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Abstract

We present a category-theoretic framework for providing intensional semantics of programming
languages and establishing connections between semantics given at different levels of intensional
detail. We use a comonad to model an abstract notion of computation, and we obtain an intensional
category from an extensional category by the co-Kleisli construction; thus, while an extensional
morphism can be viewed as a function from values to values, an intensional morphisi is akin
to a function from computations to values. We state a simple category-theoretic result about
cartesian closure. We then explore the particular example obtained by taking the extensional
category to be Cont, the category of Scott domains with continuous functions as morphisms,
with a computation represented as a non-decreasing sequence of values. We refer to morphisms
in the resulting intensional category as algorithms. We show that the category Alg of Scott
domains with algorithms as morphisms is cartesian closed. We define an jntensional partial order on
algorithms, with respect to which application, currying and composition are continuous. We show
that every algorithm determines a continuous input-output function, and that every coutinuous
function is the input-output function of some algorithm. This is in contrast to the sequential
algorithms model of Berry and Cuarien, in which algorithms determine the sequential input-output
functions (between concrete domains). Since the continuous functions include inherently non-
sequential functions such as parallel-or, we designate our algorithms as parallel. Two algorithms
are input-output equivalent iff they have the same input-output function. The intensional ordering
on algorithms collapses, under input-output equivalence, onto the pointwise ordering on their input-
output functions. We define an intensional semantics of the simply typed A-calculus, and relate it
to the standard extensional semantics. We discuss related work and we propose some topics for
further research.
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1 Introduction

Most work on denotational semantics of programming languages has focussed on extensional aspects
of program behavior, such as the partial function from states to states computed by an imperative
program, or the continuous function denoted by a term of the A-calculus. It is difficult to use such
a semantics to reason about intensional properties of programs (such as complexity), since such
semantic models usually ignore the computation strategy of a program and therefore give the same
meaning to all programs for the same function (for instance, all sorting programs have the same
extensional meaning).

A notable exception is the work of Berry and Curien [Cur86] on sequential algorithms, building
on previous work of Kahn and Plotkin [KP78] on sequential functions and concrete data struc-
tures. This work gave an elegant semantical account of sequential computation on concrete data
structures. It is based on a coroutine-like operational semantics [KM77] with a lazy evaluation
mechanism. Intuitively, a sequential algorithm reacts to a request for computation of an output
value (in a specified output cell) by issuing a sequence of requests for evaluation of input cells;
once this sequential computation has been completed an output value may be produced. It is
obvious why such operational behavior is sequential, and there is an appropriate connection with
the domain-theoretic notion of sequential function as given by Kahn and Plotkin: a Berry-Curien
sequential algorithm may be viewed as a sequential function paired with a (sequential) computation
strategy. It is therefore possible to use sequential algorithms as intensional meanings of sequential
programs, and to make distinctions among sequential algorithms for the same function, based on
their computation strategies.

Our general aim is to develop a theory of intensional semantics with appealing mathematical and
categorical properties, which supports reasoning about both extensional and intensional properties
of programs. We are particularly interested in generalizing the Berry-Curien notion of algorithm
to obtain an intensional model of parallel computation. Again, we take an underlying operational
semantics based on lazy evaluation. However, in contrast to the sequential case, we allow a parallel
algorithm to respond to an output request by starting several input evaluations in parallel and
specifying several alternative resumption conditions, in terms of the results of some or all of these
input evaluations. This obviously generalizes the sequential interpretation described above, in a
simple and natural manner. Qur thesis is that parallel algorithms ought to correspond to continuous
functions paired with (parallel) computation strategies. As evidence in support of this thesis we
note that Plotkin [Plo77] showed that the continuous functions model of the simply typed A-calculus
is inherently parallel, since it contains non-sequential functions like parallel-or. A touchstone for
judging the viability of our approach is to show that (like Berry and Curien) we obtain a cartesian
closed category.

In an earlier paper [BG90] we introduced the query model of parallel algorithms between con-
crete data structures, and defined application and currying on these algorithms. We introduced an
intensional ordering on algorithms, and showed that application and currying are continuous oper-
ations with respect to this ordering. The intensional order relates two algorithms if they compute
functions related under the pointwise (Scott) ordering, with suitably related computation strate-
gies. However, the query model is only adequate at first-order types, since the structure of queries
is insufficiently detailed to provide a proper account of the behavior of higher-order algorithms.
Moreover, we were not able to formulate an appropriate notion of composition for algorithms ex-
pressed in the query model. The difficulties were caused partly by some technical details in our
model construction and partly by our presentation of algorithms in the setting of concrete data
structures.



In this paper we move away from concrete data structures and their order-theoretic counter-
parts, concrete domains, since our concern is with parallelism rather than sequentiality and we
no longer need the “concrete” structure (the notion of “cells”). Instead we will work with Scott
domains [Sco82]. We develop a categorical semantics of algorithms, where an algorithm is regarded
as a continuous function from computations to values, and where the notion of computation is suit-
ably formalized. We define the input-output function of a parallel algorithm, and show that every
continuous function is the input-output function of some algorithm. One may therefore view an
algorithm equivalently as a continuous function from values to values, paired with a computation
strategy. Although we do not give a formal definition of the notion of computation strategy, we
supply some operational intuition to convey the general idea and we discuss a variety of example
algorithms to illustrate these points.

