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Abstract 

A number of connectionist models capable of representing data with compositional struc­
ture have recently appeared. These new models suggest the intriguing possibility of perform­
ing holistic structure-sensitive computations with distributed representations. Two possible 
forms of holistic inference, transformational inference and confluent inference, are identi­
fied and compared. Transformational inference was successfully demonstrated in [Chalmers, 
1990]; however, since the pure transformational approach does not consider the eventual 
inference tasks during the process of learning its representations, there is a drawback that 
the holistic transformation corresponding to a given inference task could become arbitrarily 
complex, and thus very difficult to learn. Confluent inference addresses this drawback by 
achieving a tight coupling between the distributed representations of a problem and the 
solution for the given inference task while the net is still learning its representations. A 
dual-ported RAAM architecture based on Pollack's Recursive Auto-Associative Memory is 
implemented and demonstrated in the domain of Natural Language translation. 
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Learning Recursive Distributed Representations for 
Holistic Computation 

Lonnie Chrisman 

1 Introduction 
It is generally agreed upon that many cognitive tasks require the use of data containing 
combinatorial constituent structure. Classical examples of such structure include graphs, 
trees, and lists. The inadequacies of most connectionist models of not being able to rep­
resent or make use of such structure has limited the application of these models to higher 
level cognitive tasks and has been a source for attacks on the connectionist enterprise [Fodor 
and Pylyshyn, 1988]. However, recently several connectionist models with the capability for 
representing structured data have been introduced ([Pollack, 1990], [Elman, 1990b], [Smolen­
sky, 1990], [Hinton, 1990], [St. John and McClelland, 1990], [Miikkulainen and Dyer, 1989], 
[Lee et a/., 1990]). These usually map syntactic compositional structure into distributed 
representations by using various composing and decomposing functional operations. 

The emergence of these new distributed representations for structured data creates the 
possibility for a new and intriguing mode of computation called holistic inference. This 
form of inference occurs in a gestalt fashion by deriving a solution directly from the rep­
resentation of structured data without decomposing, locating, or accessing its constituent 
elements. The most interesting case revolves around distributed representations that [Van 
Gelder, 1990] characterizes as possessing functional compositionality without concatenative 
compositionality — ie. representations where the elements or relationships between elements 
are not easily ascertained from the surface structure. Such holistic inference is only feasible 
as a result of micro-structure that emerges in the representation. This micro-structure may 
provide a means for the extremely efficient computation of certain classes of inference such 
as what [Hinton, 1990] refers to as intuitive inference. 

It is far from obvious that structure-sensitive holistic inference could even be possible. 
If a distributed representation is viewed as a complicated encryption of the original data, 
then there is no reason to believe that such a representation might directly reflect any 
pertinent content. On the other hand, the touted abilities of neural nets to capture relevant 
regularities in data may instead be directly reflected in the resulting micro-structure of the 
representations, thus opening the doors to a whole new realm of inference, the essence of 
which would be radically different from most people's conceptions of how computation must 
be performed. 

Chalmer's fascinating experiment [Chalmers, 1990] gives the first positive.mdication that 
such structure-sensitive holistic inference is, in fact, possible. Distributed representations 
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were derived for* a corpus of sentences using Pollack's Recursive Auto-Associative Memory 
(RAAM) architecture. A simple transformation network was successfully trained to per­
form sentence passifization (ie. converting a sentence such as "John loves Michael" from the 
active into the passive, "Michael is loved by John") by mapping directly from distributed 
representation to distributed representation. On a corpus of 75 active-passive training pairs 
and a different set of 75 active-passive testing pairs, the transformation network achieved 
an amazing 100% accuracy, thus giving an existence proof of structure-sensitive holistic 
computation. 

In the general case, the use of pure transformational inference, as employed by Chalmers, 
is subject to significant transformational complexity which can easily hinder the success of 
holistic inference. The drawback arises because the (distributed) representations are learned 
independently of the inference tasks for which they will be used. As the representations 
for the input and output of a given inference task become increasingly disparate and non-
systematic, the complexity of the transformation necessary to encode the inference grows 
significantly. The resulting complexity can critically impede the effectiveness of the holistic 
transformation. 

This paper introduces a method, termed confluent inference, for addressing the difficulty 
of transformational complexity. The basic idea is to account for the inference task(s) while 
learning representations by encouraging the confluence of the representations for the prob­
lem and answer of the inference task. While confluent inference should properly be viewed 
as part of the representation learning process, in the extreme it is a novel form of structure-
sensitive holistic inference that can accomplish the entire inference task by itself. As a 
representation forming mechanism, confluent inference can act synergistically with transfor­
mational inference. To explore the abilities of the pure confluent approach, a dual-ported 
RAAM architecture was devised and implemented and applied to a small English Spanish 
translation domain. 

The paper begins by reviewing the basic RAAM architecture [Pollack, 1990]. The two 
types of holistic computation, transformational and confluent, are then presented in detail 
and compared. Next, the dual-ported RAAM and the associated training technique are 
developed, and experimental results from applying the architecture to a natural language 
translation task are given. The help define the scope of applicability, some possible variations 
on inference tasks are considered, and a discussion of the conditions that allow confluent 
inference to be effective follows. Finally, methods are presented for synergistically combining 
confluent and transformational inference. 

2 R A A M 
Pollack's Recursive Auto-Associate Memory (RAAM) architecture allows variable-sized struc­
tured data to be representing using a fixed-sized network [Pollack, 1990]. The basic RAAM 
can encode arbitrary tree structures of variable depth as long as the valence (branching fac­
tor) is bounded. In theory, there is no hard limit placed upon the maximum depth of any 
branch, nor is there any specific upper bound on the number of distinct trees that can be 
stored. Of course in practice, the maximal depth and number of trees that can be stored and 
retrieved accurately depends upon the network's capacity, as determined by its size. When 
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representing an arbitrary tree, the basic RAAM requires that the number of units used to 
represent a terminal element be equal to the number of hidden units used to represent a 
complete data structure. In the special case of a list, this restriction can be lifted and the 
resulting configuration is called a Sequential RAAM. For simplicity, the description here 
will be limited to the Sequential RAAM, but all methods discussed in this paper generalize 
straightforwardly to the basic RAAM. 

The encoding and decoding of a list can be accomplished using the recursive configuration 
shown in Figure 1. After training is complete, a list can be encoded by placing a local 
representation for the first list element on the left L units of the input, and an empty or 
n i l vector on the right K units. This produces a distributed representation for a list of one 
element on the K hidden units. The activations of the K hidden units are then copied to 
the rightmost K units of the input and the second element is placed on the left L units, 
producing a representation on the K hidden units for the two element list. The process is 
continued until the entire list is encoded. 

