
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The ASSIGN Parallel Program Generator

David R. O 'Hal la ron

May 1, 1991

CMU-CS-91-141 ,

School of Computer Science
Carnegie Mellon University

Pit tsburgh, PA 15213

A shorter version of this report appears in the Proceedings of the 6th Annual Distributed Memory
Computing Conference, April 29 - May 1, 1991, Portland, OR.

A b s t r a c t

A S S I G N is a tool for building large-scale applications, in particular signal processing applications,
on distributed-memory multicomputers. The programming model is the familiar coarse-grained
flowgraph, where nodes correspond to computations and directed edges correspond to FIFO queues.
Given a flowgraph description of an application, ASSIGN compiles the flowgraph onto the processors
of a dis tr ibuted-memory parallel computer, automatically handling such details as partitioning the
flowgraph and placing and routing the partitioned flowgraph. The first target machine is iWarp, a
multicomputer system developed jointly by Intel and Carnegie Mellon.

Sponsored in part by DARPA, Information Science and Technology Office, under the title "Research on Parallel
Computing", ARPA Order No. 7330, issued by DARPA/CMO under Contract MDA972-90-C-0035, and in part
by the Office of Naval Research, Air Force Office of Scientific Research, and Naval Oceans Systems Center under
Contract N00014-90-J-1939. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of DARPA, ONR, AFOSR,
NOSC, or the U.S. government.

5"|o. 780a

Cthr

Keywords: multicomputers, flowgraphs, mapping, signal processing

1. Introduction

ASSIGN is a tool for building large-scale applications on distributed-memory multicomputer. The pro
gramming model is the coarse-grained flowgraph, where nodes correspond to coarse-grained sequential
computations and directed edges correspond to FIFO queues[2, 6]. Given a flowgraph, ASSIGN automati
cally generates a parallel program consisting of a C program for each cell (processor) in the target machine.
Details such as partitioning the flowgraph, placing and routing the partitioned flowgraph, creating communi
cation pathways, transferring data from cell to cell, flow control, and balancing workload across processors
and communication pathways are all handled automatically.

ASSIGN is intended for applications that can be described with static coarse-grained flowgraphs. In
particular, it is designed for large-scale digital signal processing (DSP) applications, which are described
very naturally using coarse-grained flowgraphs.

Aside from the obvious merits of automating machine-dependent details, the primary virtues of ASSIGN
include the hierarchical nature of its flowgraphs, the ability to parameterize both flowgraphs and individual
signal processing operations, the ability to model and compile large graphs with thousands of nodes, a
flexible and general-purpose mechanism for transferring data to and from the host, and a minimum of
run-time scheduling overhead. The primary limitation is that it is suitable only for those applications that
can be modeled as static, coarsed-grained flowgraphs.

The first target machine for ASSIGN is the iWarp[12, 13], a multicomputer system developed jointly by
Carnegie Mellon University and Intel Corporation. We are currently using ASSIGN to generate working
programs on the first 64-cell iWarp systems delivered by Intel to Carnegie Mellon.

In this paper, we introduce ASSIGN. The emphasis is on techniques for writing ASSIGN programs, rather
than on the details of the automatic mapping and code generation algorithms. Section 2 give an overview.
Section 3 describes the underlying flowgraph model. Sections 4 and 5 describe the techniques for building
Assign programs. Section 6 discusses related work. The appendix gives numerous examples.

2. Overview

In this section, we summarize the flowgraph programming model, the mapping algorithm, how ASSIGN fits
into existing systems, and how we build applications. Later sections provide more details.

2.1. Flowgraphs

The flowgraph is the underlying programming model for ASSIGN. Under the guise of various names such
as block diagrams[9], large-grained dataflow graphs[2], synchronous dataflow graphs[6], and signal flow
graphs[10], flowgraphs have been used for years in the literature and in practice to model DSP applications.

A flowgraph is a collection of nodes and directed edges. Nodes represent computations and edges
represent FIFO queues. Each node iterates an infinite number of times. Each iteration, the node consumes
some data items from each of its input edges, performs a computation on the inputs, and produces some data
items on each of its output edges. The sizes of the inputs and outputs are indicated by integer edge labels.

University Libraries
1 Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Figure 1 shows an example flowgraph for an application that performs the same operations on two
independent data streams.

512
•(fft J

V - > C 5 1 2

512y ^^512

(split) T join)

512
y / 5 1 2

s™Y^)—
256 512\ y

Figure 1: Example flowgraph. Edge labels denote the number of data items
produced and consumed each time a node is invoked.

The edge labels correspond to the number of data items produced and consumed each time a node is
invoked. For example, the node labeled fir corresponds to an FIR filter that inputs 512 data items, performs
a 2:1 downsampling operation, and outputs the result. The FFT is invoked whenever 512 data points have
arrived. Thus, for each invocation of the FFT, there are two invocations of the FIR filter.

ASSIGN flowgraphs have the important property of being hierarchical. A node in a graph can correspond
to a subgraph, so that graphs can be constructed hierarchically out of smaller graphs. This is illustrated in
Figure 2. The example is a real graph of a sonar adaptive beam interpolation application implemented on

Figure 2: The hierarchical nature of flowgraphs. Here we have a flowgraph
model of a real sonar application. The graph consists of two nodes, where
each node is itself a subgraph.

iWarp using Assign. At the highest level, the graph consists of two nodes, where each node corresponds
a subgraph.