The categorical treatment supplied in the first part of the paper is rather general, parameterized
by the choice of an underlying category that supplies an “extensional” framework and a comonad
that embodies an abstract notion of intensional behavior. Essentially, we develop cur categorical
semantics of algorithms based on comonads, just as Moggi developed a categorical semantics (with
different motivations) based on monads [Mog89]. Comonads and the co-Kleisli category [MLT1]
neatly embody our abstract view of algorithms. If C is a cartesian closed category and the comonad
T over C preserves products, then the co-Kleisli category Cr is cartesian closed [See89)].

We then move to the particular cartesian closed category Cont of Scott domains and continuous
functions, and we define a comonad P that maps a domain D to a domain of “paths” over D,
ordered componentwise. Intuitively, a path represents a sequence of computation steps and the
ordering measures eagerness. The comonad P preserves finite products. We define an algorithm
from D to D’ to be a continuous function from PD to D’, just a morphism in the co-Kleisli
category Contp. This category, which we call Alg, is cartesian closed; its objects are again Scott
domains, but the morphisms are algorithms rather than functions. Every algorithm determines a
continuous input-output function, and every continuous function is the input-output function of
some algorithm (generally, not unique). In fact, the algorithms for a given continuous function,
ordered pointwise, form a complete lattice. Thus, the pointwise ordering on aigorithms can be
regarded as an intensional ordering, since it permits distinctions and comparisons to be made even
among algorithms for the same function. The intensional ordering on algorithms relates properly to
the pointwise ordering on continuous input-output functions, in the same sense that the sequential
algorithms of Berry and Curien, ordered by set inclusion, relate to the stable ordering on sequential
input-output functions.

We define an intensional semantics for the simply typed A-calculus, and we show that it relates
properly to the standard continuous functions semantics: we establish a correspondence for cach
term M between the intensional meaning of M and the extensional meaning of M. In showing this
we make use of logical relations [Sta85].

2 Computations, Comonads and Algorithms

We first present some relevant category theoretic results. Although in the rest of the paper we
will be mainly interested in a particular application, we present the background in a rather general
way, so that the underlying assumptions can be clearly seen. Because of this generality, our later
development can be adapted to build algorithms based on other suitably structured notions of
computation.

The basic idea is that, given a category C, we model a notion of computation over C as a comonad
over (, the functor part of which maps an object A to an object T A representing computations over
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Figure 1: Naturality of € and 6 in a comonad: these diagrams commute, for all A, B, f: A —¢ B.
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Figure 2: Identity and associativity laws of a comonad: these diagrams commute, for all 4,

A. The two other components of the comonad describe how to extract a value from a computation.
and how a computation is built up from its sub-computations. We then take an algorithm from
A to B to be a morphism from TA to B, essentially a function from input computations over A
to output values in B. This leads us to use the co-Kleisli category Cp [MLT71], which has the same
objects as C and in which the morphisms from A to B are exactly the C-morphisms from T A to B.

2.1 Comonads and the co-Kleisli category

Definition 2.1 A comonad over a category C is a triple (T,¢,6) where T : C — C is a functor.
€ : 1" — Ic is a natural transformation from 7 to the identity functor, and 6 : 7 = T2 is a natural
transformation from 7 to 72, such that the following associativity and identity conditions hold, for
every object A:

T(éA)OéA = 5TA°£A
fTAOfSA = T(EA)OéA = idTA.

Figures 1 and 2 express these requirements in diagrammatic form. .

Definition 2.2 Given a comonad (7€, 8) over C, the co-Kleisli category Cr is defined by:
o The objects of Cr are the objects of C.

® The morphisms from A to B in Cr are the morphisms from T4 to B in C.



e The identity morphism id4 on A in Cr is €4 : TA —€ A,
o The composition in Cr of a : A =T B and o' : B =T C, denoted a’ 5 a, is the composition
inCof 64 :TA—=C T4, Ta:T?A - TBanda' : TB - C, ie,
d'oa=aoTacéy,.

The associativity and identity laws of the comonad ensure that Cr is a category [ML71]. )

2.2 Relating C and Cr

There is an adjoint pair of functors ( F,G) between Cr and C, with the following definitions and
properties [ML71]:

e F:Cp — C applies T to objects, FA = TA, and for any a : A —°T B, Fa = Ta ¢ 4.

e G :C — Cris the identity on objects, GA = A,and forany f: A =€ B, Gf = foey = egoTf
(by naturality of €).

e T = FoG. The natural transformation ¢ : T = [ is the co-unit of the adjunction, and it
asserts, together with the unit, a bijection between TA —¢ B and A —7 B,

Note also the following identities: a’5a = ¢’ 0Tacds = a’o Fa, and iaA =4 =idgoeq = Gid.

The functor ¢ provides a canonical intensional morphism from 4 to B for every extensional
morphism from A to B. The functor F' attempts to do the converse, but it “lifts” the type, so that
we get an extensional morphism from T'A to T8 from an intensional arrow from 4 to B.

We will be particularly interested in cases where the comonad comes equipped with a way to
regard every element of A as a “degenerate” computation in 74, We formalize this in the following
definition.

Definition 2.3 A computational comonad over a category C is a quadruple (T, ¢,8,v) where (T ¢, 8)
is a comonad over C and ~ : Iy — T is a natural transformation such that, for every object A,

» €q074 = ida;
* yTA074A=064074.

Naturality guarantees that, for every morphism f: A —=¢ B,
¢ T'foya=1vgof.

Figure 3 shows these properties in diagrammatic form. .

As an immediate corollary of these properties, €4 is epi and 4 is mono, for every object A. The
existence of such a v therefore subsumes (the dualized version of) Moggi’s computational monad
definition [Mog89|, i.e., that €4 be epi.

