an atomic Compare-And-Swap function in software, but
which permits the construction of objects which behave as though they are lock-free. In
Section 4 we describe a set of synchronization alternatives for the software implementa
tion and show that traditional high-performance locking mechanisms are inappropriate for
Compare- And- S wap.

1
University Libraries

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

2 Properties of Lock-Free Concurrent Objects
A lock-free object is one that can be accessed by multiple threads concurrently without
having to acquire a software lock, such as a mutex or a semaphore. In contrast, a blocking
object is protected by a lock which a thread acquires before manipulating the object and
releases when done. While the lock is held, no other thread may access the object. Because
the lock serializes all access, blocking objects exhibit no concurrency. Furthermore, threads
waiting on blocking objects are vulnerable to the untimely preemption of the lock holder.

Lock-free objects come in several flavors. A non-blocking object guarantees that threads
will not block while trying to access the object. A linearizable [Herlihy & Wing 90] object
is one which can be operated on concurrently by several threads, but which at all times
appears to have been manipulated according to some legal (defined in terms of the ob
ject's semantics) sequential history. In this sense, linearizability is similar to the notion
of serializability found in transaction systems. Operations can be interleaved as long as
the interleaving is consistent with some linear ordering. A wait-free object is one which is
linearizable, and for which all threads complete in a finite number of steps [Herlihy 91].
Finally, a strongly or bounded wait-free object is one which is wait-free, and for which the
number of steps is bounded [Herlihy 91].

Lock-free objects of all flavors are attractive for several reasons. First, they are not
vulnerable to convoy effects, priority inversion, or deadlock — all common problems in
parallel systems. Convoying occurs when a thread which is holding a lock is descheduled,
say due to its quantum expiring, a page fault or an interrupt, and other threads are forced
to wait because a lock is held by a non-running thread. Priority inversion occurs when a low
priority thread holds a lock needed by a high priority threaci, but the low priority thread
has been preempted by a thread of medium priority. The high priority thread cannot
make progress because a medium priority thread is preventing the low priority thread from
releasing its lock. Deadlock occurs when threads hold locks while waiting for locks held by
other threads. Since there is no explicit locking with lock-free objects, these effects cannot
occur

Lock-free objects which are linearizable may also permit greater concurrency because
semantically consistent (non-interfering) operations may execute in parallel. Further, lin
earizability is a local property, and is therefore independent of any underlying scheduling
policy or interaction between objects. Locality improves the portability and modularity of
large concurrent systems, and can simplify reasoning about concurrent objects. Because
of this, a rich collection of proof techniques for linearizable objects have been developed in
recent years [Herlihy & Wing 87].

At the heart of many lock-free concurrent algorithms lies the requirement for an atomic
Compare-And-Swap instruction. In its simplest form, Compare-And-Swap takes three
arguments: the address of a shared data item, an old value of the shared data item, and
a new value. A thread reads a shared data value, computes a new value based on the
read (and now old) value, and then tries to swap the old value with the new value. If the
current value of the shared data item is equal to the old value, then it is replaced by the
new value. If not equal, Compare-And-Swap returns a failure code and does not modify
the shared data item. The failed compare indicates that the old value is "too old" because
another thread had modified the shared data. The implication is that the new value is also
invalid, since it is presumably computed based on the old value. In effect, the failing thread

2

discovers contention for shared data after the fact, forcing it to again read the shared data
item's value and compute a new value. (A more general form of Compare-And-Swap is
the Compare-And-Swap-N operation, which allows N separate locations to be atomically
compared and swapped. Compare-And-Swap-N is helpful when implementing complicated
shared data structures such as doubly-linked lists.)

Unfortunately, few contemporary processors support Compare-And-Swap directly. In
stead, most support simpler atomic operations such as Test-And-Set or an Atomic Ex
change. For example, of eight production-quality shared memory multiprocessors (Encore's
Multimax, Sequent's Symmetry, SGFs MlPS-based multiprocessor, Omron's Luna88k,
Sony's NEWS, DEC SRC's Firefly, and DEC's 6380 and 433MP Corollary), only two
(the 486-based Corollary and the 68030-based NEWS) have a processor which implements
Compare-And-Swap. Even when a Compare-And-Swap is part of the instruction set, it is
not always the case that the memory system can support it. This is true, for example,
with the 68020 processors on the Butterfly Plus. The lack of widespread hardware support
for Compare-And-Swap means that it is necessary to find an efficient software solution to
permit the implementation of lock-free concurrent algorithms.

