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A b s t r a c t 

The factorization method described in this series of reports requires an al­
gorithm to track the motion of features in an image stream. Given the 
small inter-frame displacement made possible by the factorization approach, 
the best tracking method turns out to be the one proposed by Lucas and 
Kanade in 1981. 
The method defines the measure of match between fixed-size feature windows 
in the past and current frame as the sum of squared intensity differences over 
the windows. The displacement is then defined as the one that minimizes 
this sum. For small motions, a linearization of the image intensities leads to 
a Newton-Raphson style minimization. 
In this report, after rederiving the method in a physically intuitive way, we 
answer the crucial question of how to choose the feature windows that are 
best suited for tracking. Our selection criterion is based directly on the 
definition of the tracking algorithm, and expresses how well a feature can be 
tracked. As a result, the criterion is optimal by construction. 
We show by experiment that the performance of both the selection and the 
tracking algorithm are adequate for our factorization method, and we address 
the issue of how to detect occlusions. In the conclusion, we point out specific 
open questions for future research. 
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Preface 

In principle, the stream of images produced by a moving camera allows the 
recovery of both the shape of the objects in the field of view, and the motion 
of the camera. Traditional algorithms recover depth by triangulation, and 
compute shape by taking differences between depth values. This process, 
however, is sensitive to noise for distant scenes. 

To overcome this problem, we have developed a factorization method 
to decompose an image stream directly into object shape and camera mo­
tion, without computing depth as an intermediate step. To explore this new 
method, we designed a series of eleven technical reports, as shown in figure 
1, going from basic theory to implementation. 

The first two report, already published as CMU-CS-90-166 and CMU-CS-
91-105, explore the idea in the case of planar motion, in which images are 
single scanlines, and then for unrestricted, 3D motion and complete images. 

The method used to select and track points from frame to frame is de­
scribed in detail in the present report, number 3. 

As to the future reports, number 4 and 5 address shape and motion recon­
struction and tracking for line features, rather than points. Reports number 
6 and 7 deal with perspective effects and degenerate motion. Occlusion can 
be handled by our method, as shown in report number 8, while number 9 
examines how to detect cases of spurious, that is, non-rigid, motion. The 
factorization algorithm in report number 2 deals with the whole stream of 
images at once; report number 10, in contrast, proposes an implementation 
that can work with an indefinitely long stream of images. 

Report number 11 considers a more radical departure from the assump­
tion of a static scene than spurious motion, that of several bodies moving 
independently in the field of view. 



1. planar motion 

2. point features 
in 3D motion 

4. line features 
in 3D motion 11. multiple motion 

6. perspective 

5. detection and tracking 
of line features 

7. degenerate 
motion 8. occlusion 9. spurious 

motion 

10. implementation issues 

Figure 1: The reports in the series. 



Chapter 1 

Introduction 

The factorization method introduced in reports 1 and 2 of this series [Tomasi 
and Kanade, 1990] [Tomasi and Kanade, 1991] requires selecting and tracking 
of features in an image stream. In this report we address the issues involved, 
and present our algorithm. 

In general, two basic questions must be answered: how to select the 
features, and how to track them from frame to frame. We base our solution 
to the tracking problem on a previous result by Lucas and Kanade [Lucas 
and Kanade, 1981], who proposed a method for registering two images for 
stereo matching. 

Their approach is to minimize the sum of squared intensity differences 
between a past and a current window. Because of the small inter-frame 
motion, the current window can be approximated by a translation of the old 
one. Furthermore, for the same reason, the image intensities in the translated 
window can be written as those in the original window plus a residue term 
that depends almost linearly on the translation vector. As a result of these 
approximations, one can write a linear 2 x 2 system whose unknown is the 
displacement vector between the two windows. 

In practice, these approximations introduce errors, but a few iterations of 
the basic solution step suffice to converge. The result is a simple, fast, and 
accurate registration method. 