Now, using 7, we can extract an extensional morphism from an intensional one, without lifting
the type, as shown in the following proposition.
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Figure 3: Properties of a computational comonad: these diagrams commute, for all A, B, and all
morphisms f: A = B.

Proposition 2.4 If(T,¢,8,7v) is a computational comonad, then there is a pair of funclors (G, I}
between C and Cr with the following definitions and properties:

o G :C — Cr is the identity on objects, and Gf = foes = eg o Tf for every f: A —° B.
o 0 :Cr — C is the identily on objects, and Ha = aoyy = €40 Faowy, foralla: A =7 B,

o HolG = 1Ic.

The functoriality of H follows from the stated properties of 5.
We say that Ha is the input-oufput morphism of a. Note that for every f, the input-output
morphism of G f is f itself. In general, G f is not the only intensional morphism whose input-output

morphism is f (unless the intensional content of all morphisms is trivial, as would be the case if
TA=Aforall A).

2.3 Cartesian Closure

Let C be a cartesian closed category with a distinguished product for each pair of objects A; and
Az, which we denote 4; x A;. Clearly, a terminal object of € is also a terminal object of Cr. Let
{T,¢,6) be a comonad over C that preserves finite products. Intuitively, this means that a pair
of computations is (equivalent to) a computation of a pair. We omit the isomorphisms between
T{A; x Ay) and T4, x TA,. It follows that distinguished product objects in C are also product
objects in Cr, Let m; : A; x Ay —C A; (i = 1,2) be projections in €. Then the corresponding
projections in {r are given by:

T Ap x Ay =°T A;
T = e€q,0Tm

= W;0€4, x Aq

= G,

Pairing of morphisms in Cr is the pairing of morphisms in €, and T (f,¢) = (T f,Tg).
An exponentiation object [TA —€ B] from C is also an exponentiation object [4 —<7 B]in (7.
The application morphism is given by:

——

3PP 4. [4 =T B]x A =T B
4

= 3aPPr4.B O(E[TA_.CB] X idra),

———

B
appP 4B

¥



where appy, g @ [TA —¢ B] x TA —€ B is the corresponding application morphism in C and
idr4 is the identity on TA in C. Note that in general app # G/(H app). We say more about this
later. The currying of a morphism of Cr is its currying as a morphism of C; this makes sense
because T(A x B) = C is (isomorphic to) TA x TB —€ (. The proof is straightforward: the
desired universality property relating app and currying in Cr reduces to the same property of app
and currying in C, which holds by cartesian closure of C:

app d(curry(g) x id) = appo(curry(g) x id) = g.
Thus, we obtain the following result (see also [See89]):

Proposition 2.5 If C is cartesian closed and the comonad T preserves finite products, then Cr is
cartesian closed.

3 Scott Domains, Paths and the Eagerness Ordering

We now fix as our extensional framework the category Cont of Scott domains [Sco82] (w-algebraic,
consistently complete, directed complete partial orders), with continuous functions as morphisms.
It is well known that this category is cartesian closed. It is also a cpo-enriched category, since for
each pair of domains D and D’ the continuous functions from D to D’ form a domain.

We define a notion of intensional behavior that involves an eagerness ordering between compu-
tations, where a computation over a domain D is a non-decreasing sequence of elements of D. To
avoid a proliferation of parentheses, we use juxtaposition for function application (in Cont)., and
assume that function application has precedence over other operations. We use unadorned arrows
for arrows in Cont.

Definition 3.1 A path over a domain D is an infinite non-decreasing sequence of elements of D,
indexed starting from 1; we write s; for the i-th element of s, for i > 1. Thus, for each 7 > 1 we
have s; <p Siy1.

We order paths over D componentwise: s <p s iff for every ¢ > 1, s; <p s}. We call this the
eagerness ordering on paths. .

Equivalently, paths are continuous functions from the positive integers domain (completed with a
“point at infinity” and ordered by the usual “vertical” order) to D, and the eagerness ordering
corresponds to the pointwise ordering of paths seen as such functions.

Note the following examples of paths over Bool X Bool, where Bool is the flat domain of truth
values:

(L LY 2 (L, L) (L LE F)YY 2 (L L) (L PY (R R 2 (L L) (FL R 2 (FUF)Y,

but the paths (L, 1) (L, FY{(F, F)* and (L, L}{F, L} (F, F)¥ are incomparable, even though
they have the same lub.

For each D we define valp s to be the <p-lub of the elements of a path s, valp s = vp{s; [ > 1}
Intuitively, s represents a step-by-step computation to valp s.

Proposition 3.2 The set PD of paths over a domain D, ordered by <p, forms a domain with
least element the path L7. A set of paths 5 is <p-consistent iff {vals|s e S} is <p-consistent, in
which case § has a lub given by Ai . Vp {s;|s € 5}. This also defines the lub of a directed set S.
The finite elements of PD are the eventually constant paths built from finite elements of D.




We complete P to a functor from Cont to Cont by letting Pf be map f for any f: D — D;
map : (D — D') — PD — PD’ is defined by map fs = A . fs;. Clearly map and map f are
continuous, for any continuous function f. Functoriality follows, because map idp = idpp, and
map(g o f) = map g o map f for all continuous functions f and g for which the composition makes
sense.

For each D, we define prep, the prefiz computation map, as follows:

prep : PD — P:D

pre;, = Ase PD . map(Aze D . map(dye D . zApy)s)s
Ase PD . Ai. Aj. 3; Ap s;

Ase PD . A /\_] « Smin(i,j)

This definition makes sense because s is a non-decreasing sequence. As the notation suggests.
prep s is the sequence of prefixes of s. Intuitively, prep s shows how the computation s progresses
step-by-step: the i-th element of prep, s is the computation s1s; ... s;-15Y. Note that valp(prepy s) =
s, and that prep is continuous.

