
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Natural Language Comprehension in Soar
Spring 1991

JiU Fain Lehman, Richard L. Lewis, and Allen NeweU
March 29,1991

CMU-CS-91-117^

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Multiple types of knowledge (syntax, semantics, pragmatics, etc.) contribute to establishing the
meaning of an utterance. Delaying the use of a knowledge source during language processing
introduces computational inefficiencies in the form of overgeneration, making it difficult, to
satisfy the real-time constraint of 200 to 300 words per minute for adult comprehension. On the
other hand, ensuring that all relevant knowledge is brought to bear as each word in the sentence
is understood is a difficult design problem. As a solution to this problem, we describe in detail
the current version of NL-Soar, a language comprehension system that integrates disparate
knowledge sources automatically. Through experience, the nature of the understanding process
changes from deliberate, sequential problem solving to recognitional comprehension that applies
all the relevant knowledge sources simultaneously to each word. The dynamic character of the
system results directly from its implementation within the Soar architecture.

This research was sponsored in part by the Avionics Laboratory, Wright Research and
Development Center, Aeronautical Systems Division (AFSC, U. S. Air Force, Wright-Patterson
AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597, and in part
by The Markle Foundation, and a National Science Foundation Graduate Fellowship.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of NSF, The Markle
Foundation, or the U. S. government.

Keywords: Artificial intelligence, natural language processing, parsing and understanding, Soar.

i

Table of Contents
1. Introduction: A brief history of NL-Soar
2. System overview

2.1. NL-Soar and the Soar architecture
2.2. NL-Soar's representation of utterances
2.3. NL-Soar's problem spaces and operators

3. The Comprehension Process
3.1. Example 1: Simple, bottom-up construction of comprehension operators
3.2. Example 2: Learning top-down knowledge in the comprehension

operator
3.3. Example 3: Recognitional repair

4. Conclusion

1

1. Introduction: A brief history of NL-Soar
For three and a half years the NL-Soar project has worked toward the goal of creating a

general natural language capability for Soar, implemented as a set of problem spaces and
operators within the architecture. The motivation for this goal has two sources, one
corresponding to each of Soar's two roles as a research effort. In conjunction with Soar as a
unified theory of human cognition [26, 31], our motivation is to create an account of human
language capability that is consistent with psycholinguistic data (the present system addresses
only comprehension, but accounting for generation and acquisition is part of our goal as well). In
conjunction with Soar as an integrated, intelligent architecture, our motivation is to provide a
common, uniform skill for use by other Soar tasks that involve language. As a system that has
not yet met all its goals, NL-Soar is still evolving. Yet, recent changes have produced a version
that is significantly different from its predecessors [27, 31]. Our purpose in this report, then, is to
describe the system in sufficient detail that its characteristics can be compared and contrasted
both with prior Soar versions and with non-Soar systems. In this section, we trace the ideas that
led to the current instantiation.

The one idea that has consistently determined the basic design of NL-Soar has been the notion
of the comprehension operator, first introduced in the William James Lectures in 1987 [31]. The
idea of the comprehension operator is a general one, extending beyond language to vision and
the other ways in which we comprehend the environment. With respect to language, however,
the comprehension operator brings to bear all the knowledge about a word in a given context to
produce data structures in working memory that can be used by later comprehension and by
problem solving. The application of the comprehension operator to each successive word in the
utterance gives NL-Soar's processing behavior the same character as adult recognitional
comprehension. Namely, the system proceeds left-to-right through the utterance, one word at a
time, at a near-constant rate 1, arriving at the end of the utterance with a representation of its
meaning complete in working memory. Thus, comprehension operators can be viewed as a
realization of Just and Carpenter's immediacy of interpretation principle [17] within the Soar
architecture.

An important implication of this view is that the instance of the comprehension operator for a
given word must access integrated knowledge, simultaneously bringing to bear all the sources
involved in establishing meaning. The idea of integrated knowledge sources in comprehension is
not new; it has been explored in many natural language systems, in a variety of guises, for
reasons of efficiency and robustness if not cognitive constraint. Partial integration of some
knowledge sources has been achieved, for example, through the use of semantic grammars
[5, 8, 37], domain-specific syntactic grammars [6,13, 38, 51], semantic annotations to syntactic

rules [39, 40], blackboard-style architectures [11, 32, 45], and precompilation techniques [46],
NL-Soar's comprehension operator principle goes further along this path of integration,
however, by requiring that all knowledge sources be accessed in a single processing step.