The first question posed above, however, was left unanswered in [Lucas 
and Kanade, 1981]: how to select the windows that are suitable for accu­
rate tracking. In the literature, several definitions of a "good feature" have 
been proposed, based on an a priori notion of what constitutes an "inter-
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esting" window. For example, Moravec and Thorpe propose to use win­
dows with high standard deviations in the spatial intensity profile [Moravec, 
1980], [Thorpe, 1984], Marr, Poggio, and Ullman prefer zero crossings of the 
Laplacian of the image intensity [Marr et a/., 1979], and Kitchen, Rosen-
feld, Dreschler, and Nagel define corner features based on first and second 
derivatives of the image intensity function [Kitchen and Rosenfeld, 1980], 
[Dreschler and Nagel, 1981]. 

In contrast with these selection criteria, which are defined independently 
of the registration algorithm, we show in this report that a criterion can be 
derived that explicitly optimizes the tracking performance. In other words, 
we define a feature to be good if it can be tracked well. 

In this report, we first pose the problem (chapter 2), and rederive the 
equations of Lucas and Kanade in a physically intuitive way (chapter 3). 
Chapter 4 introduces the selection criterion. We then show by experiment 
(chapter 5) that the performance of both selector and tracker is satisfactory 
in a wide variety of situations, and discuss the problem of detecting feature 
occlusion. Finally, in chapter 6, we close with a discussion of the suitability 
of this approach to our factorization method for the computation of shape 
and motion, and point out directions for further research. 
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Chapter 2 

Feature Tracking 

As the camera moves, the patterns of image intensities change in a complex 
way. In general, any function of three variables J(x ,y ,£) , where the space 
variables x and y as well as the time variable t are discrete and suitably 
bounded, can represent an image sequence. However, images taken at near 
t ime instants are usually strongly related to each other, because they refer 
to the same scene taken from only slightly different viewpoints. 

We usually express this correlation by saying that there are patterns that 
move in an image stream. Formally, this means that the function I(x,y,t) 
is not arbitrary, but satisfies the following property: 

/ ( x , y , t + r ) = / ( a : - f , y - i ? , t ) ; (2.1) 

in plain English, a later image taken at time t + r can be obtained by moving 
every point in the current image, taken at time by a suitable amount. 
The amount of motion d = (£,77) is called the displacement of the point at 
x = (#,y) between time instants t and t + r , and is in general a function of 

y, i, and r . 
Even in a static environment under a constant lighting, the property 

described by equation (2.1) is violated in many situations. For instance, at 
occluding boundaries, points do not just move within the image, but appear 
and disappear. Furthermore, the photometric appearance of a region on a 
visible surface changes when reflectivity is a function of the viewpoint. 

However, the invariant (2.1) is by and large satisfied at surface markings, 
and away from occluding contours. At locations where the image intensity 
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changes abruptly with x and t/, the point of change remains well defined even 
in spite of small variations of overall brightness around it. 

Surface markings abound in natural scenes, and are not infrequent in 
man-made environments. In our experiments, we found that markings are 
often sufficient to obtain both good motion estimates and relatively dense 
shape results. As a consequence, this report is essentially concerned with 
surface markings. 

The Approach 
An important problem in finding the displacement d of a point from one 
frame to the next is that a single pixel cannot be tracked, unless it has a 
very distinctive brightness with respect to all of its neighbors. In fact, the 
value of the pixel can both change due to noise, and be confused with adjacent 
pixels. As a consequence, it is often hard or impossible to determine where 
the pixel went in the subsequent frame, based only on local information. 

Because of these problems, we do not track single pixels, but windows of 
pixels, and we look for windows that contain sufficient texture. In chapter 4, 
we give a definition of what sufficient texture is for reliable feature tracking. 

Unfortunately, different points within a window may behave differently. 
The corresponding three-dimensional surface may be very slanted, and the 
intensity pattern in it can become warped from one frame to the next. Or 
the window may be along an occluding boundary, so that points move at 
different velocities, and may even disappear or appear anew. 

This is a problem in two ways. First, how do we know that we are 
following the same window, if its contents change over time? Second, if we 
measure " the" displacement of the window, how are the different velocities 
combined to give the one resulting vector? Our solution to the first problem 
is residue monitoring: we keep checking that the appearance of a window has 
not changed too much. If it has, we discard the window. 

