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Abstract

This paper describes the implementation of a real-time vision system devel-
opea to track moving objects in real-time. In the implementation described,
a "puck" sliding on an inclined plane is tracked so that its position and ve-
locity may be used to "swat-juggle" it to a constant height at a specified set
point. Raw centroid calculations of the puck based on images from a CCD
camera are filtered using an "augmented" linear observer and an interpola-
tor to produce puck state estimates. Experimental data and results are pre-
sented and compared to the previous method of puck state sensing.



1. Introduction

Computer vision is a natural means of measuring positions and velocity of moving
nhiPrf-R as in the case of a planar juggler developed at Center for System Science, Yaleobjects as in the case of a planar juggler developed at Center for System Science, Yale
University that "swat-juggles"1 two pucks falling freely on a frictionless plane inclined
into the earth's gravitational field.

To be able to "swat-juggle," the robot must have access to the state (position and velocity)
of the pucks. While puck position, can be measured directly from analysis of a video
image, the velocity must be estimated. Generally, it is not a good idea to simply differen-
tiate position estimates to obtain velocity since the position estimates can be noisy, and
the resulting velocity estimates are noisier still. Hence, we would like to estimate the
unmeasured states in a principled way as well as filter the measured states. Another
reason to keep obtain state estimates at a high rate is that it helps in the image processing-
if accurate estimates of the puck can be obtained, it is possible to process only part of the
image around the expected image of the puck. This report will describe the methodology
used to obtain position and velocity updates at a high rate using computer vision.

Other researchers have reported similar work- in two cases a ball was tracked in real-time
using special purpose hardware [Andersson, Atkeson]. Atkeson's swat juggling robot
used a pair of cameras positioned orthogonally, to measure the position of a ball by calcu-
lating title centroids of the image of the ball in a scene. There are two major differences
between his work and that described in this report. Atkeson assumed an orthographic (as
opposed to perspective) projection for each camera. This required that both cameras be
positioned exactly orthogonal to the coordinate frame of the robot. Under this assump-
tion, camera calibration is a relatively simple process, but suffers in accuracy and the
inability to deal with arbitrarily positioned cameras. We have implemented a method that
does not stipulate position of the camera(s). Secondly, Atkeson's juggler estimated posi-
tion and velocity at frame rate. More precisely, every time a video image was obtained, a
linear least squares fit was performed to estimate position of the ball at impact. Such an
approach is purely geometric there is no consideration of dynamics like gravity and fric-
tion. In contrast, the work reported is motivated by the need to accurately determine the
position of the puck at a high rate (1 Khz). This is done by filtering position measurements
obtained at 60 hz from the camera, using an augmented linear observer that explicitly
encodes gravitational and frictional forces. An interpolator that also encodes puck
dynamics, is used to obtain position and velocity estimates between position measure-
ments.

Andersson's ping-pong playing robot also tracked a moving ball in real time. His
approach is similar to ours in that dynamics were used to correct position measurements.
Andersson found it necessary to account for gravity and air-drag. There were compen-
sated for with a local quadratic fit to position data at every position measurement.
Velocity and acceleration estimated from this fit were then used to compute higher order

L Swat-Juggling refers to the action of "swatting" an object (usually a puck or a ball) to a specified height
without grasping the object.



terms using a dynamic model which in turn were used to "pre-correct" the sums for the
quadratic fit of the following position measurements.

Buehler demonstrated a variety of juggles on the Yale Juggle as examples of a class of
tasks which involve repeated robot-environment interactions [Buehler89, Buehler90a,
Buehler90c]. Position and velocity estimation was accomplished by the use of an oscil-
lator inside each puck in conjunction with an inductive grid that is buried in the inclined
plane over which the puck is moving. A single measurement of a puck using this scheme
was not very accurate (+/-1 cm) but was significantly improved through a high sampling
rate and a linear observer that filtered the measurements. A problem with this scheme is
that it is difficult to scale to the case where more than two objects must be tracked. Ideally,
we would like a sensing mode that doesn't limit the number of objects being tracked.
Further, for a system that tracks objects moving in three space, it will not be possible to
use an inductive grid.

