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Abstract

This paper describes theimplementation of areal-time vision system devel -
oped to track moving objects in real-time. In the implementation described,
a "puck" sliding on an inclined plane is tracked so that its position and ve-
locity may be used to "swat-juggle’ it to a constant height at a specified set
point. Raw centroid calculations of the puck based on images from a CCD
cameraarefiltered using an "augmented" linear observer and an interpola-
tor to produce puck state estimates. Experimental data and results are pre-
sented and compared to the previous method of puck state sensing.



1. Introduction

Computer vision is a natural means of measuring positions and velocity of moving
cbfeER as in the case of a planar juggler developed at Center for System Science, Yae
University that "swat-juggles' two pucks faling fregly on a frictionless plane inclined
into the earth's gravitational field.

Tobeableto "swat-juggle,” the robot must have access to the state (position and vel ocity)
of the pucks. While puck position, can be measured directly from analysis of avideo
image, the velocity must be estimated. Generadly, itis not agood ideato smply differen-
tiate position estimates to obtain velocity since the position estimates can be noisy, and
the resulting velocity estimates are noisier still. Hence, we would like to estimate the
unmeasured states in a principled way as well as filter the measured states. Another
reason to keep obtain state estimates at ahigh rateis that it hel ps in theimage processing-
If accurate estimates of the puck can be obtained, it is possible to process only part of the
image around the expected image of the puck. Thisreport will describe the methodol ogy
used to obtain position and velocity updates at a high rate using computer vision.

Other researchers have reported similar work- intwo cases aball wastrackedin real-time
using specia purpose hardware [Andersson, Atkeson]. Atkeson's swat juggling robot
used apair of cameras positioned orthogonally, to measure the position of aball by calcu-
lating title centroids of the image of the ball in a scene. There are two mgor differences
between hiswork and that described in this report. Atkeson assumed an orthographic (as
opposed to perspective) projection for each camera. This required that both cameras be
positioned exactly orthogonal to the coordinate frame of the robot. Under this assump- -
tion, camera cdibration is a relatively simple process, but suffers in accuracy and the
inability to deal with arbitrarily positioned cameras. We haveimplemented amethod that
does not stipulate position of the camera(s). Secondly, Atkeson's juggler estimated posi-
tion and velocity at framerate. More precisely, every time avideo image was obtained, a
linear least squares fit was performed to estimate position of the bl at impact. Such an
approach is purely geometric there is no consideration of dynamics like gravity and fric-
tion. In contrast, the work reported is motivated by the need to accurately determine the
position of thepuck at ahighrate (1 Khz). Thisisdoneby filtering position measurements
obtained at 60 hz from the camera, using an augmented linear observer that explicitly
encodes gravitational and frictional forces. An interpolator that also encodes puck
dynamics, is used to obtain position and velocity estimates between position measure-
ments.

Andersson's ping-pong playing robot also tracked a moving ball in rea time. His
approach issimilar to oursin that dynamics were used to correct position measurements.
Andersson found it necessary to account for gravity and air-drag. There were compen-
sated for with a locd quadratic fit to position data at every postion measurement.
Velocity and acceleration estimated from this fit were then used to compute higher order

L Swat-Juggling refers to the action of "swatting" an object (usually a puck or a ball) to a specified height
without grasping the object.



terms using a dynamic model which in turn were used to "pre-correct” the sums for the
quadratic fit of the following position measurements.

Buehler demonstrated a variety of juggles on the Yde Juggle as examples of a class of
tasks which involve repeated robot-environment interactions [Buehler89, Buehler90a,
Buehler90c]. Position and velocity estimation was accomplished by the use of an oscil-
lator inside each puck in conjunction with an inductive grid that is buried in the inclined
plane over which the puck is moving. A single measurement of a puck using this scheme
wasnot very accurate (+/-1 cm) but was significantly improved through ahigh sampling
rate and alinear observer that filtered the measurements. A problem with this schemeis
thatitisdifficult to scale to the case where more than two objects must be tracked. 1deally,
we would like a sensing mode that doesn't limit the number of objects being tracked.
Further, for a system that tracks objects moving in three space, it will not be possible to
use aninductive grid.