A list can be decoded by placing its distributed representation directly on the hidden 
units. The leftmost L units of the output return the last element of the list, while the 
rightmost K units return the representation for the remainder of the list. The decoding 
process can be repeated until the end of the list is detected, for example, by detecting a 
non-terminal element in the leftmost L units of the output 1 . 

The network is trained to auto-associate the desired inputs by using the back-propagation 
procedure. A list element, plus the encoding of the proceeding portion of the list, are placed 
on the input units and the network is trained to reproduce this same pattern on the output 
units. In the process, the network is forced to develop a compressed representation on the 
hidden units. The hidden activations are extracted, used to encode longer lists, and back-
propagation is repeatedly applied until the end of the list is reached. As the network learns, 
the the hidden unit encoding changes, and a form of moving target learning emerges. 

After this process is carried to completion, we are left with both an encoding process and 
a decoding process since the output layer of the net can be used to decode a list as described 
earlier. 

3 Holistic Computation 
The RAAM architecture described in the previous section can be viewed simply as a dis­
tributed memory for storing compositional data structures. Viewed in this way, computation 
proceeds by locating, extracting, and combining constituent elements of the encoded struc­
tures in a manner not much different from traditional symbolic processing. Nonetheless, 
various emergent properties of distributed representations [Hinton et a/., 1986] and of the 
RAAM architecture (such as high encoding efficiencies, fault tolerance, or the tendency 
to make mistakes gracefully) may make this view of structure-storing connectionist models 
interesting in their own right. The best example of such use is BoltzCONS [Touretzky, 1990]. 

But beyond being just a structure storage device, the RAAM's representations suggest 

lA s imple threshold r can be set to detect non-terminal e lements . For e x a m p l e , if any o u t p u t unit o,- has 
an ac t ivat ion level o, > r or o% < 1 — r, the token is considered to be a non- terminal . Usual ly r is set to 0.2. 

3 



Output 

Decoder 

K Units 

o o o o o o o o o 
Hidden Units = Representation 

Encoder 

L Units K Units 

Input 

Figure 1: The Sequential RA AM Structure. 
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Figure 2: (a) The transformational holistic computation of f{x) by g(-). (b) Usually the auto-
association of x and f(x) is used to learn representations before learning the transformation 
<?(•) • 

that much more may be possible. In order to compress arbitrary data structures down to 
a fixed-width hidden layer, the RAAM must make use of regularities, and these may be­
come reflected directly in the distributed representations. These representations encode all 
the information from the original data structure as well as an additional statistically-based 
microsemantics between constituent elements and relations within the data. Thus, highly ef­
ficient computation that takes advantage of this otherwise unavailable microsemantics might 
use the distributed representations directly. In the terminology of [Van Gelder, 1990], the 
distributed representations learned by a RAAM possess functional compositionality without 
concatenative compositionality. Thus, the individual elements of a data structure, and the 
relationships between these elements, are not usually directly reflected in the resulting rep­
resentation. Inferences that use only the surface micro-structure of a representation without 
accessing its compositional structure is said to perform holistic inference. 

3.1 Transformational Inference 
Let x represent a given item of structured data. The encoding process of a RAAM maps 
x G X to a distributed representation denoted by E(x) G Similarly, the decoding process 
maps a representation r G R to a data structure denoted by D(r) G Y. When D(E(x)) = x, 
we say the network is capable of auto-associating (ie. representing) x. Recall that the 
computation of E(-) or D(-) by a RAAM requires multiple encoding or decoding steps. 

We can view a given inference task as computing a function / : X —• Y, where elements 
of X and Y are structured data. For example, X may be the set of all English language 
sentences, Y the set of all Spanish sentences, and /(•) is the translation function that converts 
any sentence from English to Spanish. 

When (E(-),D(-)) exhibits functional compositionality without concatenative composi-
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tionality, and when D(g(E(x))) = f(x), then #(•) performs a transformational holistic com­
putation of / ( • ) . The process of computing f(x) in this fashion is called transformational 
holistic inference and is diagramed in Figure 2(a). This characterizes the techniques em­
ployed in [Chalmers, 1990] and the syntactic transformation experiments of [Blank et al, 
1992]. For example, Chalmers trained a RAAM to auto-associate parse trees of active and 
passive English language sentences. After this training process had converged, the hidden 
layer of the RAAM yielded distributed representations for each of the sentences, thus pro­
viding the E(-) and D(-) mappings. He then trained another feed-forward network, #(•), to 
transform the resulting distributed representations of active sentences into the distributed 
representations of their passive counterparts. By encoding an active sentence, passing it 
through the feed-forward transformation network, and then decoding it, the system gener­
ated the corresponding passive sentence. 

Because of the opacity of the representations used during holistic inference, the functions 
£•(•), D(-), and g(-) must all be learned through training. To date, the representations 
(ie. E(>) and £>(•)) have been learned first, as shown in Figure 2(b). The transformational 
mapping g(-) is learned only after the representations have been completely determined. A 
particularly important observation is that the complexity of the mapping required for g(-) 
will depend upon the particular mappings obtained for E(-) and D(-). The feasibility of the 
transformational holistic approach hinges upon the learning complexity of g(-). When E(-) 
and D'(') are learned independently of g(-), as they were in the experiments of [Chalmers, 
1990] and [Blank et al, 1992], the target inference task has no effect upon the resulting 
representation scheme. In such a case, a low learning complexity for g(-) can only be expected 
when the ideal representations for auto-association happen to be appropriate for the given 
inference task. 

3.2 Confluent Inference 
One possible way to overcome the above limitation is to take account of the eventual inference 
tasks while learning representations ([Miikkulainen and Dyer, 1988], [Miikkulainen and Dyer, 
1989], [St. John and McClelland, 1990]). The resulting representation scheme should strike 
a compromise between the ease of the desired inferences and the necessary auto-associative 
capabilities. This is the motivation behind the confluent approach. 

Confluent inference should be viewed primarily as a representation forming mechanism. 
Confluence causes the distinctions that are important for the given inference task to be­
come readily accessible within the microfeatures of the distributed representation. These 
distinctions are not necessarily interpretable to a human examining the representations, but 
they emerge so that the given inference task can be performed easily. Although confluence 
should be viewed as a mechanism for tailoring representations, confluent inference can be 
used to perform the entire inference task by itself. The FGREP algorithm [Miikkulainen and 
Dyer, 1988] can also be viewed in this way. In order to obtain a better understanding of the 
technique, the discussion and experiments focus upon the use of pure confluent inference. In 
a later section, the possibilities for hybrid configurations are considered, where confluence is 
used to shape the representations, and transformational inference is synergistically employed 
for the inference task. 
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(a) (b) 

Figure 3: (a) Two way auto-association, (b) The computation of f(x) by confluent inference. 

