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Abstrac t 

We report progress in two closely related lines of research: the semantic study of sequentiality 
and parallelism, and the development of a theory of intensional semantics. We generalize Kahn 
and Plotkin's concrete da ta structures to obtain a cartesian closed category of generalized concrete 
da ta structures and continuous functions. The generalized framework continues to support a defi
nition of sequential functions. Using this ccc as an extensional framework, we define an intensional 
framework — a ccc of generalized concrete da ta structures and parallel algorithms. This construc
tion is an instance of a more general and more widely applicable category-theoretic approach to 
intensional semantics, encapsulating a notion of intensional behavior as a computational comonad, 
and employing the co-Kleisli category as an intensional framework. We discuss the relationship 
between parallel algorithms and continuous functions, and supply some operational intuition for 
the parallel algorithms. We show that our parallel algorithms may be seen as a generalization of 
Berry and Curien\s sequential algorithms. 
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1 I n t r o d u c t i o n 

In this paper we present progress in two closely related themes of research in programming language 
semantics. The first concerns the semantic study of sequentiality and parallelism, and the second 
is the development of a general theory of intensional semantics in which one may give a variety of 
semantics to a language, at differing levels of intensional detail, and establish natural relationships 
between the meanings of terms at each level. 

There has been much work on the search for a semantic characterization of sequential com
putation. Since the conventional continuous functions semantic model contains inherently parallel 
functions, such as parallel-or, a suitable definition of sequential functions is a necessary pre-requisite 
in the search for a natural (i.e., syntax- and language-independent) fully abstract semantic model 
for sequential programming languages such as P C F [Plo77, Mil77, BCL85, Sto88]. 

A general definition of sequential functions has been given by Kahn and Plotkin in the restricted 
setting of concrete da ta structures [KP78]. Berry and Curien have shown, however, that concrete 
da ta structures are not closed under any of the continuous function space, stable function space 
or sequential function space; as a consequence, concrete da ta structures do not form a ccc when 
the morphisms are taken to be any of the continuous functions, stable functions or sequential 
functions [BC82]. To date, no sequential extensional model has been found. 

Our first contribution is the definition of a new class of generalized concrete data structures, 
introduced in section 2. Essentially, the generalization consists in adding a poset structure to the 
cells of a concrete da ta structure; the original Kahn-Plotkin concrete da ta structures correspond 
to cases where the cell poset is discrete. We show that generalized concrete da ta structures are 
closed under the continuous function space, and form a ccc with continuous functions as morphisms. 
The states of a generalized concrete da ta structure, ordered by set inclusion, form what we call a 
generalized concrete domain. Every generalized concrete domain is also a Scott domain, but the 
converse is false. We define distributive generalized concrete da ta structures, a generalization of 
the deterministic (or stable) concrete da ta structures, and we show that they form a full sub-ccc 
of the category of generalized concrete data structures. We also sketch the construction of a ccc of 
distributive gCDSs and stable functions, obtained by varying the notion of a s tate . 

The generalized concrete da ta structures continue to support a definition of sequentiality, so 
that we have significantly expanded the setting where sequential functions may be identified. We 
believe that the category of generalized concrete data structures and continuous functions is the 
first non-trivial ccc in which one may identify the sequential functions between any two objects. 
The identity function on a generalized concrete da ta structure is sequential, and the sequential 
functions between generalized concrete data structures are closed under composition. We do not 
know yet if the set of sequential functions between two generalized concrete da ta structures itself 
forms a generalized concrete da ta structure, so we do not claim (yet) to have produced a satisfactory 
sequential extensional model. 

The failure of concrete data structures to support an extensional semantic model has led Berry 
and Curien to define an intensional semantic model: a cartesian closed category of deterministic 
concrete da ta structures and sequential algorithms [BC82, Cur86]. A sequential algorithm may be 
seen as a sequential function paired with a sequential computation strategy. 

The appeal of intensional semantics lies in making it possible to use semantic methods to 
reason about a broader range of properties of programs. Traditionally, the denotational semantics 
approach focuses on the extensional aspects of programs, and abstracts away all intensional details; 
other tools must be used to reason about intensional properties. By employing a different level 
of abstraction that retains intensional information about programs (at a level appropriate to the 
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task at hand) , one should be able to use an intensional denotational semantics to reason about 
the intensional aspects of programs, such as laziness and complexity (see for instance [Col89] for a 
potential application). 

One of our initial goals in this study has been the definition of a richer intensional semantic 
model by generalizing Berry and Curien's sequential algorithms between concrete da ta structures 
to parallel algorithms. Our thesis is tha t , by analogy with the characterization of sequential 
algorithms, a parallel algorithm should correspond to a continuous function paired with a parallel 
computation strategy. A previous a t tempt was our "query model" of parallel algorithms [BG90]; 
although this work has generated some useful insights, it was only partly successful in providing 
the desired generalization of sequential algorithms, since we were unable to equip this model with 
a satisfactory categorical structure. Our continued efforts to generalize sequential algorithms have 
led to the progress reported herein. 

We have been able to formalize the construction of an intensional semantic framework, given 
an extensional semantic framework and a notion of intensional behavior [BG91]. In accordance 
with this approach, we use here the terms "extensional" and "intensional" as relative terms - they 
serve to identify different levels of abstraction. Category-theoretically speaking, the extensional 
framework is a ccc C, the intensional behavior is defined by a computational comonad T over C, 
and the derived intensional framework is the co-Kleisli category Cj of C and T. We remark that 
if C is a ccc and T preserves products then CT is also a ccc [See89]. This construction is quite 
general, and completely divorced of the concrete da ta structures setting where we first observed its 
applicability. We believe that this approach can serve as the basis for the development of a rather 
general theory of intensional semantics. 

However, since there is no suitable extensional ccc with concrete da ta structures as objects (and 
some class of functions as morphisms), the desired parallel generalization of sequential algorithms 
cannot be obtained by a direct application of the co-Kleisli construction. Instead, we move to 
the setting of generalized concrete da ta structures, which does not suffer from these limitations. 
Using the ccc of generalized concrete da ta structures and continuous functions as an extensional 
framework, we define in section 3 a simple and intuitive notion of intensional behavior based on 
the idea that a computation is a sequence of incremental evaluation steps. We encapsulate this 
notion in the definition of a comonad of paths, and we use the co-Kleisli construction to obtain 
a ccc of generalized concrete da ta structures and parallel algorithms. We discuss the relationship 
between the intensional and extensional categories, by showing that every algorithm determines a 
continuous input-output junction and that every continuous function is the input-output function 
of some algorithm. This shows that a parallel algorithm may indeed be viewed as a continuous 
function paired with a computation strategy. Although we do not give a formal definition of the 
notion of computation strategy, we do supply some operational intuition. 

In section 4 we show how our parallel algorithms on generalized concrete da ta structures gener
alize Berry and Curien's sequential algorithms on concrete da ta structures. We define an embedding 
function that takes each Berry-Curien algorithm to its analogue in our model, which may be thought 
of as a degenerate parallel algorithm that operates sequentially. 