Lemma 3.3 The triple ( P,val,pre) is a comonad, and P preserves finite products.

Proof: It is easy to verify that val : P - I and pre : P = P? are natural transformations,
and that they satisfy the associativity and identity constraints of a comonad. The functor
P preserves finite products in Cont (up to an obvious isomorphism, which we can safely
suppress), since there is an obvious way to synchronize a pair of paths — matching them
componentwise — and obtain a path of pairs, and, conversely, every path of pairs determines
a pair of paths by componentwise projection. A path in P(D; x Dj) is uniquely determined

by its projections!. n

4 The Category Alg of Algorithms

Let Alg be the co-Kleisli category Contp for the comonad (P, val, pre) over Cont. We call the
morphisms of Alg algorithms, and use the arrow —* for algorithms. By the above development.
since Cont is cartesian closed and P preserves products, it follows that Alg is cartesian closed.
Spelling out in detail some of the implications:

¢ An algorithm from D to D’ is a continuous function from PD to D',
s The tdentity algorithm iEfD from D to D is valp.

s The composition @’ 5 a of two algorithms a: D = D’ and a’' : D' —¢ D" is
a'oa =a omapaoprep .

Composition is a continuous function on algorithms. Intuitively, given an input computation s
over D, (mapaoprep,)sis a computation over D’ obtained by applying algorithm a successivelv
to the partial results of the input computation, and this is a suitable argument for o’.

e Alg has the same distinguished terminal object as Cont.

'This would not be true, however, if paths were strictlyincreasing, since then the projections would lose svnchro-
nization information.

-1



¢ Alg has the same distinguished product objects as Cont, with projection algorithms 7; =
valomap m; = m; oval, and the same pairing of morphisms.

¢ The exponentiation object [0 —* D’] in Alg is the exponentiation [PD — D’] in Cont.
Algorithms form a domain under the pointwise ordering, which we denote <! and call the
intensional ordering on algorithms, to emphasize the intensional setting.

¢ The application algorithm is given by:
app : (D—="D")YxD—-'D
app = appo(valp_ip xidpp) = appo (F1,m2).

Currying is the same as in Cont, and it is a continuous function on algorithms; the same is
true for uncurrying,.

4.1 Examples of Algorithms

Let por, lor, ror and sor be the parallel- , left-strict-, right-strict-, and doubly-strict-or
functions from Bool x Bool to Bool. We introduce some algorithms for these functions.
Let epPOR be the least algorithm such that:

epPOR((L,IV) = T
epPOR({T, L)) = T
epPOR({F, F)*) = F.
Let 1pPOR be the least algorithm such that (for all n > 0):
1pPOR((L, L)* (L, T)*) = T

1pPOR({L, LY* (T, L}*) = T
1pPOR({L, L)* (F, F)*) = F.

Intuitively, epPOR is the “most eager (parallel) algorithm” and 1pPOR is the “laziest (parallel)
algorithm” for the parallel-or function por: epPOR has the most eager computation strategy, insisting
that the desired input evaluation is completed by the first computation step; and 1pPOR has the
most lazy {or least restrictive) computation strategy, in that it will allow arbitrarily many idle steps
during the input computation. Note that by monotonicity it follows that, for all n,m > 0:

1pPOR({.L, )" {L, FY" (F,F)*) = F
1pPOR((L, L) {F, L)™ (F, F)*) = F.

In fact, 1pPOR maps any computation producing a T in either input to T, and any computation
producing F’ in both inputs to F'; in contrast, epPOR maps a computation producing T in either
input on the first step to T, and a computation producing F in both inputs on the first step to F;
all other computations are mapped to L.

Note that epPOR <* 1pPOR.

Let esLOR be the “most eager sequential algorithm” for the left-strict-or function, characterized
as the least algorithm such that:

esLOR((T, L)*) =

esLOR({F, L) {(F,T)) = T
esLOR({F, L} {F, F)*) = F.




Informally, we call this a sequential algorithm because each of its minimal output-producing
computations makes incremental steps in a left-first way: in each of these computations the left
input is evaluated first, and only if the left input is F' is the right input evaluated. However, in
this paper we will not give a more formal treatment of sequentiality. Again we call this algorithm
eager because its computation strategy insists that the increments take place as eatly as possible
(subject to the sequential order of evaluation).

Let opLOR be the “most eager parallel algorithm” for left-strict-or, the least algorithm such
that:

epLOR((T, L)*) T
epLOR((F,T)*) T
epLOR((F, F}*) = F.

Let 1pLOR be the laziest parallel algorithm for the left-strict-or function lor, characterized as
the least algorithm such that (for all »,m > 0):

1pLOR({L, L)*{T, 1)}*) = T
1pLOR((L, LY {F, L) (F,T}*) T
1pLOR({L, LY" (F, L)™ (F, F})*) = F.

Note that epLOR <’ esLOR <' 1pLOR, and that epLOR <' epPOR and 1pLOR <' 1pPCR.

Algorithms epROR, esROR and 1pROR for the right-strict-or function may be defined by analogy
with the definitions given above for left-strict-or. We omit the details.

