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Abstract 

Multiple types of knowledge (syntax, semantics, pragmatics, etc.) contribute to establishing the 
meaning of an utterance. Delaying the use of a knowledge source during language processing 
introduces computational inefficiencies in the form of overgeneration, making it difficult, to 
satisfy the real-time constraint of 200 to 300 words per minute for adult comprehension. On the 
other hand, ensuring that all relevant knowledge is brought to bear as each word in the sentence 
is understood is a difficult design problem. As a solution to this problem, we describe in detail 
the current version of NL-Soar, a language comprehension system that integrates disparate 
knowledge sources automatically. Through experience, the nature of the understanding process 
changes from deliberate, sequential problem solving to recognitional comprehension that applies 
all the relevant knowledge sources simultaneously to each word. The dynamic character of the 
system results directly from its implementation within the Soar architecture. 
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1. Introduction: A brief history of NL-Soar 
For three and a half years the NL-Soar project has worked toward the goal of creating a 

general natural language capability for Soar, implemented as a set of problem spaces and 
operators within the architecture. The motivation for this goal has two sources, one 
corresponding to each of Soar's two roles as a research effort. In conjunction with Soar as a 
unified theory of human cognition [26, 31], our motivation is to create an account of human 
language capability that is consistent with psycholinguistic data (the present system addresses 
only comprehension, but accounting for generation and acquisition is part of our goal as well). In 
conjunction with Soar as an integrated, intelligent architecture, our motivation is to provide a 
common, uniform skill for use by other Soar tasks that involve language. As a system that has 
not yet met all its goals, NL-Soar is still evolving. Yet, recent changes have produced a version 
that is significantly different from its predecessors [27, 31]. Our purpose in this report, then, is to 
describe the system in sufficient detail that its characteristics can be compared and contrasted 
both with prior Soar versions and with non-Soar systems. In this section, we trace the ideas that 
led to the current instantiation. 

The one idea that has consistently determined the basic design of NL-Soar has been the notion 
of the comprehension operator, first introduced in the William James Lectures in 1987 [31]. The 
idea of the comprehension operator is a general one, extending beyond language to vision and 
the other ways in which we comprehend the environment. With respect to language, however, 
the comprehension operator brings to bear all the knowledge about a word in a given context to 
produce data structures in working memory that can be used by later comprehension and by 
problem solving. The application of the comprehension operator to each successive word in the 
utterance gives NL-Soar's processing behavior the same character as adult recognitional 
comprehension. Namely, the system proceeds left-to-right through the utterance, one word at a 
time, at a near-constant rate 1, arriving at the end of the utterance with a representation of its 
meaning complete in working memory. Thus, comprehension operators can be viewed as a 
realization of Just and Carpenter's immediacy of interpretation principle [17] within the Soar 
architecture. 

An important implication of this view is that the instance of the comprehension operator for a 
given word must access integrated knowledge, simultaneously bringing to bear all the sources 
involved in establishing meaning. The idea of integrated knowledge sources in comprehension is 
not new; it has been explored in many natural language systems, in a variety of guises, for 
reasons of efficiency and robustness if not cognitive constraint. Partial integration of some 
knowledge sources has been achieved, for example, through the use of semantic grammars 
[5, 8, 37], domain-specific syntactic grammars [6,13, 38, 51], semantic annotations to syntactic 

rules [39, 40], blackboard-style architectures [11, 32, 45], and precompilation techniques [46], 
NL-Soar's comprehension operator principle goes further along this path of integration, 
however, by requiring that all knowledge sources be accessed in a single processing step. 

Adult reading rates average 200 to 300 msec per word, corresponding to approximately two or three operator 
app ications in the standard mapping of Soar onto the time-scale of human cognition (see [31]). As described in 
section 2.1 NL-Soar actually implements recognitional comprehension with a two operator cycle (attend and 
comprehend) applied to each word in turn. 
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The 1988 version of NL-Soar maintained the commitment to comprehension operators and 
added a new commitment: to annotated models as the data structures produced by the 
comprehension process [31]. The choice of annotated models as a representation was driven in 
large part by the system's integration with two other Soar projects: one related to instruction-
taking (Bl-Soar, [27]), and one related to explaining human behavior in immediate reasoning 
tasks (IR-Soar, [34]), including syllogistic reasoning. Johnson-Laird had introduced annotated 
models as an alternative to both pure models and logic-based representations in his work on 
syllogisms [16]. A pure model enforces a strict one-to-one correspondence between elements in 
the model and what is being represented. An annotated model, on the other hand, is a variation of 
the paradigm in which exceptions to the one-to-one rule are permitted that increase the power of 
the representation language without allowing (and paying the penalty of) the full expressiveness 
of first-order logic. 

Although they differed from the semantic grammar systems with respect to their knowledge 
sources and meaning representations, the 1987 and 1988 versions of NL-Soar were quite similar 
to those systems in other ways. Each is a member of what Winograd[50] calls the 
situation-action parsers. As such, their grammars were represented as situation-action rules (also 
called productions in NL-Soar). A situation-action rule is triggered by structures in working 
memory, and specifies an action to be taken on those structures. A comprehension operator, then, 
consists of a set of productions which, together, tell the system what changes to make to the 
representation of the utterance when a word is encountered in any context. In the early versions 
of NL-Soar, as in ELI [37], CA [5], and BORIS [8], these situation-action rules were hand-
coded. In addition to building up the representation, the rules also created explicit expectation 
structures in working memory to be matched in later processing. As a result, the process of hand-
coding rules required anticipating at design time all of the structures and expectations that 
needed to be in working memory or had to be removed from memory at all the different points in 
processing. Thus, maintaining and extending these systems, as well as predicting their behavior 
when new knowledge was added, were complex and difficult tasks. 

The current NL-Soar system (Spring 1991) is, like its predecessors, based on the idea of 
comprehension operators. It also preserves the 1988 version's commitment to annotated models 
as a representation. It overcomes the problem of hand-coding comprehension operators, 
however, by having them arise automatically and incrementally via Soar's learning mechanism. 
This change allows us to add the knowledge that the system needs for comprehension in a 
modular and extendable way without giving up the integration demanded by cognitive 
constraints. As a result, we will see that NL-Soar incorporates two different comprehension 
processes. Recognitional comprehension brings all knowledge sources to bear in a single 
processing step. When NL-Soar is performing recognitionally its processing has the character of 
adult comprehension described above. In contrast, deliberate comprehension searches through 
the space of possible interpretations for the current word in a series of steps that access distinct 
knowledge sources. When NL-Soar is performing deliberately, its processing has the same 
character as many non-integrated systems. It is the co-existence of these two types of processing 
and the automatic transformation of knowledge from deliberate to recognitional form that makes 
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NL-Soar unique.2 

NL-Soar's performance relies on structures and mechanisms that come from three distinct 
sources: the Soar architecture, the particular problem spaces and operators chosen for NL-Soar, 
and the representations chosen for capturing the content of an utterance. Section 2 outlines what 
each of the three contributes to the system. Section 3 then brings these individual contributions 
together in a series of examples of the system's performance. We summarize the characteristics 
and behavior of the system in Section 4. 

2. System overview 
In this section we demonstrate how comprehension operators arise automatically and 

incrementally in NL-Soar. We do this first in a general way by showing the Soar architecture's 
role in comprehension (Section 2.1), without specifying either the results of the comprehension 
process or the deliberate problem-solving behavior that results from a failure to comprehend 
recognitionally. Representing the results of comprehension is discussed in Section 2.2. 
Deliberate problem solving and NL-Soar's problem spaces and operators are then discussed in 
Section 2.3. 

2.1. NL-Soar and the Soar architecture 
NL-Soar is implemented within, and takes advantage of, the Soar architecture [23, 31]. Soar 

belongs to a family of cognitive theories that share important features both in terms of 
psychological mechanisms and methods of use. The family includes, among others, Anderson's 
ACT* architecture [2, 43], the work of VanLehn [20,47,48], Larkin [25], Kieras and Poison 
[35], Langley [24], Thibideau, Just, and Carpenter [45], as well as previous work by Newell and 

Simon [30,41,42]. 

These theories characterize human cognition as goal-directed problem solving. Under this 
conceptualization, tasks are formulated in terms of problem spaces in which operators are 
selected and applied to the current state until a desired state achieving the goal is reached. The 
knowledge of when to choose a new goal, when to apply an operator, and what changes the 
operator creates in the state are contained in a long-term memory, usually realized as 
productions. A production is a type of condition-action (or situation-action) pair; if the 
conditions are met, then the actions are taken (the production is said to fire). Thus, problem 
solving occurs by matching the conditions in the productions against working-memory elements 
in the current state and taking the consequent actions to produce a new state. Most of the systems 
mentioned above also have a learning mechanism to capture the result of problem solving in new 
productions. The learning mechanism acts as a knowledge compilation device, encapsulating a 
set of operator/state transitions as a single condition-action pair. Although the systems differ 
somewhat in how they instantiate these ideas—for example, whether there is a single production 

2 W e have omitted a 1990 version of NL-Soar [26] from this brief history. In terms of key features (automatic 
acquisition of comprehension operators and the use of annotated models), the 1990 version did not differ from the 
current NL-Soar. The two systems did differ in other respects, however. Notably, the 1990 version used an 
all-paths, bottom-up parsing algorithm and a chart-like structure containing standard phrase-structure constituents. 
As we describe in Section 2, the current system uses a single-path, combined top-down and bottom-up strategy, and 
a head and modifier representation for the utterance. 



4 

memory or an additional declarative memory, whether all productions fire in parallel or only one 
production may fire at a time, whether learning occurs automatically or deliberately—the basic 
model is shared. 

As a particular member of this family, Soar can also be described as a system that formulates 
tasks in terms of problem spaces, operators, and states. Problem solving proceeds in a sequence 
of decision cycles. Each decision cycle accumulates knowledge from long-term recognition 
memory by allowing all the productions whose conditions match working memory elements in 
the current state to fire in parallel. The knowledge that is added to the state represents 
preferences concerning the next step to take. Once quiescence is reached (no more productions 
fire) a decision procedure examines the preferences in order to choose a new problem space, 
operator, or state. If enough knowledge from production memory has accumulated to make the 
decision procedure's choice unequivocal, the preferred next step is taken and the next decision 
cycle is entered. If, on the other hand, Soar does not know how to proceed in a problem space 
because the accessed knowledge does not suggest a next step, or there is conflicting knowledge 
suggesting more than one step, an impasse occurs. In response to an impasse, Soar creates a 
subgoal and a new problem space in which to acquire the missing knowledge (an impasse within 
the new space will have the same effect, i.e. Soar creates its own goal-subgoal hierarchy 
automatically as a result of being unable to proceed). Once an impasse has been resolved by 
problem solving in the subspace, the learning mechanism (called chunking in Soar) combines the 
conditions that gave rise to the impasse with the result that resolved the impasse in a new 
production that avoids the impasse in the future. Thus, Soar's learning mechanism is automatic 
rather than deliberate, being invoked whenever an impasse is resolved. 

