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A b s t r a c t 

Recurrent Cascade-Correlat ion (RCC) is a recurrent version of the Cascade-Correlation learning architecture 
of Fahlman and Lebiere [Fahlman, 1990]. R C C can lcam from examples to map a sequence of inputs into 
a desired sequence of outputs . New hidden units with recurrent connect ions are added to the network one 
at a t ime, as they are needed during training. In effect, the network builds up a finite-state machine tailored 
specifically for the current problem. R C C retains the advantages of Cascade-Correlat ion: fast learning, 
good generalization, automatic construction of a near-minimal multi-layered network, and the ability to 
learn complex behaviors through a sequence of simple lessons. The power of R C C is demonstrated on two 
tasks: learning a finite-state grammar from examples of legal strings, and learning to recognize characters 
in Morse code. 
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1. The Architecture 

Cascade-Correlat ion [Fahlman, 1990] is a supervised learning architecture that builds a near-minimal mult i
layer ne twork topology in the course of training. Initially the network contains only inputs , output units , and 
the connect ions between them. This single layer of connect ions is trained (using the Quickprop algorithm 
[Fahlman, 1988]) to minimize the error. When no further improvement is seen in the level of error, the 
ne twork ' s performance is evaluated. If the error is small enough, we s top. Otherwise w e add a n e w hidden 
unit to the ne twork in an at tempt to reduce the residual error. 

To create a n e w hidden unit , w e begin with a pool of candidate units, each of which receives weighted 
connect ions from the ne twork ' s inputs and from any hidden units already present in the net. T h e outputs 
of these candidate uni ts are not yet connected into the active network. Mult iple passes through the training 
set are run, and each candidate unit adjusts its incoming weights to maximize the correlation between its 
output and the residual error in the active net. When the correlation scores stop improving, we choose the 
best candidate , freeze its incoming weights , and add it to the network. This process is called " tenure ." After 
tenure, a unit becomes a permanent new feature detector in the net. We then re-train all the weights going 
to the output uni ts , including those from the new hidden unit. This process of adding a new hidden unit and 
re-training the output layer is repeated until the error is negligible o r w e give up . Since the new hidden unit 
receives connect ions from the old ones , each hidden unit effectively adds a new layer to the net. (See figure 
1.) 

Cascade-correlat ion el iminates the need for the user to guess in advance the ne twork ' s size, depth, and 
topology. A reasonably small ( though not minimal) network is built automatically. Because a hidden-unit 
feature detector, once built , is never altered or cannibalized, the network can be trained incrementally. A 
large data set can be broken up into smaller " lessons ," and feature-building will be cumulat ive . 

Cascade-Correlat ion learns much faster than backprop for several reasons: First only a single layer of weights 
is be ing trained at any given t ime. There is never any need to propagate error information backwards through 
the connect ions , and we avoid the dramatic s lowdown that is typical when training backprop nets wi th many 
layers. Second, this is a "g reedy" algori thm: each new unit grabs as much of the remaining error as it can. 
In a standard backprop net, the all the hidden units are changing at once, compet ing for the various j o b s that 
mus t b e d o n e — a s low and somet imes unreliable process. 

Cascade-correlat ion, l ike back-propagat ion and other feed-forward architectures, has no short-term memory 
in the network. T h e outputs at any given t ime are a function only of the current inputs and the network 's 
weights . Of course, many real-world tasks require the recognition of a sequence of inputs and, in some 
cases, the corresponding product ion of a sequence of outputs . 

A number of recurrent architectures have been proposed in response to this need . ,Perhaps the most widely 
used, at present, is the Elman model [Elman, 1988], which assumes that the network operates in discrete 
t ime-steps. T h e outputs of the ne twork ' s hidden units at t ime t are fed back for use as additional network 
inputs at t ime-step f + 1. (See figure 2.) These additional inputs can be thought of as state-variables whose 
contents and interpretation are determined by the evolving weights of the network. In effect, the network is 
free to choose its o w n representation of past history in the course of learning. 