2

2.2. Programming Overview

The process of programming applications using ASSIGN is determined largely by (1) the ability to compile
flowgraphs onto either the host Unix workstation or the attached parallel computer, and (2) the hierarchical
nature of the flowgraphs. The ability to compile onto the workstation allows us to do most of our testing and
debugging on the workstation rather on the parallel machine. The hierarchical nature of flowgraphs allows
us to build applications in a sequence of incremental steps (See Figure 3):

On Unix Workstation On Parallel Machine

o o
(1) Write Node Functions C)

o u o
(2) Build and test separate subgraphs (4) Run on parallel machine

(fBif tHB
(3) Combine and test subgraphs

Figure 3: Typical process of programming Assign applications. Notice
that the system is constructed incrementally and that most of the work is done
on the Unix workstation.

Step 1: Write node functions. These are sequential C functions, instances of which will correspond to
nodes in the flowgraph. Each of these functions can be tested independently on the Unix workstation.

Step 2: Generate and test subgraphs. ASSIGN flowgraphs are hierarchical, meaning that graphs can be
formed by composing smaller subgraphs. Typically, we independently generate and test a collection of
smaller subgraphs on the Unix workstation, using the node functions developed in the previous step. As we
shall see, flowgraphs are generated by writing and running a C program called a graph generator.

Step 3 : Combine and test subgraphs. Once we are satisfied that each of the subgraphs is producing
correct results, we combine them, without change, to form the final graph. The testing of the final graph can
be performed entirely on the Unix workstation.

3

Step 4: Run final graph on parallel machine. When we are satisfied that the final graph is producing
correct results, we can recompile the graph, without change, and then run it on the parallel machine. It is
important to note that most of the program development is done on the Unix workstation and not on the
parallel machine.

2.3. Mapping Algorithm

Assign uses the two-phase mapping algorithm shown in Figure 4.

Flowgraph
Array Program

— 1

1 1

Phase 1: Partitioning Phase 2: Placement
and Routing

Figure 4: The Assign mapping algorithm. The partitioning phase attempts
to minimize the maximum load on any particular cell. The placement and
routing phase attempts to minimize the number of flowgraph edges shared by
any particular physical communication link.

The first phase, partitioning, uses an extension of the chain mapping methods developed in [8] to
partition the M nodes of the flowgraph into at most P blocks, where P is the number of the cells in the target
machine. Since the throughput of the system is bounded from above by the cell with the maximum load, the
optimization goal of this phase is to find a partition that minimizes the maximum load on any particular cell.

There are several interesting aspects of the partitioning algorithm. First, the load model for each cell
incorporates communications cost, and thus the optimal partition does not always use all of the cells.
Second, although the partitioning problem is intractable in general, the extended chain method we are using
is guaranteed to find an optimal partition in polynomial time if the input flowgraph is a chain [8].

The second phase, placement and routing, places the partition blocks from the first phase on the cells of
the target array, and routes any exposed edges through the cells of the array. The optimization goal of this
phase is to minimize the number of flowgraph edges shared by any particular physical communications link.
The placement and routing algorithm is borrowed directly from [7].

The interesting aspect of the placement and routing phase is the simple and beautiful correspondence

4

between exposed graph edges and iWarp pathways. Each pathway is set up once when the program is
loaded, and data flow through intermediate cells transparently, with no effect on any computations on the
intermediate cells.

2.4. System Overview

ASSIGN is a front-end to the existing tools supplied by the vendor of a parallel machine. For example, an
overview of ASSIGN'S place in the iWarp tool chain is shown in Figure 5.

User-defined
State Structures

User-defined
Node Functions

User-defined
Flowgraph

Executable

iWarp
C programsj

Binaries

ASSIGN ASSIGN

Workstation*
C program

Executable

Too f Chat
I Binary

•

User-defined
Node Functions

Figure 5: Assign system overview. ASSIGN is a front-end to existing tools.
Programs can be compiled onto a parallel computer or a Unix host.

Flowgraphs are created by running a C program called a graph generator, which uses a library of ASSIGN
functions to build and emit a flowgraph on the standard output.

ASSIGN inputs the flowgraph produced by the graph generator along with a collection of state structures,
which, as we shall see, are arbitrary user-defined C structures that can be used to parameterize an application
and hold internal state. On the command line, the user can specify such options as the number of cells to be
compiled onto, an optimization level that controls the quality and running time of the mapping algorithm,
and the arbitrary 2D topology of the target iWarp array.

The output of Assign is a C program that will, at the discretion of the user, be compiled to run on either
the Unix workstation or the iWarp array. This feature allows us to test flowgraphs on the workstation,
generating code for the iWarp only when we are confident that the graph is producing correct results.

Just to make things concrete, here are the commands we would use to generate, compile, and run a
flowgraph called example . graph. First, we write a graph generator called example-gen. c, then
compile and run it to generate the flowgraph in file example . graph.

5

% make example-gen
% example-gen > example.graph

Next we compile the flowgraph using ASSIGN.

% assign example

Next we compile and link the output of ASSIGN using the C compiler and linker supplied by Intel. The
makefile fordoing this, example-make, is generated by ASSIGN.

% make -f example-make

Finally, we run the flowgraph on the iWarp array by executing a shell script, called go, produced by the
makefile in the previous step.

