
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Persistence + Undoability = Transactions

Scott M. Nettles and Jeannette M. Wing

August 30, 1991

CMU-CS-91-173o

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronautical Systems Division

(AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa Order No. 7597.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the U.S. Government.

CZ3r

<?H75
et-

Keywords: persistence, recoverability, transactions, databases, Standard ML

Abstract

Persistence means objects live potentially forever. Undoability means that any change to a program's store can po­

tentially be undone. In our design and implementation of support for single-threaded nested transactions in Standard

ML of New Jersey (SML/NJ), we provide persistence and undoability as orthogonal features and combine them in a

simple and elegant manner.

We provide support for persistence through an SML interface that lets users manipulate a set of persistent roots and

provides a save function that causes all data reachable from the persistent roots to be moved into the persistent heap.

We implement the interface through simple extensions to SML's generational garbage collector and maintain the

persistent heap using CMU's Recoverable Virtual Memory system.

We provide support for undoability through an SML interface that exports two functions: checkpoint, which check­

points the current store, and restore, which undoes all changes made to the previously checkpointed store. The

implementation takes advantage of the simple runtime representation of data in SML and, as for persistence, extends

the existing garbage collector scheme. SML's "mostly" functional nature allows us to implement this abstraction

without undue performance penalty.

Finally, we combine these capabilities to support single-threaded nested transactions by defining a higher-order function

transact that guarantees the permanence of effects of committed transactions. We succinctly define transact completely

in terms of the interfaces for persistence and undoability. Unlike other transaction-based programming languages like

Argus or Avalon/C++, we need not add new control structures; moreover, we handle aborts of nested or top-level

transactions using SML's exception mechanism.

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

1. Motivation

1.1. Revisiting Transactions

Transactions are a well-known and fundamental control abstraction that arose out of the database community. A

transaction is a group of operations that is performed atomically ("all-or-nothing"). Traditional database applications

like electronic banking and airline reservations systems rely on properties of transactions to guarantee the consistency

of the data they read and modify. Systems such as Tabs [S+85] and Camelot [EMS91] demonstrate the viability of

layering a general-purpose transactional facility on top of an operating system. Languages such as Argus [LS83]

and Avalon/C++ [DHW88] go one step farther by providing linguistic support for transactions in the context of a

general-purpose programming language. In principle programmers can now use transactions as a unit of encapsulation

to structure an application program without regard for how they are implemented at the operating system level.

In practice, however, transactions have yet to be shown useful in general-purpose applications programming. The

problem is a mismatch between what applications need and what transactions provide. State-of-the art transactional

facilities provide support for distributed, concurrent, nested transactions in a completely integrated operating system

layer or programming language. These facilities were built with database applications like electronic banking in mind.

Hence, they were designed and tuned for that application domain, where typically short-lived transactions operate on

large-sized objects. However, the concept of a transaction is useful in its own right, not just for database applications.

Some applications, such as object repositories and the Coda highly available file system [S+90], need support for

single-site, non-nested, single-threaded transactions that access small, simple objects for short time periods measured

in milliseconds. Other applications, such as CAD/CAM and software development environments [HN86, LPRS88],

need support for transactions that access (and usually infrequently update) large, complex data structures for long time

periods measured in hours or days. Builders of these applications have the choice of buying in toto an integrated

transactional facility tuned for performance characteristics different from the applications ' or building from scratch

a facility with the same functionality but tailored specifically for their performance needs. These applications would

like to exploit the transaction abstraction but current transactional facilities treat them as anomalous cases.

In this paper we revisit support for transactions by adopting a "pick-and-choose" approach rather than a "kit-

and-kaboodle" approach. We provide separate modules to support different transactional properties individually and

then compose these modules to provide transactional semantics. To illustrate our approach in detail we will focus on

single-site, single-threaded nested transactions. In this context we can view the persistence and undoability properties

of transactions as completely orthogonal. In Section 6 we will discuss how we expect to build upon this work to handle

distributed, concurrent, multi-threaded transactions.

Our approach keeps support for separate properties separable and modular, as a result, our design is simple and

elegant. Of course, we do not avoid the inherent semantic complexity of transactions, borne by its non-trivial model

of computation [Win89, Wei89, LM86], but we provide users with more flexibility to choose what guarantees they

need for their application.

1

1.2. Why SML?

We cast our approach concretely in the context of programming languages. Instead of designing a brand new language

from scratch, we target an existing language as a basis for extension. For technical and practical reasons, we chose

Standard ML of New Jersey as our base language. Henceforth we will use SML to mean just the language and

SML/NJ to mean the New Jersey implementation of SML. SML is a strongly-typed, mostly functional, programming

language. At its core, it supports functions as first-class values, exceptions, and polymorphism. SML's modules

facility supports information hiding, data abstraction, and parameterized modules. Most notably, SML has a published

formal semantics [MTH90], which means that any extension has the potential of being formally defined and can be

objectively evaluated in terms of how much it perturbs the existing semantics. One important practical reason for

choosing SML as our base language is that a decent compiler and runtime were readily available and relatively easy to

extend. Another practical reason is that SML has a growing local (CMU) and international user community. Finally,

we chose to target the New Jersey implementation of SML because SML/NJ supports continuations 1 and it runs on

different architectural and operating system platforms.

In the design and implementation of our own extensions, we gain additional leverage from SML's high-level

language features and SML/NJ's well-modularized design. SML makes a type distinction between immutable and

mutable values (refs); we rely on strong typing to let the runtime system safely operate on addresses (without the

programmer's knowledge). We use signatures to separate interface information from implementation and functors to

compose parameterized modules. We exploit SML/NJ's highly-phased compiler by not modifying its front-end at all.

We modify its back-end with small additions that fit neatly into its garbage collection scheme and take advantage of

its simple runtime representation of data; we use the storage allocation algorithm unchanged.

We assume some familiarity of SML and explain details of examples as necessary, especially our use of SML's

modules facility.

1.3. Example

As a running example, we use the relation abstraction whose signature is given in Figure 1. We can obviously use

relations to implement a relational database [Dat77].

Create constructs a new relation from a given a set of attributes. Insert (delete) returns a new relation that is the

result of adding (removing) a given rtuple into a given relation. An rtuple is a set of bindings between attributes and

values. For illustrative reasons, we also choose to have both insert and delete modify their relation argument. Both

raise the exception InvalidKTuple if the number of values given in the rtuple argument is not the same as the number

of attributes in the relation.

Union, intersect, difference, and product are pure (side-effect free) functions that perform the usual set operations

on relations. They each raise the exception InvalidAttributes if the sets of attributes for the two relation arguments

are not the same. Select returns a new relation that contains all rtuples that satisfy a given predicate (the boolean

functional argument). We show the interfaces for the set and relational database operations for completeness only.

1 SML as defined in [MTH90] does not feature continuations, but see [DHM91] for a formal description.

2

signature RELATION = sig
type relation (* A set of attributes to which values can be assigned. *)
type rtuple (* A set of bindings between attributes and values. *)
type attributes

(* Constructors *)
val create: attributes -> relation
exception InvalidRTuple
val insert: rtuple * relation -> relation
val delete: rtuple * relation -> relation

(* Basic set operations *)
exception InvaiidAttributes
val union: relation * relation -> relation
val intersect: relation * relation -> relation
val difference: relation * relation -> relation
val product: relation * relation -> relation

(* A basic relational database operation *)
val select: (rtuple -> bool) -> relation -> relation

end

Figure 1: Signature for Relations

signature BIND__RELATION = sig
structure Relation : RELATION
type identifier

val bind: (Relation.relation * identifier) -> unit
val unbind: identifier -> unit

exception Unboundld

val fetch: identifier -> Relation.relation

end

Figure 2: Signature for Bindable Relations

Their implementations have no effect on our discussion of persistence and undoability.