Recurrent Cascade-Correlat ion (RCC) is an architecture that adds Elman-style recurrent operat ion to the 
Cascade-Correlat ion architecture. However, some changes were needed in order to m a k e the two models fit 
together. In the original Elman architecture there is total connectivity between the state variables (previous 
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Figure 1: T h e Cascade-Correlat ion architecture after two hidden units have been added. T h e vertical l ines 
sum all incoming activation. Boxed connect ions are frozen, X connect ions are trained repeatedly. 
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Figure 2 : T h e recurrent network architecture of Elman. 

2 



Figure 3 : Candidate or hidden unit with a self-recurrent link. 

outputs of h idden units) and the hidden unit layer. In Cascade-Correlation, new hidden units are added one 
by one , and are frozen once they are added to the network. It would violate this concept to insert the outputs 
from n e w hidden units back into exist ing hidden units as new inputs. On the other hand, the network must 
be able to form recurrent loops if it is to retain state for an indefinite t ime. 

T h e solut ion w e have adopted in R C C is to augment each candidate unit with a single weighted self-recurrent 
input that feeds back that uni t ' s own output on the previous t ime-step (figure 3). Tha t self-recurrent link 
is trained a long with the uni t ' s other input weights to maximize the correlation of the candidate with the 
residual error. If the recurrent link adopts a strongly posit ive value, the unit will function as a flip-flop, 
retaining its previous state unless the other inputs force it to change; if the recurrent link adopts a negat ive 
value, the uni t will tend to oscillate between posit ive and negative outputs on each t ime-step unless the other 
inputs hold it in place; if the recurrent weight is near zero, then the unit will act as a gate of some kind. W h e n 
a candidate unit is added to the active network as a new hidden unit, the self-recurrent weight is frozen, 
a long with all the other weights . Each new hidden unit is in effect a single state variable in a finite-state 
machine that is built specifically for the task at hand. In this use of self-recurrent connect ions only, the R C C 
model resembles the "Focused Back-Propagat ion" algorithm of Mozer[Mozer , 1988]. 

T h e output , V(r), of each self-recurrent unit is computed as follows: 

where a is some non-l inear squashing function applied to the weighted sum of inputs / plus the self-weight 

s igmoid function with a range from -1 to + 1 . During the candidate training phase, we adjust h e i g h t s 

V(T I' T S ° ^ l ° m a X i m i 2 e h S c o r r c l a t i o n ^ o r e . This requires comput ing the derivative of V(t) with respect to these weights : 

dV(t)/dwi = a'(t) (Ii(t) + ws dV(t - \)/dwi) 
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dV(t)/dws = a'{t) {V(t - 1) + w, dV(t - \)/dws) 

T h e rightmost term reflects the influence of the weight in quest ion on the uni t ' s previous state. Since we 
computed dV(t — l)/dw on the previous t ime-step, we can jus t save this value and use it in the current step. 
So the recurrent version of the learning algorithm requires us to store a s ingle additional number for each 
candidate weight , p lus V(t - 1) for each unit . At t = 0 we assume that the uni t ' s previous value and previous 
derivatives are all zero. 

A s an aside, the usual formulation for Elman networks treats the hidden un i t s ' previous values as independent 
inputs , ignoring the dependence of these previous values on the weights be ing adjusted. In effect, the 
rightmost terms in the above equat ions are being dropped, though they are not negl igible in general . Th is 
rough approximation apparently causes little trouble in practice, but it might explain the instability that some 
researchers have reported when Elman nets are run with aggressive second-order learning procedures such 
as quickprop. T h e Mozer algorithm does take these extra terms into account. 

2. Empirical Results: Finite-State G r a m m a r 

Figure 4 a shows the state-transition diagram for a s imple finite-state grammar, called the Reber grammar, that 
has been used by o ther researchers to investigate learning and generalization in recurrent neural ne tworks . 
To generate a " l ega l" string of tokens from this grammar, we begin at the left s ide of the graph and m o v e 
from state to state, fol lowing the directed edges. When an edge is traversed, the associated letter is added 
to the string. Where two paths leave a single node , we choose one at random with equal probability. T h e 
result ing str ing a lways begins with a " B " and ends with an " E " . Because there are loops in the graph, there 
is n o bound on the length of the strings; the average length is about eight letters. An example of a legal 
str ing would be " B T S S X X V P S E " . 