We were motivated by the need for a more general and extensible means of estimating
puck states. The system implemented can be extended to track multiple objects as well as
objectsmovingin three space, in a straightforward manner. Thisreport describes theinte-
gration of a real-time vision system with the planar juggler using off the shelf CCD
cameras. Once a snap shot of a puck is obtained, an observer and interpolator are used to
filter position measurements, to estimate velocities and to predict the motion between
measurements. Our work has essentially followed the same methodology used by
Buehler except that we have replaced the inductive sensing scheme with passive vision.

In the following sections, we first discuss the apparatus used. Next, camera calibration
schemeimplemented is briefly described in Section 3, and the computing architecture for
the entire juggler is detailed in Section 4. Section 5 discusses the design of thetrackmg
system, and, Section 6 discusses experimental results.
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2. The Planar Juggler

An existing apparatus was used in the experimentation[Buhler89]. The apparatus consists
of one or two pucks sliding on an inclined plane that are batted successively by abar with
abilliard cushion rotating in the juggling plane. There are three parts to this system:

1. Puck State Sensing: to close afeedback loop at a high rate, it is necessary to be
able to access positions and velocities of the pucks at ahigh rate (approximately
IKhz). Previously, puck sensing was accomplished by placing an oscillator in-
side each puck and Durying a grid inside theljl;%gling plane, thus imitating a
digitizing tablet. State estimation was accomplisned by measuring grid voltag-
es Induced in the grid by the pucks and filtering the raw data using puck dy-
namics, A sensing module (processor and multiplexing hardware) was

dedicated to this task.

A new sensing module has been designed that uses vision as the mode of mea-
suring puck positions and velocities.

2. Tuggling Algorithm Computation: a separate module is designated to compute
the reference trajectory (angle and angular velocity) of the juggling bar given
the robot state (from a shaft encoder on the juggling arm motor; and puck

states.

3. Motor Servo Control: this module is dedicated to commanding ahigh torque
DC servo actuator at arate of approximately 1.5 Khz using a PD algorithm.

Fig. 1 shows the configuration of thejuggler with the added vision system. Both puck state _
sensing modalities were retained so as to compare data from the grid sensor and the
vision sensor, though juggling was accomplished only through the use of vision data.

Digitizing Wires

%ed in the
Inclined Plane
Vision Inductive Puck
Processing Processing Digitizing
‘/ Table
I Puck
Juggling
Algorithm
) Robot
- Motor | _ _ -
Servo Corttro] Direct Drive
Motor

Figure 1. Configuration of the Planar Juggler
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3. Camera Calibration

Figure 2 shows the physical setup of aCCD cameramounted on the ceiling looking at the
juggler. Notethat the camera has been rotated about the optical axis by 90 degrees so as

to provide greater sensing resolution in the vertical direction (the video image has more
commns than rows).

/o‘.'wwzzﬁsﬁ

n

Figure 2: Camera setup for position sensing

To be able to sense puck position, it is necessary to go through a calibration phase which
relates pixel locations in the image to physical locations on the juggling plane. The cali-
bration scheme [Tsai], computes the following parameters:

/; focd length of the camera

s. afudge factor to compensate for disparate digitization timings between the
camera and the frame grabber.

kl,fcl: lens distortion parameters

JR A 3X3 Rotation matrix that describes the transformation from the camera
frame to the world frame

T: A 1X3 translation matrix that denotes the translation vector between the
above two matrices.

Itis necessary to provideinput to this algorithmin the form of a set of training points that
lie in several planes,, for which both spatial coordinates in world frame and image coor-
dinates in the image space are known. For objects that liein aplane, itisonly necessary
to provide training pointsthat dl liein a plane. However, for the general case, in whi¢h
objects may liein three space, it is necessary to provide training points that lie in severa
planes. Thisisaccomplished by using an image of a calibration grid located on thejuggler




as shownin figure 3.

