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Abstract 

We want to create interactive surface design systems which provide intuitive interfaces to 
parametric surface representations. In this paper, we show how the technique of Differential 
Manipulation can be used in constructing such interfaces. It allows surface manipulation 
issues to be treated separately from surface representation issues. Arbitrary differentiate 
functions of representation parameters can be used to control the surface. Constraint and 
optimization techniques can be used to enhance interaction and control many surface degrees 
of freedom at once. We provide examples of the technique's use in our interactive surface 
modeling program. 
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We are interested in the interactive design of free-form surfaces. Such systems must 
be able to represent the diversity of objects which designers require, and should still be 
easy to use. Unfortunately, the need for sufficiently expressive representations is at odds 
with the desire for intuitive interaction methods. Much of the prior work addressing this 
issue has been in defining surface representations which are expressive yet easy to control. 
Interpolating splines, B-spline[GR74] and NURB[Til83] control nets, and transfinite curve 
skinning[Gor69] are all attempts to specify surfaces in terms of parameter sets which are both 
extensible to more degrees of freedom in a regular way, and are easy to control because of the 
straightforward geometric meaning of their parameter sets. Indeed, the interfaces provided 
to such representations often directly couple parameters to user controls (a pervasive example 
being control-point dragging for B-spline nets). 

Such direct manipulation interfaces - in which the explicit degrees of freedom of the 
representation are presented to the user as a set of independent controls - have several 
shortcomings. First, a fixed representation cannot offer parameters which correspond directly 
to the range of effects desired by designers. Second, most representations achieve general 
expressiveness by offering numerous degrees of freedom, each of which must be specified 
independently in creating a surface. Making even incremental changes to such a surface can 
require adjusting large numbers of parameters. Third, interactions between qualitatively 
different parameters (for example, control-point positions, weights, and knot spacings in a 
NURBS curve) can leave a designer confused as to exactly how a given shape should be 
achieved. 

In this paper, we pursue an alternative approach to providing interfaces for surface manip
ulation. Rather than seeking a representation which is easier to control, we present a way to 
uniformly manipulate surfaces defined in any parametric representation. We thus separate 
the problem of manipulation from the problem of representation. The technique of Differen
tial Manipulation[GW91a] permits us to provide controls which are convenient for the user 
and lets us map operations on these controls to changes in the representation parameters. 

A previous paper[GW91a] discussed how the technique can be used to construct direct 
manipulation interfaces for a wide variety of geometric objects. In this paper, we will use 
it to build interfaces which abstract away from rich underlying representations and provide 
controls which can modify many degrees of freedom at once. This is particularly effective 
in surface sculpting applications. The resulting interface retains the expressivity of the 
underlying representation while giving the user direct control over meaningful higher-level 
shape parameters expressed as functions of an object's basic parameters. The technique 
also suggests very natural ways to control potentially unintuitive degrees of freedom in the 
underlying representation. 

We first present an overview of Differential Manipulation. We give a geometric specifica
tion for "intuitive" behavior of objects in a direct-manipulation system. We then show that 
this same behavior can be described in terms of the equations of motion for a simple mechan
ical system. We show how to implement general controls within this framework, and discuss 
applications to surface sculpting, including a number of examples from our B-spline surface 
editor. 
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Figure 1: A two-joint linkage, with joint-angles {61,62}. The velocity of point x is related to 
62} by the Jacobian of its position function. 

L Differential Manipulat ion 

We would like to allow the user to manipulate a surface using controls which are computed 
from the representation parameters. For example, the user might control positions of sur
face points, tangents and normals of various points on the surface, or area and curvature 
properties. For some of these controls it may be possible to compute an inverse which maps 
directly from a specified function value or object configuration to the corresponding parame
ter settings. But in general, such a direct mapping will not be possible because nonlinear or 
underconstrained systems of equations preclude inverses. 

If, however, it is possible to compute derivatives of the control functions, the underlying 
parameters can be altered differentially. Rather than specifying the target value for a control, 
the user specifies, from moment to moment, how the controls should move. These motion 
requests can be mapped into small changes in the parameters. By iterating this process, the 
object moves with continuous motion in response to the users control, permitting the user to 
"push and puir on the object to move it into a desired configuration. Because we are only 
specifying motion of the outputs (as opposed to positions), we only require derivatives (as 
opposed to inverses) of the control functions. 