The second problem could in principle be solved as follows: rather than 
describing window changes as simple translations, we can model the changes 
as a more complex transformation, such as an affine map. In this way, dif­
ferent velocities can be associated to different points of the window. 

This approach was proposed already in [Lucas and Kanade, 1981], and 
was recently explored in a more general setting in [Rehg and Witkin, 1991]. 
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We feel, however, that in cases where the world is known to be rigid the dan­
ger of over-parametrizing the system outweighs the advantages of a richer 
model. More parameters to estimate require the use of larger windows to 
constrain the parameters sufficiently. On the other hand, using small win­
dows implies that only few parameters can be estimated reliably, but also 
alleviates the problems mentioned above. 

We therefore choose to estimate only two parameters (the displacement 
vector) for small windows. Any discrepancy between successive windows 
that cannot be explained by a translation is considered to be error, and the 
displacement vector is chosen so as to minimize this residue error. 

Formally, if we redefine J ( x ) = I(x, y, t + r ) , and / ( x — d ) = I(x — £, y — 
77,2), where the time variable has been dropped for brevity, our local image 
model is 

J ( x ) = I(x - d ) + n(x) , (2.2) 
where n is noise. 

The displacement vector d is then chosen so as to minimize the residue 
error defined by the following double integral over the given window W: 

6 = ^ [ / ( x - d ) - J(x)]2w dx . (2.3) 

In this expression, w is a weighting function. In the simplest case, w 
could be set to 1. Alternatively, w could be a Gaussian-like function, to 
emphasize the central area of the window. The weighting function w could 
also depend on the image intensity pattern: the relation (3.3) holds for planar 
patches, and w could be chosen, as suggested in [Lucas and Kanade, 1981], 
to de-emphasize regions of high curvature. 

Several ways have been proposed in the literature to minimize this residue 
(see [Anandan, 1989] for a survey). When the displacement d is much smaller 
than the window size, the linearization method presented in [Lucas and 
Kanade, 1981] is the most efficient way to proceed. 

In the next chapter, we rederive this method, and explain it in a physically 
intuitive way. Then, in chapter 4, we show that the registration idea can 
be extended also to selecting good features to track. As a consequence, 
feature selection is no longer based on an arbitrary criterion for deciding 
what constitutes a feature. Rather, a good feature is defined as one that can 
be tracked well, in a precise mathematical sense. 
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Chapter 3 

Solving for the Image 
Displacement 

In the previous chapter, we justified our local model of image changes as a 
simple translation, plus some noise (equation (2.2)), and we posed the regis­
tration problem as the minimization of the error residue defined by equation 
(2.3). In this chapter, we show that if the inter-frame displacement is suffi­
ciently small with respect to the texture fluctuations within the window, the 
displacement vector itself can be written approximately as the solution to a 
2 x 2 linear system of equations. 

When the displacement vector is small, the intensity function can be 
approximated by its Taylor series truncated to the linear term: 

where h = 7(x) — J ( x ) . 
This residue is a quadratic function of the displacement d . As a conse­

quence, the minimization can be done in closed form. Differentiating the last 
expression of the residue e in equation 3.1 with respect to d and setting the 
result equal to zero yields the following vector equation: 

/ ( x - d ) = / ( x ) - g - d , 

and we can write the residue defined in equation (2.3) as 

(h - g • d)gwdA = 0 . 
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Since (g • d )g = ( g g T ) d , and d is assumed to be constant within W, we 
have 

(JwggTwdA)d = JwhSwdA. 
This is a system of two scalar equations in two unknowns. It can be 

rewritten as 

Gd = e , (3.2) 

where the coefficient matrix is the symmetric, 2 x 2 matrix 
G= f ggT wdA, 

Jw 

and the right-hand side is the two-dimensional vector 

e = / (I-J)gwdA . 

In the last expression, we wrote h explicitly as the difference between the 
two frames / and J . 