For the doubly-strict-or function sor we list four algorithms: epSOR, the most eager parallel:
1pSOR, the laziest parallel; elrSOR, the most eager left-right sequential; and er1SOR, the most eager
right-left sequential. The first two of these are defined in an analogous way to epLOR and 1pLOR.
The last two are characterized as the least algorithms satisfying the following conditions:

elrSOR((T, L) (T, T)*)
elrSOR({T, 1) (T Fy) =
elrSOR({F, L) {F,T}*)
elrSDR((F 1) (F, Fy*)
erlSOR(({L,T) (T, T)")
erlSOR({L,T) (F,T}*}
)
)

It

w

il
el e e e e R R

Il

erlSOR({L, F) (T, F)~
er1S0R( (_L,F) (F, )~

1l

Note that epSOR <*' e1rSOR <' 1pSOR and that epSOR <* erlSOR <! 1pSOR, but the algorithms
elrSOR and er1SOR are incomparable (since they have irreconcilable computation strategies).
Figure 4 summarizes the intensional ordering relationships between these or-algorithms 2

4.2 Examples of composition

The composition of esLOR : Bool* — Bool and curry(1pPOR) : Bool — (Bool — Bool) produces
an algorithm a : Bool? — Bool — Bool such that, for all n > 0:

a({L, Ly*)}L*T¥) = T

a({T, L)) (Lv}) = T

a{F, L) (F,T)")L¥) = T

a((F, L) (F, FY¥*)(L"F*) =

20f course, these algorithms do not constitute a complete classification of all algorithms for the or-functions. We
chose what we regard as a representative sample.



1pPOR

/

IpLOR epPOR 1pROR
esLOR 1pSOR aesROR
/
epLOR elr30R er1S0R epROR
opSOR

Figure 4: Some algorithms for or-functions, ordered intensionally

Let 1NEG and eNEG be the least algorithms from Bool to Bool such that, for all n > 0,

INEG(L*T¥) = F
INEG(L"F¥) = T
eNEG(T¥) = F
eNEG(F¥) = T.

The second-order function Aa : Bool? — Bool . 1NEGSao(1NEG X LNEG) transforms an algorithm
a for a binary truth function into an algorithm for the dual of that furction, and interchanges the
roles of T and F in the algorithm’s computation strategy. Let DUAL be the canonjcal algorithm for

this function. The result of applying this algorithm to esLOR is esLAND, the most eager sequential
algorithm for left-strict-and. Note that 1NEG & 1NEG = id, so that DUAL & DUAL = id also.

If we replace 1NEG by eNEG in the dualizer the effect would be the same on the function part of

a but the computation strategy would be more radically altered (possibly becoming more eager)
For example, with the obvious notation,

eNEG & 1pPOR 6 (eNEG X eNEG) = epAND.

5 Relating Algorithms and Continuous Functions
5.1 Relating Alg and Cont

There is an obvious way to regard a value in D as a degenerate computation over D, by identifving
the value z € D with the constant path z+ ¢ PD. This is in fact the maximal path (in the eALerness
ordering on paths) with lub z. We use this idea to turn (P, val,pre) into a computational comonad.

10




For each D let pathp : D — PD be defined by:
pathp = Az e D . Ai. z.

Simply, pathpz is the constant path to z. It is easy to check that this defines a natural
transformation path : Igcont — P. Obviously, for all D the function pathp is continuous, and we
have the identities:

e valp o pathy = idp,
e pathpp opathp = prep o pathp.

By a special case of naturality, whenever a : PD — D’ we have:
e Paopathpp = pathp: oa.

Thus ( P,val, pre, path) is a computational comonad (Definition 2.3).

Hence, by Proposition 2.4, there exist a canonical functor G : Cont — Alg and an input-output
functor H : Alg — Cont. They are both identity on objects, so that we restrict our attention to
their morphism parts, which we call alg and fun, respectively:

fun : (D —='D)—(D— D" alg : (D— D) — (D —='D")
funa = aopathp algf = fovalp

By functoriality, we have the following identities:
e funidp = idp

e fun(a’ 5 a) = fun{a’) o fun(a)

e algidp = idp

o alg(f'o f) = alg(f") 5 alg( )

We say that fun a is the input-output functionof a, or that a is an algorithm for fun a. Intuitively,
funa is obtained by ignoring the internal path structure of a’s arguments, by applying « only to
constant paths.

We say that alg f is the canonical algorithm for f. Intuitively, alg f is oblivious to all but the
final result of a computation; any computation to an input = will produce fr as output. Other
algorithms for the same function may be more stringent, and output fz only for a subset of the
computations to .

Proposition 5.1 Forall D and D', all fe D — D', and allaec D —* D',

fun(alg f) = /,
a <' alg(fun a).

Thus, D — D' is a retract of D —' D'

In fact, since we also have the inequality idpp < pathp ovalp, each value domain D is a retract of
the corresponding path domain PD.

Definition 5.2 We say that ay is input-output below ap, written a; <** ay, iff funa; < fun a,.
Two algorithms a; and ay are input-output equivalent, written a; ='2 ay, iff they have the same
input-output function. .
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Proposition 5.3 For all ay,a;, a1 <' ay implies ¢; <% a,.
Proof: By monotonicity of fun. .

Note that the converse fails: a1 <* @, does not always imply ay <* ay. This is shown by any pair of
distinct algorithms for the same function (such as e1rSOR and erl1SOR). This result indicates that
the intensional order on algorithms takes into account intensional aspects of algorithms, whereas
the input-output order does not.