% go

3. Flowgraphs

A flowgraph is a (possibly cyclic) multidigraph consisting of a collection of nodes and directed edges.1

Nodes represent computations and edges represent FIFO queues. Each node iterates an infinite number
of times. Each iteration, the node consumes some data items from each of its input edges, performs a
computation on the inputs, and produces a vector of data items on each of its output edges. The sizes of the
inputs and outputs are indicated by integer edge labels. A flowgraph has exactly one source node (i.e., a
node with no input edges) and exactly one sink node (i.e., a node with no output edges).

3.1. Nodes

A node is either an atom or a subgraph node. An atom corresponds to a coarse-grained sequential task such
as an FFT or FIR filter. A subgraph node corresponds to a flowgraph. Thus, flowgraphs are hierarchical
entities that can be constructed out of instances of smaller flowgraphs.

3.2. Ports

Each node has a (possibly empty) list of input ports and a (possibly empty) list of output ports. Associated
with each input port k is a name, a scalar type (int, float, double, or complex), and an integer consume
amount, c*. Associated with each output port k is a name, a type and an integer produce amount, pk- We
will explain the meaning of the consume and produce amounts later in this section when we discuss node
execution rules.

1 A multidigraph is a directed graph where multiple edges are allowed between the same pair of nodes.

6

3.3. Node Functions

Each node in a graph is associated with a collection of node functions, which are C functions that control the
computation performed by a node. There are three types of node functions: primitives, dynamic initializer
functions, and input! output functions.

Primitives. Each atom must be associated with a primitive. A primitive is a user-written C function that
follows ASSIGN'S calling convention. The argument list for a primitive consists of a (possibly empty) list of
pointers to input vectors, followed by a (possibly empty) list of pointers to output vectors, followed by an
optional pointer to a state structure. Typical primitives are FFT's and FIR filters.

Input and Output Functions. An atomic source node must have an associated input function, which is a
user-written C function that returns an input vector of length c* for each inport port k. Similarly, an atomic
sink node must have an associated output function that outputs a vector of length pk for each output port k.
The input and output functions provide a general-purpose mechanism for handling data transfers between a
host computer and a graph. ASSIGN makes no assumptions about the format of the input and output data on
the host.

State Structures and Their Initializers. An atom may have internal state in the form of an optional state
structure, which is an arbitrary C structure. A pointer to the state structure is passed to a primitive each
time it is invoked. The primitive can freely inspect and modify the state structure. State structures can be
initialized at compile time with a static initializer and/or at run time with a dynamic initializer. A static
initializer is an arbitrary C structure initializer list. A dynamic initializer is an arbitrary C function that is
called once at run time before the primitive is invoked.

State structures and their initializers provide a general-purpose mechanism for passing arbitrary param
eters to primitives. Examples of state structure elements include the sizes of the input and output vectors,
precomputed coefficients that are a function of the input size (e.g, FFT twiddle factors), and dynamic internal
state that must be retained from invocation to invocation, (e.g., previous outputs of an IIR filter).

3.4. Execution Weight

Each atom has an execution weight, which is the estimated number of cycles consumed by one invocation
of its primitive. The execution weight does not affect the semantics of the flowgraph. Rather, it is a hint
supplied by the user to help ASSIGN balance the workload across the cells of the iWarp array.

3.5. Edges

An edge binds an output port on one node to the input port of another node. Each edge corresponds to a
FIFO queue with exactly one writer and one reader. Each port in a node is bound to at most one edge. We
refer to a queue bound to input port k as input queue k. Similarly, we refer to a queue bound to output port k

7

as output queue k. The two ports bound to an edge must have the same type. The queue corresponding
an edge may be initialized with an arbitrary number of zeros.

3.6. Graph Execution Rules

Each atom executes according to the following rules: Initially, the atom calls an optional dynamic initializer.
This is followed by a (possibly infinite) sequence of the following steps:

1. Remove en data items from each input port k. If this is a source node, the data for each input port is
received via an invocation of the input function. Otherwise, the data for each port k comes from input
queue k.

2. Invoke the associated primitive using as inputs the c* data items consumed from each input port k.

3. Write pk data items to each output port k. If this is a sink node, the data written to the port is passed to
the output function, which sends the data to the host computer. Otherwise, data written to the output
port k is deposited in output queue k.

Each atom executes independently according to the atom execution rules; each graph node executes the
corresponding subgraph, with the input edges of the graph node bound to the input ports of the subgraph's
source node and the output edges of the node bound to the output ports of the subgraph's sink node.

The flowgraph model we have described in this section is equivalent to the synchronous dataflow model
of Lee and Messerschmitt [6]. It is sufficiently powerful to model real applications (such as airborne
ASW[10]) with multiple sampling rates and redundant computations.

4. Writing Node Functions

Typically, the first step in building an ASSIGN application is writing the appropriate node functions. These
functions (primitives, dynamic initializers, input/output functions) can be placed in a single file or separate
files according to taste. In this section, we describe techniques for writing node functions and in the process
accumulate a small set of simple primitives that can be used in a wide variety of applications.

4.1. Primitives

The simplest ASSIGN primitive has no input or output arguments.

hello ()
{
printf (A Ahello, world\n'');

}

A somewhat more useful primitive inputs a vector of 16 floats, increments each element of the
and places the result in an output vector.