We were motivated by the need for a more general and extensible means of estimating
puck states. The system implemented can be extended to track multiple objects as well as
objects moving in three space, in a straightforward manner. This report describes the inte-
gration of a real-time vision system with the planar juggler using off the shelf CCD
cameras. Once a snap shot of a puck is obtained, an observer and interpolator are used to
filter position measurements, to estimate velocities and to predict the motion between
measurements. Our work has essentially followed the same methodology used by
Buehler except that we have replaced the inductive sensing scheme with passive vision.

In the following sections, we first discuss the apparatus used. Next, camera calibration
scheme implemented is briefly described in Section 3, and the computing architecture for
the entire juggler is detailed in Section 4. Section 5 discusses the design of the tracking
system, and, Section 6 discusses experimental results.



2. The Planar Juggler

An existing apparatus was used in the experimentation [Buhler89]. The apparatus consists
of one or two pucks sliding on an inclined plane that are batted successively by a bar with
a billiard cushion rotating in the juggling plane. There are three parts to this system:

1. Puck State Sensing: to close a feedback loop at a high rate, it is necessary to be
able to access positions and velocities of the pucks at a high rate (approximately
lKhz). Previously, puck sensing was accomplished by placing an oscillator in-
side each puck and Durying a grid inside the juggling plane, thus imitating a
digitizing tablet. State estimation was accomplished by measuring grid voltag-
es induced in the grid by the pucks and filtering the raw data using puck dy-
namics, A sensing module (processor and multiplexing hardware) was
dedicated to this task.

A new sensing module has been designed that uses vision as the mode of mea-
suring puck positions and velocities.

2. Tuggling Algorithm Computation: a separate module is designated to compute
the reference trajectory (angle and angular velocity) of the juggling bar given
the robot state (from a shaft encoder on the juggling arm motor; and puck
states.

3. Motor Servo Control: this module is dedicated to commanding a high torque
DC servo actuator at a rate of approximately 1.5 Khz using a PD algorithm.

Fig. 1 shows the configuration of the juggler with the added vision system. Both puck state
sensing modalities were retained so as to compare data from the grid sensor and the
vision sensor, though juggling was accomplished only through the use of vision data.

Vision
Processing

Inductive Puck
Processing

Juggling
Algorithm

Motor
Servo Corttro

Digitizing Wires
in the

Inclined Plane

Digitizing
Table

Puck

Robot

Direct Drive
Motor

Figure 1: Configuration of the Planar Juggler
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3. Camera Calibration

Figure 2 shows the physical setup of a CCD camera mounted on the ceiling looking at the
juggler. Note that the camera has been rotated about the optical axis by 90 degrees so as
to provide greater sensing resolution in the vertical direction (the video image has more
commns than rows).

Figure 2: Camera setup for position sensing

To be able to sense puck position, it is necessary to go through a calibration phase which
relates pixel locations in the image to physical locations on the juggling plane. The cali-
bration scheme [Tsai], computes the following parameters:

/; focal length of the camera
s: a fudge factor to compensate for disparate digitization timings between the

camera and the frame grabber.
kl,fcl: lens distortion parameters
JR: A 3X3 Rotation matrix that describes the transformation from the camera

frame to the world frame
T: A 1X3 translation matrix that denotes the translation vector between the

above two matrices.

It is necessary to provide input to this algorithm in the form of a set of training points that
lie in several planes,, for which both spatial coordinates in world frame and image coor-
dinates in the image space are known. For objects that lie in a plane, it is only necessary
to provide training points that all lie in a plane. However, for the general case, in which
objects may lie in three space, it is necessary to provide training points that lie in several
planes. This is accomplished by using an image of a calibration grid located on the juggler



as shown in figure 3.

Figure 3: Calibration grid located on the inclined plane

Figure 4 shows an actual image of the calibration grid obtained from the CCD camera.