Figure 3: Calibration grid located on the inclined plane
Figure4 shows an actual image of the calibration grid obtained from the CCD camera

The location of the centroid of each of the circles on the grid is known a priori through
careful measurement, while the corresponding centroids of the circles in image space
must be computed. At present, the correspondence problem of deciding which circle in
three space corresponds to which circle in the image space is solved by hand. The result
of this processis a set of image coordinates for every circle on the cdibration grid:

row, col: the centroid in image space
X, Y, . the centroid in world space



The calibration scheme uses these training points as inputs to a non-linear minimization
scheme to estimate the parameters (/, s, Id, k2, R, T). Once the camera parameters are
known, given an (i, /) pair in image space, the corresponding point in world space can be
solved by equations 8(a) and 8(b) in Tsai'sreport. Essentially, two relationships-/*, 2),f(y,
2) are obtained.

If the object(s) being tracked movein aplane then thez parameter is known and it suffices
to simultaneously solve for x and y-in the two equations above. However, if the object
moves in 3-space, two cameras are needed. For each camerathere are two such functions,
giving rise to an over constrained set of, equations: /j(X, 2), fa(y, 2), fi(x, 2), fity, z). These
four equations can be solved using a variety of minimization methods. In our case the
pucks move in a plane so a single camera suffices.




4. System Architecture

The Cyclops vision system [Cyclops] was used to track the pucks. The Cyclops system
consists ofthree components:

 digitizer: the digitizer digitizes the RS-170 signal from the CCD camera and
outputstheimageon aviaeo bus. The RS-170 signal isinterlaced, so each of the
halt-frames is broadcast on the video bus, alternately.

« memory modules: An arbitrary number of memory modules can listen to the
video bus. These are configured to listen |oad one ot the two half frames broad-

cast by the digitizer.

» frame-processors. Each memory module, has attached to it, a frame-processor
that operates on the data loaded into the memory module. Each frame proces-
sor is able to communicate with other processors in the system via messages.

The configuration is shown in figure 5.

CCD Camera

— RS-170
DIGITIZER

S MEMORY
* 0

VIDEOBS 8

FRAME
[ —
PROCESSOR I

0

COORDINATOR

FRAME I
L MEMORY PROCESSOR

1 1

Figure 5: The Cyclops vision system

In this case, each frame-processor isdedicated to awindow on each haf frame for the sake
of efficiency. This window is moved as the object being tracked moves. We used a
window of 30X 60 pixels and were able to do al the processing within 7ms. The window
size was large enough that once tracking was initiated, the puck never escaped the
window under normal experimentation.

Within thiswindow, abinary thresholding operation is done and the centroid (first order
moment) of thebright pixelsis found. Sincethepuck is abright object against adark back-
ground, the operations of thresholding and finding centroids are straight forward- all
pixelswithin thewindow that have pixel values above the threshold are averaged in their
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x and y values to obtain the centroid Each frame-processor then converts the centroid
information to world coordinates and these are sent to a " Coordinator” module.

Since each frame-processor gets aframe at 30Hz, it is possible to combine the data from
both processors to obtain state estimates at 60 Hz. The Coordinator does exactly this. Its
function is two fold:

» Updating the window: As each frame-processor sends centroid information to
the coordinator, the new position of the puck in the image is sent to the other
frame-processor so that it can use an updated estimate of the window in which
to find the puck in the next sensing cycle.

Filtering raw Position data: Datafromvision systemisnoisy on aper samplebasis
* “putit can befilteredusing alinear observer that uses puck cfynamicsto provide to
smooth raw position dataobtained fromthevision system. Figure 6 shows (x) raw
position dataobtai ned from the vision sensor. Theobserver isalso used to estimate
puck velocities.
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Figure6:Raw (x) position data from the vision sensor
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The previous incarnation of the juggler used 3 T-800 transputers to accomplish juggling. i
One transputer was dedicated to each of juggling algorithm computation, puck sensing :
and motor servo control Additionally a T-400 transputer was used as a host interface to
aPC AT, primarily for the purposes of compilation and datalogging. The current work




has introduced 4 additional processors. Two T-800 transputers are used as frame-proces-
sors for low level image calculations. Their output is sent to another T-800 transputer that
runs the "coordinator" tasks. A fourth transputer (B0O0-7) is used as a graphics processor
to display the located centroid of the puck in the image. The whole system is configured
asin figure 7.