Differential manipulation uses numerical techniques to allow users to manipulate geomet
ric objects. In this section, we will motivate the use of techniques from optimization through 
a series of simple examples. In the final part of this section, we will show how the same 
results can be obtained using techniques from mechanics. 

LL General ized Coordinates 

Consider the two-joint linkage in Figure 1. For fixed /1, /2, the linkage's configuration is 
determined by the joint angles 61 and 62. We concatenate these to form the object's state 
vector, q = 62}, which represents the generalized coordinates of the current configuration 
in the space of possible configurations. The world-space coordinates of any point on the object 
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Figure 2: A point constrained to a curve. The user-specified velocity is projected onto the 
space of allowable velocities, the tangent at the point. 

can then be expressed as a function of q. 

We now consider how to allow the user to manipulate the point x on this object. Allowing 
a user to specify a new position for the point directly requires solving a nonlinear system 
of equations. Instead, we allow the user to control the motion of the point. For example, 
instead of moving x to a target point, the user will specify the instantaneous velocity x (the 
dot indicates the time derivative of the function) so that x moves toward the target. The 
Jacobian of the position function, J = x g (the 2 x 2 matrix of partial derivatives of x with 
respect to q) linearizes x about the current q, and solving 

J q - x (1) 

for q transforms the world-space velocity to the corresponding generalized velocity. 

If we specify that the velocity x be some multiple of the displacement from a target point 
y, x will continually move towards y as q is integrated. By making the target point be the 
position of the mouse, the linkage will track the pointer as the user moves it about in world-
space as if the two were connected by a damped spring. The user can manipulate the linkage 
without regard to the underlying parameterization in {61.62}. 

1.2. Least Squares Project ion 

Consider a point which is constrained to slide along a fixed curve (Figure 2). Clearly, if the 
user pulls the point in any direction which is not tangent to the curve at the point, the point 
cannot move in that direction. But the user would be reasonable in expecting the point to 
slide along the curve so long as the specified velocity was not perpendicular to the curve at 
the point. We get this behavior by projecting the given velocity onto the (linearized) space of 
allowable displacements for the point. In this example, this space is the line tangent to the 
curve at that point; in general, it is the space spanned by the column vectors of the Jacobian. 
Thus, while Jq = x is in this instance overdetermined (two equations in one unknown), the 
projected equation 

J T J q = J T k (2) 
does have a solution. Further, it is the least squares solution to Jq = x, in that the solution 
q = ( J T J ) " 1 J r x minimizes the error (Jq - x ) 2 . Under this model, one might think of user-
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Figure 3: A three-joint linkage, x does not uniquely determine 0\. 02-03- so additional 
ties must be specified. 

specified velocities as "suggestions" rather than hard constraints. The system moves s 
minimize the error between the requested and actual velocities. 

L3. Underdetermined Motions 

Consider the three-joint linkage in Figure 3. A user-specified velocity for x leads to an 
underdetermined system: two equations in three unknowns. One way to resolve this inde-
terminancy is to define a reasonable behavior for the objects which sufficiently constrains the 
problem. 

We first note that if the user had specified velocities for x. y, and z simultaneously, we 
could generalize Equation 2, the system would be overdetermined, and a unique least-squares 
solution could be found. The generalization is straightforward: we concatenate each of the 
world-space points into the vector P(q), which we call the configuration vector (the world-
space analog of the state-vector). The user-specified velocities are similarly concatenated to 
form P. Now J will contain a row each for each point in the configuration vector, and the 
system of equations becomes Jq = P. If there are at least as many independent rows in J as 
there are components in q, the matrix J T J will be positive-definite, and there will be a unique 
least-squares solution. 

Given this generalization, we are able to sufficiently constrain the problem by making 
the following crucial assumption: in addition to explicitly specifying velocities for some of 
the points in P, the user has implicitly specified zero-velocities for the remaining points -
that is, these points should not move if the user is not pulling on them. This is reasonable 
behavior for the model, and guarantees that for a sufficiently populated P. there is a unique 
least-squares solution to any set of user-specified velocities interpreted as P. When a nonzero 
velocity has been specified for a point which is coupled to a zero velocity point by the underlying 
parameterization, this solution minimizes the distance the zero velocity point actually moves. 
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1.4. General ized Configuration Vectors 

In the previous example, P was a collection of world-space points. It is worth emphasizing 
that the components of P can be any differentiable functions of q. A good example arises in 
the context of manipulating a curve. 

