
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Uni-Rete: Specializing the Rete Match Algorithm
for the Unique-attribute Representation

Milind Tambe, Dirk Kalp and Paul Rosenbloom 1

September 1991
CMU-CS-91-180^

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

The combinatorial match in production systems (rule-based systems) is problematical in several areas of
production system application: real-time performance, learning new productions for performance
improvement, modeling human cognition, and parallelization. The unique-attribute representation is a
promising approach to eliminate match combinatorics. Earlier investigations have focused on the ability
of unique-attributes to alleviate the problems caused by combinatorial match [Tambe, Newell and
Rosenbloom 90]. This paper reports on an additional benefit of unique-attributes: a specialized match
algorithm called Uni-Rete. Uni-Rete is a specialization of the widely used Rete match algorithm for
unique-attributes, and it has shown over 10-fold speedup over Rete in performing match.

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. government.

f o r m a t i o n Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292.

Keywords: Artificial Intelligence, Knowledge Representation, Expert system tools and techniques,
Rule-based systems, Match Algorithms

i

Table of Contents
1. Introduction 1
2. Background 1

2.1. The Rete Match Algorithm 2
2.2. The Unique-attribute Representation 7

3 . Introducing Uni-Rete 8
4. Experimental Methodology and Initial Results 15
5. Bilinearization 16

5.1. Bilin: Creating Bilinear Uni-Rete Networks 19
5.2. Results 22

6. Discussion 22
6.1. Uni-Rete: Existing Problems 23
6.2. Is This a Fair Comparison? 25

7. S u m m a r y and Future Work 27
Acknowledgments 27

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

11

L i s t o f F i g u r e s
Figure 1: An example production system.
Figure 2: Explaining Rete using the analogy of water-flow through pipes. This

figure shows only a portion of Rete, i.e., the match is not completed at
this point.

Figure 3 : Sharing in Rete. This figure shows only a portion of Rete, i.e., the
match is not completed at this point.

Figure 4: Consistency checks and state-saving in Rete.
Figure 5: Rete: the real implementation is based on a dataflow network.
Figure 6: Combinatorics in production match refers to a combinatorial number

of tokens in beta memories .
Figure 7: An optimized implementation of alpha or beta memory relies on

complex hash tables.
Figure 8: (a) W m e s from Figure 1 that represent an unstructured set of blocks,

(b) structuring the set of blocks as a list, (c) an alternative structured-
set representation.

Figure 9: With unique-attributes, each beta memory can contain a m a x i m u m of
one token.

Figure 10: Tokens are stored implicitly in Uni-Rete.
Figure 11: The Uni-Rete match algorithm: procedure for addition of a wme.
Figure 12: The Uni-Rete match algorithm: procedure for deletion of a wme.
Figure 13: The benchmarks used for comparing Rete and Uni-Rete.
Figure 14: Speedup of Uni-Rete over Rete.
Figure 15: Demonstrat ing bilinear organization of the Uni-Rete network.
Figure 16: Demonstrat ing the increase in sharing due to the bilinear

organization of the Uni-Rete network.
Figure 17: Demonstrat ing the operation of bilin.
Figure 18: The first step in bilin: build a production graph.
Figure 19: The second step in bilin: output bilinear chains.
Figure 20: Controll ing the amount of bilinearization by setting the depth

parameter D to 1.
Figure 21 : The impact of bilinear networks on sharing in the five benchmarks.

W M - L O C refers to wme-pointer locations. The numbers in
parentheses show the ratio of the number of locations without sharing
to number of locations with sharing.

Figure 22: Speedups with bilinear Rete networks.
Figure 23: Supporting Soar's subgoaling in Uni-Rete.
Figure 24: Comparing the performance of Old-Rete with Rete. Rete is used for

comparison with Uni-Rete in our experiments.

1

1. Introduction
Production systems (or rule-based systems) are used extensively in the field of Artificial

Intelligence [Laffey et. al. 88, McDennott 82, Newell 90, Waterman and Hayes-Roth 78]. In production
systems, computation proceeds by repeated execution of recognize-act cycles. In the recognize phase,
productions (condition-action rules) in the system are matched with a set of data-items, called working
memory. In the act phase, one or more of the matched productions are fired, possibly changing the
working memory, and causing the system to execute the next recognize-act cycle.

This paper focuses on a key performance bottleneck in the production-system computation —
production match. Production match is combinatoric (NP-hard), and it has proven to be a problem in
different areas of production-system application. In real-time systems based on productions systems,
combinatorial match hinders the achievement of guaranteed response times [Laffey et. al. 88, Tambe 91].
In systems that learn new productions, combinatorial match can lead to an actual slowdown with
learning [Minton 85, Minton 88, Tambe, Newell and Rosenbloom 90]. Combinatorial production match
is also problematical for modeling human cognition [Newell 90] and has unfavorable implications for
parallelizing production systems [Acharya and Tambe 89a, Tambe 91].

In [Tambe and Rosenbloom 89], the unique-attribute representation was introduced to eliminate
combinatorics from production match. With unique-attributes, match becomes linear in the number of
conditions. The unique-attribute approach appears to be a promising one to alleviate the problems caused
by combinatorial match without sacrificing production-system functionality. A detailed evaluation of the
unique-attribute representation appears in [Tambe 91, Tambe and Rosenbloom 90, Tambe, Newell and
Rosenbloom 90].

The linear match bound in unique-attributes can also provide an additional benefit: a more efficient
implementation technology that yields additional performance improvements. Currently, there appear to
be three dimensions of this more efficient implementation technology — specialized match algorithms,
specialized uni-processor hardware, and parallelization with lower overheads — all of which require
detailed investigation. This paper reports on the results of investigating the first dimension — specifically
on a specialized match algorithm for unique-attributes called Uni-Rete. Uni-Rete is a specialization of the
widely used Rete match algorithm [Forgy 82]. In tasks done in Soar, an integrated problem-solving and
learning system [Laird, Newell, and Rosenbloom 87], Uni-Rete has shown up to a 10-fold speedup over
Rete. This phenomenon of a simpler representation yielding a faster implementation has been observed
elsewhere in computer science — particularly in the domain of RISC machines, where a simpler
instruction set is observed to provide a much faster implementation [Hennessy 90].

This paper is organized as follows: Section 2 describes the Rete match algorithm and the unique-
attribute representation. Section 3 introduces the Uni-Rete match algorithm. Section 4 describes our
experimental methodology and presents first results from the Uni-Rete implementation. Section 5
describes some modifications to Uni-Rete that lead to additional speedups and presents the results
obtained after these modifications. Section 6 is a discussion of relevant issues. Finally, Section 7
summarizes the results and describes issues for future work.

2 . Background
Uni-Rete is a specialization of Rete for the unique-attribute representation. To understand Uni-Rete, it

is necessary to understand both Rete and unique-attributes. This section first describes Rete and then the
unique-attribute representation. The description of Rete presented here is a novel one and aimed at readers

2

unfamiliar with Rete. It only emphasizes those aspects of Rete necessary for our comparison between
Rete and Uni-Rete. Readers familiar with Rete and unique-attributes may wish to skip this section.

2.1. T h e Rete Match Algorithm
Rete [Forgy 82] is a widely used production match algorithm. There are two main optimizations in

Rete: sharing and state-saving. Sharing common parts of condition elements (also called conditions or
CEs) in a single production or across different productions reduces the number of tests required to do
match. In practice, the effect of sharing has turned out to be quite limited: the speedup due to sharing has
been observed to be a factor of 1.1 to 1.6 [Gupta 86, Miranker 87, Tambe, et al. 88]. State saving
accumulates partially completed matches from previous recognize-act cycles for use in future cycles.
Even if the working-memory elements or wmes generated in a cycle fail to match a production, the partial
match is saved. Thus, if a new wme is added in a new cycle, only the new wme has to be matched; the
partial match from the previous cycles is not repeated. Recently, the Treat match algorithm [Miranker 87]
has emerged as a major competitor for Rete. However, for the Soar system, which is used for the
experiments in this paper, Rete has been shown to outperform Treat [Nayak, Gupta, and Rosenbloom 88].