3 Implementing Compare-And-Swap Without Direct Hard
ware Support

Many papers describing lock-free algorithms suggest that Compare-And-Swap is a critical
hardware function that must be architecturally supported on shared-memory multipro
cessors. This conclusion follows from the observation that a straightforward simulation
of Compare-And-Swap using simpler primitives, such as is shown in Figure 1, would not
make it possible to build lock-free objects. A thread which is preempted within the critical
section would delay any other thread trying to perform the Compare-And-Swap for an
unbounded amount of time. In contrast, direct hardware support for Compare-And-Swap
provides a non-interruptible instruction that cannot be preempted.

int Compare_And_Swap(address, old.value, new_value)
int *address;
int old.value;
int new_value;

{

acquire_lock(); /* BEGIN CRITICAL SECTION */
if (*address old.value) {

•address * new.value;
release_lock(); /* END CRITICAL SECTION */
return SUCCESS;

} else {
release_lock(); /* END CRITICAL SECTION */
return FAILURE;

}
}

Figure 1: Implementing Compare-And-Swap With Locks

The fundamental problem with building Compare-And-Swap out of simpler primitives
is caused by the operating system, which schedules threads preemptively. Specifically, the

l
2
3
4
5
6
7
8
9

3

critical section in the Compare-And-Swap sequence can be interrupted by the operating
system, leaving other threads with no way of executing a Compare-And-Swap. In this
section, we describe a solution that requires a small amount of operating system support
to, appropriately, solve an operating system problem.1

We propose a recovery-based solution based on roll-out. With roll-out, a thread pre
empted within a Compare-And-Swap sequence causes the lock to be released immediately
when the preemption occurs. Moreover, if the thread had not yet executed the swap, it is
set to resume execution at the beginning of the sequence, otherwise it resumes at the end.
For example, for the code in Figure 1, a thread preempted after line 1, but before executing
either the store at line 3 or the lock release at line 7 would be scheduled to resume at line 1.
If the thread was preempted after line 3 but before line 4, then the lock would be released
and the thread would have to be rolled-out to resume at line 5.

Roll-out can be implemented with a small amount of operating system support. The
machinery described in [Anderson et a!. 90], for example, gives control back to the
application at a fixed address immediately following the preemption. Code at that address
can determine that the just preempted thread was executing in the Compare-and-Swap and
can perform the necessary cleanup. A less general solution has the kernel performing the
cleanup by discovering that the preempted thread was in a Compare-And-Swap sequence.
This can be done through the use of code sequences at distinguished addresses, on-the-fly
inspection of the code stream, or a designated per-thread variable which is toggled on entry
and exit from the sequence.

The roll-out solution is similar to the notion of restartable atomic sequences used for
implementing atomic operations on a uniprocessor [Bershad 91]. In that case, a critical se
quence could be guaranteed to execute atomically eventually as long as a thread preempted
within the sequence was restarted at the beginning. Roll-out for Compare-And-Swap is
slightly less general because a lock must be released as well.

An alternative to roll-out is roll-forward. With roll-forward, the remaining code in the
Compare-And-Swap sequence is executed and the lock is released at the point when the
preemption occurs. Roll-forward has several problems, though, that make it less attractive
than roll-out (which only requires that the lock be released and the thread's PC changed).
Roll-forward requires executing code on behalf of a thread within the context of another
thread. If the roll-forward is being handled in the kernel, then the kernel must be careful
about any memory references it makes during the roll-forward to ensure that they are
within the addressing domain of the stopped thread. More importantly, if the thread
stopped because of a page fault, then it might not be possible to perform the roll-forward
at all until the fault is satisfied.