Consider a parametric curve C(q, s) whose shape is determined by the parameter vector q. 
lb manipulate the curve differentially, we must somehow construct a configuration vector P( q) 
which will uniquely determine a corresponding value for q. One could of course construct P by 
sampling points along the curve. The movement of the sample points would be minimized as 
the curve changed in response to velocity signals from the user, and given a sufficient number 
of sample points this would in turn minimize the magnitude of world-space change along the 
entire curve. 

Consider instead the limit of this sampling process, / Cds. Under a least squares projec
tion, specifying a zero velocity for the value of the integral would result in minimizing the 
magnitude of the corresponding change in the curve's world-space configuration, 

||AC|| 2 = | ( C ( q + A q . . s ) - C ( q . . s ) ) 2 r / . s . 

For a differential change dq, the derivative C 7 ( q ) linearizes this expression, yielding 

j(C(q + dq,s)-C(q,s))2ds = j (Cqdq)2ds 

= dq T ( J C[C,r/.s)dq 

= dq T 5dq, 

where S represents the integral over the curve parameter s. and is a symmetric, positive-
definite matrix. The displacements which minimize the magnitude of the change in the curve 
are those which minimize the gradient of this function at the current value of q. That is, we 
want 

Sdq = 0. 

This yields dim(q) independent equations in q, and we may take each of these as a row in 
the Jacobian of a generalized configuration vector, for which a zero velocity will be specified. 
The actual components of the configuration vector would be given by the solutions of these 
differential equations - but note that we do not have to solve them since we are only interested 
in generating the necessary independent rows for the Jacobian. Minimizing each of these 
velocities results in minimizing the world-space change in the entire curve. 

As a simple example of this technique, consider a parametric curve represented as a linear 
blend of a set of control points G: 

C(G,u) = N(u)G. 

Taking G as the state vector, we see that S is independent of G. and the shape projections 
are just S G . Further, if the basis function N(u) has local support, as with a B-spline, «S will 
be sparse and dominated by its diagonal entries, and may be reasonably approximated by a 
diagonal scaling matrix, reflecting the independence of the underlying control-points. 
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This leads to the result that control points for a linearly blended curve may be pressed 
into service as the components of a generalized configuration vector. This should come as no 
surprise, since the original B-spline representation was created with the intention that the 
control-points be direct-manipulation parameters. 

The use of control points in the configuration vector leads in turn to a very simple formula 
for directly manipulating a linear blend curve. If the user is pulling on a single point x( a) of 
the curve, J and P become: 

N(u)T X 

a 0 
J = P = : 

a 0 

For sufficiently large a, the matrix J T J is essentially the identity scaled by a 2 , and we thus 
choose to disregard the N(u) terms in J T J (that is, the controlled point has already been 
accounted for by the integration along the curve. The N(u) terms merely provide additional 
weighting at that point). With a = 1, Equation 2 then becomes: 

q = N(u)Tx. 

Further, since J is constant, we may directly solve for the total change in q : it is simply a 
multiple of N(u). Because of the least squares weighting, the Aq which displaces a world-space 
point x(u) by Ax is 

N ( t Q r A x  
q ||N(ti)||2 

Figure 4 shows a B-spline curve being manipulated in this way. The resulting displace
ments are those which minimize the magnitude of the change in the curve while placing the 
controlled point at the desired position. 

L5. First-Order Equat ions of Motion 

That the previous techniques lead to animated models which respond to user interaction in 
uniform, intuitive ways is not accidental. The equations - and motion - arising from this 
purely geometric specification correspond exactly to a those of a physical simulation of a 
mechanical system. 

The basic equation of motion for a mechanical system is 

f = Mp + Cp + Kp, (3) 

where p is a vector of particles in the system and f is a corresponding vector of applied forces. 
M and C are the mass and damping matrices - linear maps from accelerations and velocities 
to forces. K is the stiffness matrix, which relates the current configuration to the amount of 
potential energy in the system. 

The dynamic behavior specified in the previous section corresponds to a physical situation 
in which drag dominates inertia, so that a particle only moves while a force is being applied 
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Figure 4: Pulling on a point on a B-spline curve. Dashed lines connect the spline control 
points. Displacements for the point on the curve are mapped to corresponding displacements 
in the control points. 

to it (ie, M = 0). The particles in p correspond to the components of the configuration-image 
P, and the applied forces f to the user-supplied velocity signals. 