8

incrl6(inp, o u t p)
float *inp, *outp;
{
int i;

for (i=0; i<16; i++)
*outp++ = (*inp++) + 1;

}

Notice that the argument list is a list of input arguments followed by a list of output arguments. Each input
and output argument is a pointer to a vector of either int, float, double, complex, complex . i n t ,
or complex .double, where the complex types are defined by

typedef struct {float r, i} complex;
typedef struct {int r, i} complex__int;
typedef struct {double r, i} complex_double;

4.2. State Structures

Of course, a primitive like incr 16 would be a lot more useful if it worked on vectors of any size. Fortunately,
ASSIGN provides a mechanism called the state structure for writing such general-purpose primitives. To use
a state structure in a primitive, we define the structure in an include file

struct incr_state {
int size;

};

Note that each state structure must be defined in some . h include file. Then we add a state structure argument
to the end of the argument list.

incr(inp, outp, sp)
float *inp, *outp;
struct incr_state *sp;
{
int i;

for (i=0; i < sp->size; i + +)
*outp++ = (*inp++) + 1;

}

When the graph is created, each incr node will be allocated a distinct state structure defined by the tag
incr .state. Thus, a graph might contain many incr nodes, each using the identical incr primitive to
operate on different sized input vectors.

9

Much of the power of the state structure derives from the fact that the-fields are arbitrarily defined by
the user. An example of a realistic primitive that uses the state structure is in Section A6. The example is
an n-point complex FFT that uses the state structure to hold the size of the input vector and a collection of
dynamically precomputed complex coefficients.

4.3. Input and Output Functions

If we ever plan to associate incr with a source or sink node, then we must write input and output functions
for that node so that it can transfer data to or from the host computer. We typically place these functions in
the same file as the primitive. The input function is invoked each time an incr source node reads its input
ports.

incr_in(inp, sp)
float *inp;
struct incr_state *sp;
{

int i;

for (i=0; i<sp->size; i++)
scanf("%f", & (inp[i]));

}

The output function is invoked each time an incr sink node writes to its output ports.

incr_out(outp, sp)
float *outp;
struct incr_state *sp;
{

int i;

for (i=0; i<sp->size; i++)
printf("%f\n", outp[i]);

}

4.4. Dynamic Initializers

Another simple but useful primitive splits an input vector of length in into two output vectors of length
outl and out 2. Given the following state structure definition

struct split_state {
int in;
int outl;
int out2;

};

10

the primitive can be written as

split(inp, outpl, outp2, sp)
float *inp, *outpl, *outp2;
struct split_state *sp;
{

int i;

for (i=0; i<sp->outl; i++)
*outpl++ = *inp++;

for (i=0; i<sp->out2; i++)
*outp2++ = *inp++;

}

The dual to the split primitive is the join primitive, which appends one input vector to another input
vector and places the result in an output vector.

struct join__state {
int inl;
int in2;
int out;

};

join(inpl, inp2, outp, sp)
float *inpl, *inp2, *outp;
struct join_state *sp;
{
int i;

for (i=0; i<sp->inl; i + +)
*outp++ = *inpl++;

for (i=0; i<sp->in2; i + +)
*outp++ = *inp2++;

}

As we learned in the previous section, some or all of the elements of the state structure can be initialized
statically when a a node is created or dynamically at run time before the graph is executed. We will learn
how to statically initialize state structures in the next section. To dynamically initialize a state structure, we
provide a C function. For a split node, for example, we might statically initialize the size of the input
vector, and then dynamically determine where the vector will be split.

split__init (sp)
struct split_state *sp;
{

sp->outl = sp->out2 = sp->in/2;
}

11

A more substantive example can be found in Appendix A6, where the complex coefficients for an /i-point
complex FFT are precomputed and stored in the state structure for use in all subsequent invocations of the
FFT.

5. Writing Graph Generators

Once a collection of node functions is assembled, the next step is to create a flowgraph using a graph
generator. A graph generator is a C program that uses a library of ASSIGN functions to emit a flowgraph on
the standard output.

For the initial implementation of ASSIGN we have chosen to provide a procedural interface rather than a
visual interface. Each approach has its advantages and disadvantages.

The chief advantage of the procedural approach is that we can exploit the tremendous expressive power
of C, including iteration, conditionals, functions, and recursion. This expressive power is extremely helpful
for generating large graphs with hundreds or thousands of nodes. For example, functions can be used as
an abstraction mechanism to create subgraphs, iteration can be used to generate iterative constructs like
pipelines, and recursive functions can be used to create recursive constructs such as fan-out fan-in trees.

Another key advantage is that command line arguments and manifest constants can be used to parame
terize the graph generator, so that one graph generator can produce an entire family of graphs. For example,
sonar adaptive beam interpolation (ABI) is characterized entirely by the number of beams and the number
of frequencies. It was not difficult for us to write a graph generator that generates arbitrary ABI flowgraphs.
Whenever we want to create a different sized ABI program on iWarp, we simply change a couple of constants
and recompile the new graph.

Yet another advantage is that a procedural interface based on C is portable across a wide variety of
personal computers and workstations and familiar to many programmers.

The main disadvantage of the procedural approach is that people tend to think of flowgraphs as graphical
objects. We are investigating existing visual interfaces, and if we are able to find a system with enough
expressive power to handle large parameterized graphs, it will not be difficult to replace the existing interface.

5.1. Creating Empty Graphs

GRAPH *alloc_graph(name);
char *name;

Alloc.graph returns a pointer to empty flowgraph name.

5.2. Associating Files With a Graph

void add_src_file(gp, name)
GRAPH *gp;

12

char *name;

void add_inc_file(gp, name)
GRAPH *gp;
char *name;

Add_src_f ile adds source file name to a list of source files associated with graph gp. Each node
function must be contained in some source file. Similarly, add_inc_f ile adds include file name to a
list of include files associated with graph gp. Each state structure definition required by the graph must be
contained in some include file.

