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Abstrac t 

F< is a typed A-calculus with subtyping and bounded second-order polymorphism. First introduced 
by Cardelli and Wegner, it has been widely studied as a core calculus for type systems with 
subtyping. 

Curien and Ghelli proved the partial correctness of a recursive procedure for computing minimal 
types of F< terms and showed that the termination of this procedure is equivalent to the termination 
of its major component, a procedure for checking the subtype relation between F< types. Ghelli 
later claimed that this procedure is also guaranteed to terminate, but the discovery of a subtle bug in 
his proof led him recently to observe that , in fact, there are inputs on which the subtyping procedure 
diverges. This reopens the question of the decidability of subtyping and hence of typechecking. 

This question is settled here in the negative, using a reduction from the halting problem for two-
counter Turing machines to show that the subtype relation of F< is undecidable. 
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1 I n t r o d u c t i o n 

The notion of bounded quantification was introduced by Cardelli and Wegner [14] in the language 
Fun. Based on informal ideas by Cardelli and formalized using techniques developed by Mitchell [27, 
9], Fun combined Girard-Reynolds polymorphism [23, 29] and Cardelli's first-order calculus of 
subtyping [5, 6]. 

Fun and its relatives have been studied extensively by programming language theorists and 
designers. Cardelli and Wegner's survey paper gives the first programming examples using bounded 
quantification; more are developed in Cardelli's study of power kinds [7]. Curien and Ghelli [18] and 
Ghelli's Ph .D. thesis [21] address a number of syntactic properties of F<. Semantic aspects of closely 
related systems have been studied by Bruce and Longo [3], Martini [26], Breazu-Tannen, Coquand, 
Gunter, and Scedrov [1], Cardone [15], Cardelli and Longo [11], Cardelli, Martini, Mitchell, and 
Scedrov [12], and Curien and Ghelli [18, 19]. F< has been extended to include record types and 
richer notions of inheritance by Cardelli and Mitchell [13], Bruce [2], Cardelli [10], and Canning, 
Cook, Hill, Olthoff, and Mitchell [4]; an extension with intersection types [17, 30] is the subject 
of the present author 's Ph.D. thesis [28]. The proof theory of a version of F< with a rule of 
extensionality has been studied by Curien and Ghelli [19]. Bounded quantification also plays a 
key role in Cardelli's programing language Quest [8, 11] and in the Abel language developed at HP 
Labs [4, 16]. 

The original Fun was simplified by Bruce and Longo [3] for their inventigation of its semantics, 
and again by Curien and Ghelli [18], who gave a proof of the coherence of typechecking. Curien 
and Ghelli's formulation, called minimal Bounded Fun or F< ( " F sub"), is the one considered here. 

As in other second-order A-calculi, the terms of F< include variables, abstractions, applications, 
type abstractions, and type applications, with the refinement that each type abstraction gives a 
bound for the type variable it introduces and each type application must satisfy the constraint 
that the argument type is a subtype of the bound of the polymorphic function being applied. The 
well-typed terms of F< are defined by means of a collection of rules for inferring statements of the 
form r h e e r ("e has type r in context P 1 ) . 

Variables, abstractions, and applications have the typing rules familiar from other A-calculi: 

r h x € T{x) 

r, x:a h e e r 
T h \x:a. e e a—r 

r h e\ 6 < 7 - - r r h e2 € a 
r h ex e-2 € r 

Type abstractions are treated as in other second-order A-calculi, except that they also give 
a bound, with respect to the subtype relation, for the variable they introduce; they are checked 
by moving this assumption into the context and checking the body of the abstraction under the 
enriched set of assumptions: 

l \ a < 0 h e er 
r h Aa<6. e e Va<0. r 

Type applications check that the type being passed as a parameter is indeed a subtype of the 
bound of the corresponding quantifier: 
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r h e £ Va<0. r TV- a <0 
r h e[a] € [<r/a]r 

Finally, like other A-calculi with subtyping, F< includes a rule of subsumption, which allows the 
type of a term to be promoted to any supertype: 

T I - e e c T T h a < r 
r h e e r 

The rules for type application and subsumption rely on a separately axiomatized subtype rela­
tion r H a < r ("a is a subtype of r under assumptions T"). This relation, which forms the main 
object of study in the present paper, is presented as follows. 

Subtyping is both reflexive and transitive: 

r i- r < r 

r h n < T2 r h r 2 < r 3 

T h 7! < r 3 

Every type is a subtype of a maximal type called Top: 

r i - ( j < Top 

One of the main uses of Top (and the one for which it was introduced by Cardelli and Wegner) is 
to recover ordinary unbounded quantification as a special case of bounded quantification: Va. r 
becomes Va< Top, r. 

Type variables are subtypes of their bounds: 

r h o < r ( a ) 

The subtype relation between arrow types is contravariant in their left-hand sides and covariant 
in their right-hand sides: 

r f- ti < a\ r h a2 < r2 

T h a\— <72 < r x —^r2 

Similarly, subtyping of quantified types is covariant in their bounds and contravariant in their 
bodies: 

r h T\ < (J\ T, (X<T\ h G2 < 7"2 
T h Va<<Ti. (T'2 < Va<r i . r 2 

The last rule deserves a closer look, since it causes all the trouble we will be discussing for the 
rest of the paper. Intuitively, it reads as follows: 

A type r = Va<r i . r2 describes a collection of polymorphic values (functions from types 
to values) each mapping subtypes of T\ to instances of r 2 . If T\ is a subtype of then 
the domain of r is smaller than that of a = \/a<ai. <r2, so r is a weaker constraint and 
describes a larger collection of polymorphic values. Moreover, if, for each type 0 that is 
an acceptable argument to the functions in both collections (i.e., one that satisfies the 
more stringent requirement 0 < T \ ) , the corresponding instance of o2 is a subtype of 
the corresponding instance of r 2 , then r is a "pointwise weaker" constraint and again 
describes a larger collection of polymorphic values. 



Though semantically appealing, this rule creates serious problems for reasoning about the sub­
type relation. In a quantified type Va<<Ti. cr2, instances of a in <72 are naturally thought of as being 
bounded by their lexically declared bound o\. But this connection is destroyed by the second 
premise of the quantifier subtyping rule: when Va<<Ji. <J2 is compared to Va<7i. r 2 , instances of 
a in both <72 and r 2 are bounded by T\ in the premise r, a<T\ f- cr2 < r 2 . As we shall see, this 
"re-bounding" behavior makes it impossible to give a decision procedure for the subtype relation. 

Cardelli and Wegner's definition of Fun [14] used a weaker quantifier subtyping rule in which 
Va<a i . <72 is a subtype of V a ^ r ^ r 2 only if a\ and r x are identical. (This variant of the system can 
easily be shown to be decidable.) Later authors, including Cardelli, have chosen to work with the 
more powerful formulation given here. 