For now, we assume there is no potential energy in the system, so K = 0. Because we 
have not coupled any of the components of P (ie, C is the identity), the equation of motion is 
reduced to 

P = f. 

Finally, we view the parameters in q as an alternate coordinate representation for the config
uration of the particles p, and the standard change of coordinates from mechanics yields 

J T J q = - J T f, 

where, as before, J is the Jacobian of the map from q to p. 

This is simply Equation 2, but with a physical interpretation. It is a valuable correspon
dence, because it motivates the use of techniques from mechanics in constructing intuitive 
user interfaces[WGW90]. 

2. Manipulat ing Surfaces 

We now consider Differential Manipulation as it applies to interactive surface modeling. 
In particular, we show how the technique addresses the problems mentioned earlier: fixed 
parameterization, unintuitive parameter interactions, and specifying many independent de
grees of freedom. In the previous section we showed how to differentially control functions of 
the state vector. We will now look at some control functions useful for free-form surface design. 
These controls will be formulated independently of any particular surface representation. For 
concreteness, we give some examples of controls from our B-spline surface editor. 
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2.L Control Funct ions 

Differential Manipulation hides the underlying representation of a model by letting us op
erate on control functions of the state vector. Such a control may have a simple geometric 
interpretation, while the corresponding effect on the state vector will reflect the complexity 
of the mapping from state-space to world-space quantities. 

For example, in our surface modeler we allow the user to control the position of any point 
on the surface, even if that point is not a control point, by generalizing the curve manipulation 
results from section 1.4. Similarly, we allow the user to pull directly on surface tangents and 
normals. One interface we have used for this is to attach a control rod (which represents the 
second parametric derivative) to the surface at the specified point, and let the user pull on the 
end of the rod. Changing the rod's direction changes the tangent plane at the control point, 
and stretching the rod increases the curvature of the surface at that point. More interestingly, 
we can ask designers what they want to control, and write functions to do it. 

Such a control scheme requires the dynamic creation and evaluation of control functions 
and their derivatives[GW91b]. Note that because of the local support property of B-splines, 
functions of q generally depend only on a subset of the components, and the resulting Ja-
cobians will be very sparse vectors. If a model with many degrees of freedom is to run at 
interactive speeds, it is crucial that an implementation take advantage of this sparsity. 

2.2. Hierarchical Parameter izat ions 

It is common to structure surface design parameters hierarchically. For example, one might 
embed a surface in a deformation[Bar84], then apply a rigid-body transformation to the 
resulting deformed points. This is an appealing design strategy because parameters at each 
level may be treated as independent sets of controls, with well-defined scopes of effect. But 
they are certainly not independent in terms of the parameters' effect on the world-space 
location of a particular surface point. Placing a surface point at a particular world-space 
position by manipulating deformation parameters is rarely straightforward given such a 
structure. 

Traditional direct manipulation of a surface embedded in such a hierarchy would be pos
sible only if we could compute each deformation's inverse. But because the deformation 
hierarchy is simply a composition of functions, the chain rule lets us formulate differential 
controls which map forces from one level of composition to the next, and thus apply formces 
not only in world-space or state-space, but in each of the intermediate spaces in the hierarchy. 

The parameters at a specified level in the hierarchy can be isolated for manipulation 
simply by freezing parameters associated with other levels. World-space forces are then 
transmitted only to the active level. Several levels may be active at once, with the damping 
matrix providing a way of apportioning the applied force between them. Thus, the user can 
manipulate any kind of parameter at any level of the hierarchy in the same way: by applying 
forces directly to the world-space surface. 

For example, in our modeling system one can specify a rigid-body rotation by grabbing 
an object and pulling it around to the desired orientation (the surface degrees of freedom 
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are frozen during this operation). This interface is markedly different from many commonly 
encountered rotation controls[CMS88], and is very easy to use for quick, non-precision posi
tioning of an object. 

2.3. Constraints for Manipulat ion 

Sometimes it is useful to have the modeling system itself control a function's value. For 
instance, if we have the modeler generate forces which hold a function at a fixed value during 
manipulation, this enforces a constraint relationship between the underlying parameters and 
thereby reduces the number of degrees of freedom of the model. Because we may constrain 
arbitrary functions of the modeler state, the explicit degrees of freedom in the underlying 
representation have only an indirect effect on what kinds of constraints we can effectively 
enforce. 