Figure 2-1 illustrates this process with a number of decision cycles that are common to all of 
NL-Soar's problem-solving traces, and in many ways the essence of its processing. Decision 
cycles are numbered along the left margin; in subsequent discussion we use the notation 
d<number> to refer to a particular decision cycle. The symbols G, P, S, and O stand for goal, 
problem space, state, and operator, respectively. An impasse is indicated by an arrow and 
indentation. Ellided processing prior to a decision cycle is indicated by an ellipsis in the left 
margin. 

..5 P: Comprehension 
6 S: Comprehension-state 
7 O: attend(/0 /m) 
8 O: comprehend(/o/in) 
9 ==>G: operator no-change 
10 P: Language 
11 S: Language-state 

..Build: p65 

..Build: p76 
21 O: attend(foi0wtf) 

Figure 2-1: A portion of the Soar trace for John knows Sharyn, before chunking. 

In decision cycles dO through d4 (not shown), Soar's default initial goal, problem space, and 
state are chosen and a new sentence beginning with the word John becomes available through 
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Soar I/O functions. By the end of the fifth decision cycle, the Comprehension problem space has 
been chosen. Its initial state is created in d6. 

In d7, the result of the decision procedure is to execute the attend operator which adds the next 
uncomprehended word in the sentence to the state as the new word. The presence of a new word 
on the state fires the NL-Soar production propose-comprehend-operator, shown with its English 
paraphrase below (hereafter, we will show only the English paraphrase). As described earlier, a 
production is a condition-action pair. The condition appears after the production name but before 
the arrow, while the action portion appears after the arrow. A condition is given as a set of 
attribute/value pairs with the attribute indicated by an " A " and its value (or values) immediately 
following. Values in angle brackets (e.g., <word>) are variables that are bound in the match 
against working memory. As indicated in the paraphrase at the right, propose-comprehend-
operator says that if the state associated with a Comprehension space has a new word on it, then 
create a preference to comprehend that word. D8 in Figure 2-1 shows that when the decision 
procedure is finished for this cycle, the comprehend operator has, indeed, been selected, 
(sp propose-comprehend-operator Propose-comprehend-operator: 
(goal <g> Aproblem-space <p> Astate <s>) If the problem-space is Comprehension and 
(problem-space <p> Aname comprehension) the state has a new word on it 
(state <s> Anew-word <word>) Then create a preference to apply the 

-> comprehend operator to the new word (goal <g> Operator <o> +) 
(operator <o> Aname comprehend Object <word>)) 

In d5 through d8, there was enough knowledge accessible from long-term memory to make the 
decision procedure's choice unequivocal. In the next decision cycle, however, Soar does not 
know how to proceed in the Comprehension space, because it does not have immediately 
available from recognition memory the knowledge of how to implement the comprehend 
operator for the word John. Thus, an impasse arises.and Soar creates a subgoal to acquire the 
missing knowledge (d9). Productions in NL-Soar then propose the Language problem space and 
its initial state as the appropriate space and state to use to acquire this knowledge (dlO and dl l ) . 
Problem solving continues in this space as before, with each decision cycle resulting in the 
selection of a problem space, state, operator, or new subgoal. As noted above, when the desired 
state is reached in the problem space for a subgoal, a chunk is created that avoids the impasse in 
the future. The chunk makes the knowledge accessible in the problem space that led to the 
impasse (the pre-impasse environment). Thus, p65 and p76 avoid the impasse that led to the 
subgoal in d9 (we will examine them in more detail in the next section).3 Their conditions test 
for the working memory elements from the pre-impasse environment that were needed to reach 
the desired state in the lower space. Their actions create preferences for the working memory 

3 W e have skirted the truth a bit in this explanation. In reality, p65 and p76 are created not by reaching a desired 
state in the Language space, but by virtue of returning results from Language to Comprehension. One can think of 
this use of chunking as a method of detecting pieces of the desired state as they occur during problem solving. Once 
a piece of the desired state is present, the appropriate changes are made to the superstate and a chunk is 
automatically formed. An interesting side effect of this form of learning is that chunks can trigger other chunks. In 
our example, p65 is formed first, while p76 is formed as a result of later problem solving. This means that the results 
returned when creating p65 become part of the pre-impasse environment for p76. It happens that p76 relies on some 
of p65's results. Thus, chunking puts those attributes and values in p76's conditions. Should the situation present at 
d9 occur again, p65 will fire first, triggering p76 which then fires. Since the decision procedure waits until 
quiescence, however, both chunks will fire within a single decision cycle. 
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elements' new attributes and values. Thus, next time we encounter the word John in similar 
circumstances, p65 and p76 will fire, avoiding the problem solving in d9 through d20. In other 
words, p65 and p76 are two of the productions that form part of the comprehension operator for 
John. Although they arose via deliberate problem solving in response to a failure to comprehend 
recognitionally, the knowledge they contain about what to do when comprehending John is now 
immediately available in the Comprehension space. As Figure 2-2 illustrates, chunking has 
transformed the sequential application of a series of operators into a single instance of simple 
production match. 

...5 P: Comprehension 
6 S: Comprehension-state 
7 O: attendC/tf/m) 
8 O: comprehend(/o/w) 
Firing: p65, p76 
9 O: attend(£rt0utf) 

Figure 2-2: A portion of the Soar trace for John knows Sharyn, after chunking. 

2.2. NL-Soar's representation of utterances 
In the previous section, we showed how the Soar architecture supports two separate but 

interdependent types of comprehension process: recognitional and deliberate. Regardless of 
which process is evoked by a particular utterance, however, the outcome is the same: a single 
interpretation of the utterance in the form of two related annotated models. The utterance model 
represents the structure of the utterance. It is built primarily to facilitate constructing the 
situation model which represents the utterance's meaning. The two models are tied via reference 
.relations from objects in the utterance model to objects in the situation. Together, the two models 
provide the context under which comprehension proceeds. The limit of two models is not an 
absolute—.additional models may be needed as new sources of knowledge (for example, a 
discourse level) are added to the system. 

The utterance model represents the structure of the utterance using a head and modifier 
approach [50] based on dependency theory. In essence, a dependency structure is one in which 
each node corresponds directly to a word (never to an intermediate constituent as in a phrase-
structure grammar) and the arcs specify modifying relations between words. A variety of 
dependency theories have evolved in linguistics (for example, [12, 14, 28, 29]), differing both in 
the particular kind of structure allowed (tree [12, 28,29] or graph [14]) and in the particular set 
of relations employed (standard grammatical relations [28] or a set of distinguished but non
standard labels [12, 14, 29]). NL-Soar uses a graph structure and grammatical relations based on 
Winograd's outline of English [50] to label its arcs.4 Like other implemented systems, NL-Soar 
distinguishes that subset of its nodes that correspond to open constituents. The combination of 
this small active edge set with a graph size linear in the number of words in the sentence 

4Currendy, only syntactic structures requiring trees are processed by the system. Our commitment to a graph 
structure comes, therefore, not from the implementation but from the theoretical limitations of tree structures for 
handling long-distance dependencies [14]. 
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significantly constrains the search required to attach each word.5 

The situation model is a graph structure representing the objects, properties and relations that 
are described in the utterance. The objects and their properties are represented by the nodes. The 
arcs between nodes represent the relations between objects; arc labels consist of a combination 
of thematic roles, case roles and lexical items. The latter class is quite large (including, for 
example, both "on" and "atop"), reflecting the current system's lack of commitment to an 
ontology of primitives. In the remainder of this section, we examine a number of examples of 
utterances and their models to make these descriptions more concrete. 

The four examples that follow are taken from two of the three task domains to which the 
system has been applied. Example 1 comes from a sentence verification task that is part of work 
on comprehending instructions and stimuli in immediate-reasoning experiments [27,34]. 
Example 2 comes from another immediate-reasoning experiment, a syllogism task. Examples 3 
and 4 are taken from our work on a natural language interface to a robot arm [15,22]. The third 
domain we have worked in relates to modeling human comprehension of garden path sentences. 
The examples in Section 3 are drawn from that domain. In addition to making our model 
representation more concrete, these sentences also serve to illustrate the syntactic, semantic, and 
pragmatic capabilities present in NL-Soar. 

Example 1. In the sentence verification task, a user is first shown a picture of simple 
geometric shapes, followed by a statement about the picture. The user must judge whether the 
statement is true or false of the scene. Thus, in this task, the situation model is delivered prior to 
the utterance through visual comprehension (the form and content of the situation model are the 
same regardless of whether visual or linguistic comprehension produces it). Judging the 
sentence true or false is, in terms of language comprehension, essentially a matter of resolving 
the references in the utterance model against that situation. Figure 2-3 shows an example of the 
experimental stimuli (top), the situation model assumed to have been delivered by visual 
comprehension (right), and the utterance model (left) after comprehending The star above a 
circle is dark in the context of the given situation model. Since referents for the all the objects 
and relations mentioned in the utterance exist in the situation, the sentence can be judged true. 

Nodes in the utterance model are represented graphically by an oval for each word in the input. 
Nodes are connected by arcs labeled with grammatical relations in boldface. Double ovals 
designate the active edge set. Objects in the situation model are represented by squares. 
Properties of and relations among objects are in boldface, with relations represented by arcs. 
Note that star in the utterance model is italicized (indicating it represents a word in the input) 
while "star" in the situation model is not (indicating it represents the concept). Dotted arcs 
between the two models indicate the referent relations established by comprehension. These 
relations may change over the course of the comprehension process. When the word star is 
encountered, for example, its referent is ambiguous (ol or o2). While the word above does not 

5 One of the traditional advantages of dependency grammar over constituent grammars has been that the former 

iTri^^TSent
 W ? ^ ° , r d e r C a n ' t h e r e f 0 r C ' e a S i l y p r 0 C e S S ^continuoufstructures (for C J ^ I C / M S S 

earrings in A man walked by wearing earrings [50]). The current implementation of the active edge set in NL-SoJr 

m^^T^ ?°Ter* T h U S ' a U h ° U g h a C d v e C d g e C O n s i a i n s s e a r c h d i m i i u u c J l ^ ^ S [44], some way to relax the notion is required. 
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UTTERANCE MODEL 
> = edge set 

<GD> 
subject/'^ ̂ s^complement 

SITUATION MODEL 
(given / pj new j ) 

d r c l e ' refers 
determiner 

ol 
isa star 
shade dark 
size large 

i 

above below 

o3 
isa circle 
shade light 
size large 

left 

right 

o2 
isa star 
shade light 
size small 

above 

left 

right 

below 

o4 
isa square 
shade dark 
size medium 

Figure 2-3: The models resulting from comprehension of The star above a circle is dark. 

disambiguate the reference—each of ol and o2 is above some object—the word circle constrains 
the reference tool . 