Bindable relations (Figure 2) extends relations by adding bind, unbind, and fetch functions. Bind lets us bind to an

identifier an entire relation; unbind has the side effect of disassociating the relation bound to a given identifier; fetch

returns the relation bound to its identifier argument or raises an exception if the identifier is unbound.

In the SML modules facility, a structure is a kind of module that implements the interface specified in a signature.

A functor is a parameterized module that, when instantiated, creates a structure. Hence, large, modular SML programs

typically consist of signatures and functors. Programmers create structures by functor application, which is analogous

to instantiation of a parameterized module in many other programming languages like Ada [Dep83] or CLU [L+81].

For our example, we assume there are two functors: Relation(): RELATION, which takes no parameters and returns

a structure that matches the RELATION signature; and Bind_Relation(Relation: RELATION): BIND .RELATION,

which takes as a parameter a structure that matches the RELATION signature and returns a structure that matches the

BIND-RELATION signature. Below, we use these two functors, first to create a relation structure, Relation, and next

3

to create a bindable relation structure, Bind_Relation, by functor supplication on the structure Relation2:

structure Relation • Relation();
structure Bind_Relation = Bind_Relation(Relation);

In the next three sections we extend the two signatures given in Figures 1 and 2 to support persistent relations

(Section 2), "undoable" relations (Section 3), and finally transactional relations (Section 4). For each section, we first

explain informally the model of computation, give the design of our extension, give details of our implementation,

and illustrate a use of the extension on the relation example, reusing the Relation structure created above. In Section 5

we describe our current implementation status and present some preliminary performance results. We close this paper

in Section 6 with a discussion of related and future work.

2. Persistence

An object that is persistent is one that outlives the computation that created it. Persistent objects live potentially

forever. In our current design for SML, any first-class value can be a persistent object. Formally, any member in the

semantic domain Val can be made persistent. 3

2.1. Model of Computation

Informally, here are the modifications and additions we make to the dynamic semantics of SML:

• We add to the domain of values, Val, a new domain of persistent memory addresses, PAddr.

• We add the notion of a persistent memory, PMem: PAddr — Val, a finite mapping from persistent addresses to

values. Persistent memory co-exists with the usual SML memory (bindings between "normal" addresses and

values).

• We add the notion of a persistent environment, PEnv, which co-exists with the usual SML environment (bindings

between identifiers and values). PEnv can be thought of as a symbol table containing bindings between identifiers

and values. In particular, a persistent address can be bound to an identifier, thus giving us a way to access the

persistent memory through the persistent environment. Conceptually, the persistent environment contains a set

of persistent "roots" into persistent memory.

2.2. Interface

The interface to the persistent memory and persistent environment is shown in the signature in Figure 3. Before

explaining each function in detail, consider the following typical scenario for using them. At startup, an SML user

links to the persistent environment through a call to init. The user can choose to add to and remove entries from the

2 Since structure names and functor names are in disjoint namespaces, we follow the standard SML naming convention: the structure named on

the left-hand side of the equal symbol has the same name as the functor applied on the right-hand side.

3 See p. 47 in [MTH90] for a detailed definition of Val.

4

signature PERS = sig
exception InitFailed
val init: string * string * bool -> unit

exception SaveFailed
val save: unit -> unit

val bind: identifier * ' a -> unit
val unbind: identifier -> unit

exception Unboundld

val retrieve: identifier -> 'a

end

Figure 3: Signature for Persistence

persistent environment through bind and unbind. The user calls save to save changes made to objects (in persistent

memory) reachable from the root set contained in the persistent environment.

More specifically, init has the effect of obtaining a pointer, which we call the persistent handle, to the persistent

environment. If its boolean argument is false, the handle points to a new, empty persistent environment (and memory);

otherwise, the handle points to a previously saved environment. Its two string arguments are filenames: the first

names the log file; the second, the data file. They are needed for the underlying recoverable virtual memory (RVM)

system that we use (see Section 2.3) to implement persistent storage. Save has the effect of writing to disk all changes

(including additions) to the persistent memory and persistent environment since the last save. Both init and save may

raise an exception because of rare I/O problems encountered by RVM.

Bind adds to the persistent environment a binding between an identifier and value. Unbind removes a binding

from the persistent environment given an identifier. Retrieve returns the value bound to an identifier in the persistent

environment and raises an exception if no binding for the identifier exists. Notice here a need for dynamic types

[ACPP91], which SML does not currently support. SML cannot statically determine whether the type of the value

returned by a retrieve of some identifier is the same as the type of the value when it was initially bound through a bind.

Our design maintains the principle of orthogonality between persistence and type [ABC+83]: persistence is not

a property associated with a type. We also maintain the principle of referential transparency [MA90]: the persistent

value retrieved is the same, not a copy, of the value saved and its internal topology is preserved.

In short, our design, which may change as we gain experience with our implementation, provides a single-level of

indirection to persistent memory through a "symbol table" of identifier/value bindings. This design decision reflects

a compromise between not providing the user with any mechanism at all for naming values to be saved in persistent

storage, e.g., by having at most a single persistent root, and forcing the user to always explicitly move, upon each

access or modification, values to and from persistent storage by name, e.g., by providing make-persistent/make-volatile

operations [CLNW90]. Our approach, which is similar to that taken in other languages and systems like Poly/ML

[Mat87], Galileo [AC085], and Staple [DM90], gives programmers some control over naming and managing persistent

values. It also lets us implement persistent storage management efficiently.

5

2.3. Implementation

2.3.1. SML Veneer

In our implementation we represent persistent memory as part of a persistent heap and the persistent environment as

a symbol table that is itself stored in the persistent heap. The persistent heap lives alongside SML/NJ's volatile heap.

We implement the interface for persistence through a thin veneer of SML code, which calls two C routines in

SML/NJ's runtime. One routine initializes the persistent heap and returns a pointer, i.e., the persistent handle, to the

persistent symbol table; one implements the effects of the save function. We give details of implementing init and save

in the next section. Bind, unbind, and retrieve are standard insert, remove, and lookup operations on symbol tables

and need no further discussion.

2.3.2. C-level Interface to RVM

We do not directly rely on the standard (Unix) file system to provide actual permanence of effects; instead we use

the CMU Recoverable Virtual Memory (RVM) system [MS91] that provides a different abstraction of permanent

storage. RVM allows applications to map recoverable unstructured byte arrays, called segments, into a program's

address space.4 RVM supports multi-threaded, non-nested transactions on these segments; i.e., it guarantees the

permanence of changes to segments across system crashes by supporting both undo and recovery on segments. For

our implementation of persistence for SML, we use only RVM's recoverability features. To ensure changes made to

a segment are saved permanently on disk, first we need to inform RVM which locations have been changed, and we

need to call RVM's commit operation to force the changes to disk. RVM uses a log to make this force efficient.

Implementing init
We use two RVM segments to implement the persistent heap. The first segment is of fixed size and is location-

independent. It contains three pointers, one to the beginning of the heap, one to the end, and one to the location of

the persistent symbol table. The first two pointers determine the domain of persistent addresses (PAddr). The third

pointer is the persistent handle. The second segment contains the persistent heap (i.e., the actual data area). It is not

of fixed size, but it is location-dependent. Upon initialization, we first try to allocate this segment at the previous start

of the persistent heap. If unsuccessful, we map it to some free area, and then readjust all the pointers contained in

the persistent heap to reflect its new location. When the mapping of the persistent heap into RVM is done, we return

the location of the persistent symbol table. We treat this persistent handle as an implicit argument to the save, bind,

unbind, and retrieve functions.