Curien and Ghelli used a proof-normalization argument to show that F< typechecking is co­
herent — that is, that all derivations of a statement r h e € r have the same meaning. One 
corollary of their proof is the soundness and completeness of a natural syntax-directed procedure 
for computing minimal typings of F< terms with a subroutine for checking the subtype relation; 
the same procedure had been developed by the group at Penn and by Cardelli for use in his sf 
Quest typechecker [24]. The termination of the Curien and Ghelli's typechecking procedure is 
equivalent to the termination of the subtyping algorithm. Ghelli, in his Ph.D. thesis [21], gave a 
proof of termination; unfortunately, this proof was later discovered — by Curien and Reynolds, 
independently — to contain a subtle mistake (see Appendix A). In fact, Ghelli soon realized that 
there are inputs for which the subtyping algorithm does not terminate [22]. Worse yet, these cases 
did not seem amenable to any simple form of cycle detection: when presented with one of them, 
the algorithm would generate an infinite sequence of different recursive calls with larger and larger 
contexts. This discovery reopened the question of the decidability of F<. 

The undecidability result presented here began as an at tempt to formulate a more refined 
algorithm capable of detecting the kinds of divergence that could be induced in the simpler one. 
A series of partial results about decidable subsystems eventually led to the discovery of a class 
of input problems in which increasing the size the input by a constant factor would increase the 
search depth of a succeeding execution of the algorithm by an exponential factor. In addition to 
dispelling a number of intuitions about why the problem ought to be decidable, the technique used 
to construct this example suggested a trick for encoding natural numbers, from which it was a 
short step to an encoding of two-counter Turing machines. 

After formally defining the F< subtype relation (Section 2), reviewing Curien and Ghelli's 
subtyping algorithm (Section 3), and presenting an example where the algorithm fails to terminate 
(Section A)\ we identify a fragment of F< that forms a convenient target for the reductions to follow 
(Sections 5 and 6). The main result is then presented in two steps: 

1. We first define an intermediate abstraction, called rowing machines (Section 7). These ma­
chines bridge the gap between F< subtyping problems and two-counter machines by retaining 
the notions of bound variables and substitution from F< while simultaneously introducing a 
computational abstraction with a finite collection of registers and an evaluation regime based 
on state transformation. 

An encoding of rowing machines as F< subtyping statements is given and proven correct in 
the sense that a rowing machine R halts iff its translation T{R) is a derivable statement in 
F< (Section 8). 

2. We then review the definition of two-counter machines (Section 9) and show how a two-
counter machine T may be encoded as a rowing machine 1Z(T) such that T halts iff TZ(T) 
does (Section 10). 
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Section 11 shows that the undecidability of subtyping implies the undecidability of typechecking. 
Section 12 briefly discusses the pragmatic import of our results. 

2 T H E S U B T Y P E R E L A T I O N 

We begin the detailed development of the undecidability of F< by establishing some notational 
conventions and defining the subtype relation formally. 

2 .1 . N o t a t i o n : We write A" = Y \ where X and Y are types, contexts, s tatements, etc., to 
indicate that "A" has the form YV* If Y' contains free metavariables, then X = Y denotes pat tern 
matching; for example 

"If r = Va<TI. r 2 , then . . . " 

means 

"If r has the form Va<Ti. r 2 for some a . r^. and r 2 , then . . . " 

2.2. Definit ion: The types of F< are defined by the following abstract grammar: 

r ::= a type variables 
| —r 2 function types 
| Va<7"i. r 2 bounded quantifiers 
| Top top type. 

2.3 . Definit ion: Typing contexts in F< are lists of type variables and associated bounds, 

T ::= empty | I \ a < r 

with all variables distinct. (If we were dealing formally with the F< typing relation, we would also 
need bindings of the form x:r.) 

The comma operator is used to denote both extension (T, a<r) and concatenation (Ti , T 2 ) of 
contexts. The set of variables bound by a context T is written dom(T). When T = T i , a < r , R 2 , we 
call r the bound of a in V and write r = R ( a ) . 

2.4. Def init ion: A subtyping statement is a phrase of the form 

T\- a <r. 

The portion of a statement to the right of the turnstile is called the body. 

2.5. Def init ion: The set of free type variables in a type r is written FTV(r). 

2.6. Definit ion: A type r is closed with respect to a context V if FTV(r) C dom(T). A context 
F is closed if 

1. T = empty, or 

2. T = R I , a < r , with Ti closed and r closed with respect to I V 

A statement R h o < r is closed if T is closed and a and r are closed with respect to T. 
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2.7. Convent ion: In the following, we assume that all statements under discussion are closed. 
In particular, we allow only closed statements in instances of inference rules. 

2.8. Convent ion: The metavariables <7, r , 0, and <j> range over types; a , /?, and 7 range over 
type variables; T ranges over contexts: J ranges over (closed) statements. 

2.9. Def init ion: F< is the least three-place relation closed under the following rules: 

R H R < r ( R e f l ) 

R 1- n < r2 R H R2 < r3 

T r a n s ) 
R H R 1 < R 3

 7 

R H A < Top ( T o p ) 

R H a < T(a) ( V a r ) 

R H RI < AI R H CR2 < R2 

T H (Ji—<T 2 < T\ —- T 2 

R H RJ < (Ti T. a<T\ H <J2 < R2 

T H VA'<CT!. A 2 < VA<RI. R2 

( A r r o w ) 

; A l l ) 

2.10. Convent ion: Types, contexts, and statements that differ only in the names of bound 
variables are considered to be identical. (In a statement T\,a<0, T 2 h a < r , the variable a is 
bound in T 2 , cr, and r . ) 

It is formally clearer to think of variables not as names but, as suggested by deBruijn [20], as 
pointers into the surrounding context. This point of view is notationally too inconvenient to adopt 
explicitly in what follows, but can be a significant aid in understanding the behavior of the rules 
here ( V a r and A l l ) that manipulate variables. It is developed in detail in Appendix B. 

2 .11 . Definit ion: The capture-avoiding substitution of a for a in r is written [a/a]r. Substi­
tution is extended pointwise to contexts: [<j/a]I\ 

2.12. Definit ion: The positive and negative, occurrences in a statement R H a < r are defined as 
follows. 

• The bounds in T and the type a are negative occurrences; r is a positive occurrence. 

• If T\ —^t 2 is a positive (resp. negative) occurrence, then T\ is a negative (positive) occurrence 
and r 2 is a positive (negative) occurrence. 

• If Va<r i . r 2 is a positive (resp. negative) occurrence, then r{ is a negative (positive) occurrence 
and r 2 is a positive (negative) occurrence. 

2.13. Fact: The rules defining F< preserve the signs of occurrences: if a metavariable r appears 
in a premise of one of the rules, then it has the same sign as the corresponding occurrence of r in 
the conclusion. 
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2.14. Definit ion: In the examples below, it will be convenient to rely on a few abbreviations: 

V Q , t C = F Vo<Top. r 
def 

Vai<(pi..an<<pn. r = Va'i<<z>i. . . V a n < 0 n . r 
def w , 

-ir = Vo'<r. a 
The salient property of the last of these is that it allows the right- and left-hand sides of 

subtyping statements to be swapped: 
2.15. Fact: T h -icr < -ir is derivable iff T h r < <J is. 