If x is an input to an inference task, and f(x) is the desired output, then confluent 
inference a t tempts to "bring together" the representation of x with the representation of 
f(x). The expectation is that when x and f(x) are closely associated, then the inference dis­
tance between the representations for x and f(x) should be small, and the transformational 
complexity should be low. 

Taken to an extreme, confluent inference suggests that the representation for a problem, 
x, and its answer, f(x), should have identical representations! The key insight is that a given 
representation may have two different interpretations (ie. decodings), one corresponding to 
the initial problem, the other to the answer of the inference task. For the English«-+Spanish 
task considered later, the representation may be considered to be analogous to idea of inter-
lingua used by the Machine Translation community. One decoder maps the interlingua into 
English and a different decoder maps it into Spanish. The relationships between confluent 
and interlingual representations are discussed later in the paper. 

The inferences under consideration will be initially limited to 1-to-l functions. In a later 
section, the case of general JV-to-1 functions will be considered. When confluent inference is 
used to learn a 1-to-l function, / ( • ) , the added benefit is obtained that the inverse mapping, 

can be acquired simultaneously. 
To operationalize the confluence technique, additional encoding and decoding processes 

are employed. As a result, the interpretation of a particular representation depends upon 
which encoding or decoding is used. Let R represent the set of all possible (distributed) 
representations, and let X and Y be the domain and range of / ( • ) respectively. Let E\ : 
X —• R and D\ : R —> X be an encoding and decoding pair which is used for representing 
the input x to the inference task, and let E2 : Y —* R and D2 : R —• Y be a second pair 
used for representing the output f(x) within the same space of representations. We say that 
the network auto-associates x and f(x) when D\{E\(x)) = x and ^ ( ^ ( / ( z ) ) ) = f{x) as 
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shown in Figure 3(a). One can consider this network as being capable of representing the 
problem and its answer. When it is also the case that D2(E\(x)) = f(x) as in Figure 3(b), 
then f(x) is said to be computed by confluent inference. 

Although Di(-) and ^(O are not activated during the computation of f(x) in Figure 3(b), 
they nonetheless play a critical role during the process of learning representations. The 
key point to keep in mind is that both x and f(x) are combinatorial data structures with 
embedded constituent structure. The auto-associative pathways are necessary for learning 
how to build up representations of whole structures from the constituent parts by using 
RAAM-like training methods. Since i ^ * ) a n d D\{') must be trained anyway, they provide 
a convenient method for obtaining the inverse function f~l(y) as D\{E2{y)), where y = f(x). 

4 The Dual-Ported R A A M 
The dual-ported RAAM architecture of Figure 4 was developed and implemented in order 
to conduct experiments with confluent inference. The experiments conducted thus far have 
been design to test the abilities of pure confluent inference without a hybrid transformational 
component. 

Given a data structure x to encode, Encoderx of Figure 4 is used to compute the repre­
sentation Ei(x) using the same encoding procedure as for the basic RAAM architecture. For 
a list, the first element is placed on the leftmost L\ units of Encoderx s input and an empty 
token on the rightmost K units in order to obtain (on the hidden units) a representation 
for the one element list. This representation is then copied to the rightmost K units of 
Encoderx s input, the second list element placed on the leftmost L\ units, and the process 
is repeated until all elements of the list have been encoded. Similarly, a representation for 
f(x) is obtained by using this same procedure with Encoder2. The basic (multiple-cycle) 
RAAM decoding process is used to convert a distributed representation into data structures 
representing x and f(x) by using Decoderi and Decoder2 respectively. Note that the imple­
mentation of the encoding and decoding functions Ei(-) and /?,-(•) involve multiple execution 
cycles. 

The back-propagation procedure is employed to train the dual-ported RAAM. As with 
the basic RAAM, the encoder-decoder pairs must be trained to auto-associate all lists and 
sublists, but in addition, the constraint of confluence association requires the resulting rep­
resentation r to decode as D\(r) = x and Z?2( r ) = f(x)- I n order to specify this process, 
it is necessary to distinguish between single encoding or decoding steps and the net result 
of encoding or decoding. Let r\ = Encodex((a, r[~1)) represent the activations that ap­
pear on the hidden units in Figure 4 when (a,r[~l) is placed on Encoder^s input. Let 
Decode(rj) = (6, r*) be the activations on the output units when Vj is placed on the hidden 
units. Similar notation is used for Encode^) and Decode^)- Consider here a function 
f(x) that accepts a list x = (xx, x 2 , x n ) as input and produces a list f(x) = (fu / 2 , f m ) 
as output. One epoch of the training process is given in Figure 5. The algorithm assumes 
a 1-to-l function so that the network is trained to produce Dx{E2(f{x))) = x as well as 
D2{E\(x)) = f{x). The critical point to note is that auto-association is required for all sub-
lists (as with the basic RAAM), but confluent association is only required for the complete 
list. 
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Figure 4: The Dual-Ported RAAM Architecture. 
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Given: x = {xu x 2 , x n ) , f(x) = (fu f2, ...,/m) 

1. l e t r j = 7*2 = empty. 

2. f o r i = l. .(n — 1) do Auto-association 

(a) put ( x t , r p 1 ) on input to Encoderi. 

(b) propagate activations through Encoderi to obtain the activations on the hidden 
units. Denote this as r\. 

(c) propagate activations from the hidden units through Decoderi to the outputs. 

(d) invoke back-propagation on the three-layer Encoder\-Decoderi network using 
(xi^rl"1) as the ideal output. 

3. Repeat step 2 on the Encoder2-Decoder2 networks for i = l , . . . , ( ra — 1) with repre­
sentations r\. 

4. Enforce the confluence association of x as follows: 

(a) put (xn,rj1""1) on the input of Encode^. 

(b) propagate activations through Encoderi to hidden units to obtain r£. 

(c) propagate activations from the hidden units through both Decoderi and 
Decoder 2 . 

(d) invoke back-propagation using Decoder\\jDecoder2 as the output layer, Encoderi 
as the input layer, and ( i n , ^ " 1 ) © (fm,r™~1) as the target output. 

5. Enforce the confluence association of f(x) as follows: 

(a) put {/miT™'1) on the input of Encoder2. 

(b) propagate activations through Encoder2 to hidden units to obtain r£ \ 

(c) propagate activations from the hidden units through both Decoderi and 
Decoder 2 . 

(d) invoke back-propagation using Decoder\\JDecoder2 as the output layer, Encoder2 

as the input layer, and («r m , r j ' " 1 ) © (fm^T"1) a s the target output. 

6. Repeat all steps above for each training pair xj{x). 

Figure 5: The Dual-Ported RAAM Training Epoch. 
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not <We are> hungry <We are not> hambre cNo tenemos> 

IQOO I QOQOOl 
Decoder 

<We are not> 

OOP IQQQOO 

OOOOO 

Encoder 

o o o i 000001 
not <We are> 

(a) 
hungry <We are not> 

(b) 

Figure 6: Training of the Dual-Ported RAAM. (a) The basic sequential RAAM configuration 
is used to auto-asso ci ate all incomplete sub-sentences, (b) For the completed sentence, the 
system is required to produce both the auto-associated output as well as the translation (or 
in general, the answer to the desired inference). Back-propagation is used at each step with 
the appropriate network configuration. 