We will use the simple production system shown in Figure 1 to illustrate Rete's operation. This figure
shows a production P I , which is to be matched with the wmes (W1,W2,..,W6). Production PI has three
conditions and some appropriate action. The symbols appearing in the conditions are either constants
(such as STATE, BLOCK, etc.) that test if identical constants appear in identical positions in the wmes,
or variables (those enclosed in <>) that bind to symbols appearing in identical positions in wmes
matching the condition. Production match involves finding all possible instantiations of the production
with the the working memory. Here an instantiation refers to a collection of wmes that provide consistent
bindings for the variables in the production. In this example, the wmes W l , W4 and W6 provide such an
instantiation. Specifically, this instantiation is able to provide a consistent binding B l for the variable
<Z> which requires consistency checks across multiple conditions.

(Production PI
(STATE <S> BLOCK <Z>)
(BLOCK <Z> COLOR RED)
(BLOCK <Z> VOLUME 8)

-->
(Some appropriate action))

Wl: (STATE SI BLOCK Bl)
W2: (STATE SI BLOCK B2)
W3: (STATE SI BLOCK B3)

W4: (BLOCK Bl COLOR RED)
W5: (BLOCK B2 COLOR RED)

W6: (BLOCK Bl VOLUME 8)

Figure 1: An example production system.

Rete's operations in matching production PI with the wmes W1,W2,..,W6 can be understood using the
analogy of water-flow through pipes. As shown in Figure 2, each condition of production PI can be
considered as a pipe, ending in a bucket. The wmes flow through these pipes. Each pipe has filters
associated with it, corresponding to the constant tests in that condition, e.g., the filters in the first pipe
(corresponding to the first condition) check if STATE appears in the first field of a wme and BLOCK
appears in the third field. As a result of these filters, only particular wmes can pass through a pipe, e.g.,
only W l , W2, and W3 can pass the filters of the first pipe and are seen in the bucket for pipe 1. Note that
the filter BLOCK for the second and third pipes tests an identical field of the wmes. Therefore, this filter

3

can be shared between the second and third pipes as shown in Figure 3. This illustrates the sharing
optimization in Rete in a simple form. As discussed later, more complex sharing is possible in Rete.

STATE

BLOCK

CEl

v Wl, W2 ,
\ W3 /

Working memory

BLOCK.

COLOR.
RED -

CE2

BLOCK.

VOLUME

CE3

I

X^Wl, W5y \ ^ W6 y

Figure 2: Explaining Rete using the analogy of water-flow through pipes. This figure shows only
a portion of Rete, i.e., the match is not completed at this point.

Working memory

STATE

BLOCK

CEl

Wl, W2 y
W3 /

BLOCK "

COLOR.
RED -

CE2

VOLUME­
S '

I

CE3

\W4. -W5y \ W 6 /

Figure 3 : Sharing in Rete. This figure shows only a portion of
Rete, i.e., the match is not completed at this point.

At this point, the wmes matching all conditions are known, but a combination of wmes that matches the
variables in a consistent manner has not been created. This consistency checking mechanism is shown in
Figure 4. The small boxes with Xs inside them and <Z> written over them check for consistency between
wmes. Consider the box that joins the buckets for the first two conditions. Since <Z> appears in the
fourth field of the first condition and second field of the second condition, this box tests the fourth field of
wmes W l , W2 and W3 against the second field of wmes W4 and W5. Two pairs of wmes — (W1,W4)
and (W2,W5) — are seen to have consistent bindings. Therefore, these pairs are stored in the following
bucket. Now the second small box checks the bindings for <Z> of each of the two pairs against W6. The
combination of W1,W4 and W6 is finally found to be successful and is the result of this match. This
instantiation is stored in an instantiation set (also called the conflict set).

4

Working memory

STATE

BLOCK

CEl

BLOCK"

COLOR.
RED -

CE2

I

VOLUME-
8"

I

CE3

^ 0

(Wl, W4)
N ^ W ^ W S) /

<z>

(Wl, W4, W6)

Figure 4: Consistency checks and state-saving in Rete.

Note that the buckets in Figures 2-4 realize state-saving by storing partial results of the match. In
particular, consider the case where only W1,W2,..W5 are available in one recognize-act cycle. PI will fail
to match. At this point, a non-state-saving algorithm will not save partial results in buckets as is done in
Rete. If W6 becomes available in a later cycle, this non-state saving algorithm will re-match
W1,W2,..W5 along with W6. In contrast, Rete will store the partial results of the match with
W1,W2,..W5 in its buckets. Thus, if W6 becomes available in a later cycle, only W6 will be matched.
Rete will avoid re-matching W1,W2,..W5.

The penalty or cost for saving partial results is seen if a wme, say W4, is deleted. Now W4 is re-
matched, following a course identical to its addition. During this process, W4 and all combinations
containing W4, such as (Wl , W4), are deleted from the buckets. The instantiation (Wl , W4, W6) is also
deleted from the instantiation set. In production systems, each cycle produces only a small change in the
number of wmes, and hence the penalty for deletion is quite small compared to the amount of work
saved [Forgy and Gupta 86, Gupta 86]. State-saving is discussed in further detail in [Miranker 87, Nayak,
Gupta, and Rosenbloom 88].

In an actual implementation of Rete, the pipes discussed above are organized in a dataflow network
structure as shown in Figure 5. Wmes travel down from the ROOT node. The filters that test for
constants (such as STATE, BLOCK etc.) are called constant test nodes. The buckets that store individual

5

wmes are called alpha memories. Combinations of wmes, e.g., (Wl , W4), are called tokens and are
stored in beta memories. Nodes that check for consistency are called and-nodes. The node that delivers
and deletes instantiations is called a P-node. The portion of the network above the alpha memories,
including the alpha memories, is referred to as the alpha network. It is also referred to as the right portion
of the network. The rest of the network containing beta memories is called the left portion of the network.
The tokens in the beta memories are called left tokens, and the wmes in alpha memories are
correspondingly called right tokens.

ROOT

Constant
test
nodes —I

Alpha
memories

STATE

.BLOCK

Wl, W2
W3

And-node

BLOCK

COLOR

» RED

VOLUME

8

W4, W5 W 6

Beta
memory

(W1.W4)
(W2, W5)

And-node

" P-node

(Wl, W4, W6)

Figure 5: Rete: the real implementation is based on a dataflow network.

A real production system contains large numbers of productions, which cause the network to be quite
complex, as indicated in Figure 6. Note that a single production leads to a single sequence of and-nodes
and beta memories. In particular, given a single production, the output of a beta memory links to the input
of a single and-node. This is the situation in Figure 5, with the output of the beta memory serving as an
input to a single and-node. However, in Figure 6, there are two separate outputs from the first beta
memory. This indicates the presence of a second production that shares the network up to that beta
memory with the original production. The figure also shows that beta memories in a network can contain
large numbers of tokens. Combinatorics in production match refers to the combinatorial numbers of
tokens in beta memories [Tambe and Newell 88]. In the worst case, there can be 0 (l w m e s l c o n d s) number
of tokens generated in matching a single production, where Iwmesl refers to the number of wmes in the
production system and conds refers to the number of conditions in the left hand side of a single
production.

6

W1.W2
W3

W4,W5 W6.W7

(W1.W4)
(W2,W5)

•8

this second branch out of
the beta memory implies
sharing the network up
to this beta memory with
a second production.

(Wl,
(Wl,
(W2,

W4.W6)
W4.W7)
W5.W7)

(W1.W4.W6, W8)
(W1.W4.W7.W8)
(W1,W4,W6,W9)
(W2,W5,W7,W8)
(W2.W5.W7.W9)

Figure 6: Combinatorics in production match refers to a combinatorial number of tokens
in beta memories.