We conclude by outlining a number of directions for further work. 
In this paper we do not present the details behind the co-Kleisli construction and the related 

category-theoretic development. Instead we focus directly on the specific case at hand. For an 
exposition in more general terms, with full explanations of the relevant category-theoretic defini
tions and results, we refer the reader to [BG91], which also contains a detailed exploration of the 
relationships between extensional and intensional semantic models that may be defined within the 
frameworks described here. 
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2 Generalized Concrete Data Structures 
Definit ion 2.1 A Generalized Concrete Data Structure or gCDS (C, V , E , h ) consists of 

• A countable poset (C, < ) of cells. 

• A countable set V of values. 

• A set E C C x V of events. 

The set of events must be upwards-closed with respect to the cell ordering: if (c,v) G E and 
c < c' then (c', v) G E. 

• An enabling relation h between finite sets of events and cells. 

The enabling relation must be upwards-closed with respect to the cell ordering: if y h c and 
c < cl then y h c'. 

The enabling relation defines a precedence relation <C over cells: c <C c' iff y U {(c, i;)} h c' 
for some v and y. We require that the precedence relation be well-founded. 

Let M , M ' , ete., denote gCDSs in the following discussion. • 

We say that a cell c is filled in a set y of events iff (c, v) G 2/ f ° r some v; we write F(y) for the 
cells filled in y. If y1 h c we say that y' is an enabling of c. A cell c is enabled in y iff there exists 
an enabling yf C y of c. We write this as y' h y c, and we let E(y) be the set of cells enabled in y. 
A cell is accessible from y iff it is enabled in y but not filled; we let A(y) = E(y) \ F(y). A cell is 
initial iff it is enabled by the empty set of events. 

Definit ion 2.2 A state of M is a set x C E with the following three properties: 

• Functional: if (c, v i ) , (c , V2) G x then v\ = V2. 

• Safe: every cell filled in x has an enabling in x. 

• Upwards-closed with respect to the cell ordering: if (c,v) G x and c < c' then (c',v) G ^. 

Equivalently, this property may be stated as the requirement that x = up(V), where up is the 
upwards-closure operation over sets of events: 

up(ar) = {(c',v) \3c<c' . (c.v) G x} . 

We write V(M) for the poset of states of M , ordered by set inclusion. We say that this is the 
domain generated by M. We refer to the domains generated by generalized concrete da ta structures 
as generalized concrete domains. • 

E x a m p l e 2.3 The gCDS Nul l has no cells, values, events or enablings. It has a single s tate , the 
empty set. 

The gCDS Two has a single cell *, which is initial and may be filled with the value *. It generates 
(a domain isomorphic to) the two point domain, with states 0 and T = { (* ,* )} . 

The gCDS Bool has a single cell b, which is initial and may be filled with either of the values 
t t or ff. It generates (a domain isomorphic to) the usual boolean domain, with states 0, { ( b , t t ) } 
and { ( b , f f ) } . 
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The gCDS V n a t has the natural numbers as cells, ordered discretely. Each cell may be filled 
with the value *. The cell 0 is initial, and for every k, {(&,*)} h H 1. The domain X>(Vnat) is 
isomorphic to the vertical ordering of the natural numbers (i.e., n < n + 1), with a limit point 
added at infinity: an integer n corresponds to the state {(&,*) | k < n } , and u corresponds to the 
s tate {(&,*) | k G IN}. We may use the integers and u to denote the states of V n a t . • 

2 .1 G e n e r a l i z e d C o n c r e t e D o m a i n s 

We now give a partial domain-theoretic characterization of the generalized concrete domains. 

Propos i t i on 2.4 Generalized concrete domains are Scott domains, i.e., consistently complete, di
rected complete UJ-algebraic posets. The empty set is the least element, and the lub of an upper-
bounded or directed set of states is given by its union. The finite elements (i.e., isolated elements) 
of a generalized concrete domain are states that are the upwards-closure of some finite set of events. 

Not all Scott domains are generalized concrete domains. This is because all generalized concrete 
domains have property (Qj), the uniqueness part of property (Q) enjoyed by CDSs [KP78]. 

For x and y elements of a domain D, we say that y covers x iff x < y and there is no z such 
that x < z < y. We say that a domain D has property (Q») iff: 

(Q») For any x, j / , Z\,Z2 G D, if j / , z\ and z<i cover x, y is inconsistent with both of z\ and ^2? a n d 
z\ and Z2 are consistent, then z\ = Z2-

P r o p o s i t i o n 2.5 Every generalized concrete domain has property (Q\). 

Proof: For a generalized concrete domain P ( M ) , if x is covered by y then there exists some event 
(c,v) (with c maximal in the cell ordering) such that y = x U {(c,v)}. 

Moreover, if x is covered by y and z, and y and z are inconsistent, then y = x U {(c, v)} and 
z = x U {(c , i / )} for some c (again, maximal) and v ^ v'. 

It follows that V(M) has property (Qj). • 

2 .2 T h e C o n t i n u o u s F u n c t i o n s C a t e g o r y 

We define the category g C D S c o n t with gCDSs as objects and continuous functions between V(M) 
and V(M') as the morphisms between M and A/'. Composition is taken to be function composition, 
and the identity morphisms are just the identity functions. An equivalent category is the category 
of generalized concrete domains and continuous functions, a full sub-category of the category of 
Scott domains and continuous functions. We now show that g C D S c o n t is cartesian closed. 

The gCDS Nul l is a terminal object in g C D S c o n t . 
The product construction is a straightforward generalization of the product for concrete da ta 

structures [Cur86]. We write c.i for the pair (c , i ) , where c is a cell and i is a tag - we use 1 and 
2 as tags for the product. For a set of cells C and a set of events y, we write C.i and y.i for 
{c.i | c G C} and {(c.i,v) \ (c,v) G y}, respectively. We build the product of two gCDSs by taking a 
disjoint union of the two posets of cells, of the two sets of events, and of the two enabling relations. 

Definit ion 2.6 The product of two gCDSs A/ a and A/ 2 is defined by: 

• CMLXM2 = C a / I - 1 u C A / 2 -2, ordered by: c.i < m i X a / 2 c'.i' iff c <Mi cf and i = i1. 

• V m i X m 2 = V a / j U V a / 2 . 
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• E A / ! X M 2 = E A / J .1 U E M 2 .2. 

• y.i cA iff y h M t c. 

P r o p o s i t i o n 2.7 TVae product is well defined, i.e., events and enablings are upwards closed, and 
countability and well foundedness are preserved. 

We define pairing and projections. For x £ V(M\ x M 2 ) and X{ € V{Mi) for i = 1,2, 

( £ 1 , 2 2 ) = U ^ 2 - 2 

7 R T - ( A : ) = { ( C , V ) I ( C . i , I ; ) G X } . 

Propos i t i on 2.8 The domain V{M\ X M 2 ) w isomorphic to V(M\) x P ( A / 2 ) (ordered componen
twise). 

Corol lary 2.9 Tfte gCDS product is a categorical product in g C D S c o n t . 

Def init ion 2.10 Given two gCDSs M and Af, we define the gCDS M — M' by: 

• C A / _ + A / / = 2?fin(Af) X C A / / where P f i n (M) consists of the finite elements of £>(M), ordered 
by inclusion, and the poset product is ordered componentwise. 