3 A S u b t y p i n g A l g o r i t h m 

The rules defining F< do not constitute an algorithm for checking the subtype relation, since they 
are not syntax-directed. In particular, the rule T R A N S cannot effectively be applied backwards, 
since this would involve "guessing" an appropriate intermediate type r 2 . Curien and Ghelli (as well 
as Cardelli and others) use the following reformulation: 

3 .1 . Definit ion: F< (N for normal form) is the least relation closed under the following rules: 

r h a < Top ( N T O P ) 

r h a < a (NREFL) 

T h T(a) < r 
r h a < r 

r h ri < a i T h or2 < r 2 

T h <7i—cr2 < n - - r 2 

r I- T\ < G\ r, a < r i h cr2 < r 2 

( N V A R ) 

( N A R R O W ) 

( N A L L ) 
T h Vo<o-i. <r2 < Va<r i . r 2 

The reflexivity rule here is restricted to type variables. Transitivity is eliminated, except for 
instances of the form 

r h a < T(q) r h H a ) < r 
r h a < r , 

which are packaged together as instances of the new rule N V A R . 

3.2 . L e m m a : [Curien and Ghelli] The relations F< and F< coincide: T h cr < r is derivable in 
F< iff it is derivable in F < . 



3.3 . Definit ion: The rules defining F£ may be read as an algorithm (i.e., a recursively defined 
procedure, not necessarily always terminating) for checking the subtype relation: 

check(T h a < r) — 
if r = Top 

then true 
else if a = 0\—+G2 and r = T\—-T2 

then check(T h T\ < <?\) 
and check{T h a2 < t 2 ) 

else if a = Va<<Ji. o2 and r = Va<Ti. r 2 

£/ien check(T h ri < <Ti) 
a/if/ check(T. a<Ti h <T2 < r 2 ) 

efee if a = a and r = a 

efee if cr = a 
then cli€ck(T h T(a) < r^l 

eke 
/ a k e . 

We write F< to refer either to the algorithm or to the inference system, depending on context. 
This algorithm may be thought of as incrementally building (or at tempting to build) a normal 

form derivation of a statement ./, starting from the root and recursively building subderivations 
for the premises. By Lemma 3.2, if there is any derivation whatsoever of a statement J , there is 
one in normal form; the algorithm is guaranteed to recapitulate this derivation and halt in finite 
time. 

3.4 . Fact: [Curien and Ghelli] If T h a < r is derivable in F< , then the algorithm F< halts and 
returns true when given this statement as input. 

An easy corollary is that if T h a < r is not derivable and the algorithm halts, it will correctly 
return false, having verified that there is no normal form derivation of this statement. Another 
corollary, more important for our purposes, is the following: 

3.5 . L e m m a : If the algorithm F< fails to terminate on input F h a < r , then r h a < r is not 
derivable in F<. 

4 N o n t e r m i n a t i o n o f t h e A l g o r i t h m 

Ghelli recently dispelled the widely held belief that the algorithm F< terminates on all inputs by 
discovering the following example. 

4 . 1 . Example : Let 

0 = Vtt. "i(V/3<«. -ntt 2). 

Then executing the algorithm F< on the input problem 

a'o<# I- Q'o < (Va' i<a 0 . - I O ' I ) 



leads to the following infinite sequence of recursive calls: 

a0<6 h Q'O < Vai<ao-
ao<0 h Va'i. - i ( V a 2 < a i . ->a 2) < Vai<ao- -iai 
oiq<0, ai<a0 

h - i ( V a 2 < a i . -na 2 ) < 
ao<0, ai<a0 

h a i < V a 2 < a i . -<0;2 

ao<0, ai<a0 
h Qq < V a 2 < a i . - i a 2 

ao<0, ai<a0 h Va 2 . - i(Va3<a 2 . -»a'3) < V a 2 < a i . - ia 2 

ao<0, a i < a o , a 2 < a i h -«(Va'3<a'2. ->a 3) < - ia 2 

cxq<0, a i < a o , a 2 < a i h < Va3<a 2 . - i a 3 

ao<0, a i < a 0 , cv 2<ai h a.! < Va3<a 2 . 
ao<0, a i < a 0 , a 2 < a i h < V«3<a 2 . -na 3 

etc. 
(The a-conversion steps necessary to maintain the well-formedness of the context when new 

variables are added are performed tacitly here, choosing new names so as to clarify the pat tern of 
infinite regress. Appendix B presents the same example using deBruijn indices instead of named 
variables.) 

5 A D e t e r m i n i s t i c F r a g m e n t o f F < 

The pat tern of recursion in Ghelli's example is, in fact, an instance of a more general scheme — one 
so general that it can be used to encode termination problems for two-counter Turing machines. 
We now turn our attention to demonstrating this fact. 

In what follows, it will be convenient to work with a fragment of F< with somewhat simpler 
behavior. In particular: 

• we drop the — type constructor and its subtyping rule; 

• we introduce a negation operator explicitly into the syntax and include a rule for comparing 
negated expressions; 

• we drop the left-hand premise from the rule for comparing quantifiers, requiring instead that 
when two quantified types are compared, the bound of the one on the left must be Top; 

• we consider only statements where no variable occurs positively, allowing us to drop the R E F L 

rule. 

Since the F< rules preserve positive and negative occurrences, we may redefine the set of types 
so that positive and negative types (i.e. those that may appear in positive and negative positions) 
are separate syntactic categories. At the same time, we simplify each category appropriately. 

5.1 . Definit ion: The sets of positive types rp and negative types rn are defined by the following 
abstract grammar: 

r p ::= Top | ->rn | Vo<r n . rp 

rn ::= a \ -»rp | Vr*. rn 

A negative context Tn is one whose bounds are all negative types. 
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5.2. Definit ion: F< (D for deterministic) is the least relation closed under the following rules: 

r n h rn < Top ( D T O P ) 

r n i- r ( a ) < r p 

r n h a < rp 

Tn h Va. a n < V a < 0 n . r p 

( D V A R ) 

( D A L L ) 

D N E G ) 

5.3. Convent ion: To reduce clutter, we drop the subscripts p and n below. 
Using the earlier abbreviations for negation and unbounded quantification, we may read ev­

ery F< -statement as an F<-sta tement . Under this interpretation, the two relations coincide for 
statements in their common domain. 

5.4. L e m m a : F< is a conservative extension of F< : if J is an F< -statement, then J is derivable 
in F< iff it is derivable in F< . 
Proof : ( = > ) An F< derivation may be transformed straightforwardly into an F< derivation 
with the same conclusion (modulo abbreviations): if J is an instance of D T O P , then it is an instance 
of N T O P ; if J is an instance of one of the other three F< rules and J ' is the corresponding premise, 
then the same instance of the appropriate F< rule has J' as one of its premises and the other 
premise (if any) may be proved in one step using either N T O P or N R E F L . 

Similarly, an F< derivation of an i\? statement may be transformed into an F< derivation 
of the same statement. • 

These simplifications justify a useful change of perspective. Since the only rule in F< with 
two premises has been replaced by two rules with one premise each, derivations in this fragment 
are linear: each node has at most one subderivation. The syntax-directed construction of such 
a derivation may be viewed as a deterministic state transformation process, where the subtyping 
statement being verified is the current state and the single premise that must be recursively verified 
(if there is one) is the next state. In other words, a subtyping statement may be thought of as an 
instantaneous description of a kind of automaton. 