5.3. Adding Nodes to a Graph

NODE *add_node(gp, name, prim, weight)
GRAPH *gp;
char *name, *prim;
int weight;

Add_node adds atom name, with primitive function prim and execution weight weight to graph gp
and returns a pointer to the node that can used in subsequent calls to add.in.port, add_out_port, and
add.edge.

NODE *add_graph_node(gp, gnp)
GRAPH *gp, *gnp;

Add.graph_node adds the subgraph node gnp to graph gp. The resulting subgraph node gets the name
of subgraph gnp, the input ports of subgraph gnp 's source node, and the output ports of subgraph gnp's
sink node.

add_in_port(np, name, type, consume_amt)
NODE *np;
char *name;
int type, consume_amt;

add_out_port(np, name, type, produce_amt)
NODE *np;
char *name;
int type, produce_amt;

Add.in.port adds input port name with type type, and consume amount consume_amt to node np.
Add.out.port adds output port name with type type, and produce amount produce.amt to node np.
Valid types are INT, FLOAT, DOUBLE, COMPLEX, COMPLEX.INT, and COMPLEX-DOUBLE.

13

http://Add.gr
http://Add.in.port

add_state(np, state, ilist, init)
NODE *np;
char *state, *ilist, *init;

Add.state associates a state structure with node np. The structure is defined by the tag name state,
initialized at compile time by the static initializer list ilist, and initialized at runtime by the dynamic
initializer function init. If ilist is NULL, then ASSIGN assumes there is no static initializer list, and
similarly for init.

add_io(np, input, output)
NODE *np;
char *input, *output;

Add_io associates input function input and output function output with node np. If input is NULL,
then ASSIGN assumes there is no input function, and similarly for output.

5.4. Adding Edges to a Graph

add_edge(gp, out_np, out_port, in_np, in_port, initq)
GRAPH *gp;
NODE *out_np;
char *out_port;
NODE *in_np;
char *in_port;
int initq;

Add.edge adds an edge to graph gp that connects output port out .port of node out.np to input port
in.port of node in_np. The queue corresponding to the edge is initialized with initq zeros (delay
elements).

5.5. Outputting Graphs

emit_graph (gp)
GRAPH *gp;

print_graph(gp)
GRAPH *gp;

Emit .graph sends an ASCII representation of the flowgraph to the standard output. The output of
this function is the input to ASSIGN. Print .graph sends a more readable ASCII representation of the
flowgraph to the standard output, listing each node, its input and output ports, and its attributes. For example,

14

Node splitl
prim = split, weight = 1000
state = split__state, init = split_init, ilist = 48,16,32
Input ports:

left <- splitO.right : FLOAT, cons = 48
Output ports:

down -> incrl.left : FLOAT, prod = 16
right -> split2.1eft : FLOAT, prod = 32

Here we have a node called splitl. split is the associated primitive with an execution weight of 1000
clocks. There is a state structure associated with this node that is defined by the tag split .state. There
is a dynamic initializer functions called split .init () that is called before the graph executes. The
first three elements of the state structure are initialized at compile time by the C structure initializer list
48, 16, 32.

The node has 1 inputport(left) and two output ports(down andright). Input port left is connected
by an edge from node split0, port right, and has a consume amount of 48 FLOATS. Ouput port down
is connected by an edge to node incrl, port left, and has a produce amount of 16 FLOATS. Similarly
for output port right.

6. Related Work

ASSIGN continues the tradition of building parallel program generators for restricted classes of applications.
Examples of program generators for image processing, matrix computations, and nested loop computations
can be found in [3, 15, 11], respectively.

The flowgraph model has been studied extensively. Some seminal theory on scheduling flowgraphs and
an extensive survey of previous results can be found in [6].

Several systems for compiling flowgraph descriptions of signal processing applications have been de
veloped in recent years, including Gabriel [5] at Berkeley and ZC[10] at Carnegie Mellon. Gabriel is a
task-level parallel program generator that was originally designed to generate code on single processor
systems or small shared memory parallel systems. However, there has been recent work to extend it to
distributed-memory systems[14] as well. The ZC system is designed to compile flowgraphs onto linear
systolic arrays like the Warp computer [1]. Unlike ASSIGN or Gabriel, where nodes correspond to sequential
tasks, ZC allows for nodes to correspond to parallel tasks.

Acknowledgements

A number of people contributed to the development of ASSIGN. Peter Lieu wrote the iWarp code generator.
Jim Wheeler was the first user and made many helpful suggestions. Harry Printz developed the algorithm
for normalizing execution rates. Onat Menzilcioglu and Siang Song wrote the original placement and
routing code. Robert Cohn wrote the FT Warp simulator used to test earlier versions. Susan Hinrichs
patiently answered questions about i Warp software. Thomas Gross, Jon Webb, and Paul Wiley made helpful
suggestions.

15

A Examples

The appendix gives a number of examples of ASSIGN programs using the node functions and state structures
developed in Section 4. The aim is to develop some useful graph structures and to illustrate the general way
we develop ASSIGN programs.

Al. incrl6

The simplest ASSIGN flowgraph has a single node and no edges, as in Figure 6.

Figure 6: The incrl6 graph.

To generate this graph, we start with a simple function that adds an incr 16 node to a graph and returns
a pointer to that node.