The training process is shown pictorially in Figure 6 for the English to Spanish translation 
. task. For a step in the RAAM encoding process that encodes an uncompleted sentence, 
the normal RAAM configuration shown in 6(a) is used. The words marked by the < and 
> symbols signify that the corresponding distributed, represent at ion for that sub-sentence 
appears or is inserted in the designated location. Confluence is introduced by modifying 
the final step of the encoding process as shown in Figure 6(b). The final step requires 
the complete encoding to decode into both English and Spanish through Decoderx and 
Decoder2 respectively. In the figure, the encoding for "< No tenemos >" must be obtained 
by using Encoder2 just prior to performing this final step. Although the system only makes 
the problem-answer association at the final encoding step, over multiple epochs the "moving 
target" learning of the RAAM impacts the representations chosen for the encodings of earlier 
sentence fragments. 

This process of associating problems with their answers only on the final step (similarly to 
the "classification paradigm" used by [Pollack, 1991]) can be contrasted with the predictive 
paradigm used by [Servan-Schreiber et ai, 1988], [Elman, 1990a], [St. John and McClelland, 
1990], [Miikkulainen and Dyer, 1989], [Miikkulainen and Dyer, 1990], and [Lee et a/., 1990]. 
In the predictive counterpart, a configuration similar to Figure 6(b) would consistently be 
employed for each sub-sentence. Upon seeijig the first word of the sentence ("We"), back-
propagation would use the complete answer ("hambre" — "<No tenemos>") as the target 
output for on the second decoding pathway, while Decoderi would continue to be used as 
an auto-associative pathway. 

Although the training process has been described in terms of lists, the dual-ported RAAM 
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is equally applicable to any structures that can be encoded by a RAAM. For a fixed-valence 
tree, step 2 is applied to all non-root nodes, and step 4 is applied to the root node. 

5 Natural Language Translation Task 
To test the feasibility of pure confluent inference, a dual-ported RAAM was implemented 
and applied to a small English <-» Spanish domain. Allen [1987] also previously applied a 
back-propagation network to a small English to Spanish translation task using a multi-layer 
feed-forward network. Unlike the structure-sensitive encodings being studied here, Allen 
restricted the maximum sentence length so that all words could be simultaneously applied 
at the input and output layers. The translation task provides an interesting domain for 
experimenting with structure-sensitive holistic inference. It is a domain where pure trans­
formational holistic inference would be expected to perform poorly since the regularities and 
vocabulary in each language are distinct. When both English and Spanish sentences are 
auto-associated by a pure RAAM, this distinctness causes the RAAM to develop unrelated 
encoding schemes for each language, and the holistic translation transformation is very com­
plex. In fact, [Allen, 1987] reports also encountering this same phenomena. He trained two 
feed-forward auto-associating networks to develop hidden-unit representation of sentences 
in each language, and then trained a network to transform from the English net's hidden 
representation to the Spanish net's representation. His "preliminary" results indicated that 
"apparently the types of features extracted in the two auto-associator networks are not eas­
ily coordinated." However, by using confluent inference, the dual-ported RAAM develops 
closely related encoding schemes for the two languages. 

A corpus of 216 possible English-Spanish sentence pairs (ie. 432 total sentences) were 
enumerated from a vocabulary of 36 english and 36 Spanish words. The words and their 
(localist) encodings are shown in Figures 7 and 8. The encoding scheme was quickly chosen, 
based only upon a subjective feel for the style of representation used by [Pollack, 1990] and 
[Chalmers, 1990], with no additional time expended on any clever engineering of the pat­
terns. The first group of bits correspond to word category (ie. verb, subject-noun, pronoun, 
preposition, adverb, determiner, adjective, simple-noun, or place). The middle group of bits 
correspond to a rough intuitive notion of plurality. For verbs, this corresponds to categories 
such as first-person-singular or third-person-plural, for most nouns they encode simple plu­
rality, and for other words they are set arbitrarily. Finally, the last group selects the specific 
identity of the word. A number of interesting surface phenomena occur in these sentence 
pairs making the translation task non-trivial. The number of words and the word ordering 
commonly differ. 

• He has it. «-+ Lo tiene. ( u I t heJias") 

• We do not want it. <-* No lo queremos. ("Not it we_want") 

There are distinctions made in each language not made by the other. For example, in the 
following sentences, the english word "is" maps to three different verbs in Spanish. 

• He is a student. <-+ Es estudiante. 
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Category Plurality Identity 
do 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 
does 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
want 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
wants 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
have 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 
has 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
am 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 
is 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 
are 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 
I 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
you 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
he 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
Reid 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 
they 0 1 0 0 0 0 0 0 0 0 0 1^ 0 0 0 0 1 0 0 0 0 0 
we 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
it 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
from 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
not 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
a 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
happy 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
angry 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
fine 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
here 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
young 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
old 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
right 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
sleepy 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
hungry 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
thirsty 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
professor 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 
professors 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
student 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 
students 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 
money 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 
Pittsburgh 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 
California 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

Figure 7: The English Word Encodings. 
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Category Plurality Identity 
quiero 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
quiere 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
quieren 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
queremos 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
tengo 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 
tiene 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 
tienen 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 
tenemos 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
estoy 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 
está 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
están 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 
estamos 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
soy 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 
es 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 
son 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 
somos 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 
Usted 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
Reid 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
lo 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
de 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
no 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
contento 0 0 0 0 0 1 0 0 0 ^ 1 1 0 0 1 0 0 0 0 0 
contentos 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 
furioso 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 
furiosos 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 
bien 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 
aquí 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 
joven 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 
jóvenes 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 
viejo 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 
viejos 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 
profesor 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 
profesores 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 
estudiante 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 
estudiantes 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 
Pittsburgh 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 
California 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 
razón 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 
sueno 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 
hambre 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 
sed 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 
dinero 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 

Figure 8: The Spanish Word Encodings. 
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• He is happy. <-+ Está contento. 

• He is hungry. <-* Tiene hambre. 

Similarly, the Spanish verb "tener" can map to different english verbs: 

• Tienen razón. «-» They are right. 

• Tienen dinero. <-» They have money. 

The verb conjugations between the two languages are not identical. For example, in Spanish 
the following conjugations are the same while in English the conjugations differ ("are" vs. 
"is"): 

• You are young. Usted es joven. 

• Reid is young. <-+ Reid es joven. 

Also, different Spanish conjugations exist for the english conjugation "are": 

• You are here. <-+ Usted está aquí. 