With operating system support for Compare-And-Swap, the problems normally asso
ciated with lock-based synchronization do not occur. Indefinite convoying is impossible
because a lock held by a preempted thread is released immediately after the preemption.
Priority inversion is avoided because lower priority threads cannot hold locks indefinitely
after being preempted by higher priority threads. Deadlock is avoided because it is not
possible to execute arbitrary code while holding a lock. Lock acquisitions cannot be nested,
so there can be no cycles in the "waits-for" relationship of threads.

1 It , s worth noting that a kernel-level solution, adequate for mainpulating operating system data struc
tures from within the kernel, can be achieved through the simple raising and lowering of processor priorities.

4

One advantage of the software approach is that it allows for arbitrary generalizations
of Compare-And-Swap. For example, the compare function need not just test for equality,
but could test any kind of binary relation. Additionally, Compare-And-Swap could oper
ate on objects that span multiple words. In contrast, Compare-And-Swap implemented
in hardware is generally limited to a single word comparisons.2 Herlihy described imple-
mentable non-blocking algorithms in which that single word was a pointer to the actual
shared data [Herlihy 90]. Much of the complexity and cost of his algorithms, however,
was due to the overhead of having to use pointers and manage memory. This complexity
disappears with a multiword Compare-And-Swap (although the implementation of roll-out
does become more complicated).

4 Locking Strategies for Lock-Free Synchronization
While operating system support can guarantee the progress of a synthesized Compare-
And-Swap operation, proper locking strategies are necessary to ensure good performance.
This is especially true during periods of high contention for shared data objects.

In this section, we consider a set of different strategies for implementing the acquire . lock
operation from Figure 1. We begin by demonstrating that a straightforward implementa
tion based on spinlocks performs poorly even in the presence of small amounts of contention.
We then show that software queueing [Anderson 90, Graunke & Thakkar 90, Mellor-
Crummey & Scott 91], a locking strategy designed to perform well in the presence of
contention, is inappropriate for synchronizing with Compare-And-Swap. Finally, we eval
uate strategies that allow the Compare-And-Swap to non-atomically and conservatively
fail. Our intention is to reduce the frequency with which Compare-And-Swap requires an
expensive atomic operation only to end in failure.

4.1 Hardware Plat forms

We use two successive generations of shared memory multiprocessor architectures to eval
uate the various locking strategies. Both are bus-based, cache coherent, and use a write-
invalidate coherency protocol. A Sequent Symmetry with 20 Intel 386 processors running
at 16.67 Mhz represents the older generation. The newer generation is an Omron Luna88k
multiprocessor workstation with 4 Motorola 88100 processors running at 25 Mhz. Nei
ther supports a Compare-And-Swap operation directly in hardware. The Symmetry and
the Luna88k each have an instruction that allows a register and a memory location to be
atomically swapped.

Single-bus-based shared memory multiprocessors use the system bus as an arbitration
mechanism. A processor performs an atomic operation by asserting a special signal on the
bus. This prevents other processors from performing atomic operations until the signal is
removed. On systems that use a write-invalidate protocol, the special signal can also cause
other copies of the synchronization data to be invalidated. In all cases, however, the atomic
operation involves at least one bus transaction. On systems with write-through caches, or

T h e C o m p a r e - A n d - S w a p - 2 o p e r a t i o n found on t h e 6 8 0 x 0 ser ies cou ld b e used t o i m p l e m e n t a 64 bit
C o m p a r e - A n d - S w a p .

5

on systems which require that synchronization operations be performed to memory, the
modification can involve an additional bus and memory transaction.

The two generations of multiprocessors help to illustrate that the relative cost of per
forming atomic operations has increased substantially with processor speed. This is because
of the growing imbalance between processor speed and bus and memory speed. The Intel
386 in the Sequent Symmetry takes about twice as long to execute an atomic exchange to a
cached memory location as it does to increment it. The Motorola 88000, which is a RISC-
based microprocessor takes about 6 times longer for the atomic exchange. At the extreme
end of the spectrum are machines like Stanford's DASH multiprocessor. The processors
in DASH, based on the MIPS R3000, take about sixty times longer to synchronize as they
do to execute simple instructions [Lenoski et a!. 90].