Figure 4: A video image of the calibration grid

The location of the centroid of each of the circles on the grid is known a priori through
careful measurement, while the corresponding centroids of the circles in image space
must be computed. At present, the correspondence problem of deciding which circle in
three space corresponds to which circle in the image space is solved by hand. The result
of this process is a set of image coordinates for every circle on the calibration grid:

row, col: the centroid in image space
x, y, z: the centroid in world space



The calibration scheme uses these training points as inputs to a non-linear minimization
scheme to estimate the parameters (/, s, Id, k2, R, T). Once the camera parameters are
known, given an (i, /) pair in image space, the corresponding point in world space can be
solved by equations 8(a) and 8(b) in Tsai's report. Essentially, two relationships-/^, z),f(y,
z) are obtained.

If the object(s) being tracked move in a plane then the z parameter is known and it suffices
to simultaneously solve for x and y-in the two equations above. However, if the object
moves in 3-space, two cameras are needed. For each camera there are two such functions,
giving rise to an over constrained set of equations: /j(x, z), fa(y, z), fi(x, z), fity, z). These
four equations can be solved using a variety of minimization methods. In our case the
pucks move in a plane so a single camera suffices.



4. System Architecture

The Cyclops vision system [Cyclops] was used to track the pucks. The Cyclops system
consists orthree components:

• digitizer: the digitizer digitizes the RS-170 signal from the CCD camera and
outputs the image on a viaeo bus. The RS-170 signal is interlaced, so each of the
halt-frames is broadcast on the video bus, alternately.

• memory modules: An arbitrary number of memory modules can listen to the
video bus. These are configured to listen load one ot the two half frames broad-
cast by the digitizer.

• frame-processors: Each memory module, has attached to it, a frame-processor
that operates on the data loaded into the memory module. Each frame proces-
sor is able to communicate with other processors in the system via messages.

The configuration is shown in figure 5.

CCD Camera

CO
ID

VI
DE

O
 B

DIGITIZER

*
MEMORY

0

FRAME
PROCESSOR

0 i

MEMORY
1

FRAME
PROCESSOR

1

COORDINATOR

t

Figure 5: The Cyclops vision system

In this case, each frame-processor is dedicated to a window on each half frame for the sake
of efficiency. This window is moved as the object being tracked moves. We used a
window of 30X 60 pixels and were able to do all the processing within 7ms. The window
size was large enough that once tracking was initiated, the puck never escaped the
window under normal experimentation.

Within this window, a binary thresholding operation is done and the centroid (first order'
moment) of the bright pixels is found. Since the puck is a bright object against a dark back-
ground, the operations of thresholding and finding centroids are straight forward- all
pixels within the window that have pixel values above the threshold are averaged in their
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x and y values to obtain the centroid Each frame-processor then converts the centroid
information to world coordinates and these are sent to a "Coordinator" module.

Since each frame-processor gets a frame at 30Hz, it is possible to combine the data from
both processors to obtain state estimates at 60 Hz. The Coordinator does exactly this. Its
function is two fold:

• Updating the window: As each frame-processor sends centroid information to
the coordinator, the new position of the puck in the image is sent to the other
frame-processor so that it can use an updated estimate of the window in which
to find the puck in the next sensing cycle.

• Filtering raw position data: Data from vision system is noisy on a per sample basis
* but it can be filtered using a linear observer that uses puck cfynamics to provide to

smooth raw position data obtained from the vision system. Figure 6 shows (x) raw
position data obtained from the vision sensor. The observer is also used to estimate
puck velocities.
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Figure 6:Raw (x) position data from the vision sensor

The previous incarnation of the juggler used 3 T-800 transputers to accomplish juggling.
One transputer was dedicated to each of juggling algorithm computation, puck sensing
and motor servo control Additionally a T-400 transputer was used as a host interface to
a PC AT, primarily for the purposes of compilation and data logging. The current work



has introduced 4 additional processors. Two T-800 transputers are used as frame-proces-
sors for low level image calculations. Their output is sent to another T-800 transputer that
runs the "coordinator" tasks. A fourth transputer (B00-7) is used as a graphics processor
to display the located centroid of the puck in the image. The whole system is configured
as in figure 7.