Implementing save
The key idea behind implementing save is to garbage collect a set of pointers that point into the persistent heap.

SML/NJ's runtime system uses a store list to support a straightforward generational garbage collection algorithm

4 R V M itself represents recoverable segments by either Unix raw disk partitions or Unix Hies.

6

functor PRelation (Relation : RELATION) : RELATION « struct

fun insert (tup, rel) =
(Relation.insert (tup, rel);
Pers.save();
rel)

fun delete (tup, rel) »
(Relation.delete (tup, rel);
Pers.save();
rel)

end

Figure 4: Persistent Relations

[App89]. This list records every store to a location that might contain a pointer; it is discarded after every minor

collection. We extend the store list to include non-pointer mutations and, at each minor collection, we record any

entries that point inside the persistent heap.

Upon a call to save, we first do a minor collection, thereby leaving only one volatile heap. We then do two things:

First, for all the items on the store list, we inform RVM that their locations have changed, allowing RVM to log these

changes to disk. Second, we consider all items on this list that are pointers to be roots for garbage collection. This

garbage collection step copies objects from the volatile heap onto the end of the persistent heap. Once it is done, we

update the end-of-heap pointer, and tell RVM to log all the new objects. Finally, we adjust any pointers that point to

objects that have been copied out of the volatile heap to point to their respective copies in the persistent heap. When

save finishes we have established the property that no pointers exist from the persistent to the volatile heap. (There

may, of course, be pointers within each heap and from the volatile to the persistent heap).

2.3.3. Garbage Collecting the Persistent Heap.

We use a simple stop-and-copy garbage collection scheme for the persistent heap. When collection is done, RVM

replaces the entire data segment on disk with the new copy. Though collecting the persistent heap incurs a large disk

write, we expect it to be an infrequent activity. Further experimental work may suggest a need for optimizing garbage

collection of recoverable storage, e.g., using concurrency [Det90],

2.4. Use

To show a sample use of the interface for persistence, consider making our relations persistent (see Figure 4) by

extending our previous signature. For persistent relations, we need only modify the insert and delete functions by

simply adding a call to Pers.save after we call the insert (delete) function on regular relations.

To show how we manipulate the persistent environment, we define a functor PBindJRelation (Figure 5) that lets

users associate an identifier with a persistent relation. Bind, unbind, and fetch operate on t able, internally represented

as a symbol table. Pers.retrieve retrieves the table, if it exists, that is bound to the identifier RELATION_TABLE; if

7

functor PBindJRelation (Relation : RELATION) : BIND_RELATION - struct

8

structure Relation : RELATION = Relation
type identifier = Table.identifier
exception Unboundld = Table.Unboundld

fun new__table () =
let val st = Table.new ()
in

(Pers.bind ("RELATIONJTABLE", st) ;
Pers.save ();
st)

end
val table - (Pers.retrieve "RELATIONJTABLE"):Table.symtable

handle Pers .Unboundld =*> new_table ()

fun bind (rel, ident) = (Table.bind table (ident, rel);
Pers.save ())

fun unbind ident = (Table.unbind table ident;
Pers.save ())

fun fetch ident = Table.retrieve table ident

end

Figure 5: Bindable Persistent Relations

it does not exist, then through the call to newJable we create a new table, bind it to RELATION .TABLE, save it, and

return it.

To store, remove, and retrieve bindable persistent relations, users make calls on the externally visible bind, unbind,

and fetch functions. Bind lets users associate an identifier with a relation. It adds this binding to the internally named

table, RELATION-TABLE. Unbindlets users break the binding between an identifier and a relation and fetch lets users

retrieve a relation associated with an identifier.

By applying these two functors to the previously created relation structure, Relation (Section 1.3), we can now

create a persistent relation structure, PRelation, and a bindable persistent relation structure, PBind_Relation:
structure PRelation = PRelation(Relation) ;
structure PBindJRelation = PBindJRelation(PRelation);

If we create, using PRelation.create, a persistent relation, pr, our implementation guarantees that changes resulting

from subsequent PRelation.inserts and PRelation.deletes topr are persistent. We achieve orthogonality between type

and persistence: pr is of type relation to which we can perform Uie same operations as for any relation. Similar

remarks hold for any bindable persistent relation created using PBindJRelation.create.

signature UNDO = sig
exception Restore of exn

val checkpoint : (unit -> 'a) -> 'a
val restore : exn -> 'a

end
Figure 6: Signature for Undo

To show how we use the persistent environment, suppose we create a bindable persistent relation, bpr, and then

add it to the persistent environment:

PBind_Relation.bind bpr "MyPersistentRelation";

Then we can quit this SML session and later retrieve the saved relation into bprl using:

val bprl = PBind__Relation.fetch "MyPersistentRelation";

The simplicity of our approach raises a namespace problem with identifiers used in the persistent environment

itself (i.e., the persistent symbol table mapping identifiers to persistent values). For now, we assume that for each type

T, we can use the identifier T-TABLE to keep track of all persistent values of type T. Of course, as illustrated above

with our examples using pr and bpr, programmers who simply want to create and make persistent values of type T

never see or need to know about the name T .TABLE.

3. Undoability

Undoability means that any change to a program's store can potentially be undone. This property is only of relevance

in the presence of side-effects. Support for undoability requires the ability to save a program's store and restore a

program's store to a previously saved one.

3.1. Model of Computation

Informally, a program's store is a mapping between locations and values. Formally, SML defines the semantic domain

Mem to be the set of finite mappings from Addr (memory locations) to Val; a store is an element of Mem. As an SML

computation proceeds, most changes are to the environment, not the store, since SML programs are mostly functional.

However, through assignment to ref values, users can make explicit changes to a program's store.

3.2. Interface

The UNDO signature shown in Figure 6 provides an interface for users to undo changes to the store.

It provides two operations that checkpoint and restore the store. In the normal case (non-exceptional), checkpoint

has the identical effects of simply calling its functional argument/; that is, all changes to the current store by / are in

effect upon return, and if executing/ returns a value or raises an exception so does executing checkpoint f.

The call restore e has the effect of resetting the store to the (dynamically) previously checkpointed store and raising

9

the exception Restore with value e. A call to restore always returns control to the point at which the store was last

checkpointed; we effect this flow of control using SML's exceptional handling mechanism.

Because of this transfer of control by restore, checkpoint can also terminate by raising the Restore exception.

Hence, when the Restore exception is raised as a result of a call to checkpoint, it is as if no change to the current store

has been made. This functionality of checkpoint I restore will give us the ability to support the"aU-or-nothing" property

of transactions.

The rationale for providing an exception Restore is to distinguish between a normal return (from checkpoint) where

side effects are done and one in which restore is called, in which case side effects are undone. Having the Restore

exception return an exception value is useful since it lets restorers caller pass information through the restore back to

the caller of checkpoint. Moreover, as we will see in detail in the next section, it provides us with a nice way to handle

transactional semantics.
By means of foreshadowing, as a simple example, consider the following function5:

fun foo () =
(x := 5 ;
if C then Undo.restore Abort

else !x)
where x has been defined and Abort is an exception value (in anticipation of the next section). In the following call to

foo, let st and st' be the values of the store before and after the call:

(Undo.checkpoint foo) handle Restore exn => [some work]

When we call foo the current store is st. If C is false, the store is updated by the change to x, 5 is returned, and

computation proceeds as usual with the updated store st1. If C is true then st is unchanged, i.e., st' = st, the Abort

exception is passed back, and [some work] is done (e.g., abort-handling code or reraising Abort).