Figure 7: The MIMD architecturefor thejuggler
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5, Tracking the Puck

5.L Puck Dynamics

A complete model of puck dynamics incorporates gravitational and friction forces expe-
rienced by the puck. Friction forces can be characterized by two different effects- dry fric-
tion and viscous friction. The former is the force experienced during constant sliding,
whereas viscous friction is the force required to move a stopped object, since the puck is
in motion constantly, it is sufficient to only model dry friction. A simplified model of the
puck motion (apart from the impact) can be described by:

§=-g-0-f) M

[ s) @

Herex, y denote the puck position, g isthe acceleration dueto gravity,/» andf, arethe dry
friction terms (resulting from contact between the puck and the juggling plane) in the x
andy directions, respectively. Dry friction has been experimentally determined to be 0.16
[Buhler90b]. However, this estimate was found to be good only at high velocities, which
in our task are in the y direction. Veocities in the x direction are ailmost negligible and
hence we have ignored the friction in this direction.

Puck dynamics are much harder to encode at the impact. A restitution model is used in
the control of the juggling arm [Buhler90b]. For the purposes of tracking die puck, we
have used an ad hoc scheme that resets some of the observer states when impact is
detected.

5.2. Sysgem Timing

Figure 8 shows the time separation of events. The CCD camera shutter opens a §j, ...,
St (two shutter events are separated by 1/60th sec). At time S,y the first half-frame is
completely loaded intoframe-processor 0. Immediately, frame-processor 1 starts loading
the next hdf frame of the RS170 video signal At time C,,, frame-processor completes the
centroid computation and conversion of the centroid to from i, j to x, y coordinates. This
information is sent to the Coordinator which uses an observer to filter the position data.
The centroid data is converted back into image coordinates and sent to frame-processor 1
such that as soon as the second haf frame has been loaded, the new position of the puck
can be used in the new centroid operation.

Notice that if the observer iswritten in standard form (new estimates of the state at time
n are bised on state estimates from time n-1 and measurements from time step n), then
theoutput of the obset¥er at time O, is an estimate of the states at time S,,. Since we can

10



only reliably complete the state estimation by time S;:,, we would like the estimation
scheme to output state estimates for the puck at time S..,. Further, the next measurement
(shutter exposure) happens at S,+i. We solve this problem in two steps. First, we write the
observer in such away that its output S+, is an estimate of the states at S;.i. Next we use
asimple predictor to carry the motion of the puck forward in time by thetime (St - S,).

1

H.f

§

i

i RN %\i

i AN
4 ] 4*040 * ‘}
On D, D, By Ona

Figure 8: System timing

There is one further issue. We would like the observer to output at high rate (1 Khz), but
the output of the observer is only once every 1/60th of a sec To achieve this high rate
between observer outputs, we use a simple interpolator that carries the equations of
motionin timeforward by adelta (= 0.001s) at each output time, Dp,. (Attime D,, the first
full state estimate (x and y positions and velocities) isavailable.) To actually achieve this,
the processor that the coordinator runs on, must multitask between running the observer
and running the interpolator at fixed time intervals. The interpolator thus is encoded as
an interrupt task, that is, it is executed with a high priority at every 1ms.

The data flow in the entire process is shown in figure9.

M easurements
at5,
-
Observer o Predictor — -
State Est Sote Bt Interpolator A
*N\ .
— forSns1 fOrSn.s State Est
forSiye2+ i
State Estimate
for!™

Figure9: Data flow



5.3. Observer design

Writing the dynamics of the puck in state space form:
3)

(4)

F = A-X+B-u
G = GX

where Fisthe state vector, B isthe scaling factor for theinput, G isthe output vector, Cis
the matrix that specifies the combination of the states for measurement, and u is the
external input. More explicitly:

b1 ogd| r°
Eo %< |0~fx0 Of xiyio], ()
0001 j [of™
000-4 i |4
] x
G IS __Elooc()lx (6)
h 001 y
|

whereg; and g, are the actual measurements.