Example 2. In the syllogism task, a conclusion must be generated that follows from two 
related premises (although IR-Soar[34] provides the conclusion in a form similar to the 
utterance model, NL-Soar does not yet perform the language generation). Suppose the two 
premises are All artists are chemists and All chemists are beekeepers. The unshaded portion of 
the situation model in Figure 2-4 shows the meaning assigned to the first premise, while the 
utterance model and shaded portion of the situation model correspond to comprehension of the 
second premise. Note that the situation model continues to grow (that is, processing of the 
second sentence goes on in terms of the context established by the first sentence) although the 
utterance model is treated as a temporary structure.6 The reference to more than one 
artist/chemist/beekeeper is indicated by the use of an annotation (many) in the situation model. 
This is an example of the limited way in which annotated models may violate a strict one-to-one 

6Although NL-Soar can process multiple, connected sentences, the size of the resulting situation model has, to 
date, been kept quite small. This has allowed us to ignore temporarily the issue of establishing and changing focus of 
attention that is a natural by-product of larger situation models. 
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correspondence between model elements and what is being represented.7 Here, with a single 
object we represent that there is more than one artist that is also a chemist and a beekeeper. What 
cannot be represented within the annotated model paradigm, however, is the universal quantifier. 
The limited representational power of annotated models appears to be an important factor in 
explaining human performance in this task [16, 33]. 

UTTERANCE MODEL 
»= edge set 

SITUATION MODEL 
(given / new 

subjecty/^v^complement ol 
isa artist 
isa chemist 

isa beekeeper | 

annotation many 

Figure 2-4: The models resulting from comprehension of All chemists are beekeepers 
after having read All artists are chemists. 

Examples 3 and 4. The last two examples contrast comprehension of the same sentence {Put 
the red block on the blue block on the table) under two different situations. They demonstrate the 
potential biasing effect of referent resolution within the single-path process. In the situation 
depicted at the top of Figure 2-5 and in the corresponding situation model, there is no red block 
that is on a blue block so the phrase on the blue block is considered as the beginning of the 
locative and the full description, on the blue block on the table, is eventually resolved to indicate 
o3. The interpretation of the whole utterance thus has the effect of moving ol onto o3. 

In the situation depicted in Figure 2-6, however, there is a red block on a blue block (o4) as 
well as a blue block on the table (o3). Thus, the two possible points for attachment of on the blue 
block cannot be distinguished on the basis of the existing situation. If the attachment to the noun 
is proposed first, the models shown in Figure 2-6 will result, otherwise the system will produce 
those of the previous figure. Thus, the meaning of the utterance will be consistent with, but may 
be underconstrained by, the knowledge sources available. 

In addition to making the model representation concrete, the examples given above elucidate a 
number of other characteristics of NL-Soar. They show, for example, that it is a single-path 
comprehender, producing only one interpretation of an utterance. They indicate that the system's 
syntactic coverage is limited to fairly simple constructions (actually corresponding to about 

7 The use of the many annotation to indicate plurality is only one possible choice. As an alternative, one might 
represent the plural by a small, fixed number of identical objects. g 
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ol 
I I S L I 

o4 
bluel 

"53 
blue 

interpreted as o4 
bjuej 

ol 
o3 

blue 

Put the red block on the blue block on the table. 

UTTERANCE MODEL 
) = edge set 

SITUATION MODEL 
(given / j new ||j) 

LiiBSI^BCB&tiJ 

block 
determinerXX describer 

I 06 
1 isa put-act 

object 

ol 
isa block 
color red 

o4 
isa block 
color blue 

prep-
specifier 

o3 
isa block 
color blue 

o3 
isa block 
color blue 

o2 
isa box 

on 
determiner"***--. I o5 
^ ^ isa table 

Figure 2-5: The models for Put the red block on the blue block on the table 
when there is no red block on a blue block. 

seventy-five percent of James Allen's description of basic English [1]). The system's 
representation of meaning is fairly simple as well, and currently lacks an ontology of primitive 
properties and relations. Finally, they demonstrate that NL-Soar processes connected text, 
maintaining that connectivity through referent resolution to previously established objects and 
events in the situation. 

2.3. NL-Soar's problem spaces and operators 
How do we map a sequence of words into an utterance model and situation model? While the 

architecture provides a framework for answering this question, it does not provide the answer 
itself. The missing pieces in our description of NL-Soar, then, are the actual problem spaces and 
operators implemented within the architecture discussed in Section 2.1 and creating the 
structures discussed in Section 2.2. These are shown in Figure 2-7. The problem space names 
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ol 
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o3 
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interpreted as o3 
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Ol 
red 

Put the red block on the blue block on the table. 

UTTERANCE MODEL 
> = edge set 

SITUATION MODEL 
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determiner 
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isa block 
color red 

o3 
isa block 
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o2 
isa box 

o3 
isa block 
color blue 

o4 
*J isa block 

color blue 

Figure 2-6: The models for Put the red block on the blue block on the table 
when there is a red block on a blue block. 

are listed along with their operators at the left of the figure, with a brief description of the 
problem space's behavior at the far right. In the middle portion of the figure, problem spaces are 
represented by triangles, states by circles, and operators by arrows. The hierarchical relationship 
among the problem spaces is indicated downward by impasses and upward by chunking. 

At the top of the hierarchy is the Comprehension space, seen previously in d5 through d8 of 
the trace in Figure 2-1. This is the space with the character of adult recognitional comprehension. 
It is the space of comprehension operators, in which attention proceeds left-to-right through the 
sentence, each word being comprehended in turn, its meaning established by a single operator 
application that brings all the relevant knowledge to bear simultaneously. It is the space in which 
comprehension requires no search, being achieved, instead, through parallel, constant-time 
production match. It is also the space whose knowledge of how to comprehend arises 
automatically through chunking. 
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Comprehension 
attend 
comprehend 

Language 
lexical-access 
link 
expect 
merge 
snip 
refer 

Constraints 
check 
record-changes 
constraint-success 

Semantics 
find 
justify 

word-by-word 
recognitional 
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search space of 
utterance and 
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apply lexical 
and pragmatic 
knowledge 

apply syntactic 
and semantic 
constraints 
consistent with 
pragmatics 

bring to bear 
pragmatic 
knowledge 

bring to bear 
general world 
knowledge 

Figure 2-7: NL-Soar's problem spaces and operators. 

As we saw in Figure 2-1, when comprehension cannot proceed recognitionally, an impasse 
arises leading to a goal to acquire the knowledge missing from Comprehension by search. This 
search occurs in the Language space, whose operators can be tried in various sequences to find a 
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way of attaching the new word and its meaning to the current utterance and situation models. 
The lexical-access operator provides knowledge about the different grammatical roles and 
semantic senses of the word that guides these attachments. The link, expect, merge, and snip 
operators all result, directly or indirectly, in the attachment of the new word to the utterance 
model (see Section 3 for greater detail). The refer operator, on the other hand, is responsible for 
changes to the situation model as well as tying the utterance and situation models together. 
Regardless of the amount of search required to find an attachment, the result of problem solving 
in Language is to resolve the impasse on the comprehend operator. Chunking combines the 
conditions that led to the impasse with the results of the search to augment NL-Soar's 
recognitional comprehension capability. 

The Constraints space is the source of the syntactic, semantic, and pragmatic knowledge that 
permits or vetos the implementation of a link, expect, merge, or snip operator proposed in the 
Language space (pragmatic knowledge is also used in Language, but not to constrain 
attachments). Unless the syntactic, semantic, and pragmatic knowledge relevant to an attachment 
has been made available in Language through chunking in the past, a proposed attachment leads 
to an impasse so that all pertinent constraints can be brought to bear via check operators (we will 
see specific examples of check operators in Section 3). In simplest terms, we can consider the 
Constraints space as a kind of oracle. Via an impasse Language asks the question, Is this 
attachment syntactically, semantically, and pragmatically consistent? and Constraints resolves 
the impasse by answering yes or no (yes is indicated by using the constraint-success operator 
after all check operators have passed, no by resolving the Language impasse after the failure of 
any single check operator). These terms are too simplistic, however—the real result of resolving 
the impasse is not just a yes or no but a chunk whose conditions capture the critical syntactic, 
semantic, and pragmatic features of the context that led to that answer, and whose actions record 
changes to be made to the utterance model. Because the chunk becomes part of the knowledge in 
Language, syntactic, semantic, and pragmatic knowledge becomes part of the deliberate 
comprehension search. In turn, these three types of knowledge become integrated with 
Language's lexical and pragmatic knowledge in the comprehension operator chunks returned 
from Language to Comprehension. 

The problem space at the bottom of the hierarchy shown in Figure 2-7 is Semantics. When the 
Constraints space does not have the knowledge needed to verify an attachment's semantic 
consistency, a search for that knowledge occurs here. The Semantics space has two ways of 
validating an attachment: pragmatic justification and inference. In the former, the find operator 
looks at the current situation model for instances of the proposed attachment. If an instance of 
the relation is already present, it must be semantically correct. If, for example, there is already a 
blue block in the situation, then blue must be a legitimate modifier for block. If no evidence is 
found in the situation model, the justify operator uses NL-Soar's general world knowledge to 
infer a validating relation.8 Thus, if no blue block was present, justify would conclude that blue 
could modify block because blue modifies physical-objects and block isa physical-object. 

in * £ f r ™ y ; a J l ! S t i f y 0 p e ? t 0 ^ i s U S u a l I y i m P l e m e n t e d i n another instance of the Constraints space via an impasse 
In this Constraints space check operators are proposed that access world knowledge. The system's world knoTledee 

}«1J* c ™ * f * taowlfge sources for this space. Such an ontological commitment will, of cSrae tave 
consequences for the set of properties and relations used in the situation model as well. 
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Chunks from Semantics bring the reasoning done in the lower space into Constraints in 
production form. There it becomes part of Constraints' problem solving, to be returned in its 
chunks to Language and so on up to Comprehension. In this way, even the semantic and 
pragmatic knowledge brought to bear at the bottom of the hierarchy is integrated into 
comprehension operators. 

In this description of NL-Soar's problem spaces and operators we have focused on the constant 
flow of knowledge upward toward Comprehension. It is important to remember, however, that 
chunking results in increased efficiency in each problem space in the hierarchy by transforming 
search in the lower spaces into direct operator implementation in the higher space under similar 
circumstances. Still, chunking is only one aspect of the process of language comprehension in 
NL-Soar. The interplay of chunking, search, annotated models, and knowledge about language 
and the world is demonstrated next. 

3. The Comprehension Process 
The previous section described the building blocks from which NL-Soar has been constructed: 

the Soar architecture, a particular set of problem spaces and operators, and a representation of the 
result of the comprehension process as models. We are now ready to show how each of these 
pieces contributes to the general model of adult recognitional comprehension outlined in Section 
1. 

We build up a detailed picture of the working system by examining increasingly complex 
variations on a simple sentence. We begin in Section 3.1 by extending our analysis of the 
sentence fragment in Figure 2-1 to include the entire sentence, John knows Sharyn. This example 
introduces specific instances of many of the operators described in Section 2.3, shows concretely 
how the utterance and situation models are constructed, and demonstrates how comprehension 
operators arise in a bottom-up fashion. In Section 3.2, we examine a variation of this initial 
sentence that demonstrates how comprehension operators come to include top-down knowledge. 
This variation also allows us to look at the generality and transfer of the chunks learned in the 
first example. The example in Section 3.3 builds on knowledge attained from problem solving in 
the first two examples. It completes our description of NL-Soar by demonstrating the system's 
limited recovery capacity when its single-path mechanism is led astray. 