Figure 7: The MIMD architecture for the juggler



5, Tracking the Puck

5.L Puck Dynamics

A complete model of puck dynamics incorporates gravitational and friction forces expe-
rienced by the puck. Friction forces can be characterized by two different effects- dry fric-
tion and viscous friction. The former is the force experienced during constant sliding,
whereas viscous friction is the force required to move a stopped object, since the puck is
in motion constantly, it is sufficient to only model dry friction. A simplified model of the
puck motion (apart from the impact) can be described by:

/ • s \ (2)

Here x, y denote the puck position, g is the acceleration due to gravity,/? and fy are the dry
friction terms (resulting from contact between the puck and the juggling plane) in the x
and y directions, respectively. Dry friction has been experimentally determined to be 0.16
[Buhler90b]. However, this estimate was found to be good only at high velocities, which
in our task are in the y direction. Velocities in the x direction are almost negligible and
hence we have ignored the friction in this direction.

Puck dynamics are much harder to encode at the impact. A restitution model is used in
the control of the juggling arm [Buhler90b]. For the purposes of tracking die puck, we
have used an ad hoc scheme that resets some of the observer states when impact is
detected.

5.2. System Timing

Figure 8 shows the time separation of events. The CCD camera shutter opens at Sj, S2,..,
Stt (two shutter events are separated by l/60th sec). At time Sn+1/ the first half-frame is
completely loaded into frame-processor 0. Immediately, frame-processor 1 starts loading
the next half frame of the RS-170 video signal At time Cn, frame-processor completes the
centroid computation and conversion of the centroid to from i, j to x, y coordinates. This
information is sent to the Coordinator which uses an observer to filter the position data.
The centroid data is converted back into image coordinates and sent to frame-processor 1
such that as soon as the second half frame has been loaded, the new position of the puck
can be used in the new centroid operation.

Notice that if the observer is written in standard form (new estimates of the state at time
n are bised on state estimates from time n-1 and measurements from time step n), then
the output of the obset¥er at time On is an estimate of the states at time Sn. Since we can
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only reliably complete the state estimation by time Sn+2, we would like the estimation
scheme to output state estimates for the puck at time Sn+2. Further, the next measurement
(shutter exposure) happens at Sn+i. We solve this problem in two steps. First, we write the
observer in such a way that its output Sn+2 is an estimate of the states at Sn+i. Next we use
a simple predictor to carry the motion of the puck forward in time by the time (Sn+i - Sn).

:f
....... Jm£

illfiiiii^

Figure 8: System timing

There is one further issue. We would like the observer to output at high rate (1 Khz), but
the output of the observer is only once every l/60th of a sec To achieve this high rate
between observer outputs, we use a simple interpolator that carries the equations of
motion in time forward by a delta (= 0.001s) at each output time, Dm. (At time Do, the first
full state estimate (x and y positions and velocities) is available.) To actually achieve this,
the processor that the coordinator runs on, must multitask between running the observer
and running the interpolator at fixed time intervals. The interpolator thus is encoded as
an interrupt task, that is, it is executed with a high priority at every 1ms.

The data flow in the entire process is shown in figure 9.

Measurements

*̂

Observer •
State Est
forSn+1

Predictor
State Est
forSn+2

Interpolator ^
State Est
forSn+2 + fii

a * i.. icocft

State Estimate
for!*

Figure 9: Data flow
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5.3. Observer design

Writing the dynamics of the puck in state space form:

F = A-X+B-u

G = CX

(3)

(4)

where F is the state vector, B is the scaling factor for the input, G is the output vector, C is
the matrix that specifies the combination of the states for measurement, and u is the
external input. More explicitly:

F =

X

X

y
1

b
0

0
0

I

~fx
0
0

0
0

0
0

o"
0

1

-4

X

X

y
i

+
r°~
0
0

_-l_

•g
(5)

/~i Si

h
—"lOOO

0 0 1 0
•

X

X

y
i

(6)

where gt and g2 are the actual measurements.