We use juxtaposition for the cells of an exponentiation, writing xc1 for the cell (# ,c ' ) . 

• VM-+M' - V A / 7 -

• E M _ A / ' = {{XC'.V1) e C A / _ A / ' X \ R M - , M > I € E A / ' } . 

• {(ar j C ; , I 1 < j < 1} K \ / — A / ' iff {(c$, ^ ) | 1 < j < 1} \-M' c' and Vj < / , X j C a. 

Essentially, the cells of M M' are cells of M ' tagged with (finite) information about the input, 
represented as a finite state of M. The enabling relation ensures the appropriate combination of 
this input information. There is a very close correspondence between our definition of M —• M' 
for gCDSs and the extensional components (the output values) of Berry and Curien's sequential 
algorithms exponentiation of CDSs [Cur86] (see the definition in section 4). 

Propos i t i on 2.11 For all gCDSs M and A/', M —> M1 is well defined: i.e., events and enablings 
are upwards closed, and countability and well foundedness are preserved. 

Propos i t i on 2.12 The domain V(M — M') is isomorphic to the continuous function space be
tween V(M) and V(M'), ordered pointwise. 

The isomorphism is given, for a 6 V(M Mf) and f : V(M) — V{Mr), by: 

a ^ XZE V(M) , {(c',u') I 3X C z . (xc',vr) e a} 
f ^ {(xc\v')£EM^M, \(c\v')E f(x)}. 

Given the isomorphism, it is clear that the morphisms from M to M' may equivalently be taken 
to be the states of M —* A/'. Since application is continuous and currying is well behaved, it is 
clear that M —? M' is in fact an exponentiation object for M and M' in the category g C D S c o n t . 

Corol lary 2.13 g C D S c o n t is a cartesian closed category. 

E x a m p l e 2.14 The gCDS Vnat — Two has cells { 7 ? * | n £ IN}, ordered vertically (i.e., n* < 
n + 1*). Each cell may be filled with the value *. The isomorphism between X>(Vnat —> Two) and 
the continuous function space from I)(Vnat) to P(Two) may be easily discerned. • 
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2 .3 D i s t r i b u t i v e g C D S s 

Definit ion 2.15 We extend the cell ordering to events as follows: (c,v) < (c\v') iff c < c' and 
v = v'. We then extend the ordering to finite sets of events by: y < y' iff there exists a bijection 
4> : V —* y1 such that (c ,v) < (j>(c, v), for all (c,v) G y. • 

Defini t ion 2.16 A gCDS M is distributive iff for all states x of M , if y\ hx c and c then 
there exists y such that yt- < y, for / = 1,2. • 

This property is a generalization of the stability and determinism properties of concrete da ta 
structures [Cur86], and similar results follow. We recall that Berry and Curien's sequential algo
rithms model was limited to deterministic CDSs. 

Propos i t i on 2.17 If M is distributive then the gib in V(M) of any two consistent states is their 
intersection. 

Proof: Let M be a distributive gCDS, and let x\ and X2 a consistent pair of states of M. Clearly 
x\ D x2 is their gib as sets of events, so we only need to show that it is a s ta te . The 
intersection clearly preserves functionality and upwards-closure. To show that it preserves 
safety, let c € F(xi fl x2). For i = 1,2, c G F(x,-), so that there exists yi \RXI c, and therefore 
yi H R I U A R 2

 c* Now, by distributivity there exists y such tha t , for i = 1,2, yi < y, and by 
upwards closure y hXt c, and, finally, y \-XLNX2

 C- It follows that x\ fl 2 * 2 is a s tate . • 

Definit ion 2.18 A consistently-complete poset is distributive iff for all x and all consistent pairs 
X\ and # 2 , (x A X\) V (x A a*2) = x A V xj). • 

Propos i t i on 2.19 If M is distributive then V{M) is distributive. 

Proof: An immediate corollary of 2.17. • 

Propos i t i on 2.20 The category of distributive gCDSs and continuous functions is a full sub
category of g C D S c o n t , and it is cartesian closed. 

Proof: Nul l is distributive and product and exponentiation preserve distributivity. 

To see that the exponentiation preserves distributivity, let a G V(M —± M') and assume tha t , 
for I = 1,2, {(xijc'ijiv'ij) I 1 < J < U} h a xc'\ then, for I = 1,2, { ( c ^ , ^ - ) | 1 < J < U) \RA(X) c', 
where a(x) G V(M') is the value on x of the continuous function corresponding to a (by 
the isomorphism of proposition 2.12). By distributivity of M' there must be an enabling 
{(CJJVJ) I 1 < j < 1} H A ( X ) c', where / = l\ = l2, and for j < /, v'j = v\ - and c\ - < c'- - without 
loss of generality assume that the bijections are identities. But now {(xc'-^v1-) \ 1 < j < 1} 
serves as an upper-bound in the extended cell ordering of the two enablings of xcf in a, so 
that we may conclude that M — A/' is distributive. • 

2.4 R e l a t i o n s h i p t o O r i g i n a l D e f i n i t i o n 

Propos i t i on 2.21 Kahn and Plotkiris original definition of concrete data structures and their 
generated domains [KP78, Cur86] can be obtained by considering gCDSs with a discrete cell ordering 
(i.e., c < c' iff c — c'). 
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Proof: Under the discreteness assumption all upwards-closure requirements are vacuously satisfied, 
and our definition collapses to the original definition. • 

Note that the gCDS product preserves discreteness: if the cells of M\ and M2 are ordered 
discretely, then so are the cells of their product. As a corollary, the gCDS product is a conservative 
extension of CDS product. 

Importantly, the exponentiation does not preserve discreteness; even if M and M' are discrete, 
P f i n (M) will not be discrete in general, so that the cells of the exponentiation will not be ordered 
discretely. This is of course necessary for our purposes, since (discrete generalized) concrete da ta 
structures are not closed under continuous function space. 

The intuition behind the introduction of an ordering on cells may perhaps be explained thus: 
in the concrete da ta structures setting, a cell corresponds to a flat domain - a choice between a 
number of (mutually inconsistent) ways to increase information. An appropriate domain may be 
"decomposed" into such atomic choices. The notion of cell may itself be seen as a generalization of 
an argument position, the notion used by early approaches to defining sequentiality [Vui73, Mil77]. 
Once we introduce an ordering on cells, it is possible to talk not only of a discrete choice between 
alternatives for a given cell, but also of the extent to which the choice must be pursued. This seems 
to be essential if higher-order domains are to be represented using this approach to decomposition. 

The concrete domains are the domains generated by concrete da ta structures (or, equivalently, 
discrete generalized concrete data structures). Kahn and Plotkin's representation theorem charac
terizes concrete domains as Scott domains satisfying a number of axioms. In particular, concrete 
domains satisfy axiom (I): 

(I) Every finite element dominates finitely many elements. 

But the continuous function space does not, in general, preserve property (I), and this is the key to 
Berry and Curien's proof that concrete domains and continuous functions do not form a cartesian 
closed category [BC82]. Our generalization of concrete domains must not, in general, satisfy axiom 
(I). See example 2.14 for a continuous function space and a gCDS that violate (I). 