3.1. Example 1: Simple, bottom-up construction of comprehension operators 
We begin by looking in detail at a simple declarative sentence taken from our work on garden 

path phenomena. The sentence is John knows Sharyn, considered in the context of an initially 
empty situation model. As a point of reference, Figure 3-1 shows what the processing trace looks 
like when NL-Soar is capable of pure recognitional behavior for this sentence. The utterance 
model and situation model are also shown. 

Soar interacts with the external environment via state changes in its Top problem space. In the 
trace above, the presence of new input on the state triggers the proposal of the comprehend-input 
operator (d3). Since the knowledge that implements this operator is not available in the Top 
problem space, an impasse arises in d4 and a subgoal is created to resolve the impasse. The 
comprehend-input operator is implemented in the Comprehension space. This space is 
established along with its initial state in d5 and d6. Next, each word in the utterance is attended 
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OG:gl 
1 P: Top 
2 S: Top-state 

Type your input > John knows Sharyn. 
3 O: comprehend-input 
4 ==>G: operator no-change 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

P: Comprehension 
S: Comprehension-state 
O: attend(/<9/m) 
O: comprehend(/0/m) 
O: attend(knows) 
O: comprchend(knows) 
O: attend(S/iary*) 
O: comprehend(S7iaryn) 
O: attend(.) 
O: comprehendQ 

UTTERANCE MODEL 
> = edge set 

refers 

SITUATION MODEL 
(given / | 

o 2 
isa know-act 

refers 

refers 

Figure 3-1: Expected recognitional behavior for John knows Sharyn 
and the resulting utterance and situation models. 

to and comprehended in turn. The comprehension of each word requires only a single 
operator—no search is involved. 

Let us now consider, as we began to in Section 2.1, what happens when the comprehension 
operators needed to understand this utterance are not yet available. As we saw in Figure 2-1, 
when a word has been attended to but the comprehension operator for that word does not exist or 
is inappropriate in the current context, an impasse is detected by the Soar architecture and a 
subgoal is created to resolve that impasse. NL-Soar then attempts to resolve the impasse via 
deliberate problem solving in the Language space. The result of that problem solving are chunks 
that extend the comprehension operator for the word being comprehended. Figure 3-2 shows this 
process for the word John, including those portions of the trace ellided in Figure 2-1. 

Processing through d8 proceeds as in Figure 3-1, with the attend operator creating a node for 
the word John to be linked to the utterance model. At d9, however, the lack of knowledge to 
implement the comprehension operator for John is detected as an impasse and a subgoal is 
created to resolve it. The first step in the Language space (dl2) is to access the lexical definitions 
of John (John has only one, but, in general, a word may be polysemous). Each lexical definition 
is given as a profile of attributes and values that represent one interpretation of the word. The 
production that accesses the lexical entry for John is given below. In this and future productions, 
the & symbol separates the multiple values that may fill an attribute while the word and 
separates clauses in the condition and action. In addition, we will sometimes use labels of the 
form a<number> in the right margin to provide easier reference to pieces of the production. As 
shown, this profile includes syntactic information (al and a2), semantic classifications (a3 and 
a4), the grammatical roles that the interpretation may assign or receive in the utterance model 
(a5), and information used in establishing referential ties to the situation model (a6 and a7). 



16 

0 (see Figure 3-1) 
.7 O: attend(/0/m) 
8 O: comprehend(/0/m) 
9 ==>G: operator no-change 
10 P: Language 
11 S: Language-state 
12 O: lexical-access(/o/m) 
13 O: link(/o/w, first-word) 
14 ==>G: operator no-change 
15 P: Constraints 
16 S: Constraints-state 
17 O: record-changes 
18 O: check(progress) 
19 O: constraint-success 
Build: p32 
Build: p65 
20 O: rcfer(John) 
Build: p76 
21 O: attend(knows) 

Figure 3-2: Deliberate comprehension of John in John knows Sharyn. 

Language*lexical-access*JOHN: 
If the problem space is Language and 

the lexical-access operator is being applied for John 
Then add to the state a profile with 

subclass = count & proper al 
number = 3s a2 
most-specific-class = John a3 
base-level-class = person a4 
receives = subject & object a5 
unused referring-information = isa John a6 
template = isa John & isa person a7 

Once the lexical definitions are available in working memory, the next step in the Language 
space is to find those profiles with a role to assign or receive that matches a role to be received or 
assigned by a profile on an active edge in the utterance model. For every (assigner, receiver, 
role) triple that can be found, a link operator is proposed. If more than one link is proposed, they 
are tried in an arbitrary order. In our example, John has only one definition and is the first word 
in the sentence, so only the first-word link is proposed (dl3). Note that because NL-Soar is a 
single-path parser, even if many link operators are proposed, only the first successful link is 
implemented as changes to the utterance and situation models (what we mean by "successful" 
will become clear in the discussion that follows). 

The proposal of a link operator means that an assigner/receiver match has been found between 
the new word and an active edge of the utterance model. The actual implementation of the link, 
however, is permitted only after all the relevant constraints on the link have been passed. To 
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insure that all constraints pass, the link operator is implemented via search in the Constraints 
space (see dl4-dl6 in Figure 3-2). 

There are two kinds of constraints that must be satisfied before a link is made. The first kind 
are the semantic and syntactic constraints triggered by the specific link itself (for example, a 
number agreement constraint is triggered by a link for the subject role). Semantic constraints 
may also bring pragmatic information to bear, as explained in Section 2.3. In the process of 
passing these constraints some features on the profile of the assigner or receiver may be modified 
(this is similar to setting or modifying the contents of registers in an ATN-style parser [50] or to 
unifying feature vectors in a unification-style parser [40]). For instance, the number feature on a 
regular verb's profile always changes when the verb is linked to the subject (it begins as Is, 2s, 
lp, 2p, 3p and changes to whichever subset agrees with the subject nounphrase). As another 
example, the roles that remain to be assigned or received may change, allowing exocentric 
constructions.9 When all the syntactic and semantic constraints have passed, the record-changes 
operator puts the current word's correct sense and the mutually consistent feature sets for the 
assigner and receiver profiles in a change record (dl7). The use of a declarative structure to 
record changes ensures that the sets of compatible features remain tied together during 
subsequent processing (why this is important will become clear as we follow the change record 
back up the goal hierarchy to the Comprehension space). The change record for John as the first 
word is quite trivial: it simply preserves the profile we've already seen. 

The second kind of constraint that must be passed is called the progress constraint. The 
progress constraint forces NL-Soar to maintain a single, cohesive interpretation of the utterance 
at all times. It does this by ensuring that all nodes in the utterance model will still be connected 
after the current Language operator (in this case link) has been implemented (a connected 
utterance model implies a well-formed situation model, because all semantic constraints and 
pragmatic information have been taken into account). It is always checked after a change record 
has been created (dl8), so that the effect of those changes on the connectedness of the resulting 
model can be examined. The progress constraint is passed trivially for the first word in a 
sentence, but we will see in Section 3.1 that passing the progress check can be quite complex. 

With all constraints passed, a final state has been reached in the Constraints space. Recall that 
a chunk is created whenever an impasse is resolved or a result is returned to a higher space. In 
dl9 both events occur. First, the constraint-success operator signals that the impasse in the 
Language space has been successfully resolved by notating the link operator with both 
constraints-passed and the change record. This leads to the creation of chunk p32, shown below: 

Chunk p32: 
If the problem space is Language and 

the link operator is assigning the first-word role to a profile, p, for a word 
Then mark the link operator as having all constraints passed and 

add a change record to the link operator that 
makes the word's only profile p and 
links the word to the utterance model as the first word 
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Next, productions in the Language space return the change record to the Comprehension space as 
an intermediate result, creating p65 (below), part of the comprehension operator for John. The 
appearance of the change record in the Comprehension space immediately triggers productions 
that make the changes to the model, recompute the active edge set, and copy the new model and 
edge set down to the Language-state. Thus, the changes that establish the correct profile for John 
in the Comprehension and Language spaces are actually made during dl9. 

Chunk p65: 
If the problem space is Comprehension and 

the Comprehension-state has no edge and 
the Comprehension-state has an incoming word, w, and 
the comprehend operator is being applied to w and 
w is John 

Then add a change record to the comprehend operator that 
links w to the utterance model as the first word and 
makes w's profile 

subclass = count & proper 
number = 3s 
most-specific-class = John 
base-level-class = person 
receives = subject & object 
unused referring-information = isa John 
template = isa John & isa person 

Note that despite having returned an intermediate result, we have not yet resolved the impasse 
on the comprehend operator by reaching a final state in the Language space. The last operator on 
the path to a final state in the Language space brings pragmatic information to bear on the 
interpretation by finding the referent set for John. The refer operator is triggered by the unused 
referring-information on the profile (see p65, above). In the simplest case, the refer operator 
selects objects already in the situation model that match the new word's referring-information. If, 
as in our example, there is no matching situation object, one is created from the profile's 
template. As we saw in Section 2.2, in more complex situations, the system's preference for 
interpreting descriptions as referring to pre-existing objects in the situation model may bias the 
interpretation of an utterance. 

With a referent established, the final state in the Language space has been reached and the 
impasse that led to the subgoal in d9 resolved. Chunk p76, also part of the comprehension 
operator for John, results: 

Chunk p76: 
If the problem space is Comprehension and 

the Comprehension-state has a word, w, on the edge and 
the comprehend operator is being applied for w and 
w's profile has a template and unused referring-information = isa John and 
the Comprehension-state has a situation model and 
the situation model has no object that isa John 

Then add to the situation an object that instantiates the template and 
mark that object created and 
add that object to the profile as a referent 
mark the referring-information as used 

In fact, p76 is triggered by p65, as described in Section 2.1 (p65 places unused referring-
information on the profile, which p76, in turn, uses to create a referent and connect the two 
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models). Together the two chunks give the system recognitional comprehension of John when it 
appears as the first word in a sentence and no referents are available in the situation model. 

Now that we have followed a change record from its creation in Constraints back to its role as 
part of the comprehension operator, we are in a position to explain why this declarative structure 
is necessary. The movement of knowledge in the system from deliberate to recognitional form 
will eventually result in chunks whose simultaneous firing indicates local ambiguity in the 
utterance. If all the chunks made their changes directly to the models, the system could detect 
that conflicting interpretations were possible but could not detect which changes were caused by 
which interpretation. The use of a change record creates the opportunity for the ambiguity to be 
detected before any changes are made, and allows knowledge to be brought to bear to make a 
principled selection of a single interpretation.10 Once a particular interpretation's change record 
has been selected, other productions that rely on the established profile will fire to complete the 
comprehension operator's implementation in the same decision cycle. 

The example of deliberate reasoning we saw in processing John was quite simple. Although 
we discussed the problem solving steps taken in the Language space in some detail, the 
contribution of the Constraints space was minimal, and the lower spaces (as outlined in Section 
2.3) were not required. By following the comprehension process for the word knows, we can see 
the contribution of the other spaces more clearly. Figure 3-3 continues where Figure 3-2 stopped, 
with NL-Soar attending to the word knows. 