Cleeremans, Servan-Schreiber, and McClelland [Cleeremans, 1989] showed that an E lman networic can 
learn this g rammar if it is shown many different strings produced by the grammar. T h e internal state of the 
network is zeroed at the start of each string. The letters in the string are then presented sequentially at the 
inputs of the network, with a separate input connection for each of the seven letters. T h e network is trained 
to predict the next character in the string by turning on one of the seven outputs . T h e output is compared to 
the t rue successor and the learning algorithm attempts to minimize the resulting errors. 

W h e n there are two legal successors from a given state, the network will never be able to do a perfect j o b 
of predict ion. Dur ing training, the net will see contradictory examples , somet imes with one successor and 
somet imes the other. In such cases , the net will eventually learn to partially activate both legal outputs . 
Dur ing test ing, a predict ion is considered correct if the two desired outputs are the two with the largest 
value?. 

Th is task requires generalization in the presence of considerable noise . T h e rules defining the g rammar 
are never presented—only examples of the g rammar ' s output. Note that if the networic can perform the 
predict ion task perfectly, it can also be used to determine whether a string is a legal output of the grammar. 
Note also that the successor letter(s) cannot be determined from the current input alone; some memory of of 
the ne twork ' s state or past inputs is essential. 
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Figure 4 : State transition diagram for the Reber grammar (left) and for the embedded Reber g rammar (right). 

Cleeremans et al. report that a fixed-topology Elman net with three hidden units can learn this task after 
60,000 distinct t raining strings have been presented, each used only once. A larger network with 15 hidden 
units required only 20,000 training strings. These were the best results obtained, not averages over a number 
of runs. 

R C C was given the same problem, but using a fixed set of 128 training strings, presented repeatedly. (Smaller 
string-sets had too m a n y statistical irregularities for reliable training.) Ten trials were run us ing different 
training sets. In n ine cases , R C C achieved perfect performance after bui lding two hidden units ; in the tenth, 
three h idden uni ts were built. Average training t ime was 195.5 epochs , or about 25,000 string presentat ions. 
(An epoch is defined as a single pass through a fixed training set.) In every case, the trained network achieved 
a perfect score on a set of 128 new strings not used in training. This study used a pool of 8 candidate units . 

Cleeremans et al. also explored the "embedded Reber g r ammar" shown in figure 4b . Each of the boxes 
in the figure is a transition graph identical to the original Reber grammar. In this much harder task, the 
networic must learn to predict all of the outputs correctly including the final T o r R To accomplish this, the 
ne twork mus t note the initial T or P and must retain this information while processing an "embedded c lause" 
of arbitrary length. It is difficult to discover this rule from example strings, since the embedded clauses may 
also contain m a n y T ' s and P ' s , but only the initial T or P correlates reliably with the final prediction. The 
"signal to noise ra t io" in this problem is very poor. 

T h e standard E lman net was unable to learn this task, even with 15 hidden units and 250,000 training strings. 
However , the task could be learned partially (correct prediction in about 7 0 % of test strings) if the two 
changes are made in the task: First, the probabili t ies of the S and T loop paths in the g rammar are reduced 
from 0.5 to 0.3 in order to reduce the length of the resulting strings. Second, the transition probabili t ies in 
the two copies of the embedded grammar are altered so that the upper and lower copies are slightly different. 
Since the two copies of the g rammar are no longer identical, the system receives some steady, ongoing 
reinforcement for remember ing whether it is in the upper or lower copy. 

R C C was run 20 t imes on the original (more difficult) form of this problem. A pool of 32 candidate units 
was used. Each trial used a different set of 256 training strings and the resulting networic was evaluated on 
a separate set of 256 test strings. As shown in the table, perfect performance was achieved in 11 of the 20 
trial runs, usual ly requiring 5-7 hidden units, but requiring up to 15 in a few cases. These successful runs 
required an average of 788 epochs (200K string-presentations). 

T h e remaining nine trials find less elegant and less successful solutions, involving more hidden units. 
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However , even the worst of these gets more than 9 2 % of the test strings c o r r e c t - m u c h better than the best 
results obtained by the standard Elman model on the simplified form of the problem. 