Equation (3.2) is the basic step of the tracking procedure. For every 
pair of adjacent frames, the matrix G can be computed from one frame, by 
estimating gradients and computing their second order moments. The vector 
e , on the other hand, can be computed from the difference between the two 
frames, along with the gradient computed above. The displacement d is then 
the solution of system (3.2). 

Physical Interpretation 
To understand the meaning of this solution, we rederive the expression (3.1) 
of the residue e in a physically more intuitive way. 

Consider the intensity function within the window W. Figure 3.1 shows 
an example. Make a second copy of it, and superimpose it on the first. There 
is no space between the two intensity surfaces. If you now move the copy by 
a small horizontal displacement, a gap forms between the two surfaces. 

The width of the gap, measured horizontally, is a function of the displace­
ment between the two intensity patches. When measured vertically, on the 
other hand, the width of the gap is just the difference between the values of 
the two intensity profiles. 
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Figure 3.1: Example of image intensity function within a small window. 
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In the following, we show that for small displacements the horizontal and 
the vertical width of the gap at a given point in the image are related to each 
other through the image gradient at that point. As a consequence, we can 
write the infinitesimal volume of the gap in a neighborhood of a given point 
in two different ways. One is a function of the displacement, the other is not. 

We then look for the displacement that makes the difference between the 
two expressions as small as possible in the Least Squared Error sense and over 
the entire window W. This yields, by a different route, the last expression 
given in equation (3.1) for the residue e. 

Figure 3.2 shows a small patch of the intensity function 7 ( x ) and the 
corresponding translated patch behind it. The same figure shows also a cross 
section of the two patches along the direction of the image gradient. 

The displacement vector d is in general in a different direction than the 
image gradient g = (f̂ , If the gradient is expressed as 

g = # u , 

where g is the magnitude of g and u is a unit vector, then the displacement 
A measured along the gradient direction is the projection of d along u : 

A = d u . 

From the right part of figure 3.2, we see that the vertical gap width 
h = I — J is 

h = A tan a , 

where a is the maximum slope of the patch. Since the tangent of a is equal 
to the magnitude g of the gradient, we can write 

h = Ag = dug = d- g . 

By equating the first and last term, we obtain the following equation relat­
ing the image gradient g , the inter-frame displacement d , and the difference 
h between image intensities: 

g • d = h . (3.3) 

This is a scalar equation in the two-dimensional unknown d . The image 
gradient g can be estimated from one image, while the difference h is easily 
computed from both. 
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Figure 3.2: Two corresponding image intensity patches (left), and a section 
of the same through the direction of the gradient (right). A is the projection 
of the displacement d along the gradient g . 
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The fact that the number of unknowns in equation (3.3) exceeds the num­
ber of constraints is called the aperture problem in the literature [Hildreth, 
1983], [Horn and Schunck, 1981]: if we just look at that patch (as if through 
a small aperture), we cannot determine the displacement d , but at most one 
component of it. 

If we now consider the whole window W, however, different patches may 
allow us to compute different components of the displacement vector, as­
sumed to be constant within W. To combine these measurements, we ob­
serve that if the displacement d is assigned a wrong value, there will be a 
difference between the left and the right-hand side of equation (3.3). The 
best value for d can be chosen as the one that minimizes the square of that 
difference, integrated over the entire window. In other words, we minimize 
the weighted residue 

/ (h-g-d)2wdA 
Jw 

with respect to d . By comparing with equation (3.1), we see that the ex­
pression above is equal to the residue e, as desired. 

Equation (3.3) holds exactly either when the displacement d approaches zero, 
or when the image intensities are linear functions of the image coordinates 
x and y. In fact, this equation assumes that the patches in figure 3.2 be 
planar. For finite displacements, the approximation will cause some error on 
d especially at high-curvature points in the image intensity function. 

As a consequence, the solution d to equation (3.2) will usually contain 
some error. However, the images can be approximately registered by using 
this solution, and the basic step (3.2) can be repeated. At every iteration 
step, images are resampled by bilinear interpolation to achieve subpixel ac­
curacy. The closer we are to the solution, the better the approximations 
underlying equation (3.2). In practice, we found that very few iterations 
usually suffice for convergence. We discuss some experiments in chapter 5. 