From now on we use terminology that makes the intuition of "subtyping as s tate transformation" 
more explicit. Analogous notation will be used to describe the execution behavior of the other 
calculi introduced below. 

5.5. Definit ion: The one-step elaboration function £ for F®-statements is the partial mapping 
defined by: 

{ ./' if ./ is the conclusion of an instance of D V A R , D A L L , or D N E G 

and J' is the corresponding premise 
undefined if ./ is an instance of D T O P . 

5.6. Definit ion: ./' is an immediate suhproblem of ./ in F< , written ./ - q ./', if = £(J). 
5.7. Definit ion: J1 is a. suhproblem of ./ in F £ . written ./ — ~ q if either J = J' or J — > q J\ 
and Ji — - d J'. 

9 



5.8. Definit ion: The elaboration of a statement J is the sequence of subproblems encountered 
by the subtyping algorithm given ./ as input. 

6 E a g e r S u b s t i t u t i o n 

To make a smooth transition between the subtyping statements of F< and the rowing machine 
abstraction to be introduced in Section 7, we need one more variation in the definition of sub-
typing, where, instead of maintaining a context with the bounds of free variables, the bounds are 
immediately substituted into the body of the statement by the quantifier rule. 

6.1 . Def init ion: F< (F for flattened) is the least relation closed under the following rules: 

h r < Top ( F T O P ) 

h [<i>/a]<T < [<t>/a]r 
h Vo. o < V a <0. r 

h r; < o 

( F A L L ) 

( F N E G ) 
h -.a < -.r • 

An analogous reformulation of full F< would not be correct. For example, in the non-derivable 
statement 

h (Va<Jbp. Top) < (\/a<Top. a ) 

substituting the bound Top for a in the body of the quantifiers yields the derivable subproblem 

h Top < Top. 

But having restricted our attention to statements where variables appear only negatively, we are 
guaranteed that the only position where the elaboration of a statement can cause a variable to 
appear by itself in the body of a subproblem is the left-hand side, where it will immediately be 
replaced by its bound. We are therefore safe in making the substitution eagerly. 

In the remainder of this section, we show that F< is a conservative extension of F<. 

6.2 . L e m m a : Let o be a negative type and assume that the statement a < 0 , r r- a < r is closed. 
Then if [<f>/a]T h [4>/o]o- < [o/a]r is derivable in F< , so is a < 0 , T \- a < r. 
Proof: By induction on the size of the given derivation. 
Case D T O P : [<t>/a]r = Top 

Since variables can only occur negatively, r cannot be a variable, so r E Top and the result 
is immediate. 

Case D V A R : [<f>/a]a = 3 
We may assume that a a , since otherwise we would have 4> = (3 and the statement 
[<f>/a]T h [<f>/oi\a < [o/cx]r would not be closed. So a must itself be fi. By assumption, we 
have a subderivation 

[ 0 / a ] r h ( [ 0 / o ] D ( / J ) < [o/a]r. 

that is, 

W a ] r h [ ( 5 / a ] ( r ( , J ) ) < {o/n}r. 
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By the induction hypothesis. 

a<<f>,T\- T(I3) < t. 

By D V A R , 

a<<p, R H 0 <r. 

Case D A L L : [<f>/a]a = V/i. a'2 [©/a]r = Wl3<r[. t'2 

Since r cannot be a variable, we have 

t = V/?<rx. t-i 
t[ = [4>/o}t: 

rl = [</>/a]r2. 
For A , there are two cases to consider: 

Subcase: a = a 
Then 

0 = V/?. ^ . 
By assumption, there is a subderivation 

W A ] R , i J < [ ^ / o ] R , H 4 < R.̂ . 

i.e. (since a £ FT\{ o) ) . 
[ 0 / A ] R , / 3 < [ 0 / A ] R ! H [<?/A]<7'2 < [<P/A]R 2. 

By the induction hypothesis, 
a < 0 , T, /j<ri (- (72 < r 2 . 

By D A L L , 

a < 0 , T h V/l ^ < V/i<r!. r 2 . 
By D V A R , 

a < 0 , T h a < V,j<r,. r 2 . 

Subcase: a ^ a 
Then 

(j = V/3. <r2 

^2 = [<t>l<x]°2-
By assumption, we again have a subderivation 

[oin\\\i<{oin)r, -n', < t'2. 
that is, 

[M<*]Tife[<i>/<x]Ti h [ 0 / a ] a 2 < [ 0 / a ] r 2 . 

By the induction hypothesis, 
A<</>, T, fi<T\ H <72 < R 2 . 

By D A L L , 

a < o , R h V/3. a 2 < V.D<r,. r 2 . 

Case D N E G : [<f>/a]<r = ~-(a\) [o/a]r = - ( R ( ) 

Similar. • 

6.3 . L e m m a : If h a < r is derivable in F<, then it is derivable in i \ P . 

Proof: By induction on the original derivation, using Lemma 6.2 for the FALL case. • 
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6.4. L e m m a : If a<</>, r h a < r is derivable in Fg, then [<j>/a]T h [0/a]<r < [ 0 / a ] r has an 
F< -derivation of equal or lesser size. 
Proof: By straightforward induction on the given derivation. • 

6.5. L e m m a : If h a < r is an F<-statement and is derivable in F< , then it is derivable in F < . 
Proof: Induction on the size of the original derivation, using Lemma 6.4 for the D A L L case. • 

6.6. L e m m a : F< is a conservative extension of F< . 

Proof: By Lemmas 6.3 and 6.5. 1=1 

7 R o w i n g M a c h i n e s 

The reduction from two-counter turing machines to F< subtyping statements is easiest to under­
stand in terms of an intermediate abstraction called a rowing machine that makes more stylized 
use of bound variables. 

A rowing machine is a tuple of registers 

(Pi •• P N ) , 

where the contents of each register is a row. By convention, the first register is the machine's 
program counter (or PC). To move to the next state, the P C is used as a template to construct 
the new contents of each of the registers from the current contents of all of the registers (including 
the PC). 

7 .1 . Definit ion: The set of rows (of width n) is defined by the following abstract grammar: 

l-1 rn for 1 < m < n 
[ai..Otn](p\»Pn) 

H A LT 

The variables a\..an in [c\\..an](p\..pn) are binding occurrences whose scope is the rows p\ 
through pn. We regard rows that differ only in the names of bound variables as identical. 

7.2. Definit ion: A rowing machine (of width n) is a tuple (p\..pn), where each pi is a row of 
width n with no free variables. 

7.3 . Def init ion: The one-step elaboration function £ for rowing machines of width n is the 
partial mapping 

C ( ( n n \ \ - ) ( b l / A L - Pn/<*n]PU [p\/<*\ •> Pn/Otn] Pin) ^ Pi = [«L-«N]</>LL-PLN> 
^{\Pl~Pn)) ~ | U N D E F I N E D I F p i = HALT. 