Note that the realization of alpha and beta memories is quite complex. First, given that (i) the number
of tokens cannot be predicted in advance, and (ii) a beta memory can be a host to a large number of
tokens, Rete uses linked lists to store the tokens. A simple linked list can be quite inefficient and more
optimized implementations often rely on hash tables, as shown in Figure 7 [Gupta, et. al. 88, Gupta 86].
The Rete implementation used in this paper also relies on hash tables for implementing beta memories.
Despite these hash tables, it is estimated that a majority of time in match is spent in processing beta
memories. (Section 4 further illustrates this point.) A second minor point is that the tokens in the
alpha/beta memories actually contain pointers to wmes — not wmes themselves. The benefit is that only a
single pointer is copied during the creation of a token, rather than copying an entire wme containing 4-5
fields. There is a similar benefit during deletion. However, using pointers forces a level of indirection in
accessing the fields in a token.

7

- o a
-CZHZ3

-J-T...J j

Figure 7: An optimized implementation of alpha or beta memory relies on complex hash tables.

2.2. T h e Unique-attribute Representation
Combinatorics arise in production match due to the ambiguity about which wmes can actually match a

production's condition. In a production with multiple conditions, a cascading effect of such ambiguity
leads to an exponential match effort. This cascading ambiguity is reflected in the formation of a large
number of left tokens while matching a single condition — each left token encodes a particular partial
result of match. The unique-attribute representation eliminates the ambiguity about which wmes can
match a production's condition. With unique-attributes, each condition leads to the formation of at most
one left token, thus eliminating combinatorics from production match.

We will demonstrate the unique-attribute representation using the standard triple-based (object attribute
value) representation. Optionally, a class field describing the class of the object may be present, as in:
(class object attribute value). This is the representation used in Figure 1, where wmes are of the form:
(STATE SI BLOCK Bl). This is also the representation used in our experiments with Uni-Rete. In this
representation, unique-attributes refers to allowing only a unique value given fixed class, object and
attribute fields. Thus, wmes W l , W2, and W3 from Figure 1, reproduced below in Figure 8-a, do not
adhere to the unique-attribute constraint. This is because B l , B2 and B3 are three different values given
fixed class, object and attribute fields, i.e., STATE, SI , and BLOCK respectively. The presence of
multiple values given the three fixed fields is what gives rise to the ambiguity in the match. In the
unique-attribute representation, W1,W2 and W3 would be represented either as in 8-b or 8-c or some

8

other alternative. Note that the alternatives in 8-b and 8-c adhere to the constraint of allowing only a
unique value given fixed class, object and attribute fields.

(STATE SI BLOCK Bl)

(STATE SI BLOCK B2)

(STATE SI BLOCK B3)

(a)

(STATE SI BLOCK Bl)

(BLOCK Bl NEXT B2)

(BLOCK B2 NEXT B3)

(b)

(STATE SI BLOCK Bl)
(BLOCK Bl LEFT B2)
(BLOCK Bl RIGHT B3)

(C)

Figure 8: (a) Wmes from Figure 1 that represent an unstructured set of blocks,
(b) structuring the set of blocks as a list, (c) an alternative structured-set representation.

One additional representational constraint needed for unique-attributes in our representation is that the
variable appearing in the object field (the second field) of a condition needs to be pre-bound, i.e., it needs
to appear in an earlier condition. For instance, in production PI in Figure 1, the variable <Z> appearing in
the object field of the second and third conditions is pre-bound. Obviously, the first condition cannot
adhere to this constraint of a pre-bound object field. However, the first condition is special, as we will see
in Section 6.1.

Given these constraints, the unique-attribute representation guarantees that the match cost is linear in
the number of conditions. In particular, beta memories can contain only a single token, and not a
combinatorial number of them as is possible in an unrestricted system, i.e., a system without the unique-
attribute restriction. Detailed experiments on unique-attributes have demonstrated the ability of unique-
attributes to eliminate the combinatorics from the production match, and to outperform the unrestricted
representation in various tasks done in Soar [Tambe, Newell and Rosenbloom 90].

Basically, the unique-attribute representation trades off some expressive power to gain efficiency in the
production match. This loss in expressive power is not inconsequential. It manifests itself in two issues.
First, with unique-attributes, it is difficult to encode unstructured sets in working memory. For instance,
in Figure 8-a, blocks B l , B2 and B3 are an unstructured set of blocks in state SI . With unique-attributes,
all sets in working memory have to be structured, e.g., as lists as in Figure 8-b, as some special structure
as in Figure 8-c, or some other alternative. This choice may not always be easy. Second, unique-
attributes may cause losses in generality of learned productions. A much larger number of unique-
attribute productions may be required to gain the same amount of coverage as an unrestricted production.
So far, in the tasks encoded in the unique-attribute representation, these two issues have not been a major
problem. For a detailed discussion of unique-attributes, the tradeoffs involved, and their applicability to
different Al systems, please see [Tambe 91, Tambe and Rosenbloom 90, Tambe, Newell and Rosenbloom
90].

3 . Introducing Uni-Rete
Figure 9 illustrates the implication of the unique-attribute representation for Rete. Each beta memory

contains only a single token. As discussed earlier, with unique-attributes, a beta memory can contain a
maximum of one token. However, despite this single token, Rete goes through the process of storing it as
in Figure 7, and incurs a large memory management overhead. Note that the left-most alpha memory also
contains only a single wme.

9

(Wl, W4)

(Wl, W4.W6)

(Wl, W4, W6, W8)

Figure 9: With unique-attributes, each beta memory can contain a maximum of one token.

The intuition behind Uni-Rete is to exploit this bound of a single token per beta memory by storing
tokens implicitly and reducing the token memory management overhead. In particular, only a small part
of a token is stored in a beta memory, the rest being implicit from the beta memories preceding the
current beta memory. Thus, instead of storing tokens as shown in Figure 9, they can be stored as shown in
Figure 10. Consider the beta memory containing the token (Wl , W4) in Figure 9. In the corresponding
beta memory in Figure 10, only W4 is stored. Since the preceding alpha memory contains only a single
wme (Wl) , the token (Wl , W4) is implicit in the two memories. Similarly, instead of storing the entire
token (Wl , W4, W6) as in Figure 9, only W6 is stored in Figure 10, the remaining portion of that token
being obvious from the contents of preceding memories. Thus, tokens can be stored implicitly, by storing
only a single wme. The space for this single wme can be allocated in advance, thus avoiding the memory
management overhead of Rete (see Figure 7). This single location per wme actually stores a pointer to a

10

wme and will be referred to as a wme-pointer location. In Figure 10, the locations storing wmes W l , W4,
W6 and W8 are such wme-pointer locations.

Note that this implicit storage cannot be used if the beta memories contain large numbers of tokens, as
this will create ambiguity about which wmes are actually supposed to form a token. Thus, the technique
of implicit storage cannot be used in an unrestricted system.

wme-pointer
location for
CE1

Wl W4 ,W5 W6, W7

wme-pointer
location for
CE2

W4

wme-pointer
location for
CE3

W6

wme-pointer
location for
CE4

W8

Figure 10: Tokens are stored implicitly in Uni-Rete.

The operation of the Uni-Rete algorithm is now described using the two working-memory operations:
add and delete. We will use the network of Figure 10 as an example in this description. This network is
generated exactly as in Rete, except that the beta-memory structure of Rete is replaced by a single wme-
pointer location. Analogously, the alpha memory for the first condition is replaced by a wme-pointer
location.

11

When a wme is added to the system, the following steps are taken in Uni-Rete:
1. Perform constant tests and store the wme in an alpha memory: This portion of Uni-Rete

corresponds to Rete. The wme is stored in the alpha memory exactly as in Rete. For
instance, suppose the wme W6 is added. It is stored in the second alpha memory as shown
in Figure 10. The alpha memory in our implementation is realized using a hash-table.