Not all parts of an image lend themselves equally well to this tracking 
method. For instance, when the intensity pattern / is constant, the matrix G 
is null, and the displacement d is undefined. In the next chapter, we address 
the problem of how to select good windows to track. 
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Chapter 4 

Feature Selection 

Regardless of the method used for tracking, not all parts of an image contain 
motion information. Similarly, along a straight edge, we can only determine 
the motion component orthogonal to the edge. 

In general terms, the strategy for overcoming these difficulties is to use 
only regions with a rich enough texture. In this spirit, researchers have 
proposed to track corners, or windows with a high spatial frequency content, 
or regions where some mix of second-order derivatives was sufficiently high. 

All these definitions usually yield trackable features. However, these "in­
terest operators" are often based on a preconceived and sometimes arbitrary 
idea of what a good window looks like. In other words, they are based on the 
assumption that good features can be defined independently of the method 
used for tracking them. The resulting features may be intuitive, but come 
with no guarantee of being the best for the tracking algorithm to produce 
good results. 

Instead, we propose a more principled approach. Rather than defining 
our notion of a good window a priori, we base our definition on the method 
we use for tracking. A good window is one that can be tracked well. With 
this approach, we know that a window is omitted only if it is not good enough 
for the purpose: the selection criterion is optimal by construction. 

With the formulation of tracking introduced in the previous section, this 
concept is easy to formalize. In fact, we can track a window from frame 
to frame if the system (3.2) represents good measurements, and if it can be 
solved reliably. 

This means that the 2 x 2 coefficient matrix G of the system must be 
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both above the image noise level and well-conditioned. In turn, the noise 
requirement implies that both eigenvalues of G must be large, while the 
conditioning requirement means that they cannot differ by several orders of 
magnitude. 

Two small eigenvalues mean a roughly constant intensity profile within a 
window. A large and a small eigenvalue correspond to a unidirectional pat­
tern. Two large eigenvalues can represent corners, salt-and-pepper textures, 
or any other pattern that can be tracked reliably. 

In practice, when the smaller eigenvalue is sufficiently large to meet the 
noise criterion, the matrix G is usually also well conditioned. This is due 
to the fact that the intensity variations in a window are bounded by the 
maximum allowable pixel value, so that the greater eigenvalue cannot be 
arbitrarily large. 

As a consequence, if the two eigenvalues of G are Ai and A 2 , we accept a 
window if 

min(Ai, A2) > A , (4.1) 

where A is a predefined threshold. 
To determine A, we first measure the eigenvalues for images of a region of 

approximately uniform brightness, taken with the camera to be used during 
tracking. This gives us a lower bound for A. We then select a set of various 
types of features, such as corners and highly textured regions, to obtain an 
upper bound for A. In practice, we have found that the two bounds are 
comfortably separate, and the value of A, chosen halfway in-between, is not 
critical. 
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Chapter 5 

Experiments 

In this chapter, we evaluate the performance of both feature selection and 
tracking on real images. To this end, we use a stream of 100 frames, showing 
surfaces of several different types: a furry puppet, a cylindrical and glossy 
mug with strong surface markings, an artichoke, a flat model street sign. 
Figures 5.1 and 5.2 show the first and the last frame of the stream, respec­
tively. Between frames, the camera was translated to the right, producing a 
displacement of about one pixel per frame. 

5.1 Feature Selection 
Figure 5.3 shows an intensity encoding of the value of the smaller of the two 
eigenvalues of the tracking matrix G (see equation 3.2) for all the square 
windows of size 15 in the first frame. We call this the minor eigenvalue. 

Figure 5.4 shows a histogram of the eigenvalues displayed in figure 5.3. 
For feature detection, we choose a threshold somewhere in the large gap 
between the near-zero and the higher cluster. Because of the size of that 
gap, the threshold value is not critical. We select a value of 10. 