Adult reading rates average 200 to 300 msec per word, corresponding to approximately two or three operator
app ications in the standard mapping of Soar onto the time-scale of human cognition (see [31]). As described in
section 2.1 NL-Soar actually implements recognitional comprehension with a two operator cycle (attend and
comprehend) applied to each word in turn.

2

The 1988 version of NL-Soar maintained the commitment to comprehension operators and
added a new commitment: to annotated models as the data structures produced by the
comprehension process [31]. The choice of annotated models as a representation was driven in
large part by the system's integration with two other Soar projects: one related to instruction-
taking (Bl-Soar, [27]), and one related to explaining human behavior in immediate reasoning
tasks (IR-Soar, [34]), including syllogistic reasoning. Johnson-Laird had introduced annotated
models as an alternative to both pure models and logic-based representations in his work on
syllogisms [16]. A pure model enforces a strict one-to-one correspondence between elements in
the model and what is being represented. An annotated model, on the other hand, is a variation of
the paradigm in which exceptions to the one-to-one rule are permitted that increase the power of
the representation language without allowing (and paying the penalty of) the full expressiveness
of first-order logic.

Although they differed from the semantic grammar systems with respect to their knowledge
sources and meaning representations, the 1987 and 1988 versions of NL-Soar were quite similar
to those systems in other ways. Each is a member of what Winograd[50] calls the
situation-action parsers. As such, their grammars were represented as situation-action rules (also
called productions in NL-Soar). A situation-action rule is triggered by structures in working
memory, and specifies an action to be taken on those structures. A comprehension operator, then,
consists of a set of productions which, together, tell the system what changes to make to the
representation of the utterance when a word is encountered in any context. In the early versions
of NL-Soar, as in ELI [37], CA [5], and BORIS [8], these situation-action rules were hand-
coded. In addition to building up the representation, the rules also created explicit expectation
structures in working memory to be matched in later processing. As a result, the process of hand-
coding rules required anticipating at design time all of the structures and expectations that
needed to be in working memory or had to be removed from memory at all the different points in
processing. Thus, maintaining and extending these systems, as well as predicting their behavior
when new knowledge was added, were complex and difficult tasks.

The current NL-Soar system (Spring 1991) is, like its predecessors, based on the idea of
comprehension operators. It also preserves the 1988 version's commitment to annotated models
as a representation. It overcomes the problem of hand-coding comprehension operators,
however, by having them arise automatically and incrementally via Soar's learning mechanism.
This change allows us to add the knowledge that the system needs for comprehension in a
modular and extendable way without giving up the integration demanded by cognitive
constraints. As a result, we will see that NL-Soar incorporates two different comprehension
processes. Recognitional comprehension brings all knowledge sources to bear in a single
processing step. When NL-Soar is performing recognitionally its processing has the character of
adult comprehension described above. In contrast, deliberate comprehension searches through
the space of possible interpretations for the current word in a series of steps that access distinct
knowledge sources. When NL-Soar is performing deliberately, its processing has the same
character as many non-integrated systems. It is the co-existence of these two types of processing
and the automatic transformation of knowledge from deliberate to recognitional form that makes

3

NL-Soar unique.2

NL-Soar's performance relies on structures and mechanisms that come from three distinct
sources: the Soar architecture, the particular problem spaces and operators chosen for NL-Soar,
and the representations chosen for capturing the content of an utterance. Section 2 outlines what
each of the three contributes to the system. Section 3 then brings these individual contributions
together in a series of examples of the system's performance. We summarize the characteristics
and behavior of the system in Section 4.

2. System overview
In this section we demonstrate how comprehension operators arise automatically and

incrementally in NL-Soar. We do this first in a general way by showing the Soar architecture's
role in comprehension (Section 2.1), without specifying either the results of the comprehension
process or the deliberate problem-solving behavior that results from a failure to comprehend
recognitionally. Representing the results of comprehension is discussed in Section 2.2.
Deliberate problem solving and NL-Soar's problem spaces and operators are then discussed in
Section 2.3.

2.1. NL-Soar and the Soar architecture
NL-Soar is implemented within, and takes advantage of, the Soar architecture [23, 31]. Soar

belongs to a family of cognitive theories that share important features both in terms of
psychological mechanisms and methods of use. The family includes, among others, Anderson's
ACT* architecture [2, 43], the work of VanLehn [20,47,48], Larkin [25], Kieras and Poison
[35], Langley [24], Thibideau, Just, and Carpenter [45], as well as previous work by Newell and

Simon [30,41,42].