NODE *incrl6_node(gp, name)
GRAPH *gp;
char *name;
{
NODE *np;

np = add_node(gp, name, "incr", 16);
add_injport(np, "in", FLOAT, 16);
add_out_port(np, "out", FLOAT, sample_size);
add__io(np, "incrjLn", "incr_out") ;
return(np);

}

The complete graph generator is of the form.

•include <stdio.h>
•include <assign.h>

NODE *incrl6_node();

main()
{
GRAPH *gp = alloc_graph("incr_graph");

16

add_src_file(gp, "incr.c");
incrl6_node(gp, "incr");
emit_graph(gp);

17

A2. incr

18

We can generalize the incr 16 graph by using the incr primitive from Section 4. The following function
adds an incr node to a graph and returns a pointer to that node.

NODE *incr_node(gp, name, weight, sample_size)
GRAPH *gp;
char *name;
int weight, sample_size;
{
NODE *np;
char ilist[32];

np = add_node(gp, name, "incr", sample_size);
add_in__port (np, "in", FLOAT, sample_size) ;
add_out_port(np, "out", FLOAT, sample_size);
sprintf(ilist, "%d", sample_size);
add__state (np, "incr_state", ilist, "incr_init") ;
add__io(np, "incr__in", "incr_out") ;
return(np);

}

A3, pipe

This section we describe a general technique for creating pipelines of the type shown in Figure 7. This graph
models the common computation where a sequence of operations are performed on a single data stream.

We start with a function that calls incr _node to create a pipeline of incr nodes and returns a pointer
to the resulting graph.

GRAPH *incr_pipe(len, name, weight, size)
int len;
char *name;
int weight, size;
{
GRAPH *gp = alloc_graph(name);
NODE *prev, *curr;
char s[32] ;
int i;

add_src_file(gp, "incr.c");
add_inc_file(gp, "incr.h");

prev = incr_node(gp, "incrO", weight, size);
for (i=l; i<len; i++) {

sprintf(s, "incr%d", i) ;
curr = incr_node(gp, s, weight, size);
add_edge(gp, prev, "out", curr, "in", 0);
prev = curr;

}
return(gp);

Figure 7: The pipe graph.

To emit the pipe in Figure 7, we would write

emit_graph (incr_pipe (4, pipe 100, 16));

19

A4. trellis

One of the properties of the current implementation of A S S I G N for iWarp is that communication resources
are allocated statically and persist for the duration of the program. In particular, when we map a graph to
an iWarp array, each edge that spans two cells is implemented as a statically allocated iWarp pathway. The
advantage of this approach is efficient communication between cells, typically one clock between cells in
the absence of link contention. The disadvantage is that an iWarp cell can only support a small (currently
20) number of pathways at any point in time. Thus, a node with many input or output edges forces A S S I G N

to place that node and all of its adjacent nodes on the same cell. The bottom line is that graphs with high
degree, while valid flowgraphs, may end up using only a small number of the available iWarp cells.

This situation typically arises when there are a large number of operations to be performed in parallel
on separate data streams. For example, suppose we want to distribute each row of an n x m matrix to one
of n FFT nodes and then collect the resulting vectors to form a new n x m matrix. Rather than using single
nodes — each with n input or output edges — to distribute and collect the rows, we recommend using either
a trellis, which is described in this section, or a fan, which is described in the next section.

Figure 8 gives an example of a trellis with n = 4 incr nodes, each of which operates on a vector of m
data items. Each split node peels off the first m data items, passes these m data items to an incr node,

Figure 8: The trellis graph.

and passes the rest of its input onto the next split node. Each join node appends the output of an incr
node to its input and passes the result to the next join node. Note that a trellis is a coarse-grained version
of the APPLY G E T R O W / P U T R O W model[4].

These functions create instances of split and join nodes.

NODE *split_node(gp, name, weight, in, outl, out2)
G R A P H *gp;
char *name;
int weight;
int in, outl, out2;
{

20

NODE *np;

np = add__node (gp, name, "split", weight);

add_in_port(np, "left", FLOAT, in);
add_out_port(np, "down", FLOAT, outl);
add_out_port(np, "right", FLOAT, out2);

sprintf(s, "%d,%d,%d", in, outl, out2);
add_state(np, "split_state", s, NULL);

add_io(np, "split_in", "split_out");
return(np);

}

NODE *join_node(gp, name, weight, inl, in2, out)
GRAPH *gp;
char *name;
int weight;
int inl, in2, out;
{
NODE *np;

np = add__node (gp, name, "join", weight);
add_in_port(np, "left", FLOAT, inl);
add_in_port(np, "up", FLOAT, in2);
add_out_port(np, "right", FLOAT, out);
sprintf(s, "%d,%d,%d", inl, in2, out);
add__state (np, " join_state", s, NULL) ;
add_io(np, "join_in", "join_out");
return(np);

This function creates a trellis of n incr nodes. We assume there are constants WEIGHT and SIZE that
give the execution weight and sample size of an incr node.