2. Check the match for the previous condition: Check if the wme-pointer corresponding to the
previous condition is null. If it is null, there is no match for the previous condition, and
hence no action is taken. For instance, since W6 matches the third condition, we check the
wme-pointer location for the second condition (CE2). This location is non-null (it contains
W4) and hence we proceed to the third step.

3. Execute the consistency tests with previous conditions: If the previous condition has a
match, i.e., its wme-pointer location is non-null, then execute the required consistency tests
between the current wme and the previous wme(s). For instance, in our example of adding
W6, supposing some variable <Y> appears in the second and third conditions. Then check
the consistency of the bindings for <Y> between W4 and W6.

4. Store a pointer to the working memory element: If the test in step 3 succeeds, store a pointer
to the new working memory element in the corresponding location. In our example of
adding W6, store a pointer to W6 in the wme-pointer location for condition 3, i.e., condition
3 is now successfully matched. If the test does not succeed, do not take any further action.

5. Match the next condition: For this step, check the alpha memory of the next condition for
wmes that can potentially match. If the test with the next condition succeeds, then a pointer
to the successfully matching wme is placed in the wme-pointer location of that condition.
Note that there can be only one successfully matching wme, since this is a unique-attribute
system.

In our example, test W6 against the alpha memory for condition 4. If the test succeeds,
assign a wme-pointer to the wme-pointer location for condition 4. Continue with step 5
until the next condition is not matched.

The production successfully matches if there is an entry in the wme-pointer location of the last
condition.

When a working memory element is deleted with Uni-Rete, the following steps are taken:
1. Delete the working memory element from the alpha memory: The deleted wme goes

through all the constant tests. On reaching the alpha memory it deletes the wme from that
alpha memory. For instance, when W6 is deleted, W6 is found to pass the required constant
tests, and hence W6 is removed from the alpha memory of the third condition.

2. Locate the wme-pointer that points to the deleted wme: Check if the wme-pointer location
of the matched condition contains a pointer to the wme. In our example of deleting W6,
look in the wme-pointer location entry for the third condition and check if the wme-pointer
points to W6. This implies that W6 had earlier successfully matched the third condition. If it
does, proceed, else do nothing.

3. Nullify located pointer: The pointer that points to the deleted wme is erased, i.e., a null is
entered in that location. In our example of deleting W6, the wme-pointer location of the
third condition will be nullified. This implies that there is no match for the third condition.

4. Proceed in the match, nullifying all other pointers: After nullifying the value at a particular
condition's wme-pointer location, proceed to all successor wme-pointer locations, entering
null into all of them. Essentially the match for all the later conditions depends on the match
for the current condition. Therefore, if the current condition no longer matches a wme, the
later conditions also cannot match. In our example of deleting W6, after entering null into

12

the third condition's wme-pointer location, proceed to the following wme-pointer location
for the fourth condition (containing W8), and enter null into it. Then proceed to the fifth
condition, and others following that.

The extension of Uni-Rete to handle negated conditions is straightforward. A negated condition is one
that disallows a production from matching if a wme matches it consistently. In Uni-Rete, each negated
condition requires an additional flag. This flag is set to zero if a negated condition matches and to 1 other
wise. If a wme matching a negated condition is added to the system, then it follows the normal procedure
for adding wmes, except that step 5 is replaced by step 4 of deleting wmes — since a successfully
matched negated condition does not allow the following conditions to match. It also sets the flag to zero.
If a wme matching a negated condition is deleted, then it follows the normal procedure for deleting wmes
except that step 4 is replaced by step 5 of adding wmes — since a non-matching negated condition allows
the following conditions to match. It also sets the flag to 1. Two other modifications are also required:
when a wme is added to a condition immediately following a negated condition, it reverses step 3 of the
addition procedure. It only proceeds in the match if the negated condition is not matched, i.e., the flag for
the negated condition is set to 1. Similarly when a condition immediately preceding a negated condition
executes step 5 for adding a wme, it reverses step 5 — it proceeds in the match only if it cannot find a
matching wme for the negated condition and sets the flag to 1.

Figures 11 and 12 provide a more formal description of this algorithm. The steps in these figures
correspond to the steps in the informal description provided above. Note that the algorithm in Figures 11
and 12 amounts to implementing an interpreter for Uni-Rete. Our actual implementation is a compiled
version of this algorithm based on the OPS83 software technology [Forgy 84]. In the compiled version,
pointer chasing is completely avoided. For instance, in step 3 of the addition procedure, consistency tests
T{ do not require a traversal of the Uni-Rete data-structure to access the contents of the wme-pointer
locations involved. Instead, the addresses of the wme-pointer locations, which are known at compile time,
are directly used for accessing their contents.

As noted earlier, the absence of left tokens is the major optimization in Uni-Rete that allows it to
perform better than Rete. There are three savings due to this optimization during the addition of a wme.
First, since the space for the wme-pointer location is allocated in advance, Rete's memory allocation/de­
allocation costs are avoided. Second, since only a single wme-pointer is stored in a wme-pointer location,
Uni-Rete avoids the cost of copying all the previous wmes into the current token. For instance, in Figure
9, Rete would require copying Wl and W4 from the previous token when it is about to create a token
containing (W1,W4,W6). In contrast, as shown in Figure 10, Uni-Rete will not require such copying.
Third, since left tokens are absent, Uni-Rete avoids the cost of hashing left tokens.

The absence of left tokens allows Uni-Rete to perform more efficiently during the deletion of a wme as
well. Specifically, in Rete, deletion of a wme requires following a course symmetrical to its addition, and
removing tokens containing the deleted wme. In Uni-Rete, this cost is avoided — the system simply zeros
out all the successor locations.

There are other minor optimizations in Uni-Rete as well. For instance, in Uni-Rete, in step 5 of the
addition procedure, only a single match is possible. Therefore, the loop searching for matches in the alpha
memory can terminate as soon as the first successftil match is found. In contrast, in the corresponding step
in Rete, an unpredictable number of tokens can potentially be generated. Hence, that loop cannot
terminate after the first successful match. Further minor simplifications are also possible in Uni-Rete: (i)
the instantiation processing is simplified since there is only a single instantiation and (ii) the
implementation of negated conditions is also simplified.

13

Uni-Rete: Procedure for addition of a wme

/* Comments: Let W{ be the wme added. Let the production system contain a single production P
* with conditions C1,C2,.Ci..,CN, such that Wipasses the constant tests ofCv For a condition
* Ct: alpha-memory (CJ indicates its alpha memory, wme-pointer(C)) indicates its wme-pointer
* location, Ti indicate its consistency tests. Similarly, instantiation(P) refers to the instantiation of P.
*/

1. Perform constant tests and store W { in the a lpha-memory^) ;

2. If is non-negated then
if (wme-pointerCC^) <> NULL) goto step 3 else return;

If is negated then
if (flagCC^) = 1) goto step 3 else return;

3. If consistency tests T i succeed using W i then
goto step 4 else return;

4. If C$ is non-negated then
wine-poin ter^) := pointer to W^,
j := i+1;
goto step 5;

If C{ is negated then
wine-pointer^) := pointer to Wj;
flag(q):=0;
for (k = i+1 to N) wme-pointer(C k) := NULL;
if P is instantiated, remove instantiation^) from conflict set;
return;

5. If Cj is non-negated then
For each wme W k in alpha-memory(Cj)

if consistency tests Tj succeed using some W k then
wme-pointer(Cp := pointer to W k ;
if j = N, instantiate production P

else
j := j+l ;
goto step 5;

return;
If Cj is negated then

For all wmes W k in alpha-memory(Cj)
if consistency tests Tj succeed using some W k then

wme-pointer(Cj) := pointer to W k ;
flagCCp := 0;
return;

if no wme W k succeeds in consistency tests T-
flag(Cj) := 1;
if j = N, instantiate production P

else
j : = j + l ;
goto step 5;

return;

Figure 11: The Uni-Rete match algorithm: procedure for addition of a wme.