In an earlier design of UNDO we explicitly exported the type store and had checkpoint and restore take the store

as an explicit argument. However, there really is only one store (the mapping from Addr to Val) and we cannot create

or assign stores; in this sense, stores were not fully first-class [JD88]. Moreover, we placed restrictions on the usage

of checkpoint/restore, for example, we assumed the restore was always called within the dynamic scope of a call to

checkpoint. Our more straightforward design now embodies this disciplined use of the store and disallows surprising

behavior like jumping arbitrarily to any arbitrary store.

3.3. Implementation

To implement undo, we need to keep a log of all modifications to the store and the old values (elements of Val)

originally assigned to the modified locations (elements of Addr). To restore the previous state of the store, we simply

replay the log from youngest entry to oldest. To handle nesting, we need to remember intermediate points in the log;

for single-threaded applications, we can follow a simple stack discipline to remember these points.

For traditional imperative languages with explicit storage management, this log-based approach has several

5 ! in SML is the fetch operation on ref \s.

10

drawbacks. First since modifications to the store would be frequent, maintaining and replaying such logs would be

expensive. Second, since storage is managed explicitly, the undo system would have to maintain carefully copies

of objects referred to by the undo log. This would be a formidable task, especially in languages where pointers and

integers cannot be distinguished.

For SML and other mostly functional languages, using an undo log to implement undoability is much more

reasonable. First, assignments are rare, and in fact happen to only a few data types, i.e., refs and arrays. Maintaining a

log and replaying it is not prohibitively expensive. Second, since the garbage collector does storage management, it is

easy to ensure that data referred to by the undo log are not deleted; we need only make sure that the garbage collector

is able to reach the entries in the log.

3.3.1. Runtime Data Structures and Routines

The three main pieces of state information we maintain for our implementation of undo are the extended store list,

a checkpoint stack, and the undo log. The four main activities in our implementation of undo for SML/NJ are log

construction, checkpoint creation and deletion, garbage collector interaction with the undo log, and finally, log replay.

Log Entries, Log Construction

SML/NJ already logs the locations of mutations to pointers and arrays in a store list as part of its generational

garbage collection strategy. As for our implementation for persistence, to implement undo logs, we extend this

mechanism by modifying the code generated for mutations. We make two changes in creating our extended store list:

First, rather than log only mutations that might affect the pointer graph (which the garbage collector uses) we also log

entries for mutations to non-pointer values, i.e., integers and byte arrays. Second, rather than log only the location of

these mutations, we must also record the old values. For tagged data types (integers and pointers), storing these values

is easy: We just add an additional old value field to the record as used in the original store list; the old value is tagged,

and thus is acceptable to the garbage collector. For (mutable) byte arrays, it is more difficult since the old value is a

full 32-bit quantity, and thus is "untagged"; in this case, we allocate a new record to hold the old value. We use a tag

for this record to inform the garbage collector not to look at the 32-bit quantity it contains. We call these extended

records undo log records since their old value fields will be used for undoing the store. Finally, entries are prepended

to the extended store list, thus ordering them from new to old.

The undo log (which we represent as a list) is initially empty. As we discuss in detail below, a side effect of calling

restore is to do a garbage collection and a side effect of doing garbage collection is to prepend the extended store list

to the current undo log. In this way, the undo log grows, and in the correct order (newest to oldest).

Checkpointing

Since we support nested checkpoints and restores, we maintain a stack of checkpoints, each of which points to an

undo log record (either on the extended store list or on the undo log). When we establish a new checkpoint through a

call to checkpoint, we call a new runtime function that pushes a new pointer on the stack of checkpoints; this checkpoint

11

points to the most recent entry in the extended store list. After a nested checkpoint terminates, we pop this stack.

After the last checkpoint terminates, we discard the entire undo log. Since we maintain the undo log in the garbage

collected heap, we do not have to deallocate the log explicitly; rather it is deallocated during the next garbage collection.

Interaction with the Garbage Collector

The trickiest aspect of the undo system involves the transfer of the store list to the undo system during garbage

collection, and the subsequent garbage collection traversal of the entries in the undo log. Recall the generational

garbage collector uses the store list (and hence, our extended store list) and normally discards it after each minor

collection. In our support for undo, at each garbage collection we start the normal generational garbage collection

traversal of the extended store list by examining only the items which would have appeared on the original store list.

Then we complete the normal garbage collection step by computing the transitive closure of the pointer graph. At this

point we have examined exactly the same storage locations as in a standard garbage collection (without our extended

store list). Now, instead of discarding the store list, we pass it to the undo system, which prepends it to the undo log.

Finally we start another garbage collection using as roots the appopriate pointers in the undo log's entries. Since

the undo log is just a normal list to the garbage collector, it gets copied, as well as any data to which it refers that have

not been previously copied. This garbage collection step preserves all of the old values, even if they are no longer

referred to by other data structures in the heap. This two-phase approach allows us to measure the storage overhead

imposed by the undo system by simply looking at how much data is copied in the second phase.

Replay
Before replaying the log, we first force a garbage collection to occur. As just explained, this has the side effect of

prepending more entries onto the undo log. Next we replay the log from youngest to oldest, rewriting old values, until

we find the checkpoint that matches the top of the checkpoint stack. Finally we pop the checkpoint stack.

3.3.2. Costs

Section 5 discusses specific benchmark results that suggest that the costs of maintaining an extended store list and an

undo log are not overwhelming.

Since most data in SML/NJ are each represented as a pointer, we need only copy one pointer per data object; we

also do not inappropriately garbage collect values saved on the undo list. Hence, to a first approximation the only

costs we incur in maintaining an extended store list are in doing additional pointer copies and the inability to garbage

collect old values.

The cost in doing a restore involves replaying the log. This may sound expensive, but mutations in SML programs

are rare; the lists are typically short. Also, restoring an old value only involves restoring the pointer, since the old

value will not have been garbage collected. Again, we let regular garbage collection clean up values stored on the

undo log.

12

functor URelation (Relation : RELATION) : RELATION * struct

13

fun insert (tup, rel) =
let fun restorer () =

Relation.insert (tup, rel) handle exn => Undo.restore exn
in

(Undo.checkpoint restorer) handle Undo.Restore exn *> raise exn
end

fun delete (tup, rel) =
let fun restorer () =

Relation.delete (tup, rel) handle exn => Undo.restore exn
in

(Undo.checkpoint restorer) handle Undo.Restore exn => raise exn
end

end

Figure 7: Undoable Relations

3.4. Use: Undoable Relations

Figure 7 shows the interface for "undoable" relations 6 , by extending the signature for relations. Again, the two

relevant operations are insert and delete. We wrap the call to Relation.insert by a checkpoint of the store before the call

using checkpoint and a handler for the Restore exception, in case an exception is raised. If executing Relation.insert

raises any exception e (e.g., InvalidRTuple), we call Undo.rest ore, which causes the Restore exception with e as its

exception value to be raised and control to transfer to the point at which checkpoint was invoked; the outer handler

catches the Restore exception and reraises e. The code for delete is similar.