So far the system has been described in terms of continuous time dynamics. Since we use
discrete measurements, the above system is best expressed as an equivalent difference
equation where the A and B matrices have been appropriately transformed to <£ and F,
given the sampling interval. The discretized system is written as:

The input to our system will be simply the gravitational force, g, which is invariant. For a
sampling rate of 50 hz, and for/x = 0.0, fy = 0.16, the appropriate difference equation is:

0
0
0
0

0.016
1
0
0

0 0
0 0
1 0.016
1 0.997

•F +n

0
0

-0.001
-0.016

(8)

We write the observer in a form such that the output of the observer Fn is a prediction of
the states at time step n+1 given measurements at time step n:

(G - (C*FJ) (9)

where L is the observer gain matrix that
server are at 0,95, 0.955 lor the x system
matrix is:

is computed by pole placement (poles of the ol
and 0.4,0399 for the y system)- The resulting

ob-
L
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L =

0.095 0.0
0.135 0.0
0.0 1.198
0.0 21.473

(10)

The observer gain can be thought of a set of weights that are placed of the residual, or the
error between the predicted and measured states. Essentially, pole placement is a way of
encoding how much the measurements can be trusted in comparison to the dynamic
model If the measurements are noisy a relatively smaller weight should be placed on the
residual. This is specified by choosing "slow" observer poles (dose to, but less than
unity). Alternatively, if the measurements are less noisy, faster poles (closer to zero) can
be specified. In our system, the position sensing in the x direction exhibits more noise than
position measurements in the y direction. Correspondingly, the poles chosen for the x
system are slower than those chosen for the y system. It should be noted that observer
design is an iterative process that is based on trail and error. Observer poles are chosen
by an initial insight into the system and the resulting state estimates are evaluated. Sensi-
tivity to noise and rates of convergence are traded off to arrive at the final observer gains.

5.4. Predictor

The task of the predictor is to compensate for the latency between the observer output and
the actual puck states. This effect is achieved simply by integrating forward in time using
(8) after every estimate of the observer. Thus, at On we have an estimate of puck states at

5.5. Interpolator

Since we would like to get state estimates at a high rate, we can repeatedly use the same
method that the predictor uses, only this time integrating over a much smaller time
interval. (11) gives the system dynamics as a difference equation discretized at a time
interval of 0.001 s.

0
0
0
0

0.001
1
0
0

0
0
1
1

0
0

0.0009
0.9998

•F +n

0
0

-0.0000005
-0.0009999

This allows for successive state estimates at D* (i = 0.. 16)

5.6. Dealing with Impacts

Since the observer assumes a linear system, the impact which is highly non-linear, is
treated as a disturbance. Thus, left to itself, the observer produces erroneous output for a
short period after the impact, till the error between its estimates and measured positions
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becomes large enough to significantly effect the state estimates. This effect can be seen in
figure 10 in which the output of the y position as estimated is compared to the output of
the same state by the grid sensor. In this example, it has taken roughly 6 sensing cycles
for the observer to correct for the effect of the impact. For 3 updates after the position esti-
mates are in the right direction, the sign of velocity is still negative. On its own, the linear
observer treats the impact as a disturbance until repeated measurements (and the corre-
sponding residuals) force the observer to the correct states.

ypositionfin]

12.00

10.00

8.00

6.00

x 10~3

100.00 150.00 200.00 250.00 300.00

Figure 10: Output (y position) of the linear observer

In figure 10, the dashed line shows the output of the observer while the solid line denotes
the output of the same state by the grid sensor. It turns out that for juggling it is most im-
portant to have good state information just before the impact whereas trie error due to the
linear observer does not start showing till just after the impact. Still, we would like to aug-
ment the linear observer with a method that would improve the state estimates just after
the impact, A simple heuristic suffices:

if
(y < e) a

then

Figure 11 shows the improvement in the observed states right after the impact.
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yposition[in]
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10.00