So far the system has been described in terms of continuous time dynamics. Sincewe use
discrete measurements, the above system is best expressed as an equivalent difference
equation where the A and B matrices have been appropriately transformed to <£ and F,
given the sampling interval. The discretized system is written as:

7)
F,,,=@® F+T-u,

Theinput to our system will be smply the gravitational force, g, whichisinvariant. For a
sampling rate of 50 hz, and for/, = 0.0, f, = 0.16, the appropriate difference equation is:

000160 O 0
_jo 100 0 (8)
—ry an+ -
#1710 0 10.01 ~0.001] &
0 0 1099 -0.016

We write the observer in aform such that the output of the observer F,, is aprediction of
the states at time step n+1 given measurements at time step n:

Fror = ®-F,+T-g+L- (G, - (C*F)). ©

where L is the observer gain matrix that is computed by pole placement (poles of the @[3

Seg\t/er are at 0,95, 0.955 lor thex system and 0.4,0399 for the y system)- Theresulting L
matrix is:




0095 00

| = 0135 00 (10
00 1198
00 21473

The observer gain can be thought of a set of weights that are placed of the residual, or the
error between the predicted and measured states. Essentially, pole placement is away of
encoding how much the measurements can be trusted in comparison to the dynamic
model If the measurements are noisy arelatively smaller weight should be placed on the
residual. This is specified by choosing "slow" observer poles (dose to, but less than
unity). Alternatively, if the measurements are less noisy, faster poles (closer to zero) can
be specified. In our system, the position sensing in the x direction exhibits more noise than
position measurements in the y direction. Correspondingly, the poles chosen for the x
system are slower than those chosen for the y system. It should be noted that observer
design is an iterative process that is based on trail and error. Observer poles are chosen
by aninitial insight into the system and the resulting state estimates are evaluated. Sensi-
tivity to noise and rates of convergence are traded off to arrive at the fina observer gains.

5.4. Predictor

Thetask of the predictor isto compensate for the latency between the observer output and
the actual puck states. This effect is achieved simply by integrating forward in time using
(8) after every estimate of the observer. Thus, at O, we have an estimate of puck states at

Sn+2-

5.5. Interpolator

Since we would like to get state estimates at a high rate, we can repeatedly use the same
method that the predictor uses, only this time integrating over a much smaller time
interval. (11) gives the system dynamics as a difference equation discretized at a time
interval of 0.001 s.

00.0000 O 0
0O 1 0 O 0
F = o F .
n+l O 0 10.0009 " ' -0. 0000005 §
0O O 10.9998 -0. 0009999

This allows for successive state estimates at D* (i=0.16)
5.6. Dedling with Impacts

Since the observer assumes a linear system, the impact which is highly non-linear, is
treated as a disturbance. Thus, l€ft to itself, the observer produces erroneous output for a
short period after the impact, till the error between its estimates and measured positions
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becomes |large enough to significantly effect the state estimates. This effect can be seenin
figure 10 in which the output of they position as estimated is compared to the output of
the same state by the grid sensor. In this example, it has taken roughly 6 sensing cycles
for the observer to correct for the effect of theimpact. For 3 updates after the position esti-
mates are in the right direction, the sign of velocity is still negative. Onitsown, thelinear
observer treats the impact as a disturbance until repeated measurements (and the corre-
sponding residuals) force the observer to the correct states.

ypositionfin
1200 - ‘o\. J .:f'.‘e y gfid
10.00 \"'- ‘ JJ-H- y camera
N
8,00 ¥
N
4.00 :ﬁ{
Y
2.00 i
ANIEEAN
0.00 ."«
"
._200 "
\w
-4.00 ] 3
time(s] x 10~
100.00 150.00 200.00 250.00 300.00

Figure 10: Output (y position) of the linear observer

In figure 10, the dashed line shows the output of the observer while the solid line denotes
the output of the same state by the grid sensor. It turns out that for juggling it is most im-
Iqortant to have good state information just before the impact whereas tfie error due to the