In d21, the attend operator creates a node for the word to be linked into the utterance model. 
Then, as expected, an impasse occurs when the system tries to comprehend the word 
recognitionally (d22 and d23). The Language space is chosen to find out how to comprehend 
knows, with the lexical-access operator chosen as the first step (d24-d26). The production that 
establishes the lexical entry for knows is shown below: 

Language*lexical-access*KNOWS: 
If the problem space is Language and 

the lexical-access operator is being applied to knows 
Then add a profile to the state with 

subclass = conjugate 
number = 3s 
tense = present 
most-specific-class = know-act 
base-level-class = cognitive-act 
assigns = subject & object & clausal-object 
requires = rolel & role2 al 
rolel = subject 
role2 = object & clausal-object a2 
maps = subject to actor & object to object & clausal-object to thought a3 
restricts = actor to isa animate & object to isa thing & thought to isa act a4 
unused referring-information = isa know-act 
template = isa know-act & isa act 

°The ambiguity is detected as an attribute impasse 
operator. At present, the system resolves such impasses 
situation model and the other interpretation does not 
interpretation with the existing referent. 

[21] on the change-record attribute of the comprehend 
arbitrarily unless one interpretation has a referent in the 
In that case, the impasse is decided in favor of the 
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.21 O: atlend(knows) 
22 O: comprehend(£rtovv.s) 
23 ==>G: operator no-change 
24 P: Language 
25 S: Language-state 
26 0: lexical-access(Ww5) 
27 0: lirik.(knows, John, object) 
28 =>G: operator no-change 
29 P: Constraints 
30 S: Constraints-state 
31 0: check(word-order) 
Build: p89 
32 0: ]mk(knows, John, subject) 
33 =>G: operator no-change 
34 P: Constraints 
35 S: Constraints-state 
36 0: check(word-order) 
37 0: check(np-well-formedness) 
38 0: check(number-agreement) 
39 0: check(semantic-consistency) 
40 =>G: operator no-change 
41 P: Semantics 
42 S: Semantics-state 
43 0:find 
44 0: justify 
.50 0: record-changes 
51 0: check(progress) 
52 0: constraint-success 
Build: pl86 
Build: pi 87 
53 O: refer(knows) 
Build: p202 
54 O: rtfer(knows) 
Build: p212 

Figure 3-3: Deliberate comprehension of knows in John knows Sharyn. 

It contains the same type of information that we saw in the definition of John, with a few 
noteworthy additions. In particular, information is included that dictates roles that must be filled 
(al), roles that are mutually-exclusive (a2, as interpreted by other productions), the mapping 
between grammatical utterance roles and relations in the situation model (a3), and restrictions on 
what types of situation objects can fill a role (a4). The influences of these new attributes will be 
seen below. 

Recall that the single active edge (John) can receive either a subject or object role. Since 
knows can assign either role, two link operators have been proposed at the end of the decision 
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procedure in d26. With no knowledge yet available to prefer one role over the other, the object 
link is arbitrarily instantiated first. The knowledge of whether or not to implement the link 
resides in the Constraints space, so an impasse occurs. In d31 a check operator is applied in order 
to verify the word order for the object link. Since the syntactic object must follow the verb, the 
proposed link fails this constraint. That failure is captured in a general way as chunk p89 in the 
Language space. In the future, no impasse will be necessary to know that it is incorrect to link a 
receiver on the edge of the utterance model and an assigner that is the new word via the object 
role. 

Since the object link fails, the subject link is proposed in d32. Once in the Constraints space, 
this link passes three syntactic tests: word order (d36), well-formedness of the nounphrase (d37), 
and number agreement between the subject and verb (d38). The productions that signal success 
for these constraints are given below: 

Constraints*word-order*subject-verb*ok: 
If the problem space is Constraints and 

the check operator for word order on (assigner, receiver, role) is being applied and 
the role is subject and 
the receiver is on the edge 

Then mark the constraint as having passed 
Constraints*np-well-formed*proper-noun*ok: 
If the problem space is Constraints and 

the check operator for np-well-formedness of a node is being applied and 
the node's profile has subclass = proper 

Then mark the constraint as having passed 

Constraints*number-agreement*ok: 
If the problem space is Constraints and 

the Constraints-state has a change record and 
the check operator for number-agreement on an assigner and receiver is being applied and 
the assigner and receiver profiles have a number value in common 

Then mark the constraint as having passed and 
put the common number value(s) for the assigner and receiver on the change record 

The word-order check makes certain that the syntactic subject precedes the verb. The well-
formedness check makes certain that a full nounphrase is present; it passes here because the 
nounphrase is a proper name (well-formedness fails, for example, for a singular noun without a 
determiner). The number-agreement check detects that both John and knows have number 3s. 
Notice, however, that this production may restrict the values found on the number attribute in the 
profile of the receiver and assigner to the set that they have in common. 

In d39, a semantic check is proposed to ensure that the referent of the receiver is a 
semantically appropriate actor for the act. This check operator is implemented in the Semantics 
space (d40-d42). Recall that proof of semantic validity can be achieved in either of two ways in 
the system. The first way is to find an instance of the situation being described already in the 
situation model (d43). In our example, if previous context had already introduced into the 
situation model an example of John knowing something, we would have the necessary evidence 
that John is a legitimate actor for a know-act. If the system cannot find the evidence, it must 
search for it by deliberate reasoning (d44). This process, not elaborated further in Figure 3-3, 
occurs in a new instance of the Constraints space in which check operators are proposed based 
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on know's restrictions for the actor. In our example, the knowledge that John is a person 
(available from the situation model) combines with general knowledge that people are animate to 
justify the semantic consistency of the link. 1 1 

Having passed the syntactic and semantic constraints triggered by the subject link, the system 
creates a change record (d50) and moves on to the progress check (d51). As was the case with 
the first-word link, the subject link passes this check trivially (linking a new node to a connected 
structure leaves a connected structure). Thus, the constraint-success operator allows processing 
to return to the Language space (creating pi86, analogous to p32 above) where a partial result 
can be returned to the Comprehension space (pi87, analogous to p65 above). Chunk pi87 is 
shown below. Note that its conditions consist of exactly those attributes and values— the word 
knows, the number, subclass, base-level-class, and receives for John—that were available prior 
to the impasse in d22 that were needed to pass all of the constraints on the link. 

Chunk pl87: 
If the problem space is Comprehension and 

the Comprehension-state has node p2 on the edge and 
p2's profile has 

number = 3s 
subclass = proper 
base-level-class = person 
receives = subject and 

the Comprehension-state has an incoming node nl and 
nl corresponds to the word knows and 
the comprehend operator is being applied to nl 

Then add a change record to the comprehend operator that 
links p2 to nl as subject and 
makes p2's profile 

number = 3s 
tense = present 
assigns = subject & object & clausal-object 
etc. 

When the result is returned, the change record is immediately implemented by productions in the 
Comprehension space: the profile for knows is established, the new edge set is computed, and a 
subject link is created between John and knows in the utterance model. This information is then 
copied down to the Language-state where the unused referring information in the profile triggers 
the refer operator (d53). The refer operator creates an object for the act in the situation model 
(see Figure 3-1) and returns it as a partial result to Comprehension, thereby creating p202. To 
complete the deliberate comprehension of knows, another refer operator uses the maps attribute 
in knows9 profile to establish the actor relation between knows9 referent and John's referent. 
This final change to the situation model is captured by p212 (d54). 

Together pl87, p202, and p212 contain all the changes to the models required by knows in the 
current context. Despite their similarity in being part of knows9 comprehension operator, the 
three chunks nevertheless differ significantly in their generality, and, therefore, in their 

n O n e could imagine extending the present Semantics space to incorporate episodic memory. In other words, the 
system might reason that John is a viable actor for some act not because it finds the act and actor already in the 
situation model, or because of general knowledge, but because the juxtaposition of act and actor reminds it of some 
episode in the past in which John performed that action [18,19]. 
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likelihood of transferring to other contexts. None of the productions relies on the appearance of 
the particular lexeme John in the subject position of the sentence, for example, but pi87 does 
test for the lexeme knows in order to perform the lexical access. Chunk p202, on the other hand, 
does not test for knows, but does require that the verb's referring-information be a know-act. 
Thus, p202 will transfer to morphological variants of knows while pi87 will not (depending 
upon the degree of semantic discrimination in the lexicon, p202 may also transfer to related 
verbs, for example, thinks). Chunk p212 is more general still, testing for none of John, knows or 
referring-information as a know-act, and relying only on the existence of a subject link in the 
utterance model between two nodes that already have referents. Through comprehending John 
knows, then, we have added to the system recognitional knowledge that contributes to 
understanding entirely novel utterances. 

Figure 3-4 shows deliberate comprehension of the last word in our first example sentence. The 
dynamic for Sharyn is similar to that for knows and John. The comprehend operator impasses, 
resulting in lexical access, linking, and referent resolution in the Language space. Sharyri*s 
lexical definition (d60) is analogous to John's. The proposed link operator (d61) for the object 
role must pass semantic and syntactic checks similar to those passed by the subject link (d63-
d72). When the constraints have been passed, the change record is returned as an intermediate 
result (d78-d80), producing p296 (analogous to pl87). To finish the process, a referent for 
Sharyn is created (d81, p320) and linked to the referent for knows with an object relation (d82, 
p328). The utterance and situation models now look like those in Figure 3-1. The 
comprehension operator for Sharyn is now partially defined by the chunks p296, p320, and p328. 

At the beginning of this section, in Figure 3-1, we showed what we would expect NL-Soar's 
processing to look like if the system could recognitionally comprehend our example sentence. 
We then assumed that the system did not have the appropriate knowledge immediately available 
in the Comprehension space, and demonstrated how deliberate comprehension would proceed 
for each word in turn (Figures 3-2 (John), 3-3 (knows), and 3-4 (Sharyn)). In each case, there 
were two distinct aspects to deliberate comprehension. First, search over multiple knowledge 
sources in NL-Soar's lower problem spaces produced additions to the models that described the 
structure and the meaning of the sentence. Second, Soar's general learning mechanism integrated 
the knowledge from the disparate sources into a form that could be immediately brought to bear 
with a single comprehend operator. Figure 3-5 demonstrates that through this compilation and 
integration process, the system has achieved the expected behavior. 