Two points are implied by these trends. First, it is becoming increasingly important to
reduce the frequency of unnecessary synchronization because its cost is no longer negligible.
We will see later in this section how a straightforward implementation of Compare-And-
Swap can involve a large number of unnecessary synchronizations. Second, because syn
chronization operations run relatively more slowly on faster processors, the synchronized
component of a lock-free object will tend to dominate performance sooner on faster pro
cessors than on slower ones. For example, code that implements a lock-free data structure,
such as a linked list, efficiently on a older generation shared memory multiprocessor, may
not be efficient when executed on a newer machine because of the divergence in the relative
performance of synchronizing and non-synchronizing operations.

4.2 Measuring Performance
We use throughput as the primary measurement for evaluating the performance of syn
chronization strategies for lock-free concurrent objects. We compute throughput by having
a fixed number of processors execute a loop which contains a Compare-And-Swap. The
code executes for a fixed period of time.

1: while (should.stop »• FALSE) {
2: do {
3: old.value • shared.data;
4: new_value » compute_new_value(old_value);
5: res » Compare.And.Swap(tshared.data, old.value, new.value);
6: } while (res !» SUCCESS);
7: success[me] » success[me] + 1;
8 : }

Figure 2: Code Loop for Measuring Throughput

The code for the loop is shown in Figure 2. The variable should-stop is set by a
special thread which wakes when a timer expires. The array success is used to keep
track of the number of times that each thread is able to successfully update the variable
shared_data (we use a per-thread data structure for collecting statistics to avoid extra
locking and contention). Throughput, then, is simply the total number of successes that
occurred during the test.

Clearly, if the function compute_new_value takes a long time relative to the Compare-
And-Swap, then the impact of the Compare-And-Swap on throughput is going to be small,

6

since threads will be executing non-synchronized code most of the time. As the time to
execute compute_new_value decreases relative to the Compare-And-Swap, the effects of
synchronization will begin to dominate. For the measurements presented in this paper, the
function compute_new_value is implemented as a loop which cycles for a fixed number of
times, and returns a different value for each thread. An "execution time" of w corresponds
to w passes through the loop.

Throughput measurements with one processor reveal the basic latency of the Compare-
And-Swap operation when paired with the function compute_new_value. Throughput mea
surements with many processors illustrate their behavior in the presence of contention when
many threads try to access the shared-data variable at the same time.

Ideally, the rate of synchronization operations for Compare-And-Swap should be equal
to the throughput, that is, the rate of successful compares followed by a swap. When
concurrent objects are built using traditional locks and critical sections, each synchroniza
tion operation is followed by a successful access operation, so synchronization operations
are never "wasted." An implementation for Compare-And-Swap should exhibit the same
property.

4.3 S imple Spin Locks

In this section we examine the effect on throughput of a synchronization policy based on
spinlocks. We implement the acquire_lock operation directly using an atomic Test-And-
Set operation such as the one shown in Figure 3. The function Test-And-Set atomically sets
a memory location and returns its previous value. The non-destructive read loop before
the Test-And-Set creates a Test-And-Test-And-Set operation, which allows a processor to
read-spin on cached value of the lock, rather than to generate bus activity during each pass
through the spin loop. This is a common spinlock optimization [Rudolph & Segall 84].

acquire_lock()
{

while (1) {
while (lock != 0) /* wait until lock is free */

>

if (Test_And_Set(lock) 0)
return;

}
}

Figure 3: Simple Test-And-Test-And-Set Spinlock

The absolute throughput for the code in Figure 2 is shown in Figure 4. Throughput for
both multiprocessors is shown. The numbers in the legend reflect runs using different values
of w. The x-axis graphs number of processors and the j/-axis graphs the total number of
successful operations. Each graph contains a family of curves, where each curve represents
a different "compute" time, ranging from w = 1 to w = 1000. The w = 1 case corresponds
to a "worst case" ratio of compute to synchronization time, whereas w = 1000 corresponds
to the case where compute time dominates synchronization time.