2.5 S t a b l e F u n c t i o n s o n g C D S s 

We have concentrated so far on continuous functions, and defined a ccc g C D S c o n t of gCDSs and 
continuous functions. Other classes of functions may be considered, by varying the definitions of 
a s tate and the domain generated by a gCDS. We will now introduce the category g C D S s t a b of 
distributive gCDSs and stable functions, a full sub-ccc of dl-domains and stable functions. 

First, a few definitions are needed. 

Definit ion 2.22 A function / between two domains D and E is said to be stable iff it is continuous 
and for every d 6 D and e < f(d) the set {d' | d! < d k e < f(d')} has a least element, denoted 
M ( / , d , e ) . 

For stable functions / , g from D to E, f is below g in the stable ordering iff / is pointwise below 
g and, for each d 6 D and e < / ( d ) , M ( / , d , e ) = M(</,d,e). • 

A dl-domain is a distributive Scott domain that has property (I). It is well known that the 
category of dl-domains and stable functions is a. ccc. See [Ber78] for a fuller t reatment , as well as 
alternative (but equivalent) definitions of stability and the stable ordering. 

We qualify the states introduced so far as being ct-states, and use Vct(M) for the domain of ct-
states of M , ordered by set inclusion - we call this the ct-domain generated by M. (In particular, 



our partial domain-theoretic characterization of generalized concrete domains only applies to the 
ct-domains). We now define the "stable states" of a gCDS. 

Definit ion 2.23 A st-state of M is a set of events x C EM with the following three properties: 

• Functional: if (c, v\),(c, v2) € x then v\ = v2. 

• Safe: every cell filled in x has an enabling in x. 

• Stable: if c\ and c2 are filled in x and C\ and c2 have an upper bound in the cell ordering, 
then c\ = c2. 

Let Vst(M) be the domain of st-states of Af, ordered by set inclusion - we say that this is the 
st-domain generated by M . • 

The difference between ct-states and st-states amounts to the replacement of the upwards-
closure requirement of ct-states by a "stability" condition. 

Propos i t i on 2.24 For a distributive M, Vst(M) is a dl-domain. The empty set is the least 
element, and the lub of an upper-bounded or directed set of states is given by its union. The finite 
elements (i.e., isolated elements) are states that are finite sets of events. 

We now emulate the development carried out above for g C D S c o n t . 

Def ini t ion 2.25 The category g C D S s t a b has distributive gCDSs as objects, and the stable func
tions from Vst(M) to 2> s t (M ' ) as the morphisms from M to M'. • 

Propos i t i on 2.26 The product of gCDSs defined above is a product in g C D S s t a b , and Nul l is 
a terminal object. 

Propos i t i on 2.27 The definition of M M1 given above, modified so that P s t a n ( M ) is used in
stead ofVctf[n(M) in constructing the cells of M — M', produces an exponentiation in g C D S s t a b . 
There is an isomorphism between Vst(M —- M') and the stable function space between Vst(M) 
and Vst(Mf), ordered by the stable ordering. The category g C D S s t a b is a full, sub-ccc of the ccc 
of dl-domains and stable functions. 

Seen from a different angle, inclusion on st-states corresponds to the stable ordering on sta
ble functions, while inclusion on ct-states corresponds to the pointwise ordering on continuous 
functions. 

Note that for discrete gCDSs the stability requirement is vacuously satisfied, as is the upwards-
closure requirement, so that the ct-domain Vct(M) and the st-domain T> s t(Af) coincide when M 
is a discrete gCDS. The two notions diverge, however, on gCDSs with non-trivial cell ordering 
(such as exponentiations). Moreover, the classes of (distributive) ct-domains and st-domains are 
incomparable - we have shown that property (I) holds for st-domains, but is violated by ct-domains; 
on the other hand, property (Qt) holds for ct-domains, but not for st-domains. 

E x a m p l e 2.28 For an example of a st-domain which violates (Qj), consider P s t ( B o o l —• Two), 
shown in figure 1. This example is also used by Berry and Curien [BC82] to show that (deter
ministic) CDSs are not closed under the stable function space. Contrast this st-domain with the 
ct-domain P c t ( B o o l —> Two), shown in figure 2. • 

We will not delve deeper here into the category g C D S s t a b , and we will consider exclusively 
g C D S c o n t and ct-domains in the remainder of the development. However, we point out that 
most of the ensuing development may be carried out with g C D S s t a b replacing g C D S c o n t as the 
extensional framework. 
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Figure 1: Hasse diagram of V (Bool —*. Two) 

( 0* , * ) 
( { ( b , t t ) } * , * ) • 
( { ( b , f f ) } * , * ) , 

Figure 2: Hasse diagram of P c t ( B o o l —• Two) 
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2.6 S e q u e n t i a l F u n c t i o n s o n g C D S s 

Kahn and Plotkin's definition of sequential functions between CDSs may be stated unchanged for 
gCDSs, since one may still use the cells to define sequentiality indices: 

Definit ion 2.29 A function / : V(M) -+ V(Mr) is sequential at x £ V(M) for c' £ A ( / ( x ) ) iff 
A(a*) = 0 or there exists c £ A(.T) such that c is filled in all supersets y of x for which c' is filled in 
/ ( y ) . In this case c is said to be an index of sequentiality of / at x for c'. 

f is sequential iff it is continuous and it is sequential at all x £ V(M), for all c' £ A(f(x)). • 

While this definition still makes sense in our generalized setting, it remains to be shown that 
our class of sequential functions is well behaved. Some elementary properties are easy to establish: 

Propos i t i on 2.30 For all gCDSs M , the identity function on M is sequential. The composition 
of two sequential functions between gCDSs is again sequential. 

Many more properties remain to be checked. We are currently investigating whether the set 
of sequential functions between two gCDSs itself forms (the states of) a gCDS. If so, we might 
finally obtain a ccc of gCDSs and sequential functions. Even if this fails with the above definition 
of sequentiality, we may be able to generalize the definition to take more explicit account of the cell 
ordering (while collapsing onto the original definition when the cell ordering is discrete). We are 
also trying to discover whether, following the general approach exemplified by the construction of 
g C D S c o n t and g C D S s t a b , one may define a notion of "sequential s ta te" and use this to generate 
a third kind of domain from a gCDS, ideally to yield a class of domains closed under the sequential 
function space. 

3 Parallel Algorithms on Generalized Concrete Data Structures 

In this section we present the category g C D S a l g of gCDSs and parallel algorithms, using paths as 
a notion of intensional behavior with respect to g C D S c o n t . We do not present the construction 
in its full generality - this may be found in [BG91], where a similar construction is carried out over 
the category of Scott domains and continuous functions. 

3 . 1 P a t h s 

Def ini t ion 3.1 Given a gCDS M , we define the path gCDS PM to be Vnat -* M , and we refer 
to V(PM) as the domain of paths over M. • 

The path domain over M is isomorphic to the continuous function space from Vnat to M , 
ordered pointwise. Yet another equivalent way of viewing paths is as infinite non-decreasing se
quences of states of M , ordered componentwise. We work freely with the different representations 
of paths , omitting explicit mention of the isomorphisms. We write, e.g., ti for the application'of 
(the function corresponding to) the path t to (the state of Vnat corresponding to) the integer 
leaving the various isomorphisms implicit. 