Inear observer does not start showing till just after the impact. Still, wewould like to aug-
ment the linear observer with a method that would improve the state estimates just after

the impact, A simple heuristic suffices
if '

(y<e)and(y<0)
then

y=3%
Figure 11 shows the improvement in the observed states right after the impact.
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Figure 11: Output of linear observer (y position) with added heuristic
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6. Results

Even though there is a large disparity in sampling rates and accuracy between the grid
sensor and the vision sensor it is possible to qualitatively match the performance of the
grid sensor with the vision sensor. Snce it is difficult to compare each sensing mode to an
absol ute reference frame- i.e. to determine the errors of each sensing mode, in an absolute
sense, the discussion of resultsis restricted to a comparison between sensing modes. In all
the experiments discussed, the vison sensor was used to obtain position as well as to
juggle. The grid sensor was run concurrently to collect data for purposes of comparison.

The results shown in figure 11 are typical. The best results (as evidenced by the smallest
difference between the two sensing modes) are obtained exactly when the state estimates
are the most important- just before impact. In this case, the steady state difference is
around 1 inch (2.5 cm). After impact, it takes awhilefor the observer (discussed above) to
produce estimates that match the grid sensor. Thisis mainly dueto thelarge differencein
sampling rates (60 hz for the vision sensor as opposed to 1000 hz for the grid sensor).
Hence after impact, the differencein the two sensing modes canbe as much as 6 inches (15
cm). This difference is made up quickly and the typical difference as the puck moves
towardsthe peak, is around 2 inches (4.5 cm).

In some cases, as at the peaks of they motion, the vision sensor provides a qualitatively
better state estimate. By this, we mean that the vision sensor shows amore "natural ™ peak
than does the grid sensor (figure 12(a)). Notice that the vision sensor produces discontinu-
ities every so often. These correspond to the output of the observer when measurements
are taken. The following points until the next discontinuity come from integration of the
puck dynamics. Since the grid sensor gets dataat avery highrate, the discontinuities seen
inits output are smaller.

ypositionfin] ypovidonfin}

=y 15.00 N i
21.40 ¥ ommeen 130
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[
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420,00 AR0 00 Amm mm WO00 »nn0 X000 12060 140.600

Figure 12: Comparison of position data (a) near the peak of y motion (b) during
downward flight
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Figure 13 compares they velocity estimates by the two sensing modes. It can be seen that
right after impact, thereis a difference in the velocity estimates. Thisis once again due to
the difference in sampling rate- the grid sensor detects the impact sooner than the vision

Sensor.

velocity[in/s]
120.00
100.00
80.00
60.00
40.00
20.00
0.00
-20.00 %
“40.00 —-
-60.00
-80.00 ——
-100.00
-120.60

time[g]
5.00 5.50 6.00 6.50

Figure 13: (y) Veocity estimates
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Figure 14 compares they position estimates for repeated juggles by the two sensing
modes.

yposition[in]

20.00 —'|

y grid

0.00——1 ' ' timdg
4.00 5.00 6.00 7.00
Figure 14: Comparison of steady state performance (y position) between vision and

inductive sensing

Finaly, the proof of the pudding is in how well the robot is able to juggle under each
sensing mode. Our experiments with both sensing modes have show that the robot can
juggle ad infinitum- our longest experiment with the vision sensor lasted 5 minutes
without any degradation of performance.

Y camera



1. Conclusions

A sensing scheme using machine vision has been demonstrated that tracks a moving
object inreal time. This scheme was tailored to produce full state estimates (positions and
velocities) of a puck falling on an inclined plane such that it was possible to replicate
previously demonstrated swat juggling. The advantage of this scheme s that it is not as
contrived as its predecessor in which it was necessary to put active electronic oscillators
inside each puck. Most importantly, the scheme scales nicely for tracking multiple
objects- it is only necessary to replicate part of the hardware- each additional moduleis
dedicated to tracking a single object. The scheme described can also be extended in a
straight forward manner to tracking objects moving in 3 space.
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