As expected, smaller compute times result in higher throughput because it takes less
time to make it through one pass of the code in Figure 2. Except for the w = 1 case on the
Luna88k, throughput increases slightly as processors are added and then drops off. The

7

300000

250000

200000

150000

100000

50000

Compare-And-Swap Syrnmetry Compare-And-Swap Luna88k

10 12 14 16 18

Figure 4: Compare-And-Swap using spinlocks.

small initial rise in throughput is due to the fact that not all of the code in the measured
loop is sequential. In particular, the code at lines 1,2,3,6,7 and 8 in Figure 2 can usefully
execute in parallel. The improvement due to this parallelism is offset by the increased
overhead of lock and data contention that comes with more processors. This is why the
curves for smaller w turn down more quickly than those for larger w. At small w, lock and
data contention are high, therefore the benefit due to the parallelism in the loop disappears
quickly as processors are added (and doesn't exist at all on the Luna88k when w = 1).
When w is large, however, lock and data contention are reduced so the beneficial effect of
the loop's parallelism takes longer to undermine.

The graphs also illustrate that throughput drops off more rapidly on Luna88k's faster
processors where the cost of synchronization and bus access are much higher relative to
the Symmetry. For example, the w = 1 case shows a factor of 3 reduction in throughput
at four processors on the Luna88k, whereas the reduction is only a factor of 1.3 on the
Symmetry.

At least two effects are responsible for the rapid dropoff in throughput. First, there is
the commonly observed degradation that occurs when many threads try to synchronize.
Although threads spinwait on a cached value of the lock, the release of the lock is broadcast
to all waiting processors. Each then tries to reacquire the lock. Although one will succeed,
the others will execute a synchronizing Test-And-Set, placing a load on the bus.

A second reason for the slowdown is that a failed compare incurs a synchronization
cost which affects all processors, but which contributes nothing to total throughput. We
can factor out synchronization and failure effects and just look at behavior due to the
locking protocol by modifying the loop so that each thread does a Compare-And-Swap on
a different memory location. In this way, every Compare-And-Swap succeeds and there is
no bus contention due to keeping shared data consistent. Threads interact only because
they use the same lock to gain access to the Compare-And-Swap sequence. The resulting

8

curves are shown shown in Figure 5. As the number of processors increases, throughput
first increases linearly and then drops off.

Because only part of the loop is sequential, increasing the number of processors also in
creases throughput. Eventually, though, the sequential Compare-And-Swap limits through
put. For smaller compute times the limit is reached with fewer processors because most
of the code is serial. Throughput then drops off because of the bus contention that arises
when many processors simultaneously vie for the same spinlock. There is a flurry of bus
activity when the spinlock is released, effectively slowing down all processors. The behavior
demonstrated in Figure 5 closely matches that observed by Anderson, and Graunke and
Thakkar.

600000

500000

400000

300000

200000

100000

P r i v a t e Compare-And-Swap Symmetry
- T -

P r i v a t e Compare-And-Swap Luna88k

'Figure 5: Compare-And-Swap using spinlocks. Each thread accesses a different location.

The effect of failure with non-blocking mechanisms contradicts a common belief that a
non-blocking synchronization protocol should be no worse in the case of contention than
one that blocks. In both cases cycles are wasted as threads wait for one thread to finish
an inherently serial code sequence. Unfortunately, the straightforward implementation of
a non-blocking mechanism causes cycles to be lost on all processors, not just those that
are waiting, whenever there is contention.

4.4 Contention-Tolerant Locking with Software Queueing

The degradation in throughput shown in Figures 4 and 5 suggests that a locking strategy
which reduces bus contention due to synchronization might improve performance. In this
subsection, we consider behavior when using queuelocks [Anderson 90, Graunke & Thakkar
90, Mellor-Crummey & Scott 91] to guard the Compare-And-Swap operation.