8.00

6.00
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4 r\rv
.\J\J

100.00 150.00 200.00 250.00
timeps] x 10"3
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Figure 11: Output of linear observer (y position) with added heuristic
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6. Results

Even though there is a large disparity in sampling rates and accuracy between the grid
sensor and the vision sensor it is possible to qualitatively match the performance of the
grid sensor with the vision sensor. Since it is difficult to compare each sensing mode to an
absolute reference frame- i.e. to determine the errors of each sensing mode, in an absolute
sense, the discussion of results is restricted to a comparison between sensing modes. In all
the experiments discussed, the vision sensor was used to obtain position as well as to
juggle. The grid sensor was run concurrently to collect data for purposes of comparison.

The results shown in figure 11 are typical. The best results (as evidenced by the smallest
difference between the two sensing modes) are obtained exactly when the state estimates
are the most important- just before impact. In this case, the steady state difference is
around 1 inch (2.5 cm). After impact, it takes a while for the observer (discussed above) to
produce estimates that match the grid sensor. This is mainly due to the large difference in
sampling rates (60 hz for the vision sensor as opposed to 1000 hz for the grid sensor).
Hence after impact, the difference in the two sensing modes can be as much as 6 inches (15
cm). This difference is made up quickly and the typical difference as the puck moves
towards the peak, is around 2 inches (4.5 cm).

In some cases, as at the peaks of the y motion, the vision sensor provides a qualitatively
better state estimate. By this, we mean that the vision sensor shows a more ''natural7' peak
than does the grid sensor (figure 12(a)). Notice that the vision sensor produces discontinu-
ities every so often. These correspond to the output of the observer when measurements
are taken. The following points until the next discontinuity come from integration of the
puck dynamics. Since the grid sensor gets data at a very high rate, the discontinuities seen
in its output are smaller.

2020

4mm mm wo.oo

Figure 12: Comparison of position data (a) near the peak of y motion (b) during
downward flight



Figure 13 compares the y velocity estimates by the two sensing modes. It can be seen that
right after impact, there is a difference in the velocity estimates. This is once again due to
the difference in sampling rate- the grid sensor detects the impact sooner than the vision
sensor.

velocity[in/s]

120.00

100.00

80.00

40.00

5.00 5.50 6.00 6.50
time[s]

Figure 13: (y) Velocity estimates

17



1 \\
If*

A / \

f\f\
\ p
\k

i

If
f

\ /

\ r

I f

A Af\A\i p\ I
\r
yi1\

J
iff
IFIff

\

\ h\t*
\P
V

1
4

Figure 14 compares the y position estimates for repeated juggles by the two sensing
modes.

yposition[in]

20.00

15.00

10.00

5.00

0.00 1 1 ' ' timc[s]
4.00 5.00 6.00 7.00

Figure 14: Comparison of steady state performance (y position) between vision and
inductive sensing

Finally, the proof of the pudding is in how well the robot is able to juggle under each
sensing mode. Our experiments with both sensing modes have show that the robot can
juggle ad infinitum- our longest experiment with the vision sensor lasted 5 minutes
without any degradation of performance.
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1. Conclusions

A sensing scheme using machine vision has been demonstrated that tracks a moving
object in real time. This scheme was tailored to produce full state estimates (positions and
velocities) of a puck falling on an inclined plane such that it was possible to replicate
previously demonstrated swat juggling. The advantage of this scheme is that it is not as
contrived as its predecessor in which it was necessary to put active electronic oscillators
inside each puck. Most importantly, the scheme scales nicely for tracking multiple
objects- it is only necessary to replicate part of the hardware- each additional module is
dedicated to tracking a single object. The scheme described can also be extended in a
straight forward manner to tracking objects moving in 3 space.
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