• We are here. «-> Estamos aquí. 

• They are here. <-+ Están aquí. 

These surface phenomena make the task particularly ill-suited for trivial word-for-word based 
translations. Since the set of sentences seem to require a semantic association rather than a 
purely syntactic one, the emergent representational micro-structure should reflect informa­
tion beyond simple compositional structure. 

The first experiment was designed to test memorization capabilities and measure the 
extent to which confluence is achieved, with no consideration of generalization proficiency 
over unseen sentences. All 216 sentence pairs were used for training. The number of hidden 
units was K = 40, and L\ = 22, L2 = 19 yielding a network topology 2 of (62 © 59)-40-
(62 © 59). The learning rate r began at r = 0.1, but was decreased to r = 0.01 near the end 
of training. The momentum m began at m = 0.3 but was quickly increased to m = 0.9, and 
eventually increased to m = 0.97 near the end of training. A terminal tolerance of r = 0.2 
and a non-terminal tolerance of v = 0.05 were used. After 5200 epochs all 432 sentences 
and sentence translations successfully memorized, with only 9 words being only "weakly" 
learned where at at least one bit in the word had an activation between 0.2 and 0.8. 

If confluence is taking place during training, then the internal distributed representations 
for equivalent Spanish and English sentences should be very closely related. An examination 
of the resulting representations verified that this is very much the case. The resulting 
distributed representations for a small sampling of the sentences is shown in Figure 9. For 
the entire corpus of sentences, it is quite clear that the representational confluence is very 
pronounced. 

2 As Figure 4 shows , the t o p o l o g y is s imilar to having two different networks wi th topolog ies of 6 2 - 4 0 - 6 2 
and 5 9 - 4 0 - 5 9 which share the h idden s a m e hidden units . T h e 0 no ta t ion s u m m a r i z e s this . 
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I am sleepy 
Tengo sueno 
I am not sleepy 
No tengo sueno 
He is sleepy 
Tiene sueno 
He is not sleepy 
No tiene sueno 
You are angry 
Usted esta furioso 
You are not angry 
Usted no esta furioso 
They do not have money 
No tienen dinero 
They are professors 
Son profesores 
We have it 
Lo tenemos 

Figure 9: Distributed Representations Obtained During Experiment 1. 

An interesting exercise is to determine whether any hidden unit consistently responds 
to particular identifiable semantic or structural features [Hinton, 1986]. It seems reason­
able, for example, that a unit might dedicate itself to representing sentence polarity (eg. "I 
have it" vs. "I do not have i t .") . Other units may dedicate themselves to capturing the 
particular subject or verb of the sentence, etc. However, as with FGREP representations 
([Miikkulainen and Dyer, 1988], [Miikkulainen and Dyer, 1990]), these sorts of clear, un­
ambiguously interpretable microfeatures did not occur. Identifiable microfeatures seem to 
occur only mildly over small groups of closely related sentences, but not at all consistently 
over the entire training set. For example, the sixth unit from the left consistently encoded 
whether the sentence was negative when the verb of the sentence was "to want" (querer) 
or "to have" (tener), but did not correlate at all with sentence polarity in any of the other 
sentences. Many other units were even more opaque. The sentence structure and content 
really do appear to be truly distributed within the representation. 

The second experiment tested the generalization capabilities of the entire process. The 
sentence pairs were randomly partitioned into two equally sized groups, and one group 
(of 108 sentence pairs) was used for training. Using the same training parameters as in 
the first experiment, convergence was reached in 5000 epochs. As expected, 100% of the 
sentences and translations used for training were memorized correctly. The remaining 108 
sentence pairs (216 sentences) were then used for testing the generalization accuracy of 
the system. The generalization accuracy is divided into two parts, the auto-associative 
accuracy (ie. the ability to encode and decode a sentence to obtain the original sentence) 
and the translational accuracy (ie. the ability to correctly translate a sentence into the 
other language). The trained network correctly auto-associated 49% (105/216) and correctly 
translated 33% (72/216) of the testing sentences. For these figures, only the sentences that 
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were reproduced exactly were counted as correct. 
A common error on the testing sentences (for both auto-association and translation) 

resulted from the premature truncation of a sentence. This was a result of the particular 
scheme used to detect list termination. Specifically, the decoding process was terminated 
whenever any output unit in the left portion of the output differed from the closest match­
ing word by more than 0.2 3 . This problem is a result of the RAAM architecture, but not 
a result of the addition of the dual port or of confluent inference. Furthermore, there are 
many obvious techniques one could employ to alleviate the problem, and it seems reason­
able to assume that with some additional effort, the problem would cease to be significant4. 
Therefore, it is more enlightening to examine the generalization accuracy while assuming 
that the list termination problem is solved. This is easy to do because one can simply count 
the number of words in the target testing sentence and use that value for deciding how 
many decoding cycles to perform. This causes some words to be output even though they 
may have units with activations between 0.2 and 0.8. In these cases the closest match in 
the dictionary is output. This alteration isolates the inference process from the list termi­
nation problem. When the testing sentences were printed out in this fashion, the resulting 
generalization accuracies were 85% (183/216) for auto-association and 70% (151/216) for 
translation. Another 94% (31/33) and 82% (53/65) of the incorrect sentences were "almost" 
correct differing either by a single erroneous word or an incorrect subject with a consistent 
verb conjugation. 

While 30% of the testing sentences were translated incorrectly in the previous experiment, 
half this amount (15%) were unsuccessfully auto-associated. This suggests that a consider­
able hindrance to the translational accuracy is not confluent inference, but rather the ability 
of the RAAM to auto-associate (ie. represent) the sentences. Chalmers [Chalmers, 1990] also 
found that errors due to the RAAM's mistakes in generalizing its representations to unseen 
sentences dominated the accuracy of his experiments. To isolate the two phenomena, he 
trained to a net auto-associate all possible sentences. An analogous experiment follows. 

The third experiment was designed to test the generalization capabilities of confluent 
inference while factoring out the effects of incorrect auto-associative generalization by the 
RAAM. For this experiment, the confluent training process of Figure 5 was used for the first 
108 sentence pairs. Pollack's standard RAAM training scheme was applied to the other 108 
sentence pairs by independently using the english sentence to train the Encoder\-Decoderx 

pair and the Spanish sentence to train the Encoder2-Decoder2 pair. After 4200 training 
epochs (using the same learning parameters as the previous experiments), the network had 
memorized all 432 auto-associations as well as the 216 translations from the training set 5 . 
The remaining 108 sentence pairs were then used to test the generalization accuracy of 

3 I t is not part icularly surprising that this would be a c o m m o n error since any t i m e any word wi th in a 
sentence is generated weakly, the entire sentence is truncated and counted as incorrect. 