The idea behind queuelocks is that each thread waits only for one other thread to
release the lock. For example, the first waiting thread is waiting for the actual lock holder,
and the second waiting thread is waiting for the first waiting thread. This relationship
permits each thread to spin on a different memory location. A thread releases a lock by

9

depositing a new value into the memory location associated with the next waiting thread.
The result is low bus contention even in the presence of high lock contention because the
number of synchronization operations equals the number of successful synchronizing bus
operations. Queuelocks have been shown to be effective at reducing bus contention, and at
maintaining near constant throughput out to large numbers of processors for algorithms
that use traditional lock-based synchronization.

Queueloclc Compare-And-Swap Symmetry
180000

160000

140000

120000

100000

80000

60000

40000

20000

1

1
5 -+--- •

A 10
50 •-»— •

100 -A—

1000 -I- • •

X V X

•r""i:*"?"*"r" •

Queuelock Compare-And-Swap Luna88k

2 4 6 8 10 12 14 16 18

Figure 6: Compare-And-Swap using queuelocks.

We use queuelocks to implement the acquireJLock function from Figure 2. The mea
sured throughput is shown in Figure 6. By comparing the curves to those in Figure 4,
several things are apparent. First, at low contention, queuelocks have lower throughput
than spinlocks because they have a more complex implementation (our implementation
follows Graunke's and Thakkar's). Relative to the spinlock solution with one processor, for
example, throughput with queuelocks is reduced by factor of 2. More importantly, how
ever, the performance profile for queuelocks is not that much different than for spinlocks.
There is a slight rise in throughput at small numbers of processors, and then a dropoff as
the number of processors increases. This behavior contradicts that seen when queue locks
are used to manage critical sections for lock-based concurrent objects.

The dropoff in throughput is not due to synchronization overhead, which queuelocks
eliminate, but to the fact that threads must delay before executing the Compare-And-
Swap. When a thread waits on a queuelock, it delays until all threads ahead of it acquire
the queuelock, attempt the Compare-And-Swap and then release the lock. If the waiting
thread succeeds, then the threads waiting ahead of it must have failed. In the worst
case, with n threads queued, a successful Compare-And-Swap can be performed only once
every nt cycles, where it takes time t to execute the critical section. This is because each
succeeding thread must delay behind n — 1 failing threads, each of which takes time t to
discover their failure. (We ignore here the beneficial effects of the loop's parallelism, which
account for an initial rise in throughput at low numbers of processors.)

10

We can separate the effects of failure from those of synchronization by again having each
thread do its Compare-And-Swap to a different memory location. In this case, which is
shown in Figure 7, throughput does not drop off as the number of processors increases. Bus
contention due to synchronization is minimized and every Compare-And-Swap contributes
to total throughput. Unfortunately, real concurrent objects require updates to common
data, so this benchmark is only useful for understanding the effects of queueing and failure.

Symmetry Luna88k

10 - B - -

50
100

1000

i i i

2 4 6 8 10 12 14 16 18

Figure 7: Compare-And-Swap using queuelocks. Each thread accesses a different location.

4.5 Minimiz ing Synchronizat ion wi th Conservative Compare-And-Swap

The problem with Compare-And-Swap based on spinlocks and queuelocks is that threads go
through a global synchronization protocol only to then fail by discovering data contention.
The total number of successful accesses is ultimately bounded by the time to execute the
Compare-And-Swap sequence itself. As more processors are added, however, the total
number of attempts increases. Since the number of successes is bounded, this results in an
increase in the number of failures. Because failures have a non-local cost (in terms of bus
synchronization and queueing delay), throughput drops off.

In this subsection we examine several methods for building a Compare-And-Swap oper
ation which attempt to reduce the cost of failure. Our approach is to change the definition
of Compare-And-Swap so that it becomes advisory. A failure returned from Compare-
And-Swap only means that no swap occurred, but not necessarily that the old value and
the current value are different. This enables a Compare-And-Swap to fail before hav
ing to execute an expensive synchronization operation. Instead, we can determine if the
Compare-And-Swap is likely to fail and go no further.

11

Compare- And-Compare-And-Swap

The first strategy, Compare-And-Compare-And-Swap, compares the old value with the
current value before executing the acquire-lock operation. If the two values are equal, the
lock is acquired, and the Compare-And-Swap is actually performed. The initial compare
is intended to address the problem of a thread queueing to acquire a lock only then to
discover that its old value is obsolete.