14

Uni-Rete: Procedure for deletion of a wme

/* Comments: Let Wt be the wme added. Let the production system contain a single production P
* with conditions C1,C2,:Ci..,CNt such that Wrasses the constant tests ofCL. For a condition
* Ct: alpha-memory(C) indicates its alpha memory, wme-pointer(C)) indicates its wme-pointer
* location, Tt indicate its consistency tests. Similarly, instantiation(P) refers to the instantiation of P.
*/

1. Perform constant tests and delete from the a lpha-memory^) ;

2. If wme-pointerCCj) = pointer to Wj
goto step 3 else return;

3. wine-pointer^) := NULL;

4. If C{ is non-negated
for (k = i+1 to N) wme-pointer(C k) := NULL;
if P is instantiated, remove instantiation^) from conflict set;
return;

If C i is negated
fiag(q) := 1;
j : = i + l ;
goto step 5;

5. If Cj is non-negated then
For each wme W k in alpha-memory(Cj)

if consistency tests Tj succeed using some W k then
wme-pointer(Cj) := pointer to W k ;
if j = N, instantiate production P

else
j := j+i ;
goto step 5;

return;
If Cj is negated then

For all wmes W k in alpha-memory(Cj)
if consistency tests Tj succeed using some W k then

wme-pointer(C) := pointer to W k ;
flag(Cj) := 0;
return;

if no wme W k succeeds in consistency tests T
flag(Cj) := 1;
if j = N, instantiate production P

else
j : = j + i ;
goto step 5;

return;

Figure 12: The Uni-Rete match algorithm: procedure for deletion of a wme.

15

This discussion shows that while the processing of left tokens (in beta memories) is heavily optimized
in Uni-Rete, the processing of right tokens (in alpha memories) is not optimized. Therefore, the speedup
of Uni-Rete over Rete depends on the proportion of right tokens in the input. Note that Uni-Rete is a
specialization of Rete, and it has identical state-saving and sharing. Thus, there are no losses or gains in
Uni-Rete with respect to those optimizations.

4 . Experimental Methodology and Initial Results
This section compares the performance of Rete and Uni-Rete using the Soar system. Soar is an

integrated problem-solving and learning system that uses a production system for its knowledge
base [Laird, Newell, and Rosenbloom 87]. Unfortunately, while Soar is implemented in LISP, our Rete
and Uni-Rete implementations are built in C. Our experience with Soar/PSM-E [Tambe, et al. 88]
indicates that integrating such C-based matchers into the existing LISP-based Soar system would be quite
difficult. Therefore, we obtained detailed traces of Soar's wme changes for running specific problems.
This sequence of wme changes was then input to Uni-Rete and Rete. Given this sequence as an input, the
match activity in the C-based Rete and Uni-Rete matchers is identical to Soar's LISP-based matcher.

Figure 13 illustrates the benchmarks used, the number of productions in the benchmarks, the number of
left (beta memory) and right (alpha memory) tokens and the ratio of right tokens to left tokens. As
discussed earlier, this ratio of right tokens to left tokens is important in determining speedups 1. Note that
all the benchmarks are encoded in the unique-attribute representation. Thus, in our comparison, both
Uni-Rete and Rete are run with identical unique-attribute-based benchmarks.

One interesting issue here is the selection of appropriate benchmarks. The unique-attribute
representation is a fairly new one. While a large number of tasks have been developed in
Soar [Rosenbloom, Laird, Newell, and McCarl 91], only 18-20 of those are encoded in the unique-
attribute representation. It is difficult to partition these 18-20 tasks so as to pick out representative tasks
as benchmarks for our experiments. We have focused on the right-to-left token ratio and the number of
productions as two possible dimensions for such a partition, and selected benchmarks that show some
variability along these dimensions. Among the benchmarks, MAX is an artificial set of productions used
to illustrate the maximum amount of speedup. In particular, MAX has a very large number of left tokens
compared to right tokens (the ratio of right to left is actually very close to zero). The speedup in MAX is
15.5 fold. Figure 13 indicates that MFS* has a very high ratio and should show the lowest speedup 2.

Figure 14 shows the run-times for Rete and Uni-Rete for the different benchmarks. The x-axis
indicates the different benchmarks. The numbers below the names of the benchmarks indicate their right-
to-left token ratios. The y-axis shows the total match time in seconds. This figure shows that Uni-Rete
achieves up to 8 fold speedup over Rete. Also, as expected, MFS* achieves the lowest speedup of 3.2

l In these measurements, the alpha memory tokens for the leftmost condition are counted as left tokens. This causes a very
small distortion in the right-to-left token ratio.

2 MFS* is a small portion of a large production system called MFS (with approx. 700 productions), being developed at
Carnegie Mellon University [Li, Krishnan and Steier 91]. It is possible that our focus on a small portion of MFS may have caused
its nght-to-left ratio to be higher than the other tasks. For a description of the other benchmarks, please see [Tambe 91].

16

TASK
NAME

NUMBER
PRODS

RETE
TOKENS

RATIO
RIGHT/LEFT

LEFT RIGHT

MAX 20 704880 19 ~ 0

EIGHT 1 52 3789 559 0.14

EIGHT2 62 7478 809 0.10

GRID 60 2421 361 0.14

BLOCKS 181 2577 385 0.14

MFS * 59 2575 1209 0.46

Figure 13: The benchmarks used for comparing Rete and Uni-Rete.

fold. These measurements were done on a VAX 11/780 3.

5. Bilinearization
This paper has so far focused on a linear version of Uni-Rete. That is, each condition joins the network

at the end of a sequence of all the previous conditions in a production. Alternatively, it is possible to
organize the network in a bilinear fashion. In a bilinear network, a new condition in a production may join
the network at the end of some particular sequence of previous conditions, not necessarily all of them.
Figure 15 contrasts a linear version of Uni-Rete with a bilinear version. In the bilinear network,
conditions CE1-CE4 are organized as in a linear network. But conditions CE5 and CE6 join the network
at the end of condition CE2. Thus, there are two independent chains of conditions in the bilinear network:
(CEl, CE2, CE3, CE4) and (CEl, CE2, CE5, CE6). These two chains are joined together using a
super-p-node. The super-p-node performs any consistency tests that were missed due to the
bilinearization. Consider a case where there is a consistency test between CE4 and CE6. In the linear
network, CE4 precedes CE6, and the required consistency check can be performed when CE6 is joined in.
In the bilinear network shown in Figure 15, CE4 does not precede CE6, and the consistency check cannot
be done. Hence, the super-p-node is required to perform the remaining consistency checks. Additionally,
the super-p-node also performs the function of the p-node in Rete: generating and deleting instantiations.
In general, a single super-p-node combines all the bilinear branches of a single production.

3This slow machine was chosen for our experiments partly because the overheads in our timing tool precluded the use of faster
machines in our environment. In particular, given the highly optimized nature of Uni-Rete, measuring its execution ume became
quite difficult on the faster machines. Additionally, the VAX 11/780 machine was very lighdy loaded and easily accessible.

17

Figure 14: Speedup of Uni-Rete over Rete.

Figure 16 shows the principle advantage of bilinear networks: an increase in the amount of sharing.
Increased sharing implies fewer wme-pointer locations; which implies faster execution time. The figure
shows two productions, PI and P2. All of the conditions in PI appear in P2, but not in the same sequence.
In linear Uni-Rete, sharing is entirely dependent on a common sequence of conditions. The sequence
(CEl, CE2) in PI also appears in P2 — hence the linear Uni-Rete shares the two conditions across PI and
P2. However, the sequence of CE5 and CE6 in PI cannot be shared with CE3 and CE4 in P2. This gives
rise to the linear Uni-Rete network shown in Figure 16, with a total of eight wme-pointer locations in it.