3.2. Example 2: Learning top-down knowledge in the comprehension operator 
The lexical-access, link, and refer operators were all that was needed in the Language space to 

deliberately construct the utterance and situation models for the sentence John knows Sharyn. 
But these operators are not always adequate for deliberate comprehension. To see why not, recall 
that link operators are proposed only when an (assigner, receiver, role) triple can be produced 
using the profile for a node on the edge set and a profile for the word being comprehended. Now 
consider the sentence Sharyn knows a chemist. When processing reaches the word a, which 
receives only a determiner role, the only node that is on the edge represents knows, which does 
not assign a determiner. Consequently, no link operator can be proposed. The problem is that 
link, as we have defined it, provides only word-driven or bottom-up knowledge during 
comprehension. Contexts such as the one that arises for a, on the other hand, require expectation-
driven or top-down processing if each word is to be interpreted immediately. In this section we 
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...55 0: attend(S/tary«) 
56 0: comprehendCS/jary") 
57 ==>G: operator no-change 
58 P: Language 
59 S: Language-state 
60 0: lexical-access(S/tary«) 
61 0: \mk.(knows, Sharyn, object) 
62 =>G: operator no-change 
63 P: Constraints 
64 S: Constraints-state 
65 0: check(word-order) 
66 0: check(np-well-formedness) 
67 0: check(semantic-consistency) 
68 ==>G: operator no-change 
69 P: Semantics 
70 S: Semantics-state 
71 0:find 
72 0: justify 

...78 0: record-changes 
79 0: check(progress) 
80 0: constraint-success 
Build: p295 
Build: p296 
81 0: T&fer(Sharyri) 
Build: p320 
82 0: referOfc/tovus) 
Build: p328 
83 0: attendC) 
84 0: comprehend(.) 

Figure 3-4: Deliberate comprehension of Sharyn in John knows Sharyn. 

show how this top-down processing arises naturally in NL-Soar by examining the behavior of 
the Language space's expect and merge operators during comprehension of Sharyn knows a 
chemist. To simplify the exposition, we assume that the system now contains the chunks built 
during comprehension of John knows Sharyn. 

Figure 3-6 shows processing for the first two words. Although the word Sharyn was seen in the 
sentence from the previous example, it was not encountered as the first word in the sentence. 
Consequently, part of the current comprehension operator for Sharyn (specifically chunk p296 
which establishes the change record) is inappropriate to this context. Consequently, an impasse 
arises (d9) and processing continues in the Language space. Although there was no transfer in 
the Comprehension space, there may, nevertheless, be transfer in the lower problem spaces. 
Indeed, p32 is a chunk accessible in Language that resulted from problem solving in the 
Constraint space for John as the first word. Since the conditions for that link apply in the current 
situation, the chunk transfers, creating the correct change record immediately (contrast d 13-d 19 
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OG:gl 
1 P: Top 
2 S: Top-state 

Type your input > John knows Sharyn. 
3 O: comprehend-input 
4 ==>G: operator no-change 
5 P: Comprehension 
6 S: Comprehension-state 
7 O: attend(/6>/w) 
8 O: comprehend(/0/m) 
Firing: p65, p76 
9 O: attcnd(knows) 
10 O: comprehend(£rttfHw) 
Firing: pi87, p202, p212 
11 O: tftcnd(Sharyn) 
12 O: comprehend(S/itfryfl) 
Firing: p296, p320, p328 
13 O: attendC) 
14 O: comprehendC) 

UTTERANCE MODEL 
> = edge set 

SITUATION MODEL 
(given / | P N E W L ) 

| J isa 
person i sharyn | 

Figure 3-5: Recognitional comprehension of John knows Sharyn after chunking. 

in Figure 3-2 with dl3 in 3-6). The change record is then returned as a partial result, creating 
p330, and extending Sharyn's comprehension operator to the current context. Since p330's 
change record is immediately instantiated in the Comprehension-state, a piece of unused 
referring information appears in the node's profile. This triggers transfer of chunk p320, the 
portion of Sharyn9 s comprehension operator that creates a referent in the situation model. Note 
that this transfer is in the Comprehension space, bypassing the need for a refer operator to follow 
the link in Language, and completing the comprehension of Sharyn. Knows is then attended to 
and its comprehension operator fires in full. The mixture of deliberate and recognitional 
comprehension seen in processing these two words is normal in NL-Soar. Knowledge acquired 
from other contexts (even for other words) may transfer to the current context, permitting 
completely recognitional comprehension. If not, deliberate search occurs automatically to fill in 
those parts of a word's comprehension operator that are new to the context. The deliberate search 
may also involve a combination of chunked behavior and search in subspaces. 

Figure 3-7 shows the utterance and situation models after the word a has been attended to and 
picks up the trace at this same point, d l 7 . 1 2 The usual steps follow through d21, at which point 
no link operator can be proposed. When no link is possible, expect is proposed. When 
implemented, expect simply creates an empty node in the utterance model and causes 
adjustments to the edge set. Like link, the implementation of expect is mediated by constraints 
(d23-d26). Unlike link, however, there are no syntactic or semantic constraints associated with 

p r S i n ^ r ^ " * * ^ ° f * * * * i n C h u n k s ) i n 3 ' 7 t 0 m ^ ^ °vemll structure of the 
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OG:gl 
1 P: Top 
2 S: Top-state 

Type your input > Sharyn knows a chemist. 
3 O: comprehend-input 
4 =>G: operator no-change 
5 P: Comprehension 
6 S: Comprehension-state 
7 O: mcnd(Sharyn) 
8 O: comprehends/wry*) 
9 ==>G: operator no-change 
10 P: Language 
11 S: Language-state 
12 O: lexical-access(S/wryn) 
13 O: IwkiSharyn, first-word) 
Firing: p32 
Build: p330 
Firing: p320 
14 O: zttend(knows) 
15 O: comprzhend(knows) 
Firing: pl87,p202, p212 
16 O: attend(a) 

Figure 3-6: Mixed deliberate/recognitional comprehension of 
| Sharyn knows in Sharyn knows a chemist. 

the creation of an expectation object, so only the progress constraint is relevant (d27). For each 
previous word we have examined, the progress constraint was passed trivially. This was because 
the notion of progress exists in the system to ensure that a connected utterance model (and, thus 
a well-formed situation model) is maintained; the previous instances of link maintained 
connectedness. This is not the case with expect—the simple creation of a new node does not 
connect either that node or the current word (a) into the utterance model. In order to pass the 
progress constraint, then, the system must answer the question, "Does positing the existence of 
some future word allow us to create a cohesive model?" NL-Soar answers this question by using 
Soar's lookahead processing capability to search ahead in a copy of the Language space. This 
lookahead search is not a lookahead in the input; rather, it is a lookahead in the space of 
utterance and situation models that can result from creating the expectation. 

The remaining decision cycles in Figure 3-7 demonstrate how the lookahead search progresses. 
The impasse on expect's progress (d28) results in the creation of a new Language space which, 
for clarity of exposition, we name Languagex (d29 and d30). Language1 is an exact copy of the 
Language space in d20 with a single exception: the expect operator now has an annotation on it 
that allows the system to simply assume expect's progress by creating the expectation node 
(d31). Once this new node is part of Language-state 1 ? a link operator is proposed to link a to the 
expectation. The processing in d33 through d45 is, therefore, simply normal constraint checking 
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...17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
.37 
.44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

..68 
69 
70 

UTTERANCE MODEL 
• = edge set 

O: comprehend(a) 
==>G: operator no-change 

P: Language 
S: Language-state 
O: lexical-access(a) 
O: expect 
==>G: operator no-change 

P: Constraints 
S: Constraints-state 
O: record-changes 
O: check(progress) 
==>G: operator no-change 

P: Languagej 
S: Language-state! 
O: expect(just-do-it) 
O: link(a, *exp*, determiner) 
==>G: operator no-change 

P: Constraints! 
S: Constraints-statej 
O: check(determiner-np-agreement) 
O: record-changes 
O: check(progress) 
—>G: operator no-change 

P: Language2 

S: Language-stat^ 
O: link(a, *exp*, determiner, just-do-it) 
O: refer(*exp*) 
O: lwk(knows, *exp*, object) 
=>G: operator no-change 

P: Constraints2 

S: Constraints-space2 

O: record-changes 
O: check(progress) 
O: constraint-success 

SITUATION MODEL 
(given / |f"newl) 

o2 
isa know-act 

actor 

ol 
isa person 

sharyn 

Figure 3-7: Models after attending to a and lookahead search during comprehension of a 
in Sharyn knows a chemist. 

on the proposed link. In other words, there is nothing special about Language!—it is just the 
same old Language space. In it, NL-Soar makes a change to a local copy of the models by 
creating the expectation. Then, the same type of processing used in the previous example plays 
out the consequences of that change. 

Figure 3-8 shows the utterance and situation models in Languagex after the link between a and 
the expectation has been made. Notice that the expectation object is no longer empty. As a result 
of the syntactic constraints brought to bear by the link (d37), the system now knows that the 
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word that this expectation is holding a place for must have number 3s. The expectation includes 
other constraining information from other checks, as well. There is no special mechanism at 
work here—each bit of constraining information is added to the expectation's profile in the same 
way that the feature sets for profiles of regular words are dynamically constrained. 

Figure 3-8: Hypothetical model change during lookahead search for Sharyn knows a. 

Since the expectation node is still not linked into the utterance model, the progress check at 
d45 cannot be passed and the lookahead search must continue. The second step in lookahead 
(d46 through d69) is analogous to the first step. A copy of the Language 1 space is created (d47) 
that is identical to its predecessor except that it is assumed that the link between a and the 
expectation makes progress. Again, we index this new Language space (as Language2) for 
clarity. The link is instantiated using the change record created prior to the progress check (d44). 
Next, a refer operator establishes a referent for the expectation in the situation model (d50). In 
d51, a link operator is proposed to connect the expectation to knows via an object role. As 
always, the proposed link must pass all constraints (d52 through d69). This time, however, we 
find that all constraints pass, including progress, bringing an end to the lookahead search. 

To understand the system's behavior in Figure 3-7, we must examine it at both global and local 
levels. At the global level, the system still has made no changes to the utterance and situation 
models in the Language space. It has only found a sequence of operators (expect, link, refer, and 
link) which, if applied, will result in model changes that leave the models well-connected. At the 
local level, however, the system has actually done the work of applying those operators to 
transform the models, albeit on private copies. Further, the application of each operator acted to 
constrain the features of the expectation and, hence, the future word in the sentence that could 
play the appropriate roles. So, depending on the point of view, NL-Soar has done both a great 
deal of work and almost no work at all. Figure 3-9 demonstrates how the recursive use of the 
Language and Constraints problem spaces during lookahead combines with chunking to 
automatically transfer work from the local to the global level. We repeat the relevant portions of 
Figure 3-7 in Figure 3-9 to make the unwinding of the goal hierarchy easier to follow. 

We begin in Figure 3-9 where we left off in Figure 3-7. In d70, all the constraints on linking 
knows to the expectation have passed (including progress). As a result, the change record that 

UTTERANCE MODEL 
<^^> = edge set 

subject / 

SITUATION MODEL 
(given / | new | ) 

o2 
isa know-act 
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implements that link is returned to Language2, and p444 is created Remember that our use of the 
index is just an expository convenience—the chunk, itself, tests for the token "language" in the 
problem space name. The implementation of the link in Language2 resolves the progress impasse 
in d45, creating p445. The success of progress, in turn, signals total constraint success in 
Constraints! (d71). 