Figure 8 shows throughput for increasing numbers of processors on the Luna88k and
the Symmetry. Surprisingly, the graphs show behavior that is quite similar to that for
Compare-And-Swap. Throughput increases at first and then drops off as more processors
are added with the dropoff coming with smaller numbers of processors for shorter compute
times.

Compare-And-Compare-And-Swap Luna88k

300000

250000

200000

150000

100000

50000

Compare-And-Compare-And-Swap Symmetry
— 1 1 1

5 'A 10 • 'A 50
100

1000 - « - •

\ \ »

-» VV a

/
, f'

2 4 6 8 10 12 14 16 18

Figure 8: Compare-And-Compare-And-Swap using spinlocks.

The explanation for the unexpected behavior in Figure 8 is somewhat subtle. When
the compute time w is large, contention is naturally low. The extra check therefore makes
little difference because it only eliminates a synchronization operation that would have
occurred during periods of low contention, when synchronization is cheap. On the other
hand, when w is small, there is only a small chance that a thread will read the shared
variable, compute, and then find a new value with its first compare in the Compare-And-
Compare-And-Swap. Consequently, the thread goes through the process of acquiring the
lock. But, also because the compute time is short, contention for the shared variable is
high, and there is a good chance that the thread finds other threads accessing the lock.
This gives rise to the following behavior: a thread does an initial read of the shared data,
computes for a short time, rereads the shared data and finds it unchanged, delays while
acquiring the lock, acquires the lock (which takes a long time), finds that the shared data
has changed during the lock delay, and then releases the lock. As a result, the additional
compare with Compare-And-Compare-And-Swap isn't very useful.

12

Compare*- And-Compare-And-Swap

We can improve upon the effectiveness of the single initial compare by polling for equality
while a processor waits for the lock. A waiting processor can therefore abort the lock
acquisition and the Compare-And-Swap altogether if it detects that the shared value and
the old value are not equal. This has the effect of purging from the set of waiting processors
those processors whose Compare-And-Swap will most probably fail when it ultimately
occurs. Successful processors therefore only have to wait for other successful processors;
failure incurs no global queueing delay.

The throughput of this strategy, which we call Compare*-And-Compare-And-Swap, is
shown in Figure 9. The graphs were generated using Test-And-Test-And-Set spinlocks in
which the initial test loop also included a check for equality. Compared to the previous
techniques, the additional compare substantially reduces the rate at which throughput
degrades when processors are added. Moreover, its absolute performance in the low con
tention cases is comparable to straightforward Compare-And-Swap.

Compare* and Compare and Swap Symmetry Compare* and Compare and Swap Luna88)c
- 1 ' 1 1 ' 1 1 1 1 1.2e+06 I 1 . I , ,

2 4 6 8 10 12 14 16 18 1

Figure 9: Compare*-And-Compare-And-Swap

4.6 S u m m a r y

Synchronization protocols appropriate for lock-based concurrent objects are inappropriate,
in terms of performance when used as the basis for a lock-free concurrent objects. In the
presence of contention, simple spinlocks generate excessive bus contention. Queuelocks,
which are highly effective for reducing contention with lock-based concurrent objects, are
not effective when used with lock-free concurrent objects. They create a situation in which
threads queue on the lock only to fail on the compare. Throughput decreases as processors
are added because the number of failed Compare-And-Swaps grows. We can eliminate
the effect of failure on queueing delay and therefore throughput by prematurely aborting
the Compare-And-Swap if the shared value and old value become unequal while trying to

13

acquire the lock.

5 Conclusions
Lock-free concurrency has the potential to become a powerful and efficient model for shared
memory parallel programs. To date, most work in the area has been theoretical, or of the
"proof of concept" style. In this paper, we have explored several practical considerations for
systems that rely on lock-free concurrency. We have described a simple operating system
mechanism with which one can build "practically" lock-free constructs out of lock-based
ones. We then described a set of synchronization policies for implementing the lock-free
mechanisms, and have shown that throughput can be extremely vulnerable to contention.
Specifically, we have shown that it is the cost of failure with Compare-And-Swap that can
have the greatest effect on overall throughput when contention is high. We have shown that
it is possible to reduce this cost by slightly relaxing the definition of Compare-And-Swap
so that failures can occur outside the normal atomic protocol.