In bilinear Uni-Rete, sharing is partially, but not entirely dependent on a common sequence of
conditions. In particular, as shown in Figure 16, production P2 can be organized as a bilinear network,
with two chains of conditions: (CEl, CE2, CE3, CE4) and (CEl, CE2, CE5, CE6). This bilinear network
shares one of its branches (CEl, CE2, CE5, CE6) with PI . With this sharing, the number of wme-pointer
locations goes down from eight to six.

18

j P-NODE

LINEAR UNI-RETE

Figure 15: Demonstrating bilinear organization of the Uni-Rete network.

(P2 CE2

CE1

CE2

CE5

CE6

(ACTION))

CE1

CE2

CE3

CE4

CE5

CE6

(ACTION))

CE1

CE5

CE6i

CE3

:CE4

LINEAR SHARING

PI P 2

BILINEAR SHARING

Figure 16: Demonstrating the increase in sharing due to the bilinear organization of
the Uni-Rete network.

19

Thus, bilinear networks can lead to improved sharing. The savings due to sharing can be quite dramatic
(as seen later) for larger systems. Intuitively, maximizing the amount of sharing will lead to maximum
speedups. The amount of sharing can be maximized by creating as many bilinear branches per production
as possible. In the extreme, there can be a single branch for each condition, which will allow a maximum
amount of sharing.

However, generating maximally bilinear networks will not necessarily lead to maximum speedups. This
is because increased bilinearization leads to more activity in the super-p-nodes, which increases their
execution time. The super-p-nodes perform consistency checks between bilinear branches. With a large
number of bilinear branches per production, the super-p-nodes perform a larger number of consistency
checks, which increases their overhead. This is particularly true for our current super-p-node
implementation: as described in Section 6.1, our current super-p-node implementation is quite
unoptimized.

We have written a simple program called bilin for bilinearizing a production system. It takes two
conflicting constraints into account: (i) increased bilinearization leads to increased sharing and hence a
reduction in execution time, and (ii) increased bilinearization leads to increased activity in the super-p-
nodes and hence an increase in execution time. Section 5.1 discusses bilin. Section 5.2 discusses the
results of bilinearization due to bilin.

5.1. Bilin: Creating Bilinear Uni-Rete Networks
Bilin bilinearizes productions to improve their sharing while simultaneously attempting to reduce their

super-p-node overhead. The input to bilin is a file containing all the productions in a production system.
Bilin reads the productions one at a time and, for each, outputs a bilinearized version, i.e., a production
split according to the condition chains in it. Figure 17 shows the example of production P2 from Figure
16. Recall that P2 was split to create two chains of conditions: (CEl, CE2, CE3, CE4) and (CEl, CE2,
CE5, CE6). Figure 17 shows the output of bilin that creates these two chains. The @@@ sign indicates
the end of a bilinear chain.

(P2

CEl

CE2

CE3

CE4

@@@

CEl

CE2

CE5

CE6

-->
(ACTION))

Figure 17: Demonstrating the operation of bilin.

Note that bilin has to adhere to the constraint of pre-bound variables in the object field of conditions.

(P2

CEl

CE2

CE3 • BDLIN
CE4

CE5

CE6

-->
(ACTION))

20

Bilin uses this constraint in bilinearizing by first building a graph of the conditions. In this graph, each
condition is a node. If CEl and CE2 are two nodes in the graph, then a directed arc joins CEl and CE2 if
the variable in the value field (fourth field) of CEl appears in the object field of CE2. Figure 18 shows a
production P4 and its graph.

(P4

(GOAL <G> STATE <S>)

(STATE <S> BLOCK <B1>)

(BLOCK <B1> COLOR RED)

(BLOCK <B1> VOLUME <V>)

(STATE <S> BLOCK <B2>)

(BLOCK <B2> COLOR GREEN)

(BLOCK <B2> VOLUME <V>)

(VOLUME <V> QUANTITY 8)

CEl

CE2

CE3

CE4

CE5

CE6

CE7

CE8

CE3 CE6

(AOTON))

Figure 18: The first step in bilin: build a production graph.

After creating this graph, bilin starts from the root and traverses it in a depth-first manner. Each time it
reaches a leaf node, it outputs the path from the root to the leaf as a branch of the bilinear network. The
bilinear network generated in this manner for P4 is shown in Figure 19. If there is more than one root,
bilin performs identically for each root.

However, in order to avoid excessive bilinearization, bilin uses the following heuristics:
• It bilinearizes a production only if the production contains more than a threshold number of

conditions (C t). Thus, if number of conditions in a production is less than C t , bilin simply
outputs the production without bilinearizing. C t is set by the user. In our experiments, C t was
set to 6.

• Bilin uses a depth parameter (D) to limit the amount of bilinearizing. This parameter is also
user-supplied. Bilin cuts off its depth first traversal if its depth in the condition graph exceeds
D. All the conditions below depth D are grouped together into 1 bilinear branch. Thus, given
a condition graph as shown in Figure 20, and D of 1, bilin will create the branches as shown.

Among our six benchmarks, EIGHT1 and EIGHT2 were bilinearized with D set to 3. The rest were
bilinearized with D set to 2. This level of bilinearization was selected after a couple of trial and error
experiments. In particular, we did not test the benchmarks for different values of D to select the best
bilinearizing level. However, these experiments did confirm that with D set to a very large value the
super-p-node overhead caused the system to be somewhat slower than the linear Uni-Rete system.
Actually, the parameter D assumes importance because the current implementation of super-p-nodes is
unoptimized. As we continue to optimize super-p-nodes, we expect that the parameter D will not retain its
importance.

21

CE5

CE7

@@@

CEl

CE5

CE6

- >
(ACTION))

Figure 19: The second step in bilin: output bilinear chains.

(ACTION))

Figure 20: Controlling the amount of bilinearization by setting the depth parameter D to 1.

22

5.2. Results
Figure 21 shows the results of bilinearization due to bilin. The figure shows the number of wme-

pointer locations without any sharing, with linear sharing and with bilinear sharing for our six
benchmarks. The numbers in parentheses show the ratio of the number of locations without sharing to
number of locations with sharing. Thus, in BLOCKS, the number of wme-pointer locations are reduced
by a factor of 1.68 with linear sharing, and by a factor of 5.84 with bilinear sharing. In fact, this reduction
from 1.68 to 5.84 is the maximum among this set of benchmarks. The increase in sharing with bilinear
networks in MFS* and GRID is quite low compared to the increase in BLOCKS, EIGHT 1 and EIGHT2.
Since bilinearizing can be increased arbitrarily, MAX was excluded from bilinearizing.

TASK
NAME

NUMBER
PRODS

NUMBER
WM-LOC

NO
SHARING

NUMBER
WM-LOC
LINEAR
SHARING

NUMBER
WM-LOC
BILINEAR
SHARING

MAX 20

360 360

EIGHT1 52

726 489
0-48)

206
(352)

EIGHT2 62

960 634
(151)

225
(426)

GRID 60

1219 592
(2.05)

297
(3.11)

BLOCKS 181

2284 1356
(1.68)

391
(5.84)

MFS* 59

358 255
(L40)

174
(2.05)

Figure 21: The impact of bilinear networks on sharing in the five benchmarks. WM-LOC refers to
wme-pointer locations. The numbers in parentheses show the ratio of the number of

locations without sharing to number of locations with sharing.

Figure 22 shows the speedups from bilinearization. The x-axis indicates the different benchmarks. The
y-axis shows the total match time in seconds. The match time for three systems are shown: Rete, linear
Uni-Rete and bilinear Uni-Rete. The match times for Rete and linear Uni-Rete are those from Figure 14.
The maximum increase in speedup from linear to bilinear Uni-Rete is achieved in BLOCKS. This is
expected since the bilinear network in BLOCKS caused a maximum increase in sharing. The increase in
speedups in EIGHT 1 and EIGHT2 are also quite substantial. As expected, MFS* and GRID lag behind.