These theories characterize human cognition as goal-directed problem solving. Under this
conceptualization, tasks are formulated in terms of problem spaces in which operators are
selected and applied to the current state until a desired state achieving the goal is reached. The
knowledge of when to choose a new goal, when to apply an operator, and what changes the
operator creates in the state are contained in a long-term memory, usually realized as
productions. A production is a type of condition-action (or situation-action) pair; if the
conditions are met, then the actions are taken (the production is said to fire). Thus, problem
solving occurs by matching the conditions in the productions against working-memory elements
in the current state and taking the consequent actions to produce a new state. Most of the systems
mentioned above also have a learning mechanism to capture the result of problem solving in new
productions. The learning mechanism acts as a knowledge compilation device, encapsulating a
set of operator/state transitions as a single condition-action pair. Although the systems differ
somewhat in how they instantiate these ideas—for example, whether there is a single production

2 W e have omitted a 1990 version of NL-Soar [26] from this brief history. In terms of key features (automatic
acquisition of comprehension operators and the use of annotated models), the 1990 version did not differ from the
current NL-Soar. The two systems did differ in other respects, however. Notably, the 1990 version used an
all-paths, bottom-up parsing algorithm and a chart-like structure containing standard phrase-structure constituents.
As we describe in Section 2, the current system uses a single-path, combined top-down and bottom-up strategy, and
a head and modifier representation for the utterance.

4

memory or an additional declarative memory, whether all productions fire in parallel or only one
production may fire at a time, whether learning occurs automatically or deliberately—the basic
model is shared.

As a particular member of this family, Soar can also be described as a system that formulates
tasks in terms of problem spaces, operators, and states. Problem solving proceeds in a sequence
of decision cycles. Each decision cycle accumulates knowledge from long-term recognition
memory by allowing all the productions whose conditions match working memory elements in
the current state to fire in parallel. The knowledge that is added to the state represents
preferences concerning the next step to take. Once quiescence is reached (no more productions
fire) a decision procedure examines the preferences in order to choose a new problem space,
operator, or state. If enough knowledge from production memory has accumulated to make the
decision procedure's choice unequivocal, the preferred next step is taken and the next decision
cycle is entered. If, on the other hand, Soar does not know how to proceed in a problem space
because the accessed knowledge does not suggest a next step, or there is conflicting knowledge
suggesting more than one step, an impasse occurs. In response to an impasse, Soar creates a
subgoal and a new problem space in which to acquire the missing knowledge (an impasse within
the new space will have the same effect, i.e. Soar creates its own goal-subgoal hierarchy
automatically as a result of being unable to proceed). Once an impasse has been resolved by
problem solving in the subspace, the learning mechanism (called chunking in Soar) combines the
conditions that gave rise to the impasse with the result that resolved the impasse in a new
production that avoids the impasse in the future. Thus, Soar's learning mechanism is automatic
rather than deliberate, being invoked whenever an impasse is resolved.

Figure 2-1 illustrates this process with a number of decision cycles that are common to all of
NL-Soar's problem-solving traces, and in many ways the essence of its processing. Decision
cycles are numbered along the left margin; in subsequent discussion we use the notation
d<number> to refer to a particular decision cycle. The symbols G, P, S, and O stand for goal,
problem space, state, and operator, respectively. An impasse is indicated by an arrow and
indentation. Ellided processing prior to a decision cycle is indicated by an ellipsis in the left
margin.

..5 P: Comprehension
6 S: Comprehension-state
7 O: attend(/0 /m)
8 O: comprehend(/o/in)
9 ==>G: operator no-change
10 P: Language
11 S: Language-state

..Build: p65

..Build: p76
21 O: attend(foi0wtf)

Figure 2-1: A portion of the Soar trace for John knows Sharyn, before chunking.

In decision cycles dO through d4 (not shown), Soar's default initial goal, problem space, and
state are chosen and a new sentence beginning with the word John becomes available through

5

Soar I/O functions. By the end of the fifth decision cycle, the Comprehension problem space has
been chosen. Its initial state is created in d6.