Acknowledgements
I'd like to thank Dan Stodolsky for his help in evaluating the tradeoffs between various
synchronization policies. He, in addition to Greg Morrisett and Steve Schwab, provided
valuable feedback on this paper's prose and presentation. Jeannette Wing helped me to
better understand the subtleties and benefits of the different styles of lock-free concurrency.
A conversation with Maurice Herlihy help me convince myself that the ideas in this paper
were worth pursuing.

14

References
[Anderson 90] Anderson, T. E. The Performance of Spin Lock Alternatives for Shared-

Memory Multiprocessors. IEEE Transactions on Parallel and Distributed Sys
tems, 1(1):6—16, January 1990.

[Anderson et al. 90] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M.
Scheduler Activations: Effective Kernel Support for the User-Level Management
of Parallelism. Technical Report 90-04-02, Department of Computer Science and
Engineering, University of Washington, April 1990. Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles, October 1991. To appear,
ACM Transactions on Computer Systems 10(1), February 1992.

[Bershad 91] Bershad, B. N. Mutual Exclusion for Uniprocessors. Technical Report CMU-
CS-91-116, School of Computer Science, Carnegie Mellon University, April 1991.

[Graunke & Thakkar 90] Graunke, G. and Thakkar, S. Synchronization Algorithms for
Shared-Memory Multiprocessors. IEEE Computer, 23(6):60-69, June 1990.

[Herlihy & Wing 87] Herlihy, M. P. and Wing, J. M. Axioms for Concurrent Objects. In
Fourtheenth ACM Symposium on Principles of Programming Languages, pages
13-26, January 1987.

[Herlihy & Wing 90] Herlihy, M. P. and Wing, J. M. Linearizability: A Correctness Con
dition for Concurrent Objects. ACM Transactions on Programming Languages
and Systems, 12(3):463-492, July 1990.

[Herlihy 88] Herlihy, M. Impossibility and Universality Results for Wait-Free Synchro
nization. In Seventh ACM Symposium on Principles of Distributed Computing
(PODC), pages 276-290, August 1988.

[Herlihy 90] Herlihy, M. A Methodology for Implementing Highly Concurrent Data Struc
tures. In Second ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP), pages 197-206, March 1990.

[Herlihy 91] Herlihy, M. Wait-free Synchronization. ACM Transactions on Programming
Languages, 13(1), January 1991.

[Lenoski et al. 90] Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., and Hennessy, J.
The Directory-Based Cache Coherence Protocol for the DASH Multiprocessor.
In Proceedings of the 17th Annual Symposium on Computer Architecture, pages
148-159, May 1990.

[Massalin & Pu 91] Massalin, H. and Pu, C. A Lock-Free Multiprocessor OS Kernel. Tech
nical Report CUCS-005-91, Department of Computer Science, Columbia Univer
sity, 1991.

[Mellor-Crummey & Scott 91] Mellor-Crummey, J. M. and Scott, M. L. Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors. A CM Transac
tions on Computer Systems, 9(1), February 1991.

[Mellor-Crummey 87] Mellor-Crummey, J. M. Concurrent Queues: Practical Fetch-and-<¿>
Algorithms. Technical Report 229, Department of Computer Science, University
of Rochester, November 1987.

15

[Rudolph & Segall 84] Rudolph, L. and Segall, Z. Dynamic Decentralized Cache Schemes
for MIMD Parallel Processors. In Proceedings of the 11th Annual Symposium on
Computer Architecture, pages 340-347, 1984.

[Wing k Gong 90] Wing, J. M. and Gong, C. A Library of Concurrent Objects and Their
Proofs of Correctness. Technical Report CMU-CS-90-151, School of Computer
Science, Carnegie Mellon University, July 1990.

16