We will use paths over M to represent computations over M. Events are regarded as quanta of 
information produced by the computation, so that ti is the information known about the computed 
value by time point i + 1, starting with no information at all at time point 0. The ordering of paths 
may be viewed as comparing paths by their eagerness: t C iff for every z, ti C t'i, i.e., for every 
(c, v) G ti we also have (c,v) £ t'i. Informally, / C /' if the computation represented by t' computes 
everything that / computes, and each event in / occurs no later than it does in 
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< T , T T 
/ \ 

( T , l ) ( T j r < ± , T ) ( T , T ) ' 

Figure 3: A partial Hasse diagram of X?(P(Two x Two)) 

E x a m p l e 3.2 Figure 3 presents a partial Hasse diagram of paths over Two x Two. We present 
paths as infinite sequences of states, using the notation for a constant x suffix. • 

Definit ion 3.3 We complete P to a functor P : g C D S c o n t —• g C D S c o n t by setting Pf = map / 
for any continuous function / : M — A/', where map / : PM — PMf is defined by 

map / = A* G V(PM) . Xi . f(ti). 

It is easy to verify that map / and map itself are continuous. • 

Propos i t i on 3.4 The functor* P preserves product in g C D S c o n t , i.e., P{M\ x Af 2) is a product, 
with projections map7rz for i = 1,2. We therefore obtain the following natural isomorphisms: 

s p l i t M l , M 2 : P(Mi x A/ 2) - PA/i x P A / 2 

sp'^M^A /s = (map7Ti,map7r 2 ) 
m e r g e M i 3 / 2 : PA/ X x P A / 2 ^ P(AA x A/ 2) 
m e r g e M 1 ? A / 2 = A * € 0 ( P M i X PA/ 2 ) . Ai . ((TTi t)i,(T2t)i). 

In other words, there is a uniform way of converting back and forth between a pair of computations 
and a computation of a pair. 

Definit ion 3.5 For each A/, define the following: 

v a l M = Xt G V(PM) . \J{ti\ie P (Vnat )} 
p r e M = Xt G V(PM) . Xi . Aj . *m i i i ( / , j ) 

p a t h M = A a- G V(M) . Xi . x. 

Intuitively, val^// is the value computed by t\ preMt is the computation built from the prefixes of 
t; and p a t h A / x is the constant path to x, regarded as a canonical "degenerate" computation of x. 

Propos i t i on 3.6 val,v/, P^M and pathM are continuous functions, anr/val : P Id, pre : P P2 

and path : Id —r P are natural transformations. The following identities hold: 

(map p r e M ) o p r e M = p r e P M o p r e A / 

va lpM o p r e A / = idp/\/ 
(mapvalA/) o p r e v / = \dp\i 

val/v/ o p a t h M = idM 
p a t h p A / o path Y/ = PR EA/ 0 P a t r t w • 
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The first three identities assert that (P ,va l ,pre) is a comonad over g C D S c o n t . The remaining two 
assert that (P , val , pre, path) is a computational comonad (in the sense of [BG91]). 

An additional inequality that stems from the choice of canonical computations is 

idpM < p a t h M o v a l M . 

3 . 2 T h e C a t e g o r y o f A l g o r i t h m s 

Def ini t ion 3 .7 The category g C D S a l g has gCDSs as objects, and continuous functions from PM 
to A/' as the morphisms from M to M ' . We define an algorithm to be a morphism in this category, 
and we will write M M ' for the set of all algorithms from M to A/'. Composition of algorithms 
a : M M ' and a! : M' => A/", written a! o a, is defined by: 

a o a = a o (map a) o PREA! . 

The identity algorithm from M to M is val^/. • 

In words, the algorithm composition of a and a' applies a' to the computation produced by mapping 
a over the prefixes of the argument computation. The identity algorithm disregards everything 
except the value computed by its argument, and it returns this value. 

Algorithm composition is a continuous function on algorithms. It is straightforward to verify, us
ing the algebraic identities given earlier, that g C D S a l g is indeed a category: with these definitions 
composition is associative and the identity algorithm is a unit for composition. In fact, g C D S a l g is 
just the co-Kleisli category of g C D S c o n t and the comonad (P , val .pre) [ML71, BG91]. For clarity 
and ease of comparison with the underlying category, we use for morphisms in g C D S a l g , and 
we retain -* for morphisms in g C D S c o n t . 

Since g C D S c o n t has finite products, it is easy to show that : 

P r o p o s i t i o n 3.8 The algorithms category g C D S a l g has finite products. If M\ x A/ 2 is a product 
in g C D S c o n t with projections 7rt (i = 1/2), then M\ XM2 is a product in g C D S a l g with projection 
algorithms given by 

Equivalently, by naturality o/val and the definition of split, 

7T{ = v a l M t OTT2 o s p l i t A / l M 2 . 

The pairing of algorithms ax : M => M\ and a2 : M => M 2 , denoted (aua2) : M =» Mi X A/ 2 , 
is their pairing as continuous functions, i.e., (a\,a2) = Xt £ V(M) . (a\t,a2t). The product of the 
algorithms a x : M\ => M[ and a2 : M2 => denoted a\ x a2 : M\ x M2 M{ x M'2, is given by 

a\ x a2 = (ax o 7Ti,a2 6 7r2) = (fli 0 map7Ti,a2 o map7r2) = (a\ x a 2 ) o split. 

Nul l is a terminal object in g C D S a l g , since it is terminal in g C D S c o n t . 

Propos i t i on 3.9 The category g C D S a l g has exponentiations. The exponentiation of M and M' 
in g C D S a l g is the gCDS M => M' = PM — A/', with the application algorithm given by 

*PPM,M' =
 aPPPA/,A/' 0( v a'A/=*A/' * idpA/). 

Currying and uncurrying of algorithms are given by the following continuous functions: 

curry = Xa : M\ x M2 => M' . curry(a o m e r g e M l M 2 ) 
uncurry = Xa : Mi => (A/ 2 => A/') . uncurry(a) o s p l i t M l x A / 2 . 
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Intuitively, algorithm application disregards the computation of the algorithm being applied, and 
is only concerned with the actual algorithm and the computation of its argument. Currying and 
uncurrying are simple adaptations of the standard currying and uncurrying operations on functions 
to take account of the structure of paths. The fact that P preserves product is used crucially here. 

Put t ing these results together, we have: 

P r o p o s i t i o n 3 .10 g C D S a l g is cartesian closed. 

See [BG91] for a more detailed category-theoretic treatment from which these results follow. 

E x a m p l e 3.11 Figure 4 presents a partial Hasse diagram of the algorithm space from Two x Two to 
Two. We present each algorithm by its action on the paths of Two x Two in figure 3, a shaded circle 
for a result of T (with actions on other paths determined by monotonicity). We present below the 
operational intuition behind these algorithms. • 

3 . 3 R e l a t i n g t h e C a t e g o r i e s 

We define the input-output function fun(a) of an algorithm a, and the canonical algorithm a lg (/ ) 
for a continuous function / . These turn out to be the morphism parts of a pair of functors between 
the two categories. 