GRAPH *trellis(n, name)
int n;
char *name;
{
GRAPH *gp;
NODE *prev_split_np, *prev_join_np;
NODE *split_np, *join_np, *incr_np;
int i, len;

gp = alloc_graph(name);

21

add_src_file(gp, "incr.c");
add__inc_f ile (gp, "incr.h") ;
add_src_file(gp, "split.c");
add__inc_f ile (gp, "split.h");
add_src_file(gp, "join.c");
add_inc_file(gp, "join.h");

if (n == 1) {
incr_node(gp, "incrO", WEIGHT, SIZE);
return(gp);

}

len = SIZE*n;
prev_split__np = split_node(gp, "splitO", WEIGHT, len, SIZE, len-SIZE)
prev_join_np = incr__node(gp, "incrO", WEIGHT, SIZE);
add_edge(gp, prev_split_np, "down", prev_join_np, "left", 0) ;

for (i=l; i<n-l; i + +) {
len = (n-i)*SIZE;
sprintf(s, "split%d", i) ;
split_np = split_node(gp, s, WEIGHT, len, SIZE, len-SIZE);
sprintf(s, "incr%d", i) ;
incr_np = incr_node(gp, s, WEIGHT, SIZE);
sprintf(s, "join%d", i) ;
join_np = join_node(gp, s, SIZE, i*SIZE, SIZE, i*SIZE+SIZE);

add__edge (gp, split_np, "down", incr_np, "left", 0) ;
add_edge(gp, incr_np, "right", join_np, "up", 0) ;
add_edge(gp, prev_split_np, "right", split_np, "left", 0) ;
add_edge(gp, prev_join_np, "right", join_np, "left", 0) ;

prev_split_np = split_np;
prev_join_np = join_np;

}
sprintf(s, "incr%d", n-1);
incr_np = incr_node(gp, s, WEIGHT, SIZE);
sprintf(s, "join%d", n-1);
join_np = join_node(gp, s, SIZE, (n-l)*SIZE, SIZE, n*SIZE);

add_edge(gp, incr_np, "right", join_np, "up", 0) ;
add_edge(gp, prev_split_np, "right", incr_np, "left", 0) ;
add_edge(gp, prev_join_np, "right", join_np, "left", 0) ;

return(gp);

22

To generate the trellis in Figure 8, we would write

emit_graph(trellis(4, A 'trellis 7'));

23

A5. fan

An alternative to the trellis is the fan shown in Figure 9. We start with a recursive function that returns fans
of size n = 2*. We assume there is a function pwr2 (k) that returns 2*, and we assume there are constants
WEIGHT and SIZE that give the execution weight and sample size of an incr node.

Figure 9: The f a n graph.

GRAPH *fan2(k, name)
int k;
char *name;
{
GRAPH *gp, *fanl_gp, *fan2_gp;
NODE *split_np, *join_np, *fanl_np, *fan2_np;
int size, i;

sprintf(s, "fan%d_%s", pwr2(k), name);
gp = alloc_graph(s);

add_src_file(gp, "incr.c");
add_inc_file(gp, "incr.h");
add_src_file(gp, "join.c");
add_inc_file(gp, "join.h");
add_src_file(gp, "split.c");
add inc_file(gp, "split.h") ;

if (k == 0) {
incr node(gp, 'incr", WEIGHT, SIZE);

24

return(gp);
}

size = SIZE*pwr2(k-1);
split_np = split_node(gp, "split", 100, size*2, size, size);

fanl_gp = fan2(k-l, " 1 ") ;
fan2_gp = fan2(k-l, " 2 ") ;
fanl_np = add_graph_node(gp, fanl_gp);
fan2_np = add_graph_node(gp, fan2_gp);

join_np = join_node (gp, "join", size, size, size, size*2);

add_edge(gp, split_np, "down", fanl_np, "left", 0);
add_edge(gp, split_np, "right", fan2_np, "left", 0) ;
add_edge(gp, fanl_np, "right", join_np, "left", 0) ;
add_edge(gp, fan2_np, "right", join_np, "up", 0) ;

return(gp);

We can use the f an2 function to create arbitrary sized fans. The idea is based on the fact that an integer n
can always be expressed as the sum of integers which are powers of 2. For example, 7 = 4 + 2 + 1.

GRAPH *fan(n, name)
int n;
char *name;
{

int m, k; /* n=(m=2"k)+r */
int inl, in2;

GRAPH *gp, *fan_gp, *fan2_gp;
NODE *split_np, *join_np, *fan_np, *fan2_np;

if (n == 0)
return(NULL);

/* find the largest k such that 2~k = m <= n */
for (k=0,m=l; m « l <= n; m « = l , k + +)

/* build fans of size 2^k and n - 2~k */
fan2_gp = fan2(k, " 1 ") ;
if (!(fan__gp = fan(n-m, "2"))) {

return(fan2_gp);
}
else {

25

gp = alloc_graph (sprintf (s, "fan%d__%s", n, name));
inl = SIZE * m;
in2 = SIZE * (n-m);
split_np = split_node(gp, "split", 100, inl + in2, inl, in2)
fan2_np = add_graph_node(gp, fan2_gp);
fan_np = add_graph_node(gp, fan_gp);
join_np = join__node(gp, "join", in2, inl, in2, inl + in2);
add__edge (gp, split_np, "down", fan2_np, "left",
add_edge(gp, split_np, "right", fan_np, "left",
add__edge(gp, fan2_np, "right", join_np, "left",
add_edge(gp, fan_np, "right", join_np, "up", 0)

inl
0)
0)
0)

add_src_file(gp,
add_inc_file(gp,
add_src_file(gp,
add_inc_file(gp,
add_src_file(gp,
add__inc_f ile (gp,

"incr.c")
"incr.h")
"join.c")
"join.h")
"split.c");
"split.h");

return(gp)