...19 

...22 
23 
24 

...27 
28 
29 

...31 
32 
33 
34 

...45 
46 
47 

...51 

...52 
53 

...70 
Build: p444 
Build: p445 
71 
Build: p446 
Build: p447 
72 
Build: p448 
Build: p449 
73 O: link(a, *exp*, determiner) 
Firing: p446 
Build: p474 
74 O: refer(*exp*) 
Build: p500 
75 O: lii)k(knows, *exp*, object) 
Firing: p444 
Build: p504 
Firing: p328 
76 O: attendCc/iemzsr) 

P: Language 
O: expect 
==>G: operator no-change 

P: Constraints 
O: check(progress) 
==>G: operator no-change 

P: Languagex 

O: expect(just-do-it) 
O: link(a, *exp*, determiner) 
=>G: operator no-change 

P: Constraints! 
O: check(progress) 
=>G: operator no-change 

P: Language2 

O: lmk(knowsf *exp*, object) 
==>G: operator no-change 

P: Constraints2 

O: constraint-success 

O: constraint-success 

O: constraint-success 

Figure 3-9: Unwinding the lookahead search. 
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Now the pattern repeats. The constraint success in d71 returns a change record implementing 
the link between a and the expectation to Language^ creating p446. Again, the chunk refers to 
the token "language" not "language^'. The implementation of the link resolves the progress 
impasse in d27, creating p447. The success of progress signals total constraint success in 
Constraints (d72). 

The constraint success in d72 returns a change record to the Language space that implements 
the original expect operator, creating p448. Language then returns the change record as a partial 
result to the Comprehension space to form part of the comprehension operator for a (and p449). 
This part of a's comprehension operator creates an empty expectation node in the utterance 
model. When the new node is copied down to Language, the Language-state becomes exactly the 
same as it was in Language l at d31 (when the system had just assumed that positing the 
expectation would make progress). Consequently, a link between a and the expectation is 
proposed in d73 just as it was in d32. At d73, however, knowledge is available that was not 
available at d32. Specifically, long-term memory now contains p446 which implements the link 
between a and the expectation. Since the conditions in Language are identical to those that gave 
rise to chunk p446, the chunk fires. In this way, the change record linking a to the expectation 
appears on the Language-state where it is returned as a partial result to Comprehension, creating 
p474 and adding another piece to a's comprehension operator. Chunk p474 is shown below: 

Chunk p474: 
If the problem space is Comprehension and 

the Comprehension-state has 
node pi whose word is to the left of 
node nl whose word is to the left of 
node el and 

the comprehension operator is being applied to nl and 
nl corresponds to the word a and 
el is an expectation and 
pi assigns the object role restricted to isa thing 

Then add a change record to the comprehend operator that 
links nl to el with the determiner role and 
makes el's profile 

number = 3s 
assigns = describer & qualifier 
receives = subject & object 
most-specific-class = thing and 

makes nl's profile 
number = 3s 
subclass = indefinite & demonstrative 
receives = determiner 
referring-information = isa thing 

The chunk encapsulates all the conditions on the link's path to progress (the existence of the 
expectation, the determiner, and the verb without an object) and preserves the constraints 
imposed by that path (the number and most-specific-class of the expectation). 

Having changed the utterance model to reflect the link to a, the system must perform referent 
resolution on the expectation in the Language space. This happens in d74, resulting in p500. 
Once the expectation has a referent the system is back in familiar territory: the current state of 
the Language space (d75) now looks like it did in d5L Consequently chunk p444 transfers, 
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creating the change record for the link between knows and the expectation in Language The 
partial result is returned, building p504 in Comprehension. The instantiation of the change record 
in Comprehension triggers p328, a very general referent resolution chunk that transfers from the 
sentence John knows Sharyn to create the object relation in the situation model. Figure 3-10 
shows the utterance and situation models now that comprehension of a is complete. 

UTTERANCE MODEL 
<0>= edge set 

SITUATION MODEL 
(given / jjj new j ) 

1 Ol 
isa person I 

sharyn i 

o3 
isa thing 

Figure 3-10: The models after comprehension of a in Sharyn knows a chemist. 

Before moving onto the last word in the sentence (chemist), let's examine, again, what has 
happened from global and local points of view. In the global view, the system found an 
interpretation for the current word (a) by positing the existence of a future word in the sentence 
that would link to both a and the utterance model created for Sharyn knows. It did this by 
searching through the set of models permitted by the syntactic, semantic, and pragmatic 
knowledge in the system. Along the way, it collected a number of feature restrictions that the 
future word must meet. In the local view, the operators the system used at each step in this 
search were just the normal Language and Constraints operators. Thus, the work that was done 
at the local level was no different than the work that was done in the previous sentence. But at 
the global level the system appears to have done something very different from the simple 
linking in the previous example. The glue that holds these two views together is the notion of 
progress: each step in the lookahead search was in the service of the higher goal of finding a 
cohesive pair of structures in which a was connected to the utterance model. No actual changes 
were made until it was certain that such a cohesion was possible. Once it was proven that 
comprehension could make progress by positing an expectation, the actual changes came through 
chunk transfer. If we pull back further, from deliberate comprehension to recognitional 
comprehension, this global/local distinction disappears completely. Viewed from the 
Comprehension space, all the search just results in the usual specification of a comprehension 
operator for the current word and context that simultaneously brings to bear all the relevant 
knowledge sources and makes all the relevant model changes. 

Our analysis of the comprehension of a introduced the expect operator. An analysis of the 
comprehension of chemist introduces expect's counterpart: merge. The merge operator 
recognizes the appearance of the expected word in the input and replaces the expectation object 
with a regular utterance node for that word. As shown in Figure 3-11, d82, the merge operator is 
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proposed when no link is available and there is an expectation object in the edge set. 1 3 As with 
link and expect, before merge can be implemented, it must satisfy a variety of constraints. A 
syntactic consistency check (d86) ensures that the syntactic features in chemist's lexical 
definition are consistent with links that have been made for the expected word. In our example, 
this means that the word's number must be 3s to maintain the validity of the link to the 
determiner a. The simple token match used for establishing syntactic consistency is inadequate 
to ensure semantic consistency, however. Instead, a regular semantic check must be done (d87 
through d98), which includes subgoaling into the Semantics space to justify semantic 
consistency through simple inference. In our example, the Semantics space provides the 
knowledge that a word with base-level-class person is consistent with the expectation that the 
most-specific-class be a thing. 

...76 0: mend(chemist) 
77 O: comprehend(cAemwf) 
78 ==>G: operator no-change 
79 P: Language 
80 S: Language-state 
81 0: lexical-access(cAemwO 
82 0: merge 
83 =>G: operator no-change 
84 P: Constraints 
85 S: Constraints-state 
86 0: check(match-syntactic-consistency) 
87 0: check(semantic-consistency) 

...98 0: record-changes 
99 0: check(progress) 
100 0: constraint-success 
Build: p564 
Build: p565 
101 0: vcfcr(chemist) 

..105 O: attendQ 
Figure 3-11: Merging chemist with the expectation. 

Since the profile for chemist is consistent with the restrictions placed on the word that can 
fulfill the expectation, the change record created in d98 simply replaces the expectation with the 
current word. The progress check passes trivially (because the expectation was already fully-
connected to the model) resulting in the Language chunk (p564) and then the Comprehension 
chunk (p565). Deliberate comprehension of chemist finishes in the Language space after a 
number of refer operators establish the relevant changes to the situation model. Figure 3-12 
shows the final forms of both the utterance and situation models for the sentence. 

1 3 I t is not necessary that the expected word be the next one in the sentence. If, for example, our sentence had been 
Sharyn knows the taller chemist, the word taller would have been attached to the expectation as a describer, 
changing the most-specific-class on the expectation's profile from thing to physical-object. Again, there is no special 
mechanism for handling expectations; the dynamic constraint of features is part of NL-Soar's normal processing. 



33 

UTTERANCE MODEL 
»= edge set 

SITUATION MODEL 
(given / | | new 1 ) 

l idBsnBnn&Mi 

refers 

refers 

o2 
isa know-act 

sharyn . / I " f e . . ! 

determiner 
a * 

object 

ol 
isa person 

sharyn 

o3 
isa person 

chemist 

Figure 3-12: The models constructed during comprehension of Sharyn knows a chemist. 

In this section, we examined in detail two operators in the Language space: expect and merge. 
These operators give NL-Soar the capability of using top-down, or expectation-driven, 
knowledge during both deliberate and recognitional comprehension. This additional capability 
does not arise from adding new linguistic knowledge to the system, however. The expect 
operator is simply proposed when no link is possible. The merge operator is proposed when no 
link is possible and there is an expectation node in the edge set. Both operators are implemented 
reusing the same problem spaces, operators, and knowledge that already existed for link. Rather, 
the additional capability arises because of the notion of progress and the use of multiple problem 
spaces in a lookahead search. Thus, in general, deliberate comprehension can involve the 
combination of bottom-up and top-down application of multiple knowledge sources. No matter 
which knowledge sources and which type of search is required, however, the result is still the 
integration of those sequential actions into a set of productions triggered by a single operator in 
Comprehension. 

3.3. Example 3: Recognitional repair 
Having added expect and merge to lexical-access, link, and refer, it might appear that the 

system now has all the functional capability it needs. As we pointed out in Section 2.2, however, 
NL-Soar is a single-path parser, constructing only one interpretation of the sentence at a time. 
Using both bottom-up and top-down knowledge cannot guarantee that the current interpretation 
is the correct one. Consider the sentence, John knows Sharyn knows a chemist. From our first 
example (Section 3.1) we know that when processing reaches Sharyn it will be assigned the 
object role of knows. This is incorrect; the correct interpretation assigns Sharyn as the subject of 
the second knows and the whole clause Sharyn knows a chemist as the object of the first knows. 
Yet the incorrect assignment cannot be detected until the next word is encountered (the second 
knows), after the object link between knows and Sharyn has already been made. Thus, what NL-
Soar still needs is a way to undo an incorrect interpretation. The snip operator provides this 
capability. The snip operator itself contains no special knowledge; it acts only as a disrupting 
influence, removing an existing link. The actual repair of the models must be performed by 
Language's other operators. In this section, we examine the behavior of snip in the sentence John 
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knows Sharyn knows a chemist assuming the existence of those chunks produced during the 
previous two examples. For clarity, in the figures and discussion that follow, we index the two 
instances of knows as knowsm, for main, and knowsc, for clause. 

Figure 3-13 (dO through dl2) takes us quickly through John knows Sharyn, via chunks that 
transfer from the example in Section 3.1. In d 14, we encounter the second instance of knows. 
Although the verb is familiar, its current comprehension operator is inappropriate for this 
context, so an impasse arises. As the first step in Language (dl8), the lexical-access operator 
finds the same definition for the verb shown in Section 3.1. A link is then proposed to treat the 
main verb as the clausal object of the embedded verb (dl9) . 1 4 The link fails in the Constraints 
space due to a word-order violation. Since no other link is proposed, the expect operator is 
proposed. What follows in the 129 decision cycles ellided from d24 to dl53 is the lookahead 
search that uncovers that positing an expectation node will not allow the current interpretation to 
make progress. Thus, at dl53, the snip operator is proposed to remove the object link that exists 
between Sharyn and knowsm. 