Definit ion 3.12 For any gCDSs M and A/', define 

fun : (A/ => A/') - (M - M') 
fun = Xa : AI Mf . a o p a t h A / 

alg : A/ —- A/' — M => A/' 
alg = Xf : A/ — A/' . / o v a l A / . 

Propos i t i on 3 .13 fun and alg satisfy the following conditions: 

f u n ( i d M ) = v a l A / 

a l g ( v a l M ) = icW 
FUN(A' 6 a) = FUN a' o FUN a 
a l g ( / ' O / ) = a l g / ' 6 a l g / . 

Thus, FUN and alg are the morphism parts of a pair of functors FUN : g C D S a l g —> g C D S c o n t 
and alg : g C D S c o n t — g C D S a l g , each of which is just the identity on objects (in the respective 
category). 

Propos i t i on 3 .14 For every f : M — A/', FUN (alg/) = / . 

Thus, alg / has / as its input-output function, and every continuous function between gCDSs is 
the input-output function of some algorithm between gCDSs. 

Definit ion 3.15 For a\,a2

 : M M', W E S A Y that a\ input-output approximates a 2 , written 
ai <10 a2 iff FUN a! pointwise approximates FUNA 2 , i.e., FUN a\ < FUNA 2- We say that a\ and a2 are 
input-output equivalent, written a\ —l0 a2, iff FUN(AI) = FUN(a2). • 

In words, two algorithms are input-output equivalent iff they have the same input-output function; 
this is the equivalence relation induced by the input-output approximation pre-order. 
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Propos i t i on 3,16 If fx < f2 then a lg/ i < a l g / 2 . If a\ < a2 then ci\ <l° a2, but the converse is 
not generally true. 

This indicates that the pointwise ordering on algorithms (as continuous functions) takes into ac
count intensional aspects of algorithms that are disregarded by the input-output approximation 
ordering. 

Propos i t i on 3 .17 The quotient of the domain V(M => M') by input-output equivalence is iso
morphic to the domain V(M —• M'), with the isomorphism induced by fun and a lg: 

V(M => M')/=to S V{M - M'). 

Consider now the input-output equivalence class of algorithms that share an input-output func
tion / . Since idpjv/ < p a t h A / o v a l A / we have idv/^AP < a lgofun . That is, the canonical algorithm 
alg / is maximal among the algorithms with input-output function / . Intuitively this means that 
the canonical algorithm is the "laziest" algorithm with input-output function / ; it provides a result 
based solely on the input value, independent of the way in which the value is computed. This may 
be contrasted with the behavior of the algorithm m ina lg/ , defined by 

minalg = A/ : M — M' . Xt € V(PM) . f{tO). 

It is easy to see that fun o minalg = id A /__ A // , but minalgofun < ida/=>a/', and therefore m ina l g / 
is the least algorithm with input-output function / . Intuitively, this is the "most eager" algorithm 
with input-output function / , since it specifies that the computation of the input value must be 
completed in one time step. (Note, however, that minalg does not define a functor.) 

Propos i t i on 3.18 For every continuous function f : M — Mf, the set of algorithms in M M' 
with input-output function /, ordered pointwise, forms a complete lattice. 

Proof: The domain V(M M') is consistently complete, and a has input-output function / iff 
minalg(/ ) < a < a lg ( / ) . • 

3 .4 R e m a r k s o n C a n o n i c i t y 

Note that the identity algorithm v a l A / is canonical: v a l A / = algid^/- The projection algorithms are 
also canonical, 5?,- = alg7T;. The application algorithm app, however, is not canonical. Let app be 
the input-output function for app. We have: 

aPPPA/,AP °(va lA/=>A/' x id A /) o split 
(X(s,t) . (valM^M' s)t) o split 
(uncurry val^/^./, ) 0 split 
uncurry va I M^M ' 
fun app A / M , 
aPPA/,A/' 0 Pat*1A/=^A/,xA/ 
aPPPA/,AP °(valA/=>AP x i d A/) o sp\\tM=>M, M o p * t h M = > M , x M  

aPPPA/,AP °(va lA/=*AP x i d A / ) o ( p a t h M = > A / , x p a t h A / ) 
aPPPA/,AP °(idA/=>AP x p a t h A / ) 
A(a,.r) e V(M => M' x M) . a (pa th A / ; r ) 
uncurry(fun) 
aPPA/,AP 0 va'A/=>A/'xA/ 
(X(sJ) . ( v a l A / = > A / / . s ) ( p a t h A / ( v a l A / ^ ) ) ) o split. 

aPPA/,AP -

aPPA/,A/' = 

a lg aPPA/,AP = 
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That is, the application algorithm is uniquely determined as the uncurrying of the identity 
algorithm, and in general it is not maximal in its input-output equivalence class (nor is it minimal). 
This reflects the fact that app ignores the computation of the algorithm to be applied, but does pay 
attention to the computation of the argument of the application, while the algorithm application 
function ignores the computation of both the applied algorithm and its argument. 

T 

poll 

Figure 5: X>(Two X Two — Two) 

E x a m p l e 3 .19 In table 1 we list input-output functions for some of algorithms of TwoxTwo Two, 
shown in figure 4. The corresponding function space, Two x Two -* Two, is shown in figure 5. We 
use identical names for some of the algorithms and functions, such as poll and T, but it should be 
clear from the context whether we refer to the algorithm or to the function. 

We take this opportunity to give an operational intuition, in lieu of a formalization of what 
constitutes a computation strategy, or a detailed discussion of an operational semantics for algo
rithms. 

We take a coroutine-like view of the computation, much as in Berry and Curien's operational 
semantics for sequential algorithms [Cur86]. Computation is demand driven: a request for the value 
of a cell in the result may lead the algorithm to issue sub-computations until enough information 
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a fun(a) Termination Step 1 Step 2 
P b b <T,T) / , r 
lb b ( T , T ) I r 
rb b <T,T) r I 
db b ( T , T ) I or r l,r 
pl 1 <T,0) I or I 
si 1 (T , 0 ) / 

pr r (0 ,T) / or r r 
sr r r 

poll poll (T ,0 ) or (0 ,T) I or r 
T T {0,0} 
0 _L 

Table 1: Input-output Functions and Operational Intuition for Algorithms in X>(Two x Two => Two) 

has been gathered about the input value for an output value to be determined. In the sequential 
case, only one sub-computation may be active at any point in time, and hence the coroutine flavor. 
In the parallel case, sub-computations may be issued in parallel, and several sub-computations (at 
differing levels) may be active simultaneously. Note that we assume some discrete global clock, 
with respect to which all computations are synchronized. 

In the above example, one may ask for the value filling the cell * in the application of one 
of these algorithms to an argument. A sub-computation of the left argument to an algorithm 
corresponds to a computation of the cell *.l of the argument. Returning to the table, under the 
Termination heading we give the least value on which the algorithm will produce a result T, i.e., 
fill the cell *; this is of course determined by the input-output function. Under Step 1 and Step 
2 we list the sub-computations that must be performed by the (end of the) first or second step of 
the computation, respectively, if the algorithm is to fill *. In this specific case, only termination 
of the sub-computations mat ters , since there is only one way to fill any cell; in general, the value 
with which a computation terminates will also be important . 