Proposition 5.4 For all D and D', the quotient of (D —* D', <%} by input-output equivalence is
order isornorphic to (D — D', <), with fun and alg inducing the isomorphisms:

(D—' D', <Y/oo = (D — D', <)

We say that an algorithm a is canonical iff a = alg(funa)®. Since alg distributes over COIMposi-
tion, the composition of two canonical algorithms is canonical.

Proposition 5.5 The set of all algorithms for a given continuous function f forms a complete
lattice under the pointwise ordering, with alg f as the top element:

alg f = fovalp = Vi{a| funa = f}.
We have input-output expressivity, in the following sense:

Corollary 5.6 Every continuous function is the input-output function of some (canonical) algo-
rithm,

Maximality of alg f makes precise the sense in which we mean that it is the least stringent of
all algorithms for f; in this setting, canonical may be read as “most lazy™.

To illustrate these definitions and results, we return to the or-algorithms introduced earlier
(Section 4.1). In each case the algorithm has the input-output function suggested by its name. For
example, fun epPOR = fun 1pPOR = por, and alg por = 1pPOR. Moreover, apPOR is the least algorithm
for the parallel-or function; leastness corresponds to our informal description of this as the most
eager algorithm for this function. Similarly, fun epSOR = fun e1rSOR = fun er1SOR = fun 1pSOR =
sor. Thus, these four algorithms are input-output equivalent.

Figure 5 shows the input-output equivalence classes of Figure 4, ordered by the quotient ordering
<¢ /_i». Within each equivalence class the figure also records the intensional ordering, to facilitate
comparison with Figure 4. Note that if we identify each equivalence class with its (common)
input-output function we obtain the pointwise order on these functions (Figure 6).

Recall that practically all operations we have defined are continuous, so that, by the abave
expressivity result, there are algorithms for each of these operations. For instance, there is a
canonical algorithm & for algorithm composition. Some of the algorithms that were used to define
the category Alg are canonical - i?!D = algidp, %; = algr;. The important exception is the

*Equivalently, e is canonical iff there is a continuous function f such that a = alg(f).
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Figure 5: The or-algorithms, quotiented by input-output equivalence

lor ror
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Figure 6: The or-functions, ordered pointwise
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application algorithm app, which is not canonical. Let app be the input-output function of app;
then we have:

———

app = A(s,t) . valst
uncurry(As . At . valst)

It

uncurry val = uncurry id

app = funapp
= Aa,z). a(pathz)
= uncurry(Aa . Az . a(path z))
= uncurry(fun)
algdapp = A(s,t). (vals)(pathovalt).

In words, app is uniquely determined, as the uncurrying of the identity algorithm. But alg app
ignores the computation of its second argument, and algapp # app; intuitively, this reflects the fact
that 3pp only determines the input-output aspect of algorithm application, and, in fact, 3pp is the
uncurrying of fun.

5.2 Intensional and Extensional Models

We define a simple type system by:
T o= plmxn|r—1,

where p € Atomic ranges over a set of atomic types and T ranges over the set Type of types.
We define an extensional model E and an intensional model I for this type system in Cont and
Alg respectively, each model being a type-indexed family of Scott domains. We assume given an
interpretation Ap for each atomic type p, common to both the extensional and the intensional
models.

Definition 5.7 The extensional model E, based on the category Cont, is the family of domains

used in the standard continuous functions semantics; the intensional model 1 is its obvious analogue
in Alg:

Ep = Ap Ip = Ap
E(Tl X Tg) = ET] X ETZ [(Tl X Tg) = I‘T‘I x IT'Q
E(r—1') = [ET— E7] I(r—171) = [{r—=*I7]
Of course the products and exponentiations here are taken in the appropriate category. .

With these definitions in hand, note that we have already seen that fun and alg can be used to
relate /(7 — 7') and [I7 — It’]. We would like to go further, and relate I(r — 7') and E(r — 7).
We achieve this as follows.

Definition 5.8 Define two type-indexed families of functions
ext, : Ir — Fr int; : ET — It
by induction on T:

e For p e Atomic, Fp = Ip = Ap, and we let both ext, and int, be the identity function.
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¢ For product types we define:
ext, xr, = exty Xextr, Nty xr, = inty Xint,, .
jati ! k ffi d alg:
e For an exponentiation 7 — 7', we make use of fun and alg:

ext,—..s = Aa. extmofunaoint,
Af . alg(int, of oext.).

H

int.,._,,,.r

For each a ¢ Ir, we refer to ext.(a) as the eztension of a. Similarly, for each e € E7, int (e} is
the intension of . Elements of atomic types have no (extra) intensional content.

Proposition 5.9 For each v, alle € ET and all a € IT, we have:

e = ext,{int, €),
a <'int.(ext;a).

Thus the extension of int, e is ¢, and every extensional value is the extension of some intensional
value. Moreover, for each 7, E7 is a retract of Ir.

We say that an element a € It is extensional iff a = int.{(ext, a). Obviously, an extensional
element is uniquely determined by its extension. Moreover, an extensional element is maximal
among all elements with a given extension. An extensional algorithm is also canonical. Tt {ollows
that the application algorithm app is neither extensional nor canonical.

Definition 5.10 When a;,a9 € I(7), we say that a, is ertensionally below ay, written a; <* aq, ifl
ext, a; < ext,a,. Similarly, @y and a, are ertensionally equivalent, written ay, =° ao, iff they have
the same extension. .

Proposition 5.11 For all 7, and all ay,ay € [{r), ay <* ay implies a; <% ay. Hence, the quo-
tient of I(T) by eztensional equivalence is isomorphic to E(7), with ext, and int, inducing the
wsomorphism. That is,

(I(),<)/ze =2 (E(r),<).