Why is the object link snipped? How does the system know some other link in the utterance 
model is not the source of the error? It doesn't. The object link is snipped because it is the only 
link connected to a node in the edge set (see Figure 3-1). A snip operator is proposed for every 
link connected to a node in the edge set. Had there been more than one such link, snipping each 
would have been tried in turn until a snip was found that allowed the re-establishment of a 
single, coherent pair of models. The choice to limit the snip operator to links on the edge is 
motivated by psycholinguistic data on garden path phenomena [4,7,9,10, 36,49] The data 
indicate that there is a class of sentences that people find impossible to comprehend 
recognitionally. The classic example of a garden path sentence is The horse raced past the barn 
fell [4]. At raced, people almost invariably commit to the single interpretation of an active, past-
tense verb rather than the beginning of a reduced relative clause. When they reach fell, which 
reveals the error of their initial interpretation, they cannot recover, feeling instead that the 
sentence makes no sense. Such sentences stand in contrast to our current example, John knows 
Mary knows a chemist, in which an initial wrong commitment seems to be overcome without 
pause when the disambiguating word is encountered. Preliminary evidence in studying garden 
path and non-garden path sentences supports the idea of limiting any repair mechanism to the 
active edge. Thus, the model of recognitional comprehension in NL-Soar makes a prediction: 
non-garden path sentences cause no problems for people because they allow for recognitional 
repair via chunking over a snip operator at the edge, while garden path sentences preclude such a 
repair. 

We said that when link and expect fail, a snip operator is tried for every link in the active edge 
set until one is found that allows the re-establishment of a single, cohesive pair of models. The 
latter condition is met by the same interaction of the progress check and lookahead search we 
encountered with expect. Figure 3-14 illustrates. In response to an impasse on the progress check 
for performing the snip (dl58), a copy of the Language space is created in which the snip is 
implemented just to see what will happen (dl62). This leads to a link proposal connecting 

1 4 The reader who paused to look back at the lexical definition of knows will note that knows does not appear to 
receive a clausal-object The clausal-object value is added to the verb's receives feature dynamically, when the verb 
is linked to its subject This is an example of how NL-Soar handles exocentric constructions. 
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OG:gl 
1 P: Top 
2 S: Top-state 

Type your input > John knows Sharyn knows the chemist. 
3 O: comprehend-input 
4 ==>G: operator no-change 
5 P: Comprehension 
6 S: Comprehension-state 
7 O: attend(/o/m) 
8 O: comprehendC/b/w) 
Firing: p65, p76 
9 O: attend(A:now5m) 
10 O: comprehend(/7ww5m) 
Firing: pi87, p202, p212 
11 O: mcnd(Sharyn) 
12 O: comprehend(S7iaryn) 
Firing: p296, p320, p328 
13 O: mcnd(knowsc) 
14 O: comprehend(iknow5:c) 
1 5 ==>G: operator no-change 
16 P: Language 
17 S: Language-state 
18 O: lexical-access(/:no>v5c) 
19 O: \wk.(knowsc, knowsm, clausal-object) 

.24 O: expect 

.153 O: smp(knowsm, Sharyn, object) 

Figure 3-13: Discovering the need to undo a previous commitment in John knows Sharyn knows. 

knowsc to Sharyn as subject in dl64. Progress for this link must then be established (dl73), 
resulting in a copy of the Language! space in which the link is asserted in order to see what 
follows (d!74-177). What follows is another link proposal, this time assigning the clausal-object 
role from knowsm to knowsc. Notice that snip only undid a link; the relinking occurred via 
operators we have already encountered. 

Processing in dl84 through d204 is exactly like the unwinding of the goal stack we saw in the 
previous example—as we pop out of each Constraints space, chunks are built that transfer to 
implement the successful sequence in the original Language space (d206 through d212). The 
progression of operators executed in Language, as well as the final linked utterance model for 
John knows Sharyn knows, is shown graphically in Figure 3-15. The productions that are 
returned to Comprehension (pl425, which contains the change record for the snip; pl447, which 
contains the change record for the subject link; and pl514, which contains the change record for 
the clausal-object link), all become part of comprehension operator for knows in the current 
context. The remainder of the sentence (the chemist) is comprehended recognitionally through 
the firing of chunks transferring from Example 2. 
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...153 0: smp(knowsm, Sharyn, object) 
154 ==>G: operator no-change 
155 P: Constraints 
156 5 5: Constraints-state 
157 O: record-changes 
158 O: check(progress) 
159 ==>G: operator no-change 
160 P: Languagej 
161 S: Language-state1 

162 O: smp(.knowsm, Sharyn, object, just-do-it) 
163 0: refer(Sharyn) 
164 0: lir>k(knowsc, Sharyn, subject) 
165 =>G: operator no-change 
166 P: Constraints! 

...173 0: check-constraint(progress) 
174 ==>G: operator no-change 
175 P: Language2 

...177 0: lmk(knowsc, Sharyn, subject, just-do-it) 

...183 0: link(A7Wwsm, knowsc, clausal-object) 
Build: pi 133 
203 0: constraint-success 
Build: pl421 
Build: pl422 
204 0: constraint-success 

...Build: pl424 
Build: pl425 
Firing: p346 
206 0: ]ink(knowsc, Sharyn, subject) 

...Firing: pl421 
Build: pl447 
Firing: p202, p212 

...210 0: lwk.(knowsm, knowsc, clausal-object) 

...Firing: pi 133 
Build: pl513 
212 0: attend(r/ie) 

Figure 3-14: Finding a new interpretation for John knows Sharyn knows. 

Having chosen to pursue only a single interpretation of the sentence at a time, it was necessary 
that the system be given some way to undo a wrong commitment. In this section, we examined 
the snip operator, which affords the system a limited capability for repair. The capability is 
limited for two reasons. First, it is limited because snip, like expect and merge, introduces no 
additional linguistic knowledge—the operator can only disrupt the current model's structure 
which must be repaired by the same linguistic knowledge available during normal interpretation. 
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sharyn 

knows 
subjecty^Criausal-object 

Figure 3-15: The progression of Language operators found through lookahead search 
to reinterpret John knows Sharyn given the next word knows. 

Second, the repair capability is limited because only links in the edge set may be undone 1 5 The 
snip operator is also like expect and merge in another respect: even if deliberate comprehension 
involves undoing an old link and creating one or more new ones through the application of 
multiple knowledge sources, the processing that results in Comprehension is still recognitional in 
nature. 

4. Conclusion 
Our purpose in this report is to describe NL-Soar in sufficient detail that its characteristics can 

be compared and contrasted with both prior Soar versions and non-Soar language comprehension 
systems. Since the current system has not yet achieved our goal of providing a general language 
capability for Soar, it is reasonable to assume that extensions in the form of new problem spaces, 
operators, and models will be needed to meet the demands of increasing capabilities. 
Nevertheless, the current system achieves a basic functionality with respect to comprehension, 
and from our description and examples, the following encapsulation is possible: 

1. Comprehension operators assign meaning. Like previous versions of the system, the 
current NL-Soar uses comprehension operators as its method of mapping language to 
meaning. A comprehension operator is a set of productions that, together, tell the system 
what changes to make to the representation of the utterance when a word is encountered 

1 5Another way to look at NL-Soar's repair mechanism is as an alternative to backtracking in a single-path system. 
Because the system does not implement backtracking, it does not need to store a large history of possible alternative 
interpretations in the utterance model. If the supposition proves true that limiting the snip operator to the edge set 
eliminates only those utterances people are unable to comprehend recognitionally, then this form of repair may 
explain how people can both maintain a single, favored interpretation and still recognitionally change that 
interpretation despite their memory limitations. 
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in any context. Moreover, comprehension operators take into account, simultaneously, 
all the knowledge sources that contribute to determining meaning. While the use of 
productions places NL-Soar in the company of other situation-action parsers, the 
requirement of total integration of knowledge sources goes beyond previous attempts at 
integration. The nature of the processing that results from comprehension operators is 
similar in many respects to adult recognitional comprehension. 

2. Comprehension operators arise automatically. Integrated comprehension operators are 
produced automatically by the constant conversion of knowledge from a form that is 
accessible only through deliberate problem solving to a form that is immediately 
accessible from production memory (i.e., recognitionally). This incremental conversion 
process relies on the chunking mechanism of the Soar architecture. It is unique to NL-
Soar. 

3. Annotated model represents meaning. NL-Soar uses an annotated model to represent 
the situation described by an utterance. Although not as restrictive as a pure model 
representation, annotated models are, nevertheless, less expressive than first-order logic 
Thus, NL-Soar is more constrained in its representation of meaning than systems that use 
a logic-based formalism. This source of constraint seems to have some empirical 
evidence in its support [16, 33, 34]. 

4. Annotated model represents utterance structure. NL-Soar also uses an annotated 
model to represent the structure of the utterance. The utterance model does maintain a 
strict one-to-one correspondence between words and nodes, unlike phrase-structure based 
systems. Such a linear relation between the length of the input and the size of the model 
improves processing efficiency. 

5. System is single-path. Unlike all-paths parsers, NL-Soar keeps only a single 
interpretation of the utterance at any time. In addition to being more efficient than all-
paths parsers, single-path parsers seem to be a better characterization of human 
comprehension as well [7,9, 36,49]. On the other hand, single-path parsers have the 
disadvantage that they cannot guarantee the correct interpretation of an utterance, only an 
interpretation consistent with the knowledge available (see also 7, below). 

6. System combines bottom-up and top-down knowledge. Processing in NL-Soar takes 
advantage of both bottom-up, or word-driven, knowledge and top-down, or expectation-
driven knowledge. The combination of processing techniques is generally accepted to be 
more efficient than either technique alone. Which type of knowledge NL-Soar uses at any 
given point in deliberate comprehension arises naturally from the system's notion of 
progress. Regardless of which type is used, however, the knowledge that results retains 
its recognitional character. 

7. System has a limited capacity for repair. To try to ensure that its single interpretation 
is consistent with the knowledge available, NL-Soar has a limited capacity for repairing 
incorrect interpretations. This limited repair is not a general backtracking mechanism, 
and can undo commitments only at the active edge. The decision to limit repair is 
motivated by psycholinguistic evidence of such limitations in adult recognitional 
behavior. As in the case of mixed bottom-up and top-down processing, repair during 
deliberate comprehension does not change the recognitional character of NL-Soar at the 
comprehension operator level. 

The automatic construction of comprehension operators from extendable and disparate 
knowledge sources addresses a long-standing dichotomy between approaches that favor separate 
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phases of comprehension (usually progressing from morphology to syntax to semantics and 
beyond) and those that favor integration. The distinction between deliberate and recognitional 
comprehension in NL-Soar is evidence that a modular approach can co-exist with and evolve 
into an integrated one. Thus, the dynamic of the system offers a possible bridge between the 
autonomy-of-syntax hypothesis (and by extension, autonomy-of-semantics, etc) and the notion 
of integration that usually accompanies the immediacy-of-interpretation principle. Each 
assumption is represented, but at different levels in the processing. Although we have not 
answered the genesis question (Where does the knowledge in the lower problem spaces come 
from?), NL-Soar does demonstrate how knowledge of different types could be acquired 
incrementally and opportunistically and still result, asymptotically, in essentially seamless 
performance. 
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