(Since rowing machines consist only of closed rows, we do not need to define the evaluation relation 
for the case where the P C is a variable.) 
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7.4. Nota t iona l convent ions: 

1. When the symbol "—" appears as the ?'th component of a compound row [ai..an](pi..pn), it 
stands for the variable at. 

2. To avoid a proliferation of variable names in the examples and definitions below, we sometimes 
use numerical indices (like deBruijn indices; see Appendix B) rather than names for variables: 
the "variable" #n refers to the nth bound variable of the row in which it appears; # # n refers 
to the 7 i t h bound variable of the row enclosing the one in which it appears; and so on. 

For example, the row 

[ai..a3](au [Pi..ih](ai - . - h ) * a ' i ) 

would be abbreviated 

< - , < # # l . # l , - ) . # ! > • 

3. It is convenient to introduce names for rows and use these to build up descriptions of other 
rows. For example, the compound row 

( ( ( # 1 , # 1 , # 1 ) . # 3 . # 2 > . . < - . - , - ) . ( # 1 . # 1 , #1) ) 

might be written as 

<Z,Y,X>, 

where 

X = < # 1 , # 1 . # 1 ) 
Y = ( - , - , - > 
Z = ( X , # 3 . # 2 ) . . 

7.5. Def init ion: A rowing machine R halts if there is a machine R! such that R — - r R' and 
the PCof R' contains the instruction HALT. 

7.6. E x a m p l e : The simplest rowing machine, (HALT) , halts immediately. The next simplest, 
( ( H A L T ) ) , takes one step and then halts. Another simple one, ( (—)) , leads to an infinite elaboration 
with every state identical to the first. 

7.7. E x a m p l e : The machine 

( L O O P , A, B ) , 

where 
LOOP = ( - . # 3 , # 2 ) 

A = an arbitrary row 
B = an arbitrary row 

executes an infinite loop where the contents of the second and third register are exchanged at 
successive steps: 

( L O O P , A, B) 

-r ( L O O P , B. A) 

-R ( L O O P , A, B) 

• • • 
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7.8. Example : The row 

B R I S S < # 2 , - > 

encodes an indirect branch to the contents of register 2 at the moment when BRI is executed. The 
machine 

( B R I , (BRI , (BRI , H A L T ) ) ) 

elaborates as follows: 
( B R I , (BRI , (BRI . H A L T ) ) ) 

'R ( ( B R I , (BRI , HALT) ) , (BRI , (BRI , H A L T ) ) ) 

>R ( B R I , (BRI , HALT)) 

'R ( ( B R I , HALT) , (BRI . HALT)) 

~R ( B R I , HALT) 

TR (HALT, HALT) . 

8 E n c o d i n g R o w i n g M a c h i n e s a s S u b t y p i n g P r o b l e m s 

We now show how a rowing machine R can be encoded as a subtyping problem T{R) such that R 
halts iff T{R) is derivable in F<. 

The idea of the translation is that a rowing machine R = (p\..pn) becomes a subtyping state­
ment of the form 

H . . . < 

constructed so that 

• if pi = HALT, the elaboration of JF(/2) halts after reaching a subproblem where Top appears 
on the right-hand side; 

• if px = [a\..an](pu--P\n)* the elaboration of T{R) reaches a subproblem that encodes the 
rowing machine {[pi/r\x .. pn/on]pu .. [p i /o i .. pn/on]pin). 

In more detail, if R = ([a\..cxn}(pu..pin)..pn), then T(R) is roughly the following: 

I- V 7 i . . / n . - ( V 7 i < 7 i . . 7 ; < 7 n - - . . . ) 

< V 7 i < ^ ( p i ) ln<npn)- - ( V o i . . a n . - ( V a i < ^ ( / > n ) . . a'n<F{pln). ^F(pu))). 

The elaboration of this statement proceeds as follows: 

1. The current contents of the registers p\ .. pn are temporarily saved by matching the quantifiers 
on the right with the ones on the left; this has the effect of substituting the bounds T{p\) 
T{pn) for free occurrences of the variables 71 .. 7 n on the left-hand side. 

2. The right- and left-hand sides are swapped (using a -> constructor on both sides), so that 
what now appears on the left is a sequence of variable bindings for the free variables a\..an 

of pi: 

h ( V a ! . . a n . . . . f(pn):F(Pin )...)< (Vl[<F(pi) In^PnY . . •) 
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3. The saved contents of the original registers now appear on the right-hand side. When these 
are matched with the quantifiers on the left, the result is that the old values of the registers 
are substituted for the variables a\ .. an in the body 

of the left-hand side. 

4. Swapping right- and left-hand sides again yields a statement of the same form as the origi­
nal, where the appropriate instances of F(pu) .. fipin) appear as the bounds of the outer 
quantifiers on the right: 

! " . . . < ( V 7 l < [ ^ ( / ? l ) / O l - F(Pn)/<*n] F(pll) » 
ln<[F{p\)l(*\ F(pn)l<*n]F{P\n). 

- . . [ ^ " ( / > l ) / « l ^{Pn)/^n]^(pu)'" 

To be able to get back to a statement of the same form as the original, one piece of additional 
mechanism is required: besides the n variables used to store the old state of the registers, a variable 
7o is used to hold the original value of the entire left-hand side of T{R). This variable is used at the 
end of a cycle to set up the left hand side of the statement encoding the next state of the encoded 
rowing machine. 

The formal definition of the translation is as follows. 

8 .1 . Definit ion: Let p be a row of width n. The F< -translation of p, written T{p), is the 
negative type 

{ a,- if p = al 

V 7 o , a i .. an. - (V 7 ( ^<7o, a[ <f{p\) .. a ' n <jF(/) n ) . ^{pi^j if p = [cxl..an){pl..pn) 

V70, O 'I .. a n . -^Top if p = HALT, 
where 7 0 , 7 Q , through a'n. and, in the third case, c\\ through an are fresh variables. 
8.2. Definit ion: Let R — {p\..pn) be a rowing machine. The F-translation of R, written 
F{R), is the F< statement 

h a < V 7 o < a , 7 l < ^ ( / > 1 ) .. ln<F(pn). - ^ ( / > i ) . 

where 

a = V70 , 7 i . . 7 n . - I (V 7 Q < 7 O , 7 i ^ 7 i 7 n ^ 7 n - -«7o) . 

8.3 . Fact: This definition is proper — i.e.. JF( /£) is a well-formed F<-statement for every rowing 
machine R. 

8.4. L e m m a : If R R /?/. then jF( R) —F T[ IV). 
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Proof: By the definition of the elaboration function for rowing machines, 

R = (/>!.. pn), 

where 

pi = [ A I . . A N ] ( / > N . . / ) I N ) , 

and 

72' = ([/>i/ai Pn/<Xn]pU [Pl/^'l / > N K ] / ? I N ) . 

Let 

v = V 7 0 , 7 I - 7 N - - ' ( V 7 Y < 7 O , 7 I < 7 I .. 7 ? ' T < 7 N . 1 7 0 ) . 