4 A n end of sentence mark (ie. a period or stop mark) has been used by [Miikkulainen and Dyer, 1990] 
and [Blank et a/., 1992]. [Miikkulainen and Dyer, 1990] report that "the s y s t e m learns to o u t p u t the period 
quite early in the training," thus sugges t ing that the sentence t erminat ion problem is probably rather easy 
to overcome. 

5 A l l but live words were wi th in r — 0 .2 . T h e remaining five words were wi th in r = 0 .3 . 

17 



Testing Sentence Erroneous Translation Correct Answer 
I do not want it No lo quieren * No lo quiero 
No lo quiero They do not want it * I do not want it 
I have it Lo tenemos * Lo tengo 
I do not have it No lo tienen No lo tengo 
No lo tengo They do not want it * I do not have it 
I am not a professor No somos profesor No soy profesor 
I am not a student No somos estudiante No soy estudiante 
No lo tiene He does not want it * He does not have it 
Es de California We is from California He is from California 
Usted no lo quiere He does not want it * You do not want it 
Usted no lo tiene Reid does not have it * You do not have it 
You are a professor Es es professor Usted es profesor 
Usted es profesor He wants a professor You are a professor 
Usted es estudiante He wants a student You are a student 
You are not a student Usted no es profesor * Usted no es estudiante 
You are not from California Estudiante no es de sueno Usted no es de California 
Usted no es de California He is not from California * You are not from California 
You are not from Pittsburgh Estudiante no es de Pittsburgh Usted no es de Pittsburgh 
Usted no es de Pittsburgh He is not from Pittsburgh You are not from Pittsburgh 
They want money Queremos dinero Quieren dinero 
They have money Tenemos dinero Tienen dinero 
No tenemos dinero He have not have money We do not have money 
We are not professors Lo somos profesores No somos profesores 

• Words in italics were only weakly activated with at least one output unit between 0.2 
and 0.8. 

• Responses marked with asterisks appeared in the training set. 

Figure 10: Incorrectly Generalized Translations in Third Experiment. 

translation. The system translated 89% (193/216 = 96/108 English Spanish and 97/108 
Spanish —> English) of the sentences perfectly. Of the mistakes, 91% (21/23) could be con­
sidered near misses, differing by only one incorrect word or by an incorrect subject with the 
verb agreeing in conjugation. All of these sentences can properly be auto-associated by the 
system; therefore, these numbers reflect the true accuracy of the confluent inference process 
for this translation task. Since associational abilities give holistic inference its intriguing 
potential, the mistakes made by holistic inference engines are sometimes more interesting 
than the success rates obtained. Figure 10 shows all testing sentences that were incorrectly 
translated by the network in this third experiment. 
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6 Variations 
The presentation of confluent inference thus far has only considered the case of a single 
transformation-like invertible inference task. A number of variations are also possible and 
are considered in this section. 

6.1 N-to-1 mappings 
The English Spanish translation task in the previous section was an example of a 1-to-l 
mapping. When inference tasks are 1-to-l, confluent inference can be used to obtain both 
the forward and inverse mappings. These mappings are a special case, but the application of 
confluent inference is not limited to solely invertible mappings. The generalization to A r-to-l 
mappings is quite simple and is presented here. Obviously, by going to N-to-1 mappings, 
one must give up the luxury of automatically obtaining the inverse. 

The training process for a dual-ported RAAM attempts to achieve four constraints for 
each training instance: Di(Ei(x)) = x, D2(E2(x)) = x, D2(E\{x)) = f(x), and Di(E2(f(x))) 
x. These correspond to steps 2, 3, 4, and 5 of the training algorithm in Figure 5. Extending 
this training procedure to N-to-1 functions requires nothing more than simply deleting the 
last constraint. The only minor subtlety that exists when step 5 is deleted is that the loop 
in step 3 must be extended for i = l , . . . ,m. This is because originally step 3 handled the 
auto-association of all sub-sentences, but the final auto-association of the entire sentence 
occurred as part of step 5. 

While technically A^-to-l functions present no problem for confluent inference, our basic 
intuitions behind confluence must change slightly. Consider two different inputs which must 
produce the same output (ie. f(xi) = f{x2)). It is no longer ideal for confluent inference 
to map a problem and its answer to identical representations. Since the system must still 
maintain its auto-associative capabilities, the representation for an input must encode more 
information than the representation of the corresponding output. In other words, in order 
to maintain auto-associative abilities, the system must be able to distinguish between x\ 
and x2 from their representations; however, since = f(x2), it is not possible to make 
such a distinction from the representation of f(x) alone. In the case of an iV-to-l function, 
confluence intuitively suggests that some semantic subset of a problem and its corresponding 
answer should "come together." 

6.2 Detectors and Parallel Decoders 
Up to this point, we have considered the case where both the inputs and outputs of an 
inference task possess constituent structure. [Blank et a/., 1992] identifies three types of 
holistic operations (not including confluent inference): decoders, detectors, and transformers. 
Decoders and detectors are distinguished in that the output does not contain constituent 
structure. The lack of constituent structure in the output means that the complicated 
RAAM-like encoding process for the output representations is unnecessary. Thus, there 
is no distributed representation of the answer. For the dual-ported RAAM architecture 
in Figure 4, the second encoder-decoder pair can be replaced with a simple feed-forward 
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Figure 11: Using a Detector (or Parallel Decoder) with Confluent Inference. 

decoder or detector network. 
A parallel decoder (PD) extracts a particular constituent from the distributed represen­

tation of a sentence. The term "parallel decoder" is borrowed from [Blank et a/., 1992] and 
should not be confused the decoder half of an encoder-decoder pair. Simple PDs are some­
what interesting since they perform distal access [Newell, 1980] in a single step for instances 
where pointer following may require multiple steps. For example, a simple PD might return 
the last element of an encoded list. 

While a simple PD extracts information that lies at a fixed location within a data struc­
ture, more complicated context-dependent PDs may also be envisioned. Consider, for ex­
ample, a system that accepts as input a sentence as a sequence of words, and constructs a 
distributed representation (a "Sentence Gestalt") for the sentence. A complicated PD may 
then be used to extract the agent of the sentence, even though the precise location of the 
agent within the sentence is not fixed. The system of [St. John and McClelland, 1990] can 
thus be viewed as a very interesting instance of a complex structure-sensitive, holistic PD. 

A detector is used to holistically determine whether a simple proposition holds within an 
encoded data structure. For example, an "AGGRESSIVE-ANIMAL" detector might return 
TRUE just in case a sentence contains a reference to an aggressive animal. A more complicated 
example might be a reflexive detector that returns true just in case the subject and object of 
an encoded sentence are the same [Blank et a/., 1992]. Not surprisingly, confluent inference 
can also be used within the context of detectors and PDs to help shape the representations 
to match the inference task. Because the final result of the inference process does not possess 
constituent structure, the total process is somewhat simplified. Figure 11 shows the resulting 
architecture. As with the confluent training procedure (Figures 5 and 6), all sub-structures 
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Figure 12: A Multi-ported RAAM architect ure. 

of the input are auto-associated, then during the final encoding of the complete structure, 
the hidden units are forced to produce both the auto-associated output and the final detector 
or PD output. 