There are a number of ways to differentially enforce a constraint. Penalty methods, which 
use springs to pull output functions to desired values[Pla89] are simple to implement but 
can lead to very stiff differential equations. This in turn requires that smaller integrator 
steps be taken, degrading the interactivity of the system. Alternatively, we formulate a 
set of constrained differential equations to restrict allowable motions of the model. Rather 
than try to solve these constrained equations, we use a variation of the Lagrange Multiplier 
technique to convert them to unconstrained equations by computing forces of constraint and 
projecting out the portion of the applied force which would violate the constraints [Bau72] (the 
application of this technique to interactive systems is further discussed in [GW91a]). Useful 
modeling constraints can be highly nonlinear functions of state, but because we maintain them 
differentially we need only solve linear systems of equations at each timestep to compute the 
needed constraint forces. 

We have experimented with a number of different constraints in our system. The simplest 
of these nails a fixed material point x to a fixed point p in space. The constraint function is 
C = x(q) - p, and by holding its three components at 0 the system forces points to remain 
coincident (Figures 5,6). A constraint which connects two surface points is formulated sim
ilarly. In the case of a B-spline surface representation, this is a linear constraint, and its 
constant Jacobian makes it inexpensive to maintain. 

If we nail a surface point whose material coordinates are allowed to vary - that is, whose 
u,v coordinates are part of the state vector - we get a (nonlinear) sliding point of contact 
constraint. The surface freely slides over the point in world space, always maintaining 
contact. 

We may also constrain a surface normal to lie in a particular direction. This may be used 
in conjunction with a connection constraint to force two surfaces to lie tangent at a point. If 
the second parametric derivative is used instead of the unit normal, the constraint will be 
linear in the control points. This scheme has some drawbacks in regions of low curvature, 
arising from its dependence on the underlying parameterization. 

Note that the world-space nail-point need not be fixed. The time derivative of the point 
may be included in the constraint formulation to cause a material point on the object to track 
the nail as it moves from one location to another[WW90]. We have used such a scheme in a 
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Figure 5: A B-spline surface with three point constraints. 



user-interface for assembling parts of a model via constraints. The resulting motion brings 
the model into a configuration which will satisfy a connection constraint between the parts 
while preserving existing constraints. If we simply relied on the constraint stabilizing forces 
to pull the model into a satisfying configuration these forces would tend to momentarily 
disrupt other constraints, or worse, cause the integration to diverge. 

2.4. Optimizat ion for Manipulat ion 

Instead of having the system constrain a function's output at a particular value, we can 
have it generate forces which tend to drive the function to 0, and thus optimize (rather than 
constrain) the control quantity. Because it is possible to formulate control functions which 
involve many surface degrees of freedom, nontrivial surface features can be expressed. We 
thus are able to optimize local or global surface attributes subject to user-supplied forces and 
constraints. 

As an example, we consider a simplified energy of deformation used in [CG91] to create 
fair-seeking patches for interactive surface design. The integrals of the first and second 
parametric derivatives are taken as linearized approximations to the metric and curvature 
tensors for a surface patch. Minimizing the local surface metric causes the surface to behave 
like a soap-film, contracting in world-space until a minimal area is achieved (balanced against 
other constraints and forces on the surface). Minimizing the local curvature across the patch 
has the effect of distributing curvature evenly across the patch, causing it to seek a fairer 
shape. 

From the user's point of view these forces reparameterize the model in terms of a higher-
level surface characteristic (fairness). Other possibilities for optimization forces include the 
shape attractors discussed in[TWK87] and [WFB87]. In optimizing such function outputs, the 
modeler continuously adjusts numerous surface parameters in nontrivial ways in response 
to simple manipulation by the user. 

2.5. Other Controls and Representat ions 

With Differential Manipulation, we can use the same manipulation techniques for different 
surface modeling representations. We can build systems which integrate many, such as tensor 
product surfaces, free-form deformations[SP86] and parameterized transforms. 

Differential Manipulation allows us to use many different types of controls with a given 
surface type. Since we can easily define new types of controls, we can provide ones based on 
what designers want, or even provide tools which allow users to define their own. 

The use of Differential Manipulation allows us to address many of the difficult issues of 
surface design in our modeling programs. Because we can define controls independently 
of the representation parameters, it is not a problem that the representation parameters 
are unintuitive or hard to control. The large number of parameters required for expressive 
surface representations become easier to manage through the use of controls which operate 
on groups of parameters, and constraint and optimization techniques. 
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