The feature selection algorithm sorts the minor eigenvalues in decreasing 
order, and picks feature coordinates from the top of the sorted list. Every 
time a coordinate pair is selected, it is assigned a new feature number. To 
obtain non-overlapping features, all the features in the list that overlap the 
window centered at the selected pair are deleted. Figure 5.5 shows the feature 
windows computed from the frame in figure 5.1. If desired, the requirement 
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Figure 5.1: The first frame of the stream used in the experiments. 
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Figure 5.2: The last frame of the stream. The total image displacement from 
first to last frame is about 100 pixels (one pixel per frame). 
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of zero overlap can be relaxed by enforcing a minimum distance between 
window centers smaller than the window size. 

From figure 5.5, we see that the eigenvalue criterion selects the corners on 
the mug as well as fuzzier features on the puppet, both along the edges of the 
spots, and elsewhere. Also, a considerable number of features is found on the 
artichoke, where the intensity patterns are very irregular. The background, 
as well as the relatively uniform areas on the pedestrian sign and on the mug, 
contain no features. It is doubtful that any useful motion information can 
be extracted from those areas. 

No features are found along the straight edges on the mug. These edges 
are characterized by a nearly-zero minor eigenvalue, and are good examples of 
regions suffering from the so-called "aperture problem" discussed in chapter 
3. 

Figures 5.6 and 5.7 show four sample feature windows. Each pair of 
illustrations shows the grey values within a window, and its isometric plot. 
All feature windows have substantial variations of intensity, but can hardly 
be classified as "corners". 

An interesting phenomenon can be noticed in figure 5.5 concerning fea­
tures at the corners on the mug: these windows are almost invariably posi­
tioned so that the corner in each of them is at the very edge of the window, 
which is filled by the brighter side of the corner (see for instance feature 
number 1). 

This phenomenon is due to the fact that the intensity variations in the 
bright regions, albeit very small, are larger than those in the dark regions. 
The odd placement of the corner windows, then, indeed maximizes the in­
tensity variations within the windows. 

Although this phenomenon presented no difficulty in our experiments, it 
is possible that with noisier images the "interesting" part of the feature is lost 
from one frame to the next because it is too close to the window boundary. 
We leave the exploration of this conjecture to future work. 

5.2 Tracking 
Figure 5.8 shows the last of the 100 frames in the sequence, with the superim­
posed features, as tracked by the algorithm. Each feature required typically 
fewer than five iterations of the basic tracking step (see equation 3.2) to 
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Figure 5.3: The minor eigenvalue of G (see equation (3.2)) for the first frame 
in the stream (figure (5.1)). Brighter areas correspond to higher values. 
The intensities in this display were compressed logarithmically. The square 
patterns reflect the shape of the 15 x 15 window used by the detector (and 
the tracker). 
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Figure 5.4: Histogram of the minor eigenvalues. Notice the wide gap between 
the near-zero values, corresponding to the background and to uniform regions 
in frame 1, and the upper cluster. 
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Figure 5.5: The non-overlapping features produced by thresholding the eigen­
values of figure 5.3 with a value of 10. Some features are numbered for 
reference in the text. 
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Figure 5.6: Two sample feature windows: the head of the man on the pedes­
trian sign (feature 2), and a corner on the mug (feature 28). 
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Figure 5.7: Two more sample feature windows: a detail of the artichoke 
(feature 48), and a spot on the puppet (feature 211). 
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stabilize the displacement estimate to within one hundredth of a pixel. 
217 of the 226 features selected in the first frame survive tracking through­

out the stream. No gross errors are made for any of the surviving features. 
Of the nine missing features at the end of the stream, six disappear off the 
right image boundary. Of the other three, two (201 and 207, on the fur of 
the puppet) are too weak to be tracked. 

The ninth missing feature, number 79, on the right side of the mug in 
figure 5.5, is lost because in frame 40 the tracker did not converge within 
ten iterations. It would have taken 14 iterations for complete convergence, 
that is, to bring the change in displacement due to a new iteration below one 
hundredth of a pixel. The reason for the large number of iterations is that 
feature 79 is on top of a glossy surface viewed at a substantial slant angle. 
This causes the feature window to change its appearance substantially from 
frame to frame. 