Results of R C C on embedded grammar problem. 

Trial Hidden Epochs Train Set Test Set 

Units Needed Errors Errors 

1 7 654 0 9 

2 12 1151 21 12 

3 13 1111 10 19 

4 5 503 0 0 

5 6 552 0 0 

6 10 953 16 18 

7 15 1326 0 0 

8 8 679 1 0 

9 6 531 2 3 

10 7 7 4 4 0 0 

11 7 666 0 0 

12 5 466 0 0 

13 15 1327 0 0 

14 12 1086 6 7 

15 5 438 0 0 

16 13 1219 0 0 

17 13 1133 1 5 

18 9 873 0 0 

19 6 556 0 0 

20 11 970 23 20 

Smith and ZipserfSmith, 1989] have studied the same grammar-learning tasks us ing the t ime-cont inuous 
"Real -Time Recurrent Learn ing" (or RTRL) architecture of Wil l iams and Zipser [Will iams, 1989]. They 
report that a ne twork with seven visible (combined input-output) uni ts , two hidden uni ts , and full inter-unit 
connect ivi ty is able to learn the s imple Reber g rammar task after presentation of 19,000 to 63,000 distinct 
t raining str ings. 

On the more difficult embedded grammar task, Smith and Zipser report that RTRL learned the task perfectly 
in some (unspecified) fraction of at tempts. Successful runs ranged from 3 h idden uni ts (173K distinct 
t raining strings) to 12 hidden units (25K strings). RTRL is able to deal with discrete o r t ime-cont inuous 
problems, whi le R C C deals only in discrete events . On the other hand, R T R L requires more computat ion 
than R C C in processing each training example , and RTRL scales up poorly as network size increases. 

3 . Empirical Results: Learning Morse Code 

Another series of experiments tested the ability of an R C C network to learn the Morse code patterns for 
the 2 6 Engl ish letters. Whi le this task requires no generalization, it does demonstra te that this architecture 
can learn to recognize a long, rather complex set of patterns. It also provides an opportuni ty to demonstrate 
R C C ' s ability to learn a new task in small increments. This s tudy assumes that the dots and dashes arrive at 
precise t imes; it does not address the problem of variable t iming. 
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T h e ne twork has one input and 27 outputs : one for each letter and a "s t robe" output signall ing that a complete 
letter has been recognized. A dot is represented as a logical one (positive input) followed by a logical zero 
(negative); a dash is two ones followed by a zero. A second consecut ive zero marks the end of the letter. 
W h e n the second zero is seen the network must raise the strobe output and one of the other 26 ; at all other 
t imes, the outputs are zero. For example, the ". . .-" pattern for the letter V would be encoded as the input 
sequence " 1 0 1 0 1 0 1 1 0 0 . " T h e letter patterns vary considerably in length, from 3 to 12 t ime-steps, with an 
average of 8. Dur ing training, the ne twork ' s state is zeroed at the start of each new letter, once the network 
is trained, the s trobe output could be used to reset the network. 

In one series of trials, the training set included the codes for all 26 letters at once (226 t ime-steps in all). In 
ten trials, the ne twork learned the task perfectly in every case, building an average of 10.5 hidden units and 
requiring an average of 1321 passes through the entire training set. Note that the system does not require a 
distinct h idden unit for each letter o r for each time-slice in the longest sequence. 

In a second experiment , we divided the training into a series of short " l e s sons" of increasing difficulty. T h e 
network was first trained to produce the strobe output and to recognize the two shortest letters, E and T. 
Th is task was learned perfectly, usually with the creation of 2 hidden units . We then set aside the " E T " set 
and trained successively on the following sets: "AIN" , " D G H K R U W " , " B F L O V " , and " C J P Q X Y Z . " A s a 
rule, each of these lessons adds one or two new hidden units , bui lding upon those already present. Finally 
we train on all 2 6 characters at once, which generally adds 2-3 more units to the exist ing set. 