Now calculate as follows: 

= I" V 7 0 , 7 I - -7N- ^ ( V T O ^ T O - 7 I ^ 7 I •• 7 N ^ 7 N - - ' TO ) 

< V 7 0 < f f , 7 L ^ ( / » L ) •• 7N<^(/>U) . - " / " ( P I ) 

— F H K / 7 0 , ^ ( / > 1 )/7L •• FiPn)hn] - ' (V7^<7O, 7 L ^ 7 L •• 7 N ^ 7 N - ->7O) 

< [ol~lQ,T(pi)l~j\ .. F(Pn)lln]^f{p\) 

= h - ( V 7 O < ^ . 7 I < ^ ( / > L ) . . l ' n < n P n ) . -ff) 

< - ^ " ( P L ) 

— F I" 

< V 7 £ < < 7 , 7 L ^ ( / > L ) •• l'n<F(pn). " - < 7 

= h V 7 O , a i . . o „ . - ( V 7 O <7O . a / , < ^ ( / > i i ) a ' n < F ( P X n ) . ^T(pn)) 

< V 7 O < < R , ~[<f(pi) •• 7 A < ^ ( P N ) . "-A 

= h V 7 o , a 1 . . a n . - ( V 7 £ < 7 O . a ,
1 < ^ ( / 9 „ ) . . a ,

N < ^ ( / O L N ) . ^ ( p u ) ) 

< V 7 O < < 7 , O I ) . . an<F{Pn)- ^<y 

—"~F I" [ < T / 7 0 , ^ ( / > L ) / « ' L •• ̂ "(/ 'NJ / o 'N] 

- ( V 7 0 < 7 O , o ' 1 < ^ ( p 1 1 ) .. a;<^(/»i„). - ^ ( p n ) ) 

= h - ( V 7 o < a . 
o'L < ([^(/>i)/ai - ^ ( P N ) / « „ ] ^ ( P L L ) ) 

< < •• ^ / > N ) K ] ^ / > L N ) ) . 

.. F(pn)/«„]^(/»u))) 

< -.a 

— H - a 
< V 7 O < ^ 

« 1 < ( [ - H / > L ) / « L - ?{pn)/(*n]r(Pn)) -

«'„ < • • ^ ( P N ) / O N ] ^ ' ( I 0 L N ) ) . 

- ( [ • F ( / > I ) A M . . f ( / ) „ ) K ] F ( / ) „ ) ) 
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E H ( J 

< V 7 0 < a, 
7 I < ( [^ (P i ) / a ' i ..F(pn)/<Xn]f(pii)) 
In < - ^ " ( P n J / O N L ^ P l n ) ) . 

A[f(Pi)/ai ..F{Pn)l<Xn]F(p\\)) 

8.5. L e m m a : If 72 = (HALT. p-2-Pn}* then J^(P) is derivable in F£. 

Proof: Let 

a = V 7 0 , 7 I - - 7 N - - 1 (V7 O < 7 Q . 7

/

1 <7i .. 7 N - 7 N - _ , 7 O ) -

Then 

T{R) 

= h a 
< V 7 O < ( T , 7 I < ^ ( H A L T ) 7 N < ^ ( P N ) . - ^ ( H A L T ) 

= I" V 7 O , 7 I » 7 N . " l (V7o<7o^7I^7i 7 N - 7 N - ^ l o ) 

< V 7 o < a , 7 L < ^ ( H A L T ) 7 n < J R ( / > N ) . - ^ ( H A L T ) 

— F I" [ a / 7 O , ^ " ( H A L T ) / 7 I .. J ' ( / > N ) / 7 N ] - 1 ( V 7 O < 7 O , 7 I ^ 7 I 7n^7n- - 7 O ) 

< [ a / 7 0 , J R ( H A L T ) / 7 L / " ( p n ) / 7 , L ] - . ^ ( H A L T ) 

= H - . ( V 7 i < a , 7 i < J R ( H A L T ) 7 : , < ^ ( / > N ) . ^ ) 

< I J * ( H A L T ) 

- /R H J~{ IIA LT) 
< V 7 ^ < a . 7

/

1 < ^ ( H A L T ) 7 N < ^ ( P N ) . - < 7 

= H V 7 0 , a'i an. -yTop 

< V 7 ^ < a , 7 i < / " ( H A L T ) 7 N < ^ ( P N ) . 

— — /R H - i Top 

' F H (7 

< Top, 

which is an instance of F T o p . • 

8.6. Corol lary: The rowing machine R halts iff F(R) is derivable in F<. 

9 T w o - c o u n t e r M a c h i n e s 

This section reviews the definition of two-counter Turing machines; see. e.g., Hopcroft and Ull-
man [25] for more details. 

9 .1 . Def init ion: A two-counter machine is a tuple 

(PC, A, B, Ii..Iw). 
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where A and B are nonnegative numbers and PC and Ix through Iw are instructions of the form 

I N C A = > m 

l N C B = > r a 

TSTA=> m/n 

TSTB=> m/n 

HALT 

with m and n in the range 1 to tu. 

9.2 . Definit ion: The elaboration function £ for two-counter machines is the partial function 
mapping T - (PC A, B, IX..IW) to 

[ ( J m , A+1,B. h.Jw) if PC= i N C A = > m 
(Im.A.B+l.h.jJ) if PC= I N C B = > m 

( 7 m , A, BJX..IW) if P C = TSTA =>m/n and A = 0 
£(T) = ^ ( / n , . 4 - 1 , if PC = TSTA=>m/n and /I > 0 

if P C = T S T B = > m / ? i and B = 0 

if P C = T S T B = > m / n and B > 0 

if P C = HALT. 

( / n , . 4 - 1 , 5 , / ! . . / « , ) 
( / m , / l , f i , / l . . / u , > 
( J N , A, fi-L I\.-IIU) 
undefined 

9.3 . Convent ion: For the following examples, it is convenient to assign alphabetic labels to the 
instructions of a program. By convention, the instruction with label START is used as the initial 
PC, and the initial value in both registers is 0. 

9.4. E x a m p l e : This program loads register .4 with the value 5, then tests the parity of register 
.4, halting if it is even and looping forever if it is odd: 

START INCA=>ll 

II 

i 2 

1 3 

1 4 

INCA=>l2 

I N C A = > L 3 

I N C A = > L 4 

INCA=>E 

E T S T A = > O K / o 

O T S T A = > L O O P / E 

LOOP 

OK 

INCA=>LOOP 

HALT. 

9.5. E x a m p l e : This program loads 5 into register A and 3 into register B, then compares A 
and B for equality by repeatedly decrementing them until one or both become zero; if both do so 
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on the same iteration, the program halts; otherwise it goes into an infinite loop. 

START INCA=>LL 

U INCA=H2 
12 INCA=>l3 

13 INCA=M4 
14 INCA=>J0 

JO INCB=>JL 

JL INCB=>J2 
J2 INCB^>LL 

LL T S T A = > A Z / A S 

AZ T S T B = > A Z B Z / A Z B S 

AS T S T B = > A S B Z / L L 

AZBZ HALT 

AZBS INCA=>AZBS 

ASBZ INCA=>ASBZ. 