During tracking, a cumulative residue is computed for each feature win­
dow. This residue is defined as the root-mean-squared intensity difference 
between the first and the current window. The cumulative residue is plot­
ted in figure 5.9 as a function of the frame number. Notice that most of 
the residue curves grow at the rate of about one intensity level per pixel 
every one-hundred frames. As discussed below, a larger residue may indicate 
occlusion. 

Window Size and Occlusion 
As discussed in chapter 3, smaller windows are more sensitive to noise. How­
ever, they are also less likely to straddle surface discontinuities, or to be 
affected by distortions due to changes of viewpoint. To illustrate this point, 
we compared tracking of feature number 2 with square windows 15 and 31 
pixels wide. Feature number 2 is the head of the pedestrian on the sign (see 
figure 5.6). In figure 5.10, the tracks left by feature number 2 are shown for 
the two window sizes. 

At the end of the tracking process, there is a difference between the 
results: the discrepancy is of about 3 pixels horizontally, and about 0.8 pixels 
vertically. One of the two final coordinate pairs must be wrong. The reason 
for the discrepancy can be seen from figure 5.11, which shows the first and 
last windows in the stream with the 31-pixel windows. Halfway through the 
stream, the edge of the artichoke appeared in the window, causing the error 
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Figure 5.8: The features surviving through the 100 frames. Of the 226 start­
ing features, only nine disappear, six of them off the right image boundary. 
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Figure 5.9: Cumulative root-mean-squared residues between the current and 
the first frame for all of the features selected by our method. Units are 
intensity levels per pixel, versus the frame number. Features 7, 8, 12, 16, 17, 
and 97 are occluded during the stream. 
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in the displacement values. 
Small windows minimize these occlusion problems. On the other hand, 

they will occur no matter what the size of the window. The dashed line in 
figure 5.9 suggests a threshold on the cumulative residue for the detection 
of occlusions. Of the features above the threshold, those numbered 7, 8, 12, 
16, 17, and 97 are occlusions. The other features, numbered 1, 4, 30, are 
in an area of the mug that receives strong reflections from the light source. 
As a result, the overall intensity pattern changes substantially from the first 
to the last frame, increasing the value of the residue even if the features are 
tracked well (compare figure 5.5 with the last frame, figure 5.8). 

This simple occlusion detection method would identify most occlusions, 
at least for the sequence used for this experiment. It is possible that modeling 
window changes as affine transformations, rather than simple translations, 
increases the separation between good and bad residues, thus yielding a more 
reliable detection. 

False Features 
Other occlusion phenomena produce problems that are more difficult to de­
tect. For instance, feature number 45 starts at the intersection of the right 
boundary of the artichoke with the upper left edge of the traffic sign (see fig­
ure 5.5). As the camera moves, the local appearance of that intersection does 
not change, but its position in space slides along both edges. The tracker 
cannot notice the problem, but the feature would create a bad measurement 
for any motion and shape method that assumes that features correspond to 
static points in the environment. However, this problem can be detected in 
three dimensions, after the motion and shape algorithm has been applied. 
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Figure 5.10: Results of tracking feature 2 (the man's head on the sign) with 
two different window sizes (square windows of 15 and 31 pixels). The distance 
between the right endpoints is about 3 pixels horizontally and 0.8 pixels 
vertically. 

Figure 5.11: A large window is more likely to change dramatically during 
camera motion. Here, the boundary of the artichoke appears within the 
large 31 x 31 window of feature 2 (the head of the pedestrian on the sign) 
somewhere between frame 1 (top) and 100 (bottom), causing the error in 
figure 5.10. The smaller, 15 x 15, window (outlined in white) is less susceptible 
to the problem. 
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Chapter 6 

Conclusion 

The main focus of our research on visual motion is the reconstruction of 
three-dimensional shape and motion from the motion of features in an im­
age sequence, as outlined in the first two reports of this series [Tomasi and 
Kanade, 1990], [Tomasi and Kanade, 1991]. Many algorithms proposed in 
the literature for similar purposes assume that feature points are available 
from some unspecified "previous processing". 