In d7, the result of the decision procedure is to execute the attend operator which adds the next
uncomprehended word in the sentence to the state as the new word. The presence of a new word
on the state fires the NL-Soar production propose-comprehend-operator, shown with its English
paraphrase below (hereafter, we will show only the English paraphrase). As described earlier, a
production is a condition-action pair. The condition appears after the production name but before
the arrow, while the action portion appears after the arrow. A condition is given as a set of
attribute/value pairs with the attribute indicated by an " A " and its value (or values) immediately
following. Values in angle brackets (e.g., <word>) are variables that are bound in the match
against working memory. As indicated in the paraphrase at the right, propose-comprehend-
operator says that if the state associated with a Comprehension space has a new word on it, then
create a preference to comprehend that word. D8 in Figure 2-1 shows that when the decision
procedure is finished for this cycle, the comprehend operator has, indeed, been selected,
(sp propose-comprehend-operator Propose-comprehend-operator:
(goal <g> Aproblem-space <p> Astate <s>) If the problem-space is Comprehension and
(problem-space <p> Aname comprehension) the state has a new word on it
(state <s> Anew-word <word>) Then create a preference to apply the

-> comprehend operator to the new word (goal <g> Operator <o> +)
(operator <o> Aname comprehend Object <word>))

In d5 through d8, there was enough knowledge accessible from long-term memory to make the
decision procedure's choice unequivocal. In the next decision cycle, however, Soar does not
know how to proceed in the Comprehension space, because it does not have immediately
available from recognition memory the knowledge of how to implement the comprehend
operator for the word John. Thus, an impasse arises.and Soar creates a subgoal to acquire the
missing knowledge (d9). Productions in NL-Soar then propose the Language problem space and
its initial state as the appropriate space and state to use to acquire this knowledge (dlO and dl l) .
Problem solving continues in this space as before, with each decision cycle resulting in the
selection of a problem space, state, operator, or new subgoal. As noted above, when the desired
state is reached in the problem space for a subgoal, a chunk is created that avoids the impasse in
the future. The chunk makes the knowledge accessible in the problem space that led to the
impasse (the pre-impasse environment). Thus, p65 and p76 avoid the impasse that led to the
subgoal in d9 (we will examine them in more detail in the next section).3 Their conditions test
for the working memory elements from the pre-impasse environment that were needed to reach
the desired state in the lower space. Their actions create preferences for the working memory

3 W e have skirted the truth a bit in this explanation. In reality, p65 and p76 are created not by reaching a desired
state in the Language space, but by virtue of returning results from Language to Comprehension. One can think of
this use of chunking as a method of detecting pieces of the desired state as they occur during problem solving. Once
a piece of the desired state is present, the appropriate changes are made to the superstate and a chunk is
automatically formed. An interesting side effect of this form of learning is that chunks can trigger other chunks. In
our example, p65 is formed first, while p76 is formed as a result of later problem solving. This means that the results
returned when creating p65 become part of the pre-impasse environment for p76. It happens that p76 relies on some
of p65's results. Thus, chunking puts those attributes and values in p76's conditions. Should the situation present at
d9 occur again, p65 will fire first, triggering p76 which then fires. Since the decision procedure waits until
quiescence, however, both chunks will fire within a single decision cycle.

6

elements' new attributes and values. Thus, next time we encounter the word John in similar
circumstances, p65 and p76 will fire, avoiding the problem solving in d9 through d20. In other
words, p65 and p76 are two of the productions that form part of the comprehension operator for
John. Although they arose via deliberate problem solving in response to a failure to comprehend
recognitionally, the knowledge they contain about what to do when comprehending John is now
immediately available in the Comprehension space. As Figure 2-2 illustrates, chunking has
transformed the sequential application of a series of operators into a single instance of simple
production match.

...5 P: Comprehension
6 S: Comprehension-state
7 O: attendC/tf/m)
8 O: comprehend(/o/w)
Firing: p65, p76
9 O: attend(£rt0utf)

Figure 2-2: A portion of the Soar trace for John knows Sharyn, after chunking.

2.2. NL-Soar's representation of utterances
In the previous section, we showed how the Soar architecture supports two separate but

interdependent types of comprehension process: recognitional and deliberate. Regardless of
which process is evoked by a particular utterance, however, the outcome is the same: a single
interpretation of the utterance in the form of two related annotated models. The utterance model
represents the structure of the utterance. It is built primarily to facilitate constructing the
situation model which represents the utterance's meaning. The two models are tied via reference
.relations from objects in the utterance model to objects in the situation. Together, the two models
provide the context under which comprehension proceeds. The limit of two models is not an
absolute—.additional models may be needed as new sources of knowledge (for example, a
discourse level) are added to the system.