The use of confluence in the context of detectors and PDs is very closely related to the 
SG model [St. John and McClelland, 1990] and thus it aids in comparing that with the 
current work. The two differences are that the SG model is "predictive," confluent inference 
is not, and that the SG model does not require the ability to auto-associate the input. Thus, 
their Sentence Gestalt is not required to preserve information that is not used within the 
inference task. 

6-3 Multiple inference tasks 
When a system has multiple structure-sensitive holistic inference tasks, the distributed rep­
resentations should be formed so as to make all inference tasks as easy as possible [Hinton, 
1986]. Up to this point, only a single inference task has been considered, but the techniques 
extend straightforwardly to the case of multiple inference tasks. The generalization to M 
inference tasks simply requires the use of M + 1 encoder-decoder pairs, where the first pair 
corresponds to the problem input and the remaining M pairs correspond to each additional 
inference task. A multi-ported RAAM architecture is diagramed in Figure 12. 

FGREP has also been used to form representations that are appropriate for multiple 
inference tasks [Miikkulainen and Dyer, 1989]. An important difference between FGREP 
and confluent inference is pronounced in this case. When a particular distinction is never 
used by any inference task, the FGREP method will eliminate that distinction from the 
representation (as does Hinton's [1986] family tree system). For example, because the words 
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man, woman, boy, and girl are always used in the same way in [Miikkulainen and Dyer, 
1990], the representations for each of these words becomes identical. For this reason, [Lee 
et a/., 1990] argues for the development of task-independent representations, claiming that 
because their Distributed Semantic Representations (DSRs) are learned independent of any 
particular task, they are portable to tasks outside of the training environment. 

Confluent inference stands in strong contention with the notion that useful DSRs should 
be learned independent of their target inference tasks. While task-independent representa­
tions may preserve all relevant information, if that information is not nicely reflected within 
the micro-structure of representation, then holistic inference will be difficult, generalization 
will be poor, and the system may have to instead settle for "rational" inference [Hinton, 1990] 
by decomposing a representation into its constituent structure before performing inference. 
Since the DSRs of [Lee et al., 1990] are formed by achieving something roughly summarized 
as the mutual auto-association of concept and proposition encodings, one would expect those 
representations to be readily portable to other tasks only where the important features of 
the new task are a subset of those necessary for the mutual auto-association task. 

Although confluent inference stands in opposition with [Lee et a/., 1990] on the idea of 
task-independent acquisition of representations, it is actually more similar to DSRs than 
to FGREP with respect to portability. Because confluent inference maintains enough infor­
mation in its representations to complete the auto-association task, the lack of a particular 
distinction by the given inference tasks does not result in such information being thrown 
away in the representation. Nevertheless, more opaque encodings will usually be obtained 
for distinctions that are not used within any of the training tasks. 

When the sample of inference tasks that are used for training are representative of other 
tasks that the system may later need to holistically compute, then the important distinctions 
will become "well-entrenched" [Goodman, 1983] and the resulting representations should be 
quite portable over that set of tasks. 

7 W h y Confluence Works 
Confluent inference at tempts to achieve a close association between the input and output 
pairs of an inference task by causing the association to be overtly reflected in the respective 
representations. The association appears in the form of very similar representations for a 
problem and its answer. Determining the appropriate scope for the confluent technique 
consists of understanding when the confluence of the two representations is likely to occur. 

The technique at tempts to summarize the input and output data structures in terms of 
a common set of microfeatures. Because the data structures may be an arbitrary size and 
shape, and the microfeatures are limited to a fixed number of units, a compression must take 
place. In order for this compression to be effective, the system should not simply partition 
the units into input microfeatures and output microfeatures; instead, units must be shared 
between both input and output. These units can be viewed as extracting common semantic 
gestalt properties from either source. Furthermore, since a certain aspect of an inference 
task may depend upon the "whole" of the input, rather than just an individual constituent, 
there is additional pressure to combine the representations in the form of common micro-
features. If this were not the case, then during encoding, those units partitioned as output 
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representations would have to be filled in through a complicated inferential process which is 
not immediately related to individual constituents of the input structure. 

From these considerations, we can conclude that the success of confluent influence rests 
upon the presence of deep semantic and/or syntactic commonalities between an input prob­
lem and its answer. Thus, when one is attempting to subjectively evaluate the appropri­
ateness of confluent inference for a given task, it is useful to think of it in the following 
way. If the semantic content underlying the inputs (ie. the high-level or "deep" meaning) 
significantly overlaps the semantic content of their corresponding outputs, then confluence 
will probably be beneficial. Because a RAAM also encodes syntactic structure uniformly 
with semantic content, overlap in "deep' syntactic regularities contribute in a similar fashion. 
When significant overlap in higher-level meaning does not occur, then confluent inference 
will probably not contribute to the computation. When only a partial overlap occurs, then 
confluent inference may be useful for leveraging that overlap, but transformational inference 
may be more appropriate for the remainder of the task. Hybrid approaches are considered 
in the next section. One should also always keep in mind that holistic computation, in what­
ever form, may not be appropriate for many tasks (cf. "intuitive" vs. "rational" inference 
[Hinton, 1990]). 

Consider what happens when confluent inference is applied to a task where semantic 
overlap does not occur. For example, suppose input-output pairs for a function are created 
by randomly pairing a set of data structures. Provided that the network has a weak-enough 
bias (eg. enough hidden units), just as a feed-forward back-propagation network can be 
used to memorize arbitrary mappings, the confluence training algorithm should eventually 
memorize the training set 6 . Since common semantic features do not exist, the associated 
representations will not exhibit confluence. In other words, in this extreme case, the repre­
sentations for a problem and its answer will not "come together." Generalization abilities 
will likewise be poor and encoding efficiency will be low. 