Proposition 5.12 For all 7,7 and all a1, a2 € I{T — ), ay < ay implies a; <% as. Hence, an
extensional equivalence class is a union of input-output equivalence classes.

Let Contg and Alg; be the full subcategories of Cont and Alg, respectively, cbtained by
taking only the domains that interpret some type. They are both cartesian closed, inheriting the
exponentiation from their “parent” categories. It is interesting to note, however, that if we take
the subcategory of Alg; consisting of all objects but just the extensional algorithms, we get a
cartesian closed categorv, but with a different structure — the structure of Contg - because each
extensional algorithm is uniquely determined by its extension; the canonical application algorithm
alg app satisfles the cartesian closure requirements in this subcategory although it does not in Alg.

15



5.3 Intensional and Extensional Semantics

We now consider 2 simply typed A-calculus (with products) whose abstract syntax is summarized

by:
M u=c| Xir | MiMy [ AX 7. M | (M1, M) | fst M | snd M

where ¢ ranges over a set Con of (typed) constants and X ranges over a set Ide of identifiers.
Let Term be the set of well-typed expressions conforming to this syntax, with the usual typing
rules,

It is well known that one can define a straightforward semantics for the simply typed A-calculus
in a cartesian closed category, starting with interpretations for the constants and then interpreting
abstraction and application by means of the categorical structure in the obvious way. We thus
define a (standard) intensional semantics 7 using [ and a (standard) extensional semantics & using
E.

Let Ur = U, eType I7 and Ug = UreType £7 be the intensional and extensional universes. An
intensional environment maps identifiers into the intensional universe, and an extensional environ-
ment maps identifiers into the extensional universe:

Envg = Ide — Ug Envgp = Ide — Uy,

We use ¢ to range over Envg and ¢ to range over Env;. We say that € (respectively, ¢) respects
types (for M) iff, for all X : r occurring free in M, [X] ¢ Er (respectively, «[X] € IT).

We assume given an extensional semantic function Ag : Con — Ug and an intensional semantic
function A; : Con — [/.

Definition 5.13 The extensional semantic function £ : Term — Envg — Ug is given by:

Elele = Ag[e]

E[X : t]e = [ X]

E[My Ma]e = (E]M]e)(E[ M2 ]e)

EAX : . M]e = e € Er.E[M](e[e/X])
gﬂ(ﬂ/{l, AJQ)]]G = (5[11'[1]]&', gl[ﬁ/fg]}()
Elfst M]e = mi(EfM]e)

Elsnd Me = m(E[ M ]e)

It is standard that, for all A/ : 7 and all ¢ respecting types, E[M]ee ET.

Definition 5.14 The intensional semantic function 7 : Term — Env; — Uy is given by:

I[e]e = Af[e]

I[X : 7] = fX]

Iﬂ:Mlellb = (l'[[M’l]IL)(path(I[[Mg]]L))
I[AX : 7. M]e = Ap e PIT.I[M](:val p/ X))
Z[(My, M2)]e = ([ M1 ], T[M]e)

Ifst M)e = 7\ (pathZ[M]:) = m(Z[M]e)
Isnd M]e = wy(path Z[M]e) = mo(Z[M]e)

Note that the definition for M, M, uses application in the category Alg, since T[M; ]t € I(1r — )
is a function from paths over It to values in I7/, and path transforms the value Z[My]c € [T into
a path of the appropriate type.

Again, it is standard that for all 3/ : 7, and all ¢ respecting types, Z[MJ: e I'r.
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5.4 Relating the two semantics

We have already seen that each E7 is a retract of the corresponding [7. Whenever M is a well-
typed term and ¢ and : respect types, we have E[M]e € ET and I[M]: € I7. We would like to
establish that the extensional value of M is just the extension of the intensional value of M, under
reasonable assumptions. We do this as follows.

Definition 5.15 Define a type-indexed family of relations ~,C It x E7 by:

~, = idy4,
~oxr = {((a1,a2),(e1,e2)) | ay ~; €1 & ag ~r, €2}
~peat = {(a, f)|V(ise) eIt x ET. i ~, e = a(pathi) ~. f(e)}

Intuitively, ~ is the identity relation at atomic types, is defined componentwise at product types,
and at arrow types is defined in the natural “logical” way, so that an algorithm a relates to a
function f iff whenever i relates to e, then the result of applying ¢ to i in Alg relates to the result
of applying f to e. In fact, this family of relations constitutes a logical relation [Sta83] between our
two models.

Proposition 5.16 Algorithm compositions relate to function compositions, in that for all a <
IHr—=t),d el =) and fe E(r = 7'), f e E(r' — 7"},

@~y iyt f & o Nl t ff = (a, o 0‘,) Tt (f’ c f)
Proof: This follows because of the identity fun(e’ 3 a) = fun(a’) o fun(a). n

Proposition 5.17 Currying of algorithms corresponds to currying of functions, in that for all
ael{nnxm—71)and fe E(ry x 19 — 1),

@~ ey [ = CUPTY(a) ~ory (g ey curry( f).

The next result relates ext, and int, to ~,, and shows that each ~, is a (partial} function.
Proposition 5.18 For alliT, and allae IT and e € ET,

s~ e = e =ext;a

e int.e~,e,
Proof: By structural induction on r. .

The ~, relations connect intensional values with extensional values. We lift them to environ-
ments as follows. Define ¢« ~ ¢ iff for all identifiers X : 7, ([ X] ~, [ X].