We can create an undoable relation structure by applying the functor to our Relation structure from before:

structure URelation = URelation(Relation) ;

If we create an undoable relation, ur, using URelation.create, then if an exception is raised from attempting to insert

into or delete from ur, the effects of the insertion or deletion are undone.

4. Transactions

As mentioned in the introduction, a transaction is a group of operations that is treated atomically ("all-or-nothing").

That is, a transaction must be atomic and permanent. Atomicity means that a transaction either succeeds completely

and commits, or aborts and has no effect. Permanence means that the effects of a committed transaction survive

failures. In the presence of concurrency, transactions must additionally be serializable, which means that concurrent

transactions must appear to execute in some serial order. With nested transactions, a transaction's effects become

permanent only when commit occurs at the top-level. That is, the permanence of effects of a nested transaction is

6 F o r completeness, the Appendix contains the module for bindable undoable relations. They do not serve any purpose in the discussion here,

but emphasize the orthogonality between persistence and undoability.

signature TRANSACT = sig

exception Abort

val transact: (unit -> 'a) -> 'a

val abort: unit -> 'a
val abort_top_level: unit -> ' a

end

Figure 8: Signature for Transact

relative to its parent's commit.

By putting the support for persistence and undoability together, we can provide support for single-threaded nested

transactions. Support for persistence gives us a way to guarantee permanence and support for undoability gives

us a way to guarantee atomicity. We are deliberately not handling concurrency in this paper, and thus, can ignore

serializability.

4.1. Model of Computation

We combine the additions to the model of computation for persistence and undoability. We extend SML state to

include the persistent memory, PMem, and we extend the SML environment to include the persistent environment,

PEnv:

State = Mem x ... x PMem

Env = . . . x PEnv

4.2. Interface

Figure 8 gives the TRANSACT signature. The function transact called with a function / has the effect of

executing/ atomically. It begins a possibly nested transaction, which commits if and only iff returns without raising

an exception; we treat exceptional termination of a transaction as an abort. If the committing transaction is top-level,

all its changes to the persistent environment and persistent memory are saved to disk. If the committing transaction

is not top-level, no changes to the persistent environment or persistent memory are made. If a transaction aborts, all

(and, in the case that it is nested, only) its changes are undone. These properties of transact ensure that the permanence

of the effects of a child transaction depends on the commit/abort of its parent. Only at the top-level do effects of

committed transactions get saved to permanent storage, i.e., written to disk.

A call to abort has the effect of raising the Abort exception and undoing a transaction's effects by one level. A call

to abort JopJevel has the effect of raising the Abort exception at the top-level and undoing the effects of the top-level

transaction, including the effects of all its nested transactions. As with any exception, transacts caller can use an

explicit handler for the Abort exception, e.g., if the abort of a nested transaction is not to propagate.

14

Consider a simple example:
fun foo () =

(x := x + 1;
if C then !x else raise Abort)

fun bar () =
(x x + 2;

i f D then (Transact .transact foo; !x) else raise Abort)
and the following calls to transact:

Transact.transact foo;
Transact.transact bar;

In the first call, if C is true then x is incremented and the new value is returned; otherwise, x remains unchanged and

the Abort exception is raised. To show how nesting works, consider the second call: If D is true then if C is true, x

gets incremented by 3; if D is true and C is false, x gets incremented by 2; if D is false, x remains unchanged and the

Abort exception is raised.

4.3. Implementation

The implementation of the TRANSACT signature is entirely in SML using the interfaces provided by PERS and
UNDO. Figure 9 gives the code.

Conceptually, transact is the composition of two functions, g and / , where g has the main effect of checkpointing

the current store (using checkpoint) and/has the effect of doing a nested transaction (doJrans) or top-level transaction

(doJopJrans). In both the nested or top-level cases, if an exception is raised, then we call restore to undo the

transaction's effects. In the case of a top-level transaction, we need to do a little more work: upon commit, we need

to save all its changes to the persistent heap (i.e., persistent environment and persistent memory).

Let us now step through the code in more detail. First, we initialize a global boolean flag, in.t r a n s a c t i o n , that

remembers whether or not we are inside a transaction already. Skipping down to the bottom of transacts definition (at

the line beginning do .check if . . .) , we test to see whether we are in a transaction; if so we return the function

doJrans; otherwise, we return doJopJrans. We use doxheck to checkpoint the current store and to handle the Restore

exception, reraising its exception value, exn, to transacts caller.

Next, let us consider what doJrans does since for both top-level and nested transactions we eventually call it.

DoJrans executes the closure argument to transact. If an exception exn is raised, the transaction aborts, restoring

the store to the previously checkpointed value and raising the Restore exception with the exception value exn; control

returns to the point at which the store was last checkpointed.

DoJopJrans first toggles the boolean flag and calls doJrans to execute the transaction's closure. DoJopJrans

may complete successfully, thereby committing, or unsuccessfully, thereby aborting. If it commits (skipping the

exception handler code), we save its effects in the persistent heap 7 , reset the boolean flag, and return the value, res,

obtained as the result of executing the closure. If it aborts, it terminates with either an AbortlbpLevel exception or by

some other exception. If it terminates with an AbortTopLevel exception, then we restore the store and raise the Abort

7 T h e exception handled by the call to save is SavcFailcd. See Section 2.

15

structure Transact; TRANSACT = struct
exception Abort
exception AbortTopLevel

val in_transaction = ref false

fun transact closure » let

fun do_check f = (Undo.checkpoint f) handle Undo.Restore exn «> raise exn

fun do__trans () = closure () handle exn => Undo.restore exn

fun do_top_trans () =* let
val _ = in_transaction := true
val res = (do__check do__trans) handle AbortTopLevel => Undo.restore Abort

I exn => Undo.restore exn
in

(Pers.save () handle exn => Undo.restore exn;
in_transaction := false;
res)

end
in

do__check (if ! in__transaction then do_trans else do_top_trans)
end

fun abort () = raise Abort

fun abort_top_level () = raise AbortTopLevel

end
Figure 9: Implementation of Transact

exception. If it terminates with any other exception, we restore the store and reraise the exception. By restoring the

store we treat any exceptional termination of a nested transaction as an abort, yet give the handler the opportunity to

execute abort handling code depending on what kind of exception is raised.

Note that for top-level transactions there are two doxhecks. The inner one allows us to convert an AbortTopLevel

exception to Abort, to restore the store to the appropriate value, and to transfer control to the outermost doxheck. The

outer doxheck will return control back to the caller of the top-level transaction. Without the innermost doxheck, if an

abort to the top level occurs, then because of the implicit transfer of control in restore, the call to restore in doJrans

would bypass the handler for AbortTopLevel.

Our implementation handles the abort of a transaction to the top level (e.g., if some user code calls the abort lop level

function within a deeply nested transaction) by unrolling "inside-out" the effects of each nested transaction one level

at a time, propagating the AbortTopLevel exception all the way until the outermost handler. Since we do not want

or need to expose the AbortTbpLevel exception we mask it by raising the Abort exception to the original caller of

transact. We could have optimized the unrolling by handling the AbortTbpLevel exception specially in the do-trans

function, but it would make the code harder to read.