6. D i s c u s s i o n

23

Eight-l Eight-2 Grid Blocks MFS*

Figure 22: Speedups with bilinear Rete networks.

6.1. Uni-Rete: Existing Problems
Our existing Uni-Rete implementation is not without some limitations and lack of optimizations. An

important limitation of the current implementation is its assumption that the first condition only matches a
single wme. In Soar, this single wme is the current goal of the problem-solver. All our benchmarks were
such single goal systems.

However, Soar can generate subgoals. In the presence of subgoals, more than a single wme can match
the first condition. Each such wme actually corresponds to a new subgoal. With subgoaling, beta-
memories can contain more than a single token. The unique-attribute assumption of a single token per
beta memory is still valid, but on a per subgoal basis. Subgoaling in Soar can be supported using the
technique shown in Figure 23. The figure shows each wme-pointer location replaced by an array. Each
index in the array refers to a single subgoal. Thus, the first index refers to the first goal, the second index
to the second (sub)goal and so on. Now, the Nth index is used for all match activity related to the Nth

24

subgoal. If the production system has only a single goal, then Uni-Rete executes exactly as described in
Section 3, except that the wme-pointer locations are indexed by the first index. If the second (sub)goal is
generated, Uni-Rete will use the second index for all the match activity for the second subgoal. With this
scheme, the advantages of Uni-Rete (of not creating tokens) is retained; however, a very small indexing
overhead is introduced. Note that given a new wme, Uni-Rete does not require scanning the entire
wme-pointer location array to identify its matching subgoal index. In particular, for each wme, Soar
identifies its owner subgoal. This permits Uni-Rete to immediately identify the subgoal index for that

wme.

0
] c

FTTT •

FTTT

Figure 23: Supporting Soar's.subgoaling in Uni-Rete.

Typically, about five to ten subgoals are seen in Soar systems. For such a low number of subgoals, the
scheme described in Figure 23 appears appropriate. In terms of memory usage, this scheme does not cost
much. Consider the GRID task which contains approximately 300 wme-pointer locations in the bilinear
format. With 10 subgoals, the total memory used in this scheme is only 12Kbytes (assuming 4 bytes per
wme-pointer location). Large Soar systems contain approximately 1000 productions, i.e., roughly 20
times as many productions as in the GRID task. If we assume 20 times as many wme-pointer locations for
such systems, and assume an unrealisticly high number of subgoals (100), the total memory used is still
only 2.4 Mbytes.

One interesting issue in this scheme is determining the size of the wme-pointer location array. The size
of this array is dependent on the maximum number of subgoals generated during problem-solving. This
number cannot be pre-determined by the Uni-Rete compiler. To address this issue, the Uni-Rete system
may start with wme-pointer location arrays with a large default size of say 50 or 100. In the unlikely case
that this default value is exceeded, a linked list of wme-pointer locations can be allocated and appended to

25

the end of the wme-pointer location array. Alternatively, the user may provide a hint to the system about
the maximum depth of subgoaling in a particular task. However, subgoaling needs to be investigated
further before commiting to such schemes.

Some important optimizations are missing from Uni-Rete as well:
• The super-p-node implementation is quite sub-optimal. One way to understand this is to

view each branch of the bilinear network as a single production condition (called super-
conditions). The super-p-node in effect then combines these different super-conditions. Thus,
the function of the super-p-node is analogous to the function of beta portion of the Rete/Uni-
Rete network which combines different conditions. However, unlike the beta portion of the
Rete network:, super-p-nodes do not exploit state saving or sharing optimizations. Thus, the
super-p-nodes will re-compute the match for the super-conditions on every cycle. Introducing
state-saving and sharing in super-p-nodes is a topic for future work.

• In step 4 of the procedure for deleting a wme, the system currently nullifies all the successor
locations. Many of these locations are already null. However, testing if a location is null
before nullifying it seems to add unnecessary overhead.

• The garbage collection routines, routines that execute the constant tests in the network, and
some others, consume a bigger percentage of time in Uni-Rete. The absolute execution time
for these routines is the same in Uni-Rete and Rete. In Rete, this time is very small compared
to the total match time. However, given the optimized nature of Uni-Rete, these routines need
to be optimized as well.

Overall, Uni-Rete is a new algorithm. The Rete match algorithm was developed in mid-1970s, and over
the last 10-12 years, many optimizations have been added to it [Acharya and Tambe 89b]. We expect a
somewhat similar course of development for Uni-Rete: as we continue to understand it better, we should
be able to optimize it further.

6,2. Is This a Fair Comparison?
A comparison of the form described in this paper leads to questions of fairness of this comparison. In

particular, how optimized was the Rete system used in our comparison? Clearly, if we started with a
highly unoptimized implementation of Rete, the speedups reported here would not be very meaningful.

The Rete system used in this paper originated from the CParaOPS5 system, a C-based parallel OPS5
implementation [Gupta, et. al. 88, Kalp, et. al. 88]. CParaOPS5 is based on the highly optimized OPS83
software technology [Forgy 84]. For OPS5 programs, this system is only a factor of 1.5 to 2-fold slower
than an optimized uni-processor based Treat implementation [Miranker and Lofaso 91]. Note that for
OPS5 programs, Treat was earlier shown to outperform Rete [Miranker 87].

We removed overheads of parallelism from CParaOPS5, which gave us a speedup of 1.5 or more over a
set of three benchmarks. This new system, called Old-Rete, was further optimized to provide us with the
Rete system used in our comparison with Uni-Rete. Figure 24 indicates the speedups achieved for our six
benchmarks by Rete over Old-Rete. Thus, the Rete implementation is a factor of 2.5 or so faster than the
original CParaOPS5 implementation. Note that the Uni-Rete system was also developed from the Old-
Rete system. Thus, both the Uni-Rete and Rete systems have the same starting points. Furthermore, as we
optimized Uni-Rete, the applicable optimizations were applied to Old-Rete (giving rise to Rete). Here,
applicability refers to the ability of that optimization to speed up a program in the unrestricted
representation—Rete is to be optimized for the unrestricted representation.

26

Figure 24: Comparing the performance of Old-Rete with Rete. Rete is used for
comparison with Uni-Rete in our experiments.

An interesting point is whether the bilinear optimization is applicable to Rete. Much work has focused
on bilinearizing Rete [Gupta 86, Scales 86, Tambe, et al. 88, Lee and Schor 89]. However, the focus of
this work has been to improve parallelism and expressiveness of the production system, and not to speed
up uniprocessor implementations. In fact, bilinear Rete networks have been observed to increase the
uni-processor execution time by causing an increase in the match activity [Gupta 86]. The implementation
of a general bilinear network is also fairly complex, and could introduce a much larger overhead [Lee and
Schor 89]. Finally, the benefits of sharing in an unrestricted system may not be as much as in a unique-
attribute system. As described in Section 2 larger numbers of unique-attribute productions are required for
the same coverage as a single unrestricted production. These unique-attribute productions are similar to
each other, and lead to more sharing.

27

In summary, the Rete system used for comparison with Uni-Rete is a well-optimized implementation of
Rete. Clearly, some further optimizations are possible in our Rete implementation, since it is a fairly
complex system. However, as described earlier, there is much scope for optimizing Uni-Rete as well.

7. S u m m a r y a n d F u t u r e W o r k
The combinatorial match in production systems (rule-based systems) is problematical in several areas

of production system application: real-time performance, learning new productions for performance
improvement, modeling human cognition, and parallelization. The unique-attribute representation is a
promising approach to eliminate match combinatorics without sacrificing production system
functionality. A detailed evaluation of the unique-attribute representation appears in [Tambe 91, Tambe
and Rosenbloom 90, Tambe, Newell and Rosenbloom 90].