To generate the fan in Figure 9, we would write

emit_graph(fan(4, * xfan''));

26

A6. fft

We conclude with an example of a realistic ASSIGN primitive, an n point complex FFT. We start by defining
the state structure.

struct fft state {

complex wp[MAXN]; /* twiddle factors */
};

We initialize the size of the FFT when the node is created, and then dynamically precompute the complex
coefficients using the following dynamic initializer.

void fft_init(sp)
struct fft_state *sp;
{
int n, mmax, m, j, istep, i, cnt;
double wtemp, wr, wpr, wpi, wi, theta;

cnt = 0;
n = (sp->n)«l;
mmax = 2;
while (n > mmax) {

istep = 2*mmax;
theta = M_2_PI / (sp->isign*mmax);
wtemp = sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
sp->wp[cnt].r = wr;
sp->wp[cnt].i = wi;
cnt++;
for (m=0; m<mmax-l; m+=2) {

wr = (wtemp=wr)*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
sp->wp[cnt].r = wr;
sp->wp[cnt].i = wi;
cnt++;

}
mmax = istep;

The following FFT primitive uses the precomputed coefficients to compute an n point complex DFT.

int n;
int isign;

/* number of complex points */
/* 1 is fft, -1 is ifft */

27

void fft(inp, outp, sp)
complex *inp, *outp;
struct fft_state *sp;
{
int i, j=0, m, istep;
int n = sp->n, isign = sp->isign, mmax = 1;
complex *wp = sp->wp-l, temp;

/* sort input into bit reversed order */
for (i=0; i<n; i++) {

if (j > i)
SWAP(inp[i], inp[j]);

m = n » 1;
while (m >= 1 && j >= m) {

j -= m;
m » = 1;

}
j += m;

}

/* perform the FFT on the bit reversed input */
while (n > mmax) {

istep = 2*mmax;
wp++;
for (m=0; m<mmax; m++) {

for (i=m; i<n; i += istep) {
j = i + mmax;
temp.r = (*wp).r * inp[j].r - (*wp).i * inp[j].i
temp.i = (*wp).r * inp[j].i + (*wp).i * inp[j].r
inp[j].r = inp[i].r - temp.r;
inp[j].i = inp[i'].i - temp.i;
inp[i].r += temp.r;
inp[i].i += temp.i;

}
wp++;

}
mmax = istep;

}

for (i=0; i<n; i++) {
(outp)->r = (inp)->r;
(outp++)->i = (inp++)->i;

}
}

28

References

[1] M. Annaratone, E. Amould, T. Gross, H. T. Kung, M. Lam, O. Menzilcioglu, and J. Webb. The
Warp computer: Architecture, implementation, and performance. IEEE Transactions on Computers,
C-36(12): 1523-1538, December 1987.

[2] R. G. Babb. Parallel processing with large grain data flow techniques. Computer, 17, July 1984.

[3] L. G. Harney, J. Webb, and I. C. Wu. Low-level vision on Warp and the Apply programming model. In
J. Kowalik, editor, Parallel Computation and Computers for Artificial Intelligence. Kluwer Academic
Publishers, 1987.

[4] L. G. Harney, J. Webb, and I. C. Wu. An architecture independent programming language for low-level
vision. Computer Vision, Graphics, and Image Processing, 48:246-264,1989.

[5] E. A. Lee, W. Ho, E. Goei, J. Bier, and S. Bhattacharyya. Gabriel: A design environment for DSP.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(11): 1751-1762, November 1989.

[6] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow programs for digital
signal processing. IEEE Transactions on Computers, C-36(l):24—35, January 1987.

[7] O. Menzilcioglu, H. T. Kung, and S. W. Song. Comprehensive evaluation of a two-dimensional
configurable array. In Proceedings of the Nineteenth International Symposium on Fault-Tolerant
Computing, pages 93-100. IEEE, 1989.

[8] D. M. Nicol and D. R. O'Hallaron. Efficient algorithms for mapping pipelined and parallel computa
tions. IEEE Transactions on Computers, 40(3):295-306, March 1991.

[9] A. Oppenheim, A. Willsky, and I. Young. Signals and Systems. Prentice-Hall, Englewood Cliffs, NJ,
1983.

[10] H. Printz, H. T. Kung, T. Mummert, and P. Scherer. Automatic mapping of large signal processing
systems to a parallel machine. In Proceedings ofSPIE Symposium, Real-Time Signal Processing XI,
San Diego, CA, August 1989. Society of Photo-Optical Instrumentation Engineers.

[11] H. B. Ribas. Automatic generation of systolic programs from nested loops. Technical Report CMU-
CS-90-143, Department of Computer Science, Carnegie-Mellon University, June 1990.

[12] S. Borkar et. al. iWarp: An integrated solution to high-speed parallel computing. In Supercomputing
'88, Kissimmee, FL, November 1988.

[13] S. Borkar et. al. Supporting systolic and memory communication in iWarp. In 17th Annual Interna
tional Symposium on Computer Architecture. IEEE Computer Society and ACM, May 1990.

[14] G. C. Sih and E. A. Lee. Scheduling to account for interprocessor communication within
interconnection-constrained processor networks. In Proceedings of the 1988 International Confer
ence on Parallel Processing, August 1990.

[15] P.S.Tseng. A parallelizing compiler for distributed memory parallel computers. Technical Report
CMU-CS-89-148, Department of Computer Science, Carnegie-Mellon University, May 1989.

29