9.6. Definit ion: A two-counter machine T halts if T — T f for some machine Tf = 
(HALT, A', B \ II..IW). 

9.7. Fact: The halting problem for two-counter machines is undecidable. 
P r o o f sketch: Hopcroft and U 11man [25, pp. 171-173] show that a similar formulation of two-
counter machines is Turing-equivalent. (The two-counter machines in [25] have test instructions 
that do not change the contents of the register being tested and separate decrement instructions. 
It is easy to check that this formulation and the one used here are inter-encodable.) • 

10 Encoding Two-counter Machines as Rowing Machines 

We can now finish the proof of the undecidability of F< subtyping by showing that any two-counter 
machine T can be encoded as a rowing machine 'R(T) such that T halts iff 1Z(T) does. 

The main trick of the encoding lies in the representation of natural numbers as rows. Each 
number n is encoded as a program that , when executed, branches indirectly through one of two 
registers whose contents have been set beforehand to appropriate destinations for the zero and 
nonzero cases of a test — in other words, n encapsulates the behavior of the test instruction on a 
register containing n. The increment operation simply builds a new program of this sort from an 
existing one. The new program saves a pointer to the present contents of the register in a local 
variable so that it can restore the old value (i.e., one less than its own value) before executing the 
branch. 

The encoding 7Z(T) of a two-counter machine T = (PC, .4, B, I\..IW) comprises the following 
registers: 
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# 1 nw{PQ 
# 2 
# 3 nw

B{B) 
# 4 address register for zero branches 
# 5 address register for nonzero branches 
# 6 Kw(Ii) 

# 6 + w - l n™{iw). 

We use four translation functions for the various components: 

1. 7Z(T) is the encoding of a the two-counter machine T as a rowing machine of width w + 5; 

2. 'JZW(I) is the encoding of a. two-counter instruction / as a row of width w + 5; 

3. TZ^(n) is the encoding of the natural number n. when it appears as the contents of register 
.4, as a row of width w + 5; 

4. TZg(n) is the encoding of the natural number ??., when it appears as the contents of register 
B, as a row of width w + 5. 

10 .1 . Definit ion: The row-encoding (for w instructions) of a natural number n in register A, 
written 7v^(?i), is defined as follows: 

7 ^ ( 0 ) = ( # 4 . — , — , HALT, HALT, 
w times 

R%(n+l) = ( # 5 , ^ ( n ) . — , HALT. HALT, ^ ^ ) . 
w times 

The row-encoding (for w instructions) of a natural number n in register B, written 1Zg{n), is 
defined as follows: 

ftg(0) = ( # 4 , — , — , HALT, HALT, 
iv times 

72jg(n+l) = ( # 5 , — , R%(n). HALT, HALT, ^ _ ^ > -
w times 

10 .2 . Definit ion: The row-encoding (for w instructions) of an instruction / , written 1ZW(I), is 
defined as follows: 

^ ( i N C A ^ m ) = ( # m + 5 , ( # 5 . # # 2 , — , HALT, HALT, — .. — } , — , HALT, HALT, — .. — ) 
nw(\KCB=>m) = ( # m + 5 , — , ( # 5 , — , # # 3 , HALT, HALT, — — ) , HALT, HALT, — .. — ) 

ftw(TSTA=>m/n) = ( # 2 , —, —, # m + 5 , # n + 5 , — —) 
lZw(TSTB=>m/n) = ( # 3 , — , — , # m + 5 , # n + 5 , — —) 
7ZW( HALT) = (HALT, — , — , HALT, HALT, — .. — ) . 

10.3 . Definit ion: Let T = (PC A, /?, f\..Iw) be a two-counter machine. The row-encoding of 
T. written 7v(T), is the rowing machine of width t r + 5 defined as follows: 

1Z[T) = (1ZW(PC).1Z^(A).JZ%(B). HALT, H A LT, 7ZW( I\ ) ..1lw(Iw)). 

10 .4 . L e m m a : If T T T \ then 'JZ(T) — R 'R(T'). 
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Proof: Let T = (PC, A. B. IX..IW). Proceed by cases on the form of PC. 
Case: PC = l N C A = > r o 

Then V = (Im,A+l. B. h..I,v). Calculate as follows: 

ft(T) 

= « # m + 5 , ( # 5 , # # 2 . — , HALT, HALT, — .. — } , — , HALT, HALT, 

nw

A{A),n%(B). 
HALT, HALT, 

nw(ii) ..nw(in.)) 
— * R ( f t " ' ( / m ) , 

(#5,K%(A).—. HALT. HALT. — .. - > . U%(B), 
HALT. HALT. 

nw{ix) .. ft"U,)> 
= n(T). 

Case: PC = lNCB=>m 
Similar. 

Case: PC = T S T A = > m / ? « 

Calculate as follows: 

ft(T) 

= ( ( # 2 , - , - , # m + 5 . # n + 5 . - .. - ) . 
ft^(.4),ftg(£), 
HALT, HALT, 

ft^/i ) . . • £ " ( / « , ) ) 

— R (R%(A), 
nw

A(A),Tl%(B), 
ft"'(/m),ft"(/n). 
nw(ii).. ftu,(./„.)) 

There are two subcases to consider: 

Subcase: /I = 0 

Then 

ft'^(.-l) = ( # 4 . — . . HALT, HALT. — .. — } 

V = { / , „ . ,1 .5 . / , . . / , „ ) . 

Continue calculating as follows: 
( ( # 4 , — , — , HALT, HALT. - - .. — ) . 

ft^U), K%(B). 
ft;"(/m).ft'"(/n). 
ft-(/i) - ft"'(/„)> 
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R (KW(Im), 

HALT, HALT. 

7ZW(IX) ..1ZW(IW)) 

= n(T'). 

Subcase: A > 0 

Then 
TZ^A) = ( # 0 . f t " i ( . 4 - l ) , — . H A L T , H A L T , — . . — ) 

V = (In- A-l.B, h..Iw). 

( { # 5 , TZ'H(A-l). — . HALT. HALT. - .. - - ) , 

nw

A(A).n%(B). 
Kw(Im),Kw(In). 
Tv»(h) ..n«(/„.)) 

— R (nw(in), 
n^(A-\).n%[B). 
HALT. HALT. 

TZw(h) . . f t ' l ( / , , ) ) 

= -R(T'). 
Case: PC = T S T B = > m / n 

Similar. 

Case: P C = HALT 
Can' t happen. • 

10.5 . L e m m a : If T = ( H A L T . .1, 5 , A../,, ,), then ft(T) halts. 

Proof: Immediate. • 

10.6 . Corol lary: T halts iff 'JZ(T) does. 