The linear match bound in unique-attributes provides an additional benefit: a more efficient
implementation technology that yields additional performance improvements. Currently, there appear to
be three dimensions of this more efficient implementation technology — specialized match algorithms,
specialized uni-processor hardware, and parallelization with lower overheads — all of which require
detailed investigation. This paper reported on the results of investigating the first dimension — it reports
on a specialized match algorithm for unique-attributes called Uni-Rete. Uni-Rete is a specialization of the
widely used Rete match algorithm [Forgy 82]. In tasks done in the Soar, an integrated problem-solving
and learning system [Laird, Newell, and Rosenbloom 87], Uni-Rete has shown up to 10-fold speedup over
Rete. This phenomenon of a simpler representation yielding a faster implementation has been observed
elsewhere in computer science — particularly in the domain of RISC machines, where a simpler
instruction set is observed to provide a much faster implementation [Hennessy 90].

An interesting optimization in Uni-Rete is the bilinear network organization. While this optimization
provides some speedups, its current implementation is quite unoptimized. Optimizing this implementation
is a key issue for future work. We also plan to focus on investigating schemes to overcome the limitations
in Uni-Rete, particularly that of subgoaling. A longer term issue is to support the compilation of new
productions into Uni-Rete at run-time, a capability required for learning production systems such as Soar.
Our long term goal has been to understand the impact of specific representations, such as unique-
attributes, on the performance of Al programs [Tambe and Rosenbloom 90]. Uni-Rete has allowed us to
understand a key advantage of such representations.

A c k n o w l e d g m e n t s
We thank Brian Milnes for many interesting discussions about Uni-Rete.

28

References

[Acharya and Tambe 89a]
Acharya, A. and Tambe, M.
Production systems on message passing computers: Simulation results and analysis.
In Proceedings of the International Conference on Parallel Processing, pages

246-254. 1989.

[Acharya and Tambe 89b]
Acharya, A. and Tambe, M.
Efficient implementations of production systems.
VIVEK: A quarterly in artificial intelligence 2(1):3-18,1989.

[Forgy 82] Forgy, C. L.
Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1): 17-37,1982.

[Forgy 84] Forgy, C. L.
The OPS83 Report.
Technical Report CMU-CS-84-133, Computer Science Department, Carnegie Mellon

University, 1984.

[Forgy and Gupta 86]
Forgy, C. and Gupta, A.
Preliminary architecture of the CMU production system machine.
In Hawaii International Conference on Systems Sciences, pages 194-200. January,

1986.

[Gupta 86] Gupta, A.
Parallelism in production systems.
PhD thesis, Computer Science Department, Carnegie Mellon University, 1986.
Also a book, Morgan Kaufmann, (1987).

[Gupta, et. al. 88] Gupta, A., Tambe, M., Kalp, D., Forgy, C. L., and Newell, A.
Parallel implementation of OPS5 on the Encore Multiprocessor: Results and analysis.
International Journal of Parallel Programming 17(2), 1988.

[Hennessy 90] Hennessy, J.
RISC Architecture: A Perspective on the Past and Future.
Advances in VLSI.
In Sietz, C. L.,
MIT press, 1990.

[Kalp, et. al. 88] Kalp, D., Tambe, M., Gupta, A., Forgy, C , Newell, A., Acharya, A., Milnes, B., and
Swedlow, K.
Parallel OPS5 User's Manual.
Technical Report CMU-CS-88-187, Computer Science Department, Carnegie Mellon

University, November, 1988.

[Laffey et. al. 88] Laffey, T.J., Cox, P. A., Schmidt, J. L., Kao, S. M., and Read, J. Y.
Real-time Knowledge-Based Systems.
Al magazine 9{\):21A5, 1988.

[Laird, Newell, and Rosenbloom 87]
Laird, J. E., Newell, A. and Rosenbloom, P. S.
Soar: An architecture for general intelligence.
Artificial Intelligence 33(l):l-64, 1987.

29

[Lee and Schor 89]
Lee, H.S., and Schor, M.
Match algorithms of generalized Rete networks.
Technical Report RC 14709 (#65946), IBM TJ Watson research center, 1989.

[Li, Krishnan and Steier 91]
Li, X., Krishnan, R., and Steier, D.
MFS: A study of model formulation within Soar.
Technical Report Working paper 91-18, School of Urban and Public affairs, Carnegie

Mellon University, 1991.

[McDermott 82] McDermott, J.
R l : A rule-based configurer of computer systems.
Artificial Intelligence 19(2):39-88,1982.

[Minton 85] Minton, S.
Selectively generalizing plans for problem-solving.
In Proceedings of the Ninth International Joint Conference on Artificial Intelligence,

pages 596-599. 1985.

[Minton 88] Minton, S.
Quantitative results concerning the utility of explanation-based learning.
In Proceedings of the Seventh National Conference on Artifical Intelligence, pages

564-569. Morgan Kaufmann, 1988.

[Miranker 87] Miranker, D. P.
Treat: A better match algorithm for Al production systems.
In Proceedings of the Sixth National Conference on Artificial Intelligence, pages

42-47. 1987.

[Miranker and Lofaso 91]
Miranker, D., and Lofaso, B.
The organization and performance of a Treat-based production system compiler.
IEEE transactions on knowledge and data engineering 3(1):3-11, 1991.

[Nayak, Gupta, and Rosenbloom 88]
Nayak, P., Gupta, A. and Rosenbloom, P.
Comparison of the Rete and Treat production matchers for Soar (A summary).
In Proceedings of the Seventh National Conference on Artificial Intelligence, pages

693-698. 1988.

[Newell 90] Newell, A.
Unified Theories of Cognition.
Harvard University Press, Cambridge, Massachusetts, 1990.

[Rosenbloom, Laird, Newell, and McCarl 91]
Rosenbloom, P. S., Laird, J. E., Newell, A., and McCarl, R.
A preliminary analysis of the Soar architecture as a basis for general intelligence.
Artificial Intelligence 47(l-3):289-325, 1991.
Also to be published in Kirsh, D. and Hewitt, C. ed., Workshop on Foundations of

Artificial Intelligence, MIT Press, Cambridge, Massachusetts (In press).

[Scales 86] Scales, D.J.
Efficient matching algorithms for the SOARIOPS5 production system.
Technical Report KSL-86-47, Knowledge Systems Laboratory, Stanford University,

June, 1986.

30

[Tambe 91] Tambe, M.
Eliminating combinatorics from production match.
PhD thesis, School of Computer Science, Carnegie Mellon University, May, 1991.
(Available as a tech report CMU-CS-91-150).

[Tambe and Newell 88]
Tambe, M. and Newell, A.
Some chunks are expensive.
In Proceedings of the Fifth International Conference on Machine Learning, pages

451-458. June, 1988.
[Tambe and Rosenbloom 89]

Tambe, M. and Rosenbloom, P.
Eliminating expensive chunks by restricting expressiveness.
In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 731-737. 1989.

[Tambe and Rosenbloom 90]
Tambe, M. and Rosenbloom, P.
A framework for investigating production system formulations with polynomially

bounded match.
In Proceedings of the Eighth National Conference on Artificial Intelligence, pages

693-400. 1990.
[Tambe, et al. 88] Tambe, M., Kalp, D., Gupta, A., Forgy, C.L., Milnes, B.G., and Newell, A.

Soar/PSM-E: Investigating match parallelism in a learning production system.
In Proceedings of the ACMISIGPLAN Symposium on Parallel Programming:

Experience with applications, languages, and systems, pages 146-160. 1988.

[Tambe, Newell and Rosenbloom 90]
Tambe, M., Newell, A., and Rosenbloom, P. S.
The problem of expensive chunks and its solution by restricting expressiveness.
Machine Learning 5(3):299-348, 1990.

[Waterman and Hayes-Roth 78]
Waterman, D. A., Hayes-Roth, F.
Pattern-directed inference systems.
Academic press, 1978.