7.1 Interlingua 
Confluent representations in the language translation experiment play the same role as in-
terlingua representations in the Machine Translation community. For this particular task, 
there are a few minor differences. While interlingua has long been a popular idea, the design 
of a sufficiently powerful intermediate language has been the primary impediment to con­
structing effective interlingual translation systems [Nirenburg, 1989]. In contrast, confluent 
representations are not hand crafted, and the important distinctions emerge automatically. 
Another difference is that confluent representations routinely capture semantic as well as 
syntactic features, while according to [Drozdek, 1989], "the at t i tude implicitly present in 
the interlingual method takes one to another extreme, ie. to neglecting the syntax altogether 
and focusing entirely on semantics." Historically, the primary attraction of interlingua for 
translation has been the reduction in the number of translators necessary for going between n 
different languages. The motivations underlying confluent inference are completely unrelated 
to this concern. But perhaps the most blatant difference is that the confluent representation 

6 I t is not clear, however, that the u m o v i n g target learning" of a recurrent s y s t e m like the R A A M will 
a lways-be guaranteed to converge. In practice, it a lways s eems to . 
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of a given concept might not be precisely fixed. Instead, the precise representation may vary 
by small amounts depending upon the source language (Figure 9). These may correspond to 
small language-dependent connotations that arise as a result of relationships in usage with 
respect to other words or constructs in the language, and these cannot be easily captured in 
the other language. Examples of such phenomena may include certain puns, subtle ambi­
guities, and many other variables of language perception such as those discussed in [Levelt, 
1978, pages 21-47]. 

For tasks other than natural language translation, the analogy to interlingua becomes 
more vague. As we consider variations (eg. A r-to-l mappings) of the inference task, it is hard 
to identify any relevant relationship between confluence and interlingua. 

8 Hybrid Approaches 
As discussed earlier, confluence should be viewed primarily as a representation forming 
mechanism. As such, it should complement transformational inference rather than replace it. 
As discussed in the previous section, when some aspects of the inference task are not likely to 
be readily summarized by high-level semantic features, then pure confluent inference may not 
be the most appropriate approach. In this case, it may be easier to utilize transformational 
inference for some parts of the inference task. In this section, two possible approaches for 
obtaining a synergistic combination are presented. 

In a hybrid architecture, an extra network g(-) is introduced to perform a holistic transfor­
mation upon the distributed representations. The transformation computes the distributed 
representation of f(x) from the distributed representation of x. Recall that for pure con­
fluent inference, D2(E\{x)) = / ( # ) . When g(-) is inserted, then D2(g(E\(x))) = f(x) and 
it is said that f(x) is computed by a combination of confluent and transformational infer­
ence. Even in the hybrid case, the auto-association pathways are still maintained, such that 
Z M £ i ( s ) ) = x and D2(E2(f(x))) = f(x). 

In the simplest hybrid architecture, confluent and transformational inference are decou­
pled. Confluent inference is applied only during the early stages of training while repre­
sentations are initially being formed. During this stage, the distributed representations of 
a problem and its answer tend to move together, and the eventual transformation task is 
biased towards simplicity. At some stage, confluent inference is turned off, but by this time 
it will have exerted an influence over the eventual representations that will be formed by the 
system, and the final transformation will be simplified as a result. 

When certain aspects of an inference task are ill-suited for confluent inference, the map­
ping from x to f(x) would be expected to converge slowly during the execution of the 
confluence training algorithm (Figure 5). Thus, a natural point to turn off confluent infer­
ence is when the desired auto-association accuracy is achieved, independent of inferential 
accuracy. At this point, all necessary data structures can be represented by the system, but 
an additional transformation may be necessary in order to accomplish the desired inferential 
accuracy. 

As with the dual-ported RAAM in Figure 4, while confluent inference is turned on, the 
representation for a problem and its answer are treated as if they share the same representa­
tion space as shown in Figure 13(a). However, after confluent inference is turned off, the two 

24 



f(x) 

1 2 i 

Representation R 

° 2 

Representation R x g Representation R 2 Representation R x Representation R 2 

jn
 

6 2 

f(x) 

(a) (b) 

Figure 13: Decoupled Hybrid Architecture (a) While confluent inference is on, the repre­
sentation spaces for a problem and its answers are shared, (b) After confluent inference is 
turned off, the two representation spaces are treated as if they are separate and distinct. 

representation spaces are treated as distinct as diagramed in Figure 13(b). Two different 
encoder-decoder pairs are still used. 

The simple decoupled scheme closely resembles the approach used for transformational 
inference by [Chalmers, 1990] and [Blank et a/., 1992]. The difference is that confluent 
inference is harnessed early on in order to influence the eventual representations. 

The second approach for obtaining a hybrid architecture considers confluent and trans­
formational components simultaneously. The confluent mapping is learned at the same time 
that the transformational mapping is learned, and both components are active during the 
entire training process. 

The hybrid architecture is shown in Figure 14. The representation spaces for the problem 
and its answer are distinct throughout the entire process, a feature that allows a different 
number of units to be used in each representation space. The training process for this 
configuration is almost identical to the confluence training process for an Af-to-1 function. 
The only difference is that during the confluence step (Step 4 in Figure 5), the second set of 
representation units are treated as an extra hidden layer during back-propagation. 

It should be evident that in both hybrid approaches, the inverse of a 1-to-l function is no 
longer automatically obtained as it was with pure confluent inference. To obtain the inverse, 
a second transformation layer must be included in the opposite direction in order to compute 
the inverse inference. The handling of this second transformation is straightforward in both 
configurations. 
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9 Conclusion 
There is widespread agreement that interesting intelligent behavior requires the maintenance 
and manipulation of compositionally structured data. Classically, structure-sensitive com­
putation is performed via the explicit traversal and composition of constituent elements. 
However, the recent emergence of recursive connectionist representations has created the 
possibility for a vastly different mode of computation: holistic inference. By harnessing 
the emergent micro-structure in these distributed representations, holistic inference maps 
directly from the representation of a problem to the representation of its answer in a gestalt 
fashion, without accessing the constituent elements or relations within the data. Besides be­
ing very fast (usually constant time), there is also some hope that the associational abilities 
of neural networks may may result in additional benefits for employing holistic inference. 

Transformational (structure-sensitive) holistic inference was introduced and successfully 
demonstrated by [Chalmers, 1990]. Because the representations are learned independently 
from the inference task, pure transformational inference will generally be infeasible unless 
the representations useful for auto-association are also appropriate for the inference task. A 
second form of holistic inference, confluent inference, was introduced in order to overcome 
this difficulty. Confluent inference accounts for the inference tasks during the formation 
of representations by attempting to "bring together" the representation of a problem with 
the representation of its answer. The intended result is that the transformational mapping 
(corresponding to the given inference) from problems to answers becomes as simple as pos­
sible. A dual-ported extension to Pollack's RAAM architecture [Pollack, 1990] was devised, 
implemented, and used to test these ideas. In a small English Spanish translation task, 
by using pure confluent inference the system perfectly translated 89% of the testing sen­
tences that were not in its training set. Since the task seems particularly ill-suited for a pure 
transformational holistic approach, the encouraging results indicate that confluence extends 
the feasibility of holistic approaches for structure-sensitive computation. These experiments 
only demonstrate the possibility of holistic techniques. The ultimate power and feasibility 
will rest upon further development and improvement of reduced description architectures 
[Hinton, 1990] and upon the harnessing of synergy between confluent and transformational 
methods. 
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