4.4. Use: Transactional Relations

Figures 10 and 11 show the interfaces for transactional and bindable transactional relations. The changes for insert,

16

functor TRelation (Relation : RELATION) : RELATION =* struct

functor TBind_Relation (Relation : RELATION) : BIND_RELATION = struct
structure Relation : RELATION = Relation

type identifier = Table.identifier
exception Unboundld = Table.Unboundld

fun new__table () =
let val st = Table.new ()

fun add () = (Pers.bind ("RELATI0N__TABLE", st) ; st)
in

Transact.transact add
end

val table = (Pers.retrieve "RELATION_TABLE"):Table.symtable
handle Pers.Unboundld => new_table ()

fun bind (rel, ident) =
let fun add () = Table.bind table (ident, rel);
in

Transact.transact add
end

fun unbind ident =
let fun del () = Table.unbind table ident
in

Transact.transact del
end

fun fetch ident = Table.retrieve table ident

end

Figure 11 : Bindable Transactional Relations

17

fun insert (tup, rel) •
let fun wrapper () = Relation.insert (tup, rel)
in

Transact.transact wrapper
end

fun delete (tup, rel) »
let fun wrapper () * Relation.delete (tup, rel)
in

Transact.transact wrapper

end

end

Figure 10: Transactional Relations

delete, are simple: we wrap the call to each corresponding Relation function inside a call to Transact.transact. The

TBind_Relation functor is similar to the PBind_Relation functor (Figure 5), where for the creation of a new table and

the bind and unbind functions we wrap calls to the (internal) Table functions within calls to Transact.transact. Each

call to Transact.transact has the side effect of calling Pers.save with the new table so we do not need to make an

explicit call to it here.

Again, through functor application, we can create two new structures:

structure TRelation • TRelation(Relation):
structure TBind_Relation * TBind_Relation(Relation);

Given a bindable transactional relation value, btr, we are guaranteed that a call to any TBind-Relation function like

insert will be atomic. Moreover, if prog is a sequence of operations on btr and we call Transact.transact prog, then we

are guaranteed that all of prog's effects will be done if this top-level transaction commits, or none are done if it aborts.

Finally, for completeness, we can add btr to the persistent environment:

TBind_Relation.bind btr "MyTransactionalRelation";

We can quit this SML session, and in a later session retrieve the saved relation into btrl using:

val btrl = TBind_Relation.fetch "MyTransactionalRelation";

5. Current Status and Performance Results

5.1. Current Implementation Status

All the code given in this paper runs. In short, persistence with RVM works, undoability works, and nested transactions

work. The implementation includes approximately 200 lines of new SML code and modifications to about 80 lines of

existing SML code; 850 lines of new C code and modifications to 250 lines of existing C code.

We plan to hide inifs filename arguments as "command-line" arguments so users can link to one of many persistent

heaps at start-up. We have not yet implemented the stop-and-copy garbage collection of the persistent heap.

5.2. Preliminary Benchmark Results

To determine what overhead our persistence and undo facilities add to SML/NJ, we have run preliminary benchmarks

on two examples: the relation example as presented in this paper and the SML/NJ compiler itself. Our results indicate

that we can perform 1-2 transactions per second which is acceptable performance for our application domain. Most

of the cost in persistence is time spent on scanning the persistent heap; most of the cost in undoability is in garbage

collection-doing collection more frequently and copying additional data values. These results suggest places in our

implementation that warrant optimizations for future work. Since we have not done extensive testing, the following

analysis of our results is not definitive, merely suggestive.

18

Test Case 10 rtuples 100 rtuples 1000 rtuples
1. plain _orig 13.3 133 4500
2. plain 19.9 214 5230
3. undo_coarse 22.1 429 41000
4. undoJine 21.8 418 40900
5. undo-fine .only 21.9 223 5380
6. undo_coarseJfail 71.3 887 45600
7. undo-fine _fail 71.5 892 45400
8. undo-fine .only _fail 22.6 225 5320
9. pers 306 574 6000

10. trans .coarse 427 1330 49300
11. trans Jine 421 1090 39200

Table 1: Benchmarks for Relation Example (times in milliseconds)

The Relation Example

For the relation example, we ran eleven cases (see Table 1). The first two cases give baseline measurements. In

the remaining cases, for each, we create a bindabie relation, /?,8 insert n rtuples, for n = 10, 100, and 1000, into R\

and bind R to an identifier; the undo cases differ in when we do checkpoints, how many we do, and whether we do

any restores. Case 9 measures persistence only; cases 11-12 measure both persistence and undo as invoked through
transact.

We now look at these cases in detail. All times are in milliseconds. The first case shows how much time in the

original runtime (SML/NJ version .67) it takes to do the creation, inserts, and binding. The second case shows how

much overhead is added by having to maintain the extended store list and by having our changes for persistence and

undo compiled in, but not exercised. The time goes into creating the extended store list and traversing it when garbage

collection occurs. This second case should be used as a basis for comparison for the remaining cases.

In the undoxoarse case, we take one global checkpoint before the creation, insertions, and binding; we do no

restores. In undojine we additionally take a checkpoint before the insertion of each rtuple and the final binding; again,

we do no restores. Comparing both cases to plain, we see that we incur little overhead when small amounts of data are

being recorded (on the extended store list). We suspect the overhead is due to garbage collection, and for two reasons:

collections are performed more frequently and more data is copied during each collection. As the number of rtuples

increases, more data is being copying. It is not surprising that there is little difference between cases 3 and 4 since

the same amount of data has to be stored on the extended store list, traversed, and copied; case 4 essentially shows

that doing nested checkpoints incurs little overhead. In undo-fine x>nly we do no initial global checkpoint, but rather

take checkpoints only before each insertion and the final binding. In this case we see a difference only as the amount

of data checkpointed increases. As the amount of data increases, we need to do more garbage collections and more

8 O f the persistent, undo able, or transactional variety, as the case may be.

19

copying. Since the amount of data being copied does not change across cases 3-5, case 5 indicates how much time is

spent in doing additional collections.

The next three test cases (6-8) are similar to the previous three (3-5), except restores are done. Comparing these

"failure" cases with their "successful" counterparts, we believe the additional overhead for doing a restore is due to a

fixed amount of time it takes to do a minor garbage collection plus the time it takes to actually do the restore (traversing

the undo log and copying old values). There is roughly a linear relation in the number of rtuples (4.5 ms./rtuple),

given that a minor garbage collection takes about 5 ms. (which becomes insignificant as the number of inserted rtuples

increases).

The pers case indicates the baseline cost for doing a save after the binding of the relation. Time is spent both on

scanning the entire persistent heap and writing to disk.

Finally, the two transact cases (taken together) indicate a roughly additive relation between undo and persistence

as intuition would lead us to believe: the cost of doing a transaction is approximately the same as the sum of the cost

to do a checkpoint, the cost to do a save, and some fixed amount of overhead.

The SMUNJ Compiler
We ran a second set of benchmarks on the SML/NJ compiler itself. Recompiling the compiler, which is about

45,000 lines of SML code, with none .of our features compiled in takes 2081.6 seconds of elapsed time. With our

features included, it takes 2188.2 seconds; hence maintaining the extended store list adds only about a 5% overhead

in time.

The compiler is more representative of a typical SML program, one that is mostly functional, compared to our

highly imperative relation example; the compiler is also a large, "useful" program. Thus, our preliminary benchmarks

suggest that for SML applications that use transactions, support for undoability does not incur a large performance

penalty and that the main expense is the price paid for saving the persistent store.

6. Related and Future Work

6.1. Related Work

What primarily distinguishes our work from others is the principle of orthogonality between the persistence and

undoability properties of transactions. No other language pulls out so explicitly the undoability property from

transactions as we do; rather, more typically, "save" implies transaction commit and "undo" implies transaction abort.

By our separating the two properties, we can distinguish between persistent memory (PMem) from regular memory

{Mem) (this is what persistence provides) and between doing and undoing effects to memory, persistent or otherwise

(this is what undoability provides). Then we can put the two properties together to give transactional semantics.