The utterance model represents the structure of the utterance using a head and modifier
approach [50] based on dependency theory. In essence, a dependency structure is one in which
each node corresponds directly to a word (never to an intermediate constituent as in a phrase-
structure grammar) and the arcs specify modifying relations between words. A variety of
dependency theories have evolved in linguistics (for example, [12, 14, 28, 29]), differing both in
the particular kind of structure allowed (tree [12, 28,29] or graph [14]) and in the particular set
of relations employed (standard grammatical relations [28] or a set of distinguished but non
standard labels [12, 14, 29]). NL-Soar uses a graph structure and grammatical relations based on
Winograd's outline of English [50] to label its arcs.4 Like other implemented systems, NL-Soar
distinguishes that subset of its nodes that correspond to open constituents. The combination of
this small active edge set with a graph size linear in the number of words in the sentence

4Currendy, only syntactic structures requiring trees are processed by the system. Our commitment to a graph
structure comes, therefore, not from the implementation but from the theoretical limitations of tree structures for
handling long-distance dependencies [14].

7

significantly constrains the search required to attach each word.5

The situation model is a graph structure representing the objects, properties and relations that
are described in the utterance. The objects and their properties are represented by the nodes. The
arcs between nodes represent the relations between objects; arc labels consist of a combination
of thematic roles, case roles and lexical items. The latter class is quite large (including, for
example, both "on" and "atop"), reflecting the current system's lack of commitment to an
ontology of primitives. In the remainder of this section, we examine a number of examples of
utterances and their models to make these descriptions more concrete.

The four examples that follow are taken from two of the three task domains to which the
system has been applied. Example 1 comes from a sentence verification task that is part of work
on comprehending instructions and stimuli in immediate-reasoning experiments [27,34].
Example 2 comes from another immediate-reasoning experiment, a syllogism task. Examples 3
and 4 are taken from our work on a natural language interface to a robot arm [15,22]. The third
domain we have worked in relates to modeling human comprehension of garden path sentences.
The examples in Section 3 are drawn from that domain. In addition to making our model
representation more concrete, these sentences also serve to illustrate the syntactic, semantic, and
pragmatic capabilities present in NL-Soar.

Example 1. In the sentence verification task, a user is first shown a picture of simple
geometric shapes, followed by a statement about the picture. The user must judge whether the
statement is true or false of the scene. Thus, in this task, the situation model is delivered prior to
the utterance through visual comprehension (the form and content of the situation model are the
same regardless of whether visual or linguistic comprehension produces it). Judging the
sentence true or false is, in terms of language comprehension, essentially a matter of resolving
the references in the utterance model against that situation. Figure 2-3 shows an example of the
experimental stimuli (top), the situation model assumed to have been delivered by visual
comprehension (right), and the utterance model (left) after comprehending The star above a
circle is dark in the context of the given situation model. Since referents for the all the objects
and relations mentioned in the utterance exist in the situation, the sentence can be judged true.

Nodes in the utterance model are represented graphically by an oval for each word in the input.
Nodes are connected by arcs labeled with grammatical relations in boldface. Double ovals
designate the active edge set. Objects in the situation model are represented by squares.
Properties of and relations among objects are in boldface, with relations represented by arcs.
Note that star in the utterance model is italicized (indicating it represents a word in the input)
while "star" in the situation model is not (indicating it represents the concept). Dotted arcs
between the two models indicate the referent relations established by comprehension. These
relations may change over the course of the comprehension process. When the word star is
encountered, for example, its referent is ambiguous (ol or o2). While the word above does not

5 One of the traditional advantages of dependency grammar over constituent grammars has been that the former

iTri^^TSent
 W ? ^ ° , r d e r C a n ' t h e r e f 0 r C ' e a S i l y p r 0 C e S S ^continuoufstructures (for C J ^ I C / M S S

earrings in A man walked by wearing earrings [50]). The current implementation of the active edge set in NL-SoJr

m^^T^ ?°Ter* T h U S ' a U h ° U g h a C d v e C d g e C O n s i a i n s s e a r c h d i m i i u u c J l ^ ^ S [44], some way to relax the notion is required.