For instance, the algorithms that compute the function b (standing for both, the doubly strict 
function) can be characterized as follows: 

• The algorithm pb specifies that both the left component and the right component of the 
argument must be computed by the first time point. This is the most eager algorithm for b. 

• The algorithm lb specifies that the left component must be computed by the first time point, 
and that the right component must be computed by the second time point. 

• The algorithm db specifies that either the left or the right component must be computed by 
the first time point, and both must be computed by the second time point. 

3 .5 I n t e n s i o n a l a n d E x t e n s i o n a l A s p e c t s of A l g o r i t h m s 

Properties of functions, such as stability and sequentiality, apply to algorithms in several ways. We 
say that properties of an algorithm's input-output function are (input-output) extensional properties 
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of the algorithm, and properties of the algorithm itself, regarded as a function on paths , are 
intensional properties of the algorithm. 

As an example, of the algorithms in figure 4, poll is neither extensionally nor intensionally stable 
and neither extensionally nor intensionally sequential; db, pi and pr are extensionally stable (and 
sequential) and are not intensionally stable (or sequential); and all other algorithms are stable 
(and sequential), both intensionally and extensionally. It is not by chance that some possible 
combinations of properties are not represented: 

Propos i t i on 3.20 The input-output function of a stable (respectively, sequential) algorithm is 
stable (respectively, sequential). 

A function is stable (respectively, sequential) iff it the input-output function of some stable 
(respectively, sequential) algorithm. 

Proof: If a is stable then fun(a) is stable, because any counter-example to the stability of fun(a) 
generates a counter-example to the stability of a. Similarly if / is stable then minalg(/) is 
stable. The proofs for sequentiality are analogous. • 

Therefore there can be no algorithm that is extensionally, but not intensionally stable (or 
sequential). The function poll, for instance, has no sequential or stable algorithm. 

4 Relationship to Berry and Curien's Sequential Algorithms 

We discuss now the strong connections between the work presented here and Berry and Curien's 
sequential algorithms [Cur86]. Although we will not discuss them in detail, similar relationships can 
be established between our earlier a t tempts to define parallel algorithms [BG90] and the current 
work. We believe that these connections show how our view of intensionality as a computational 
comonad is a natural outcome of the earlier lines of research. 

4 .1 B e r r y - C u r i e n S e q u e n t i a l A l g o r i t h m s o n C D S s 

We first present some relevant definitions concerning Berry-Curien sequential algorithms. The 
reader is referred to [Cur86] for a complete exposition. 

Definit ion 4.1 Given (discrete generalized) deterministic CDSs M and AT, the Berry-Curien 
sequential exponentiation, or sequential algorithm space, M A/', is defined (as in [Cur86]) by: 

• C M = > t M ' = P f i n ( M ) x C M ' where Z>fin( M) consists of the finite elements of V(M) - which, for 
a discrete A/, are just states that are finite as sets of events. The cells are ordered discretely. 

• V M = > t i v / ' = { ° u t P u t v' i v' e v a / ' } U {valof c | c e C m}-

• E M=>t M ' = {(arc', output v') € CMs>iM, x V M = > t M ' I ( c V l / ) 6 e a / ' } 
U {(xc', va lo f c) e C M = > t M ' x VA/=MA/' I c

 € A(ar)} . 

• { ( x ^ - , output v'j) | 1 < j < 1} ^/=>tA/> xc' iff {(c'j, v'j) | 1 < j < 1} \rM, c1 

and x = (J {XJ \ 1 < j < /}. 

{(xicf, va lo f c)} f - A f = > t A / / xc' iff there exists an event (c,u) of M such that x = X\ U {(c,v)}. 

The states of M M1 are the sequential algorithms from M to A/'. • 
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The following results are shown in [Cur86]: the category of (discrete generalized) deterministic 
CDSs and sequential algorithms is a ccc; the product is the product of gCDSs given above and 
Null is a terminal object; the exponentiation object of M and M9 is M =>* M ' . 

Definit ion 4.2 The input-output function fun*6 of an algorithm b is given (as in [Cur86]) by: 

W = Xb e V(M =>f M') . Xx G V(M) . {(c', v') \ 3y C x . {yc\ output v') G 6} . 

There is no analogue in the Berry-Curien model to our definition of the alg map on parallel 
algorithms, since there is no uniform way to pick a canonical sequential algorithm for a sequential 
function with more than one sequentiality index (such as the doubly-strict-or function and the 
function b). Nevertheless, Berry and Curien have shown that each element of the sequential function 
space is the input-output function of some sequential algorithm. Moreover, the quotient of V(M =>t 
M' ) by input-output equivalence (having the same input-output function) is isomorphic to the 
sequential function space from V{M) to V(M'), ordered by the stable ordering. 

s | t = / ( ( M ) * , va lo f *.l 
1 ( ( T < 0 ) * , output * ) 

s r t = i ( ( ^ 0 ) * > v a l o f *-2) 
\ ( (0, T) * , output * ) 

[ ( ( 0 , 0 ) * , va lo f *.l )) 
lb f = I ( ( T , 0 ) * , va lo f *.2 ) I 

(( (T , T) * , output * ) J 

T f = {( ( 0 , 0 ) * , output * )} 

[ ( ( 0 , 0 ) * , va lo f * . 2 ) > 

rb f = <̂  ( ( 0 , T ) * , va lo f *.l ) > 
{{ (T, T) * , output * ) 

^ 0 ^ 

Figure 6: The Berry-Curien sequential algorithm space X>(Two x Two ̂  Two). 

E x a m p l e 4 .3 Figure 6 presents X>(Two x Two Two), and table 2 presents the operational in
tuition for those algorithms. Note tha t , of the continuous functions in figure 5, only poll is not 
sequential. Also, the sequential functions of this type yield a flat domain when ordered by the 
stable order. 

The operational behavior of sequential algorithms is more straightforward than for the parallel 
algorithms. Computation is again demand-driven, based on a coroutine-like but sequential oper
ational semantics. For instance, when the algorithm lb^ is applied to some input and a request is 
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6 fun r(6) Termination Step 1 Step 2 embed(6) 

lb* b ( T , T ) / r lb 
rbt b ( T , T ) r I rb 
sit 1 ( T , 0 ) I si 
srt r r sr 
Tt T ( 0 J ) T 
0 _L 0 

Table 2: Input-output Functions and Operational Intuition for £>(Two x Two Two) 

made for the value of the result cell *, the algorithm specifies that a sub-computation of the left 
input argument (the cell * . l ) must be issued first; if this cell is filled with the value *, the right 
argument is similarly computed; if this too is filled, the algorithm specifies that result cell * can 
then be filled, with the value *. • 

Our example is limited in that only one value may fill each of the cells. In the presence of 
several values, branching may take place, based on the value, and the enabling structure of the 
algorithm takes on a tree shape (a linear list in this example). A computation simply determines 
a path in this tree - a sequence of (strictly increasing) states, serving as (finite) approximations 
to the input. This is the basic intuition which may be carried over to our formulation of parallel 
algorithms. 