Support for just persistence needs no motivation as witnessed by the existence of a multitude of persistent

programming languages and systems (e.g., PS-Algol [ABC+83], Napier [MBC+88], Poly/ML [Mat87], Amber[Car86],

Galileo [AC085], Exodus [CDG+90], Argus [LS83], Avalon [DHW88], Mneme [MS88]; see [AB87] for a survey).

Support for undoability, aside from transactions, is useful for applications like interactive debuggers [TA90],

20

backtracking programs, and database systems using optimistic concurrency control; they share a need to save the state

of the system, e.g., by checkpointing a store, and to go forward and backward in time. Johnson and Duggan give a

denotational semantics for first-class stores; they use a version stamp scheme on persistent data structures to implement

stores as first-class objects [JD88]. Wilson and Moher propose a general calllcs (call-with-captured-state) construct,

similar to Scheme's and SML/NJ's calllcc (call-with-current-continuation) construct, that lets one treat stores as first

class [WM89], Their calllcs construct, use of garbage collection techniques for implementing checkpointing, and other

ideas about demonic memory inspired our initial design of UNDO's interface. As noted in Section 3, we backed off

from call/cs's full generality for ease in understanding and implementation, and most importantly, to enforce greater

safety.

Our work relates most closely to two classes of programming languages: persistent languages and transaction-

based languages. Some persistent programming languages, such as Poly/ML [Mat87] and Amber [Car86], do not

support transactions at all, except perhaps implicitly as the top-level interactive session with a user. Others, such as

PS-Algol [ABC+83] and Napier [MBC+88], support a simple database-oriented notion of a transaction where the act

of opening a database file for writing begins a transaction and the act of closing it commits it. Explicit routines for

commiting and aborting may also be available, but users have little other control over transaction management. A

transaction's role as a control abstraction is combined with its role as part of the database file abstraction. We choose

to treat transactions only as a control abstraction.

General-purpose transaction-based languages like Argus [LS83] and Avalon [DHW88, CLNW90] do not decouple

the persistence and undoability properties of transactions. Atomic data types give users a means of guaranteeing both

properties and they are inseparable.9 Argus and Avalon also do not support the principle of orthogonal persistence;

e.g., array and atomic .array are both built-in types in Argus. However, both Argus and Avalon handle concurrency

and guarantee strong correctness conditions, e.g., dynamic atomicity (Argus) or hybrid atomicity (Avalon) [Wei89],

to clients of atomic data types. Our mechanisms lie at one level lower since others are now free to extend our work,

providing whatever concurrency correctness condition they desire.

Of the database-oriented programming languages (e.g., Pascal/R [Sch83], Adaplex [SFL83] and Taxis [MBW80]),

because of its type system and base language (ML), the most closely related is Galileo [AC085]. Its idea of extending

the global environment with additional bindings through the use construct is similar to our use of SML's module facility,

in particular functor application, to extend SML's top-level environment; e.g., in the case of persistence, we add and

remove bindings to and from the persistent environment, which is just an extension of the top-level SML environment.

Galileo does not explicitly provide an "undo"-only facility, but it does have limited support for transactions. It supports

top-level transactions implicitly (every top-level expression is executed atomically) and nested transactions explicitly

through the transaction/end -transaction bracketing construct. The only way to abort a transaction is to raise an

exception. Because it is database-oriented, atomicity is guaranteed against the database, which serves as the storage

mechanism for persistent data, rather than smaller chunks of data; however, programmers can use its class and subclass

9 AvaIon provides a class called recoverable which is similar to providing just persistence but programmers are encouraged to use it only in

constructing atomic data types.

21

features to gain finer-grained control over data.

In the introduction we motivated our work by identifying the problem of a mismatch between an application's

needs and a transaction's guarantees. An alternative approach to addressing this mismatch is to relax the guarantees

that transactions provide. Different correctness properties such as relaxed atomicity [LKS91] do not guarantee strict

serializability; applications may be willing to tolerate inconsistent states temporarily for the sake of availability [S+90].

Here, we have assumed that our applications need full transactional semantics. Clearly, this related work complements

ours and it would be interesting to see how we could modularize and then combine these properties to obtain weaker

notions of correctness.

6.2. Ongoing and Future Work

Support for Heavyweight and Lightweight Concurrency

We have already built, but not yet thoroughly tested, mechanism to support concurrent transactions (multiple

"heavyweight" processes). We use standard two-phase read/write locks to ensure serializability among concurrent

transactions. The implementation essentially keeps locking information per transaction state. We support Moss's rules

for nested concurrent transactions [Mos81].

Along with others at Carnegie Mellon, we have separately designed and built a Threads package for SML/NJ

[CM90]. We have begun to integrate this Threads package with our support for persistence, undoability, and trans­

actions. For example, we can run multiple threads of control, each of which does multiply nested checkpoints and

restores. This demonstrates the orthogonality between lightweight concurrency and undoability.

Support for Distribution
We would like to build support for distributed transactions. Currently at CMU only rudimentary support for dis­

tributed SML in Mach [A+86] exists; essentially an SML interface exists for each Mach inter-process communication

interface as written in C. We would like to provide a much more abstract view of distributed computation for SML

where any SML value, including large complex data structures, user-defined abstract values, functions, and closures

would be transmissible. Again, to a first approximation, we view distribution as a feature orthogonal to persistence

and concurrency, and hope to provide support for distribution through module composition, modifying the runtime as

necessary where the features inherently interact.

SML-specific Work
Currently the SML community is interested in adding dynamic types to SML, which we could exploit not only

for persistence (see Section 2), but also for distribution. There is also interest in making SML modules "first-class."

Adding this feature would let us store structures, i.e., environments, in persistent memory. It would also enable

us to treat persistent environments uniformly as any other environment. As mentioned, we can view a persistent

environment as simply an extension of SML's top-level environment.
We have yet to give our extensions to SML a completely formal static and dynamic semantics, though we intend to

22

build upon existing literature [MTH90, DHM91, ACPP91]. The semantics for persistence would be straightforward;

however, that for undoability would be more challenging because of the need to track additional "potential" changes

to state and control flow. As implied by the point of this paper, we can then give a semantics for transact in terms of

that for persistence and undoability.

7. Acknowledgments

For fruitful discussions of our design, we thank Anurag Acharya, Eric Cooper, Bob Harper, Peter Lee, Greg Monisett,

Benjamin Pierce, Gene Rollins, and David Tarditi. For helpful comments on an earlier draft of this paper we thank other

members of the Venari Project: Manuel Faehndrich, Greg Monisett, Gene Rollins, and Amy Moormann Zaremski.

We owe a special thanks to Manuel Faehndrich for his invaluable contributions and participation in implementing

extensions to SML/NJ during the Summer of 1991.

23

8. Appendix

Below is the functor defining bindable undoable relations.

functor UBind_Relation(Bind_Relation : BINDJRELATION):BIND_RELATION * struct
structure Relation : RELATION = Bind__Relation.Relation
type identifier = BindJRelation.identifier

exception Unboundld = Bind_Relation.Unboundld

fun bind (rel, ident) =
let fun restorer () - BindJRelation.bind (rel, ident)

handle exn => Undo.restore exn
in

Undo.checkpoint restorer
end

fun unbind ident =
let fun restorer () er () = Bind__Relation.unbind ident

handle exn => Undo.restore exn
in

Undo.checkpoint restorer
end

end

val fetch = Bind Relation.fetch

end

24

References

[A+86] M. Accetta et al. Mach: A new kernel foundation for UNIX development. In Proceedings of Summer
Usenix, July 1986.