8

UTTERANCE MODEL
> = edge set

<GD>
subject/'^ ̂ s^complement

SITUATION MODEL
(given / pj new j)

d r c l e ' refers
determiner

ol
isa star
shade dark
size large

i

above below

o3
isa circle
shade light
size large

left

right

o2
isa star
shade light
size small

above

left

right

below

o4
isa square
shade dark
size medium

Figure 2-3: The models resulting from comprehension of The star above a circle is dark.

disambiguate the reference—each of ol and o2 is above some object—the word circle constrains
the reference tool .

Example 2. In the syllogism task, a conclusion must be generated that follows from two
related premises (although IR-Soar[34] provides the conclusion in a form similar to the
utterance model, NL-Soar does not yet perform the language generation). Suppose the two
premises are All artists are chemists and All chemists are beekeepers. The unshaded portion of
the situation model in Figure 2-4 shows the meaning assigned to the first premise, while the
utterance model and shaded portion of the situation model correspond to comprehension of the
second premise. Note that the situation model continues to grow (that is, processing of the
second sentence goes on in terms of the context established by the first sentence) although the
utterance model is treated as a temporary structure.6 The reference to more than one
artist/chemist/beekeeper is indicated by the use of an annotation (many) in the situation model.
This is an example of the limited way in which annotated models may violate a strict one-to-one

6Although NL-Soar can process multiple, connected sentences, the size of the resulting situation model has, to
date, been kept quite small. This has allowed us to ignore temporarily the issue of establishing and changing focus of
attention that is a natural by-product of larger situation models.

9

correspondence between model elements and what is being represented.7 Here, with a single
object we represent that there is more than one artist that is also a chemist and a beekeeper. What
cannot be represented within the annotated model paradigm, however, is the universal quantifier.
The limited representational power of annotated models appears to be an important factor in
explaining human performance in this task [16, 33].

UTTERANCE MODEL
»= edge set

SITUATION MODEL
(given / new

subjecty/^v^complement ol
isa artist
isa chemist

isa beekeeper |

annotation many

Figure 2-4: The models resulting from comprehension of All chemists are beekeepers
after having read All artists are chemists.

Examples 3 and 4. The last two examples contrast comprehension of the same sentence {Put
the red block on the blue block on the table) under two different situations. They demonstrate the
potential biasing effect of referent resolution within the single-path process. In the situation
depicted at the top of Figure 2-5 and in the corresponding situation model, there is no red block
that is on a blue block so the phrase on the blue block is considered as the beginning of the
locative and the full description, on the blue block on the table, is eventually resolved to indicate
o3. The interpretation of the whole utterance thus has the effect of moving ol onto o3.

In the situation depicted in Figure 2-6, however, there is a red block on a blue block (o4) as
well as a blue block on the table (o3). Thus, the two possible points for attachment of on the blue
block cannot be distinguished on the basis of the existing situation. If the attachment to the noun
is proposed first, the models shown in Figure 2-6 will result, otherwise the system will produce
those of the previous figure. Thus, the meaning of the utterance will be consistent with, but may
be underconstrained by, the knowledge sources available.

In addition to making the model representation concrete, the examples given above elucidate a
number of other characteristics of NL-Soar. They show, for example, that it is a single-path
comprehender, producing only one interpretation of an utterance. They indicate that the system's
syntactic coverage is limited to fairly simple constructions (actually corresponding to about

7 The use of the many annotation to indicate plurality is only one possible choice. As an alternative, one might
represent the plural by a small, fixed number of identical objects. g

10

ol
I I S L I

o4
bluel

"53
blue

interpreted as o4
bjuej

ol
o3

blue

Put the red block on the blue block on the table.

UTTERANCE MODEL
) = edge set

SITUATION MODEL
(given / j new ||j)

LiiBSI^BCB&tiJ

block
determinerXX describer

I 06
1 isa put-act

object

ol
isa block
color red

o4
isa block
color blue

prep-
specifier

o3
isa block
color blue

o3
isa block
color blue

o2
isa box

on
determiner"***--. I o5
^ ^ isa table

Figure 2-5: The models for Put the red block on the blue block on the table
when there is no red block on a blue block.

seventy-five percent of James Allen's description of basic English [1]). The system's
representation of meaning is fairly simple as well, and currently lacks an ontology of primitive
properties and relations. Finally, they demonstrate that NL-Soar processes connected text,
maintaining that connectivity through referent resolution to previously established objects and
events in the situation.