Suppose that the intensional and extensional interpretations of each constant are related, that
is, for all 7 € Type and all constants ¢ of type 7, A;fc] ~- Ag[c]. Then the intensional and
extensional interpretations of all well-typed terms of the lambda calculus are related:

Proposition 5.19 For all M 17, v ~¢ = I[Mpt ~. E[M]e.

Proof: This result is actnally an instance of the Fundamental Theorem of Logical Relations [Sta85].
We give a direct proof by structural induction on M.
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e For M = ¢ this holds by our assumption on 4; and Ag.
¢ For M = X this follows because of the assumption that ¢ ~ ¢.

e For M = M M> : 7, suppose true for M; : 7/ — 7 and for M, : /. Thus,

I{[MI]'L el (‘:[[MI]]G,
I[[ﬁ/['z]]l, ~ i SIIJ‘/IQ]]E.

Then, by definition of ~,._ . it follows that

II{*”I*”‘Z]" =(I}[M’l]]a)(path(lﬂﬂffg]le))
~r (E[M1)e)E[M.]e)
= E[My M,)e
as required.
e For M = )X : 7" M', M’ : 7", r = ' = 7", suppose ¢+ ~ €. Then it follows that whenever
@~ e, we also get t{a/X] ~ ¢[e/X]. We need to show that
(ZRAX s 7" M'N)(patha) ~,n (E[AX : . M'Je)(e),
whenever @ ~.+ e. This follows easily, since the induction hypothesis for M’ gives

IIM )(e[a/ X]) ~orw E[MT(e[e/ X]),

whenever @ ~;+ €, and we have the identity a = valpatha for all a ¢ I+,

e For (M, My), fst M, and snd M we omit the details, which are straightforward.

As a corollary, for all M : 7, the extension of ZfM]¢ is exactly E[M]e, provided we make the
appropriate assumptions.

Corollary 5.20 If for all ¢ € Con, Ajfc] ~ Ag[e], then for all t,e, M : T,
t~€ = ext (I[M]e) = E[M]e.

This is the desired correspondence between intensional meanings and extensional meanings. Note
that our semantic definitions and results are parameterized by the choice of the set Con of constants
and their semantics. In particular, since the least fixed point operator is itself a continuous function,
it is certainly possible to include constants Y, of type (r — r) — 7 in order to handle recursive
terms. The results still hold. We regard the correspondence established above as showing that the
(standard) intensional semantics is conservative over the extensional semantics; if we regard the ext
operator as removing the extra intensional information from its argument, the result states that
the extensional semantics is faithfully embedded in the intensional one.

18




6 Future Work

We have examined in detail one particular notion of computation in the setting of Scott domains
and continuous functions. It should be clear that our analysis can be adapted to other settings
and other notions of intensional behavior where the necessary categorical and algebraic conditions
hold.

Various restricted notions of continuous function have been used elsewhere, including Berry’s
stable functions {Ber78} and Kahn and Plotkin’s sequential functions [KP78]. Various different
kinds of semantic domains have been shown to be useful. We plan to investigate the possibility of
emulating our algorithm construction when we vary the choice of underlying ccc, or the choice of
ordering on paths, or even when we adopt a notion of computation farther removed from paths. It
would be interesting to see to what extent some of the built-in assumptions could be relaxed, such
as the property that the comonad preserves product. We are currently investigating what happens
when we employ a comonad of strictly increasing paths; this leads to a model closely related to our
earlier query model [BG90), but general enough to work at all types, not just first-order. Although
cartesian closure fails, the category of algorithms still seems to provide a sensible intensional model
for the A-calculus.

The notion of stability makes sense as a restriction on the continuous functions between arbi-
trary domains, although it is mainly used when the underlying domains have certain extra proper-
ties (e.g. the dI-domains). It therefore seems natural to focus on the class of algorithms which are
defined as stable functions from PD to D’. Here the notion of stability refers to the path ordering
on arguments to an algorithm, and one might refer to such an algorithm as intensionally stable.
The class of algorithms whose input-output function is stable is also very natural; we might call
these the eztensionally stable algorithms. We plan to investigate the properties of these classes of
algorithms.

We would like to formulate rigorous notions of intensional and extensional sequentiality for
algorithms. In order to do this we need to adopt a restricted notion of domain which supports a
general definition of sequentiality. Concrete domains [KP78, Cur86] permit a suitable definition of
sequentiality, but are not closed under exponentiation if morphisms are taken to be either contin-
uous, or stable, or sequential functions. In a related paper [BG91] we introduce a generalization
of the notion of concrete data structure that is closed under the continuous and stable function
spaces, and which appears to support a sensible definition of sequentiality.

We would like to understand better the relationship between our development of algorithms
and other work such as the computational A-calculus of Moggi, the Ay-calculus of Rosolini [Ros86],
and the use of comonads in modelling the ! modality in linear logic [Laf88, Gir89]. Moggi states
that his view of programs as “functions from values to computations” (leading to the use of monads
and the Kleisli category) corresponds to call-by-value, and that an alternative view of programs
as functions from computations to computations corresponds to call-by-name. We offer a third
alternative: programs as functions from computations to values, leading to the use of comonads
and the co-Kleisli category.

In this paper we have applied our ideas on intensional semantics to the simply typed A-calculus.
We worked out some of the properties of a “standard” intensional semantics, including the rela-
tionship with the standard extensional semantics. It should also be possible to use our intensional
mode! to provide a non-standard interpretation for the A-calculus, for instance by varying the choice
of algorithm used to interpret application. It would be interesting to apply our ideas to languages
with more explicitly intensional features, such as the CDS0 language of [Cur86).
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