4 .2 E m b e d d i n g B e r r y - C u r i e n A l g o r i t h m s i n t o P a r a l l e l A l g o r i t h m s 

We sketch how the Berry-Curien sequential algorithms space V(M M') may be embedded 
into the parallel algorithm space V(M A/') in a way that preserves the input-output function 
and the computation strategy. The embedding also respects the ordering (set inclusion) of the 
Berry-Curien model. 

Definit ion 4 .4 For b 6 V(M =>f A/') and xc' 6 F(6), define (by induction on the enabling of xcf): 

W t(h '\ - / h i s t ( M o c ' ) - ' r i f i(xoc',valof c ) } h& xc' 
[ ' X C ] " \ V {hist(6,ar j C;.) | 1 < j < /} if { ( ^ c j , o u t p u t v-) | 1 < j < 1} h 6 xc'. 

Intuitively, hist(6,xc / ) is a finite sequence of states of M, that may be seen as a computation 
undertaken when 6 is applied to an argument approximated by x, trying to fill the cell c' in the 
result. We use juxtaposition for concatenation of finite sequences. The lub V S of a set S of finite 
sequences is obtained by a componentwise lub (i.e., componentwise union) of the sequences, with 
last components of repeated as necessary to obtain sequences as long as the longest one 1 . The 
lub of the empty set of sequences is the empty sequence, and the empty sequence is extended by 
repeating 0 as often as necessary. 

2 I t would also make sense to work with a pre-order on events, rather than a linear order implied by the paths 
comonad, with \ / S given by the pre-order union of elements of 5 . We return to this alternative in the conclusion, 
when considering alternate notions of comonads. 
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Definit ion 4.5 The embedding function embed : V(M =>* M') V(M => A/') is given by: 

embed = \b G £>(M =>f M ' ) . up({(hist(6,xc')c', v') | (xc ' ,output v') e 6 } ) . 

Here we implicitly extend the finite sequences hist(6,o:c /) to infinity by repeating their last 
component, with the convention that the empty sequence represents 0". • 

Embedding preserves the input-output function: 

Propos i t i on 4.6 For any b € V(M A/ 7), fun(embed6) = fun* 6. 

E x a m p l e 4.7 The embedding of figure 6 into figure 4 is straightforward, shown in the embed(i) 
column in table 2. It is easy to see that the (informally given) computation strategy is preserved. 
The image of D(Two x Two =>t Two) under embedding is a proper subset of the intensionally sequen
tial algorithms in D(Two x Two — Two). While pb is intensionally sequential, it does not impose a 
linear order of evaluation on the two sequentiality indices and therefore does not correspond to a 
Berry-Curien algorithm. • 

Although we cannot give a rigorous proof without first formalizing the notion of computation 
strategy, it should be intuitively clear that the embedding function always preserves the computa
tion strategy of its argument. 

It is easy to show that embedding preserves order, in the following sense: 

P r o p o s i t i o n 4.8 For all (discrete generalized) deterministic CDSs M and A/', and all 61,62 € 
V(M A/'), if bi C 6 2 then embed(6i) approximates embed(6 2) in the stable ordering. 

5 Directions for Further Research 

In this paper we have introduced a generalization of concrete data structures and concrete domains, 
and parallel algorithms between generalized concrete data structures. We would like to demonstrate 
the utility of our new structures in supporting the development of a theory of sequentiality and 
parallelism and in the development of a framework for intensional semantics. The results of this 
paper constitute a foundation on which to build, but there are many topics for further investigation 
and several directions for us to follow. 

We have presented a cartesian closed category of gCDSs and continuous functions, and we 
discussed briefly a ccc of distributive gCDSs and stable functions. These two categories employ 
a common underlying concrete representation - the gCDS - but use different notions of states to 
obtain different notions of generated domains. We would like to give a domain-theoretic charac
terization to both families of domains. We have made a start in this direction, with the partial 
characterization of the domains generated by the continuous notion of state. 

It seems likely that some other natural classes of functions may yield to an analogous develop
ment. In particular, we would like to try to use the same approach to define a category of gCDSs 
and sequential functions, centered on a suitable notion of a sequential s tate. This task is harder, 
since we cannot rely on the desired category being a full sub-category of some already known ccc, 
such as Scott domains and continuous functions or dl-domains and stable functions. Nevertheless, 
our initial investigations in this direction are encouraging. We have pointed out that a definition 
of sequentiality may be formulated in the gCDS setting. We intend to study the implications of 
such a definition, and whether it proves useful in obtaining sequential semantic models. We have 
already made some remarks concerning these issues in section 2.6. 
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We have presented an intensional semantic model - the category of gCDSs and parallel algo
rithms, obtained by the co-Kleisli category construction from the ccc of gCDSs and continuous 
functions and the comonad of paths. Since the paths comonad preserves product the obtained 
intensional category is a ccc, so that it may be used in a standard way to provide an (intensional) 
model for the simply-typed lambda calculus. This choice of comonad is not the only reasonable 
one. Indeed, for some purposes the paths comonad may be regarded as too detailed. For instance, 
if one is not interested in the number of steps between successive increments in a computation, 
but only in the relative order in which the increments occur, it would seem appropriate to use 
the comonad of strictly increasing (rather than non-decreasing) p a t h s 2 . Another possible choice 
of comonad might be obtained by regarding events not as linearly ordered but merely as partially 
ordered or even pre-ordered, so that we may dispense with any assumption of a global clock. 

However, comonads based on strictly increasing paths or on pre- or partial orders on events 
do not preserve finite products. This means that the intensional category for these notions of 
intensional behavior will not normally be a ccc, even if the underlying extensional category is 
cartesian closed. Nevertheless, we believe that algorithm categories built with such comonads may 
still provide sensible intensional models for the A-calculus, and we will report on this separately. 

As an aside, the reasoning here helps to explain the shortcomings of our earlier "query model" 
[BG90]; in our current terminology, we were at tempting there to obtain a ccc (with currying built-
in), using (the analogue of) the non-product preserving comonad of strictly increasing paths. We 
now realize that this combination does not yield a ccc. 

We have exhibited a generalization of Berry and Curien's sequential algorithms into parallel 
algorithms, together with an embedding of the former into the latter. Essentially the same em
bedding should also work when we consider comonads based on strictly increasing paths , or on 
partial orders, or on pre-orders over events. A "tighter" embedding could be obtained into the sta
ble algorithms, which we may construct as the co-Kleisli category of g C D S s t a b , using any of the 
above variations on the paths comonad. We would now like to understand better the Berry-Curien 
construction itself. On the face of it, the Berry-Curien category of deterministic concrete da ta 
structures and sequential algorithms is not attainable as an application of the co-Kleisli construc
tion, since there is no underlying extensional category of concrete da ta structures. We conjecture, 
however, that there are strong connections between the Berry-Curien category and an intensional 
category of gCDSs employing a suitable notion of sequential algorithms. In order to establish 
this conjecture we must first, of course, exhibit an appropriate extensional category of gCDSs and 
sequential functions, one of the goals listed above. 

Once we have a sufficiently established theory of intensional semantics, we would like to turn 
to its application to reasoning about intensional properties of programs, such as efficiency. 
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