In ten trials, the incremental version learned the task perfectly every t ime, requiring an average total of 1427 
epochs and 9.6 hidden uni ts—slight ly fewer than the number of units added in block training. Whi le the 
epoch count is sl ightly greater than in the block-training experiment, most of these epochs are run on very 
small t raining sets. T h e incremental training required only about half as much total runt ime as the block 
training. 

For learning of even more complex temporal sequences, incremental training of this kind may prove essential. 
Allen[Allen, 1990] and ElmanfElman, 1991] report similar advantages for incremental training, but in their 
sys tems the already-learned material must be constantly reviewed during subsequent training to prevent 
cannibal izat ion of exis t ing structure. 

Our approach to incremental training was inspired to some degree by the work reported in [Waibel, 1989] in 
which small network modules were trained separately, frozen, and then combined into a composi te network 
with the addit ion of some " g l u e " units. However, in R C C only the part i t ioning of the training set is chosen 
by the user, the network itself builds the appropriate internal structure, and new units are able to build upon 
hidden uni ts created dur ing some earlier lesson. 

4. Conclusions 

R C C adds sequential processing to Cascade-Correlation, while retaining the advantages of the original 
version: fast learning, good generalization, automatic choice of network topology, ability to create complex 
high-order feature detectors , and incremental learning. The grammar-learning exper iments suggest that 
R C C is more powerful than standard Elman networks in learning to recognize subtle patterns in sequential 
data. T h e R T R L scheme of Wil l iams and Zipser may be equally powerful, but R T R L is more complex and 
does not scale up well when larger networks are needed. 
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On the negat ive side, R C C deals in discrete t ime-steps and not in cont inuous t ime. An interesting direction 
for future research is to explore the use of an RCC-l ike structure with units whose memory of past state is 

t ime-cont inuous rather than discrete 

References 

[Allen, 1990] 

[Cleeremans, 1989] 

[Elman, 1988] 

[Elman, 1991] 

[Fahlman, 1988] 

[Fahlman, 1990] 

[Mozer, 1988] 

[Smith, 1989] 

[Waibel, 1989] 

[Will iams, 1989] 

Allen, R. B. (1990) "Connect ionist Language Users" , Technical Repor t TR-AR-90-402 , 

Bell Communica t ions Resarch, Morr is town, N.J. 

Cleeremans, A., D . Servan-Schreiber, and J. L . McClel land (1989) "Finite-State Au
tomata and Simple Recurrent Ne tworks" in Neural Computation!, 3 7 2 - 3 8 1 . 

E lman , J. L. (1988) "Finding Structure in T ime ," C R L Tech Report 8 8 0 1 , Univ. of 
California at San Diego, Center for Research in Language . 

E lman , J. L . (1991) "Incremental Learning, or T h e Importance of Start ing Smal l , " C R L 
Tech Report 9 1 0 1 , Univ. of California at San Diego, Center for Research in Language . 

Fahlman, S. E . (1988) "Faster-Learning Variations on Back-Propagat ion: A n Empirical 

S tudy" in Proceedings of the 1988 Connectionist Models Summer School, Morgan 

Kaufmann. 

Fahlman, S. E. and C. Lebiere (1988) "The Cascade-Correlat ion Learning Archi tecture" 

in D . S. Touretzky (ed.), Advances in Neural InformationProcessing Systems 2 , Morgan 

Kaufmann. 

Mozer , M. C. (1988) " A Focused Back-Propagation Algor i thm for Temporal Pattern 

Recogni t ion ," Tech Report CRG-TR-88-3 , Univ. of Toronto, Dept . of Psychology and 

Compute r Science. 

Smith , A. W. and D. Zipser (1989) "Learning Sequential Structure with the Real-Time 

Recurrent Learning Algor i thm" in International Journal of Neural Systems, Vol. 1, N o . 

2 , 125-131 . 

Waibel , A. (1989) "Consonant Recognit ion by Modula r Construct ion of Large Phone
mic Time-Delay Neural Ne tworks" in D. S. Touretzky (ed.), Advances in Neural Infor
mation Processing Systems 1, Morgan Kaufmann. 

Wil l iams, R. J. and D. Zipser (1989) "A learning algori thm for continual ly running 
fully recurrent neural ne tworks , " Neural Computat ion 1, 270-280 . 

8 