Of course, the validity of these algorithms, including ours, depends crit­
ically on whether this preliminary processing can actually be done. In this 
technical report, we have shown that it is possible to go from an image stream 
to a collection of image features, tracked from frame to frame. 

We chose to use the window-based technique proposed in [Lucas and 
Kanade, 1981], because it is simple, fast, and gives accurate results if windows 
are selected appropriately. 

The need for a careful choice of the windows to track is crucial, and 
we proposed a direct and effective solution to this problem. The proposed 
criterion, based on the size of the smaller eigenvalue of the tracking matrix 
£?, is well justified by the nature of the tracking method. Furthermore, it 
subsumes previous feature selection criteria, in that it detects corners equally 
well as regions with high spatial frequency content, or with high second-order 
derivatives, or high values of intensity variance. 

The experiments outlined in chapter 5, as well as those described in other 
reports in this series, show that the overall performance is good. 

Of course, this method does not settle the issue of motion detection in 
image sequences. Window tracking requires good surface markings, can give 
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rise to false measurements from windows along occluding boundaries, and 
yields relatively sparse results. 

However, false measurements should probably be detected at a higher 
level in the processing chain, when measurements are combined into three-
dimensional motion and shape estimates. 

Also, results from surface markings are very accurate, typically to within 
one tenth of a pixel or better, and are therefore well suited for motion and 
shape estimation. 

As to sparsity, if rich shape results are the goal, the shape and motion 
method will have to be complemented with other techniques for a denser 
reconstruction of surfaces. However, the number of features obtained in 
typical scenarios [Tomasi and Kanade, 1991] is more than sufficient to obtain 
accurate motion results, and to initialize a dense shape map, to be used by 
other modules for a more detailed reconstruction of the visible surfaces. 

Future Work 
As an agenda for future work on the detection and tracking of features in a 
stream of images, we now summarize the issues we left open in this report. 

Two parameters need to be specified for detection and tracking: the size 
of the window and the detection threshold. We have argued that windows 
should be as small as possible, compatibly with good noise rejection. How­
ever, it has been shown [Okutomi and Kanade, 1990] that a careful choice of 
the window size can improve performance considerably. It would be interest­
ing to develop an inexpensive and automatic window size selection algorithm. 

The feature detection threshold was chosen in this report based on a 
histogram of the minor eigenvalues for the entire image (figure 5.4). Also 
this parameter should, in the future, be selected automatically. 

In chapter 2, we argued that for small windows a pure translation model 
of image changes gives more reliable results than a model with more param­
eters. On the other hand, in chapter 5, we also conjectured that an affine 
transformation model would improve the discrimination power of the occlu­
sion detector. This suggests a combined strategy: the translation model is 
more adequate for the registration of adjacent frames, while a more sophis­
ticated transformation model is probably required when comparing distant 
frames (in the first and the current image), as done for the detection of 
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occlusions. How far the occlusion detector can be improved by the affine 
transformation model is an interesting open question. 

In the discussion of figure 5.5, we pointed out the asymmetric behavior of 
the feature selector for corner-like regions: the corner almost always appears 
along the boundary of the window. It would be interesting to explore this 
phenomenon. First of all, it should be determined whether this is at all a 
problem, that is, if it can cause features to be lost when images are very 
noisy. If so, it should be possible to add a feature stability criterion to the 
maximization of min(Ai, A 2 ) : choose features so as to maximize the minor 
eigenvalue and the spatial stability of the feature in the presence of image 
noise. The exact formalization of this stability criterion, as well as the recipe 
for combining it with the eigenvalue maximization rule, are open research 
questions. 

Finally, a complete investigation of the detection and tracking methods 
presented in this report requires a more thorough performance evaluation. 
First, the methods should be compared experimentally with those previously 
proposed in the literature. Second, performance should be measured for a 
large number of sequences in a more diverse set of situations. 
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