10.7. T h e o r e m : The F< subtyping relation is u..Jecidable. 
Proof: Assume, for a contradiction, that we had a total-recursive procedure for testing the 
derivability of subtyping statements in F<. Then to decide whether a two-counter machine T 
halts, we could use this procedure to test whether jF(7v(T)) is derivable, since 

Continue calculating as follows: 

T halts 
iff K(T) halts by Corollary 10.6 
iff HK(T)) is derivable in F | 
iff F(1l(T)) is derivable in F£ 
iff T{n{T)) is derivable in F% 
iff TCR(T)) is derivable in F< 

by Corollary 8.6 
by Lemma. 6.6 
by Lemma. 5.4 
bv Lemma 3.2. • 
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1 1 Undecidability of Typechecking 
From the undecidability of F< subtyping, the undecidability of typechecking follows immediately: 
we need only show how to write down a term that is well typed iff a given subtyping statement 

h a < r 

is derivable. One such term is: 

\f:r—*Top. \a:a. fa. 

1 2 Conclusions 

The undecidability of F< will perhaps surprise many of those who have studied, extended, and 
applied it since its introduction in 1985. But it may turn out that language designs and imple­
mentations based on F< will not be greatly affected by this discovery. Here are some reasons for 
optimism: 

1. The algorithm has been used for several years now without any sign of misbehavior in any 
situation arising in practice. Indeed, constructing even the simplest nonterminating example 
requires a contortion that is difficult to imagine anyone performing by accident. 

2. A number of useful fragments of F< are easily shown to be decidable. For example: 

• The prenex fragment, where all quantifiers appear at the outside and quantifiers are 
instantiated only at monotypes. 

• A predicative fragment where types are stratified into universes and the bound of a 
quantified type lives in a lower universe than the quantified type itself. 

• Cardelli and Wegner\s original formulation where the bounds of two quantified types 
must be identical in order for one to be a subtype of the other. 

3. The best (known) subtyping algorithms for these fragments are essentially identical to the 
algorithm F< . 
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A Ghelli's Decidability Argument 
Ghelli's Ph .D. thesis [21, pp. 80-83] argues that the algorithm F< always terminates and is therefore 
a decision procedure for F<. This section briefly sketches Ghelli's argument and shows where it goes 
wrong. The problem is quite subtle: the incorrect proof was read by a number of people (including 
the present author) before the flaw was detected, independently, by Curien and Reynolds. 

The idea, as usual, is to define a well-founded complexity metric and show that if J1 is a 
subproblem of J , then complexity [J1) is strictly less than complexity (J). 

A . l . Definit ion: The function indexr(ex) gives the index in T (counting from left to right) of 
the binding of a. 

A . 2 . Definit ion: The left depth of a type variable a in a type r and an environment T is 
the number of bound type variables in both r and T at a ' s point of definition. To formalize this 
concept, it is convenient to assume that all binding occurrences of type variables in r and T have 
been renamed so as to be distinct from each other (or better yet, that deBruijn indices are used 
instead of variable names, as in Appendix A). Now define: 

W(a, r ) = the number of instances of V in whose scope the binding occurrence 
of a (in r) falls. 

Define the left depth of a type a in a context T to be the maximum left depth of any type variable 

M(<j, T) = m a x ( { - l } U {Id(a.aS) | a € TV (a)}) 

Define the complexity of a subtyping statement (T h a < r) to be the following pair: 

complexity^ h a < r) = (ld(cr. F) + M(r, T), size(a) + size{r)) 
Order the range of complexity{T', a, r ) lexicographically. Note that this ordering is well founded 

(contains no infinite descending chains). 

This ordering operates as desired for all the rules of F< with the exception of N V A R . An 
example of its misbehavior in this case is the following. Let 

r = a<(V/3< Top. Top), a '< Top. 

Then 
ld{aS) = W(a, n . T) 

= 1, 

len(T) + W(a, r ) if a is bound in r 
index r( a) otherwise 

in a: 

whereas 
ld((V<y<Top. Top)S) = ld(-fAVl'<Top. Top)S) 

= len(D + W( 7 , (V7<Top. Top)) 
= 2 + W ( 7 , ( V 7 < T o p . Top)) 
= 2. 

So the instance 
q<(V/J< Top. Top) h V 7 < To/;. Top < Top 

a<(\/(3<Top. Top) h o < 7V>p 
of N V A R has a premise of greater complexity than its conclusion. 



B DeBruijn-Indexed Presentation of the Subtyping Algorithm 

While developing these results, it was helpful to work with a formulation of the concrete syntax 
of F< where, instead of names, numeric indices are used to indicate the binder to which each free 
variable occurrence corresponds. For example, the pure A-term 

Xx. Xy. x y 

is written in this notation as 

A. A. 1 0. 

Similarly, the F< statement 

a<Top\- V/J<o. o < VJ<o. J 

is written 

Toph V0. 1 < V0. 0. 

This idea was introduced by deBruijn [20] and has been widely used by language theorists and 
practitioners, especially as the basis for internal data structures in compilers. For the convenience 
of readers who may wish to experiment with F< themselves, this section briefly reviews the notation 
and shows how it applies to the nonterminating example from Section 4. 

B . l . Definit ion: The sets rn of types wrell formed in contexts of length n are defined as follows: 

rn ::= Top 
| j . n j . 7 i 

| V r \ r ' l + 1 

| ??.— 1 (when 7i > 0) 
| r n ~ l (when n > 0). 

(Arithmetic calculations like "71 — 1" take place in the metalanguage: "n — V does not appear in 
the trees defined by this grammar.) 

B . 2 . Definit ion: The sets r" of well-formed contexts of length 77 are defined as follows 

r° ::= empty 

B . 3 . Convent ion: We normally suppress superscripts on metavariables. As before, we assume 
that all statements under consideration are well formed. 

B . 4 . Definit ion: The relocation operators R . L

f l and R n are defined as follows: 

R c

n Top — Top 
R\\ TII — if c < in then 777 + 77 else m 
R n ( T i - r T 2 ) = R n T X — R n T 2 



B . 5 . Definit ion: Fg is the least relation closed under the following rules: 

T\- a < Top ( N T O P ) 

R H » < n ( N R E F L ) 

r r - I Z N + 1 ( R ( n ) ) < r 

R H n < r 

R I" N < <T\ R H a2 < r2 

R H aI—(72 < 7"I—^2 

R H TX < <Ti R, Tx H <J 2 < T2 

R H V(7x . <J2 < Vrx . T2 

In this notation, the nonterminating input discovered by Ghelli is written 

VTbp. -(VO. - 0 ) h 0 < V0. - 0 

and elaborates as follows: 

( N V A R ) 

( N A R R O W ) 

( N A L L ) 

V Top. -(VO. - 0 ) H 0 < VO. - 0 
V Top. - . ( V 0 . - 0 ) h VTop. -(V0. - 0 ) < VO. - . 0 

V Top. -(VO. - 0 ) , 0 h -(V0. - 0 ) < - 0 
V Top. -(VO. - 0 ) , 0 1- 0 < VO. - 0 
VTop. -(VO. - 0 ) , 0 h 1 < VO. - 0 
VTop. -(VO. - 0 ) , 0 V Top. -(V0. - 0 ) < VO. - . 0 

VTop. -(VO. - 0 ) , 0. 0 h -(V0. - 0 ) < - . 0 

VTop. -(VO. - . 0 ) , 0. 0 h 0 < VO. -I0 

etc. 
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