[AB87] M.P. Atkinson and O. Peter Buneman. Types and persistence in database programming languages. ACM
Computing Surveys, 19(2): 105-190, June 1987.

[ABC+83] M.P. Atkinson, P.J. Bailey, K.J. Chisolm, W.P. Cockshott, and R. Morrison. An approach to persistent

programming. Computer Journal, 26(4):360-365,1983.

[AC085] Antonio Albano, Luca Cardelli, and Renzo Orsini. Galileo: A strongly-typed, interactive conceptual

language. ACM Transactions on Database Systems, 10(2):23O-260, June 1985.

[ACPP91] M. Abadi, L. Cardelli, B.C. Pierce, and G.D. Plotkin. Dynamic typing in a statically typed language. ACM
TOPLAS, 13(2), April 1991. DEC/SRC TR-47.

[App89] A. Appel. Simple generational garbage collection and fast allocation. Software-Practice and Experience,
19(2): 171-183, February 1989.

[Car86] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors, Combinators

and Functional Programming Languages, volume 242 of Lecture Notes in Computer Science, pages 48-70.

Springer-Verlag, Berlin, 1986.

[CDG+90] Michael J. Carey, David J. DeWitt, Goetz Graefe, David M. Haight, Joel E. Richardson, Daniel T. Schuh,

Eugene J. Skekita, and Scott L. Vandenberg. The EXODUS extensible DBMS project: An overview. In

S.B. Zdonik and D. Maier, editors, Readings in Object-Oriented Database Systems. Morgan Kaufmann,

1990. also available as WISC-CS-TR 808.

[CLNW90] S.M. Clamen, L.D. Leibengood, S.M. Nettles, and J.M. Wing. Reliable distributed computing with

Avalon/Common Lisp. In Proceedings of the 1990 International Conference on Computer Languages,

pages 169-179, New Orleans, March 1990.

[CM90] E.C. Cooper and J. Gregory Morrisett. Adding threads to Standard ML. Technical Report CMU-CS-90-
186, Carnegie Mellon School of Computer Science, December 1990.

[Dat77] C.J. Date. An Introduction to Database Systems. Addison Wesley, Reading, MA, 1977.

[Dep83] US Department of Defense. Reference manual for the Ada programming language. Technical Report

ANSI/MIL-STD-1815A-1983,U.S. Government Printing Office, February 1983.

[Det90] David Detlefs. Concurrent, atomic garbage collection. Technical Report CMU-CS-TR-90-177, Carnegie
Mellon School of Computer Science, October 1990.

25

[DHM91] Bruce F. Duba, Robert Harper, and David B. MacQueen. Typing first-class continuations in ML. In

Proceedings of the Eighteenth Annual ACM Symposium on Principles of Programming Languages, 1991.

[DHW88] D. L. Detlefs, M. R Herlihy, and J. M. Wing. Inheritance of synchronization and recovery properties in

Avalon/C++. IEEE Computer, pages 57-69, December 1988.

[DM90] A.J.T. Davie and DJ. McNally. Statically typed applicative persistent langauge environments (STAPLE)

reference manual. Technical Report CS/90/14, University of St Andrews, Dept. of Math and Comp. Sci.,

1990.

[EMS91] J. Eppinger, L. Mummert, and A. Spector. Camelot and Avalon: A Distributed Transaction Facility.

Morgan Kaufmann Publishers, Inc., 1991.

[HN86] A.N. Habermann and David S. Notkin. Gandalf: Software development environments. IEEE Transactions

on Software Engineering, 12(12): 1117-1127, December 1986.

[JD88] G.F. Johnson and D. Duggan. Stores and partial continuations as first-class objects in a language and

its environment. In Proceedings of the 15th Annual ACM Symposium on Principles of Programming

Languages, pages 158-168, January 1988.

[L+81] B. Liskov et al. CLU Reference Manual, volume 114 of Lecture Notes in Computer Science. Springer-

Verlag, Berlin, 1981.

[LKS91] Eliezer Levy, Henry F. Korth, and Abraham Silberschatz. A theory of relaxed atomicity. In Proceedings

of the Principles of Distributed Computing, August 1991. to appear.

[LM86] N. Lynch and M. Merritt. Introduction to the theory of nested transactions. In Proceedings of the

International Conference on Database Theory, Rome, Italy, September 1986. Sponsored by EATCS and

IEEE.

[LPRS88] Peter Lee, Frank Pfenning, Gene Rollins, and William Scherlis. The Ergo Support System: An inte­

grated set of tools for prototyping integrated environments. In Proceedings of the Third ACM SIGSOFT

Symposium on Software Development Environments, November 1988.

[LS83] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for robust, distributed programs.

ACM Transactions on Programming Language and Systems, 5(3):382-404, July 1983.

[MA90] R. Morrison and M.P. Atkinson. Persistent Languages and Architectures, pages 9-28. Springer-Verlag,

1990.

[Mat87] David C.J. Matthews. A persistent storage system for Poly and ML. Technical Report 102, University of

Cambridge, Cambridge, UK, January 1987.

26

[MBC+88] R. Morrison, A.L. Brown, R. Carrick, R. Conner, and A. Dearie. On the integration of object-oriented

and process-oriented computation in persistent environments. In Advances in Object-Oriented Database

Systems, pages 334-339,1988.

[MBW80] J. Mylopoulos, P.A. Bernstein, and H.K.T. Wong. A language facility for designing database intensive

applications. ACM Transactions on Database Systems, 5(2): 185-207, June 1980.

[Mos81] J.E.B. Moss. Nested transactions: An approach to reliable distributed computing. Technical Report

Mrr/LCS/TR-260, Laboratory for Computer Science, April 1981.

[MS88] J.E.B. Moss and S. Sinofsky. Managing persistent data with Mneme: Designing a reliable, shared object

interface, volume 334 of Lecture Notes in Computer Science, pages 298-316. Springer-Verlag, September

1988.

[MS91] Hank Mashbum and M. Satyanarayanan. RVM: Recoverable virtual memory. Note in progress, March

1991.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, 1990.

[S+85] A.Z. Spector et al. Support for distributed transactions in the TABS prototype. IEEE Transactions on

Software Engineering, ll(6):520-530, June 1985.

[S+90] M. Satyanarayanan et al. Coda: A highly available file system for a distributed workstation environment.

IEEE Trans. Computers, 39(4):447-459, April 1990.

[Sch83] J.W. Schmidt. Some high level language constructs for data of type relation. ACM Trans. Database Syst.,

2(3):247-261, September 1983.

[SFL83] J.M. Smith, S. Fox, and T Landers. ADAPLEX: Rationale and Reference Manual. Cambridge, MA, 1983.

2nd ed.

[TA90] A.P. Tolmach and A.W. Appel. Debugging Standard ML without reverse engineering. In Proceedings of

the ACM Lisp and Functional Programming Conference, pages 1-12,1990.

[Wei89] W.E. Weihl. Local atomicity properties: Modular concurrency control for abstract data types. Transactions

on Programming Languages and Systems, 11(2):249-283, April 1989.

[Win89] J.M. Wing. Verifying atomic data types. Internationaljournal of Parallel Programming, 18(5):315-357,

1989.

[WM89] P.R. Wilson and T.G. Moher. Demonic memory for process histories. In Proceedings of ACM SIGPLAN

'89 Conference on Programming Language Design and Implementation, pages 330-443, June 1989.

27