2.3. NL-Soar's problem spaces and operators
How do we map a sequence of words into an utterance model and situation model? While the

architecture provides a framework for answering this question, it does not provide the answer
itself. The missing pieces in our description of NL-Soar, then, are the actual problem spaces and
operators implemented within the architecture discussed in Section 2.1 and creating the
structures discussed in Section 2.2. These are shown in Figure 2-7. The problem space names

11

ol
o4 ,
bluel

o3
blue

interpreted as o3
bluei

Ol
red

Put the red block on the blue block on the table.

UTTERANCE MODEL
> = edge set

SITUATION MODEL
S newlH)

determiner
ol
isa block
color red

o3
isa block
color blue

o2
isa box

o3
isa block
color blue

o4
*J isa block

color blue

Figure 2-6: The models for Put the red block on the blue block on the table
when there is a red block on a blue block.

are listed along with their operators at the left of the figure, with a brief description of the
problem space's behavior at the far right. In the middle portion of the figure, problem spaces are
represented by triangles, states by circles, and operators by arrows. The hierarchical relationship
among the problem spaces is indicated downward by impasses and upward by chunking.

At the top of the hierarchy is the Comprehension space, seen previously in d5 through d8 of
the trace in Figure 2-1. This is the space with the character of adult recognitional comprehension.
It is the space of comprehension operators, in which attention proceeds left-to-right through the
sentence, each word being comprehended in turn, its meaning established by a single operator
application that brings all the relevant knowledge to bear simultaneously. It is the space in which
comprehension requires no search, being achieved, instead, through parallel, constant-time
production match. It is also the space whose knowledge of how to comprehend arises
automatically through chunking.

12

Comprehension
attend
comprehend

Language
lexical-access
link
expect
merge
snip
refer

Constraints
check
record-changes
constraint-success

Semantics
find
justify

word-by-word
recognitional
comprehension

search space of
utterance and
situation models

apply lexical
and pragmatic
knowledge

apply syntactic
and semantic
constraints
consistent with
pragmatics

bring to bear
pragmatic
knowledge

bring to bear
general world
knowledge

Figure 2-7: NL-Soar's problem spaces and operators.

As we saw in Figure 2-1, when comprehension cannot proceed recognitionally, an impasse
arises leading to a goal to acquire the knowledge missing from Comprehension by search. This
search occurs in the Language space, whose operators can be tried in various sequences to find a

13

way of attaching the new word and its meaning to the current utterance and situation models.
The lexical-access operator provides knowledge about the different grammatical roles and
semantic senses of the word that guides these attachments. The link, expect, merge, and snip
operators all result, directly or indirectly, in the attachment of the new word to the utterance
model (see Section 3 for greater detail). The refer operator, on the other hand, is responsible for
changes to the situation model as well as tying the utterance and situation models together.
Regardless of the amount of search required to find an attachment, the result of problem solving
in Language is to resolve the impasse on the comprehend operator. Chunking combines the
conditions that led to the impasse with the results of the search to augment NL-Soar's
recognitional comprehension capability.

The Constraints space is the source of the syntactic, semantic, and pragmatic knowledge that
permits or vetos the implementation of a link, expect, merge, or snip operator proposed in the
Language space (pragmatic knowledge is also used in Language, but not to constrain
attachments). Unless the syntactic, semantic, and pragmatic knowledge relevant to an attachment
has been made available in Language through chunking in the past, a proposed attachment leads
to an impasse so that all pertinent constraints can be brought to bear via check operators (we will
see specific examples of check operators in Section 3). In simplest terms, we can consider the
Constraints space as a kind of oracle. Via an impasse Language asks the question, Is this
attachment syntactically, semantically, and pragmatically consistent? and Constraints resolves
the impasse by answering yes or no (yes is indicated by using the constraint-success operator
after all check operators have passed, no by resolving the Language impasse after the failure of
any single check operator). These terms are too simplistic, however—the real result of resolving
the impasse is not just a yes or no but a chunk whose conditions capture the critical syntactic,
semantic, and pragmatic features of the context that led to that answer, and whose actions record
changes to be made to the utterance model. Because the chunk becomes part of the knowledge in
Language, syntactic, semantic, and pragmatic knowledge becomes part of the deliberate
comprehension search. In turn, these three types of knowledge become integrated with
Language's lexical and pragmatic knowledge in the comprehension operator chunks returned
from Language to Comprehension.

The problem space at the bottom of the hierarchy shown in Figure 2-7 is Semantics. When the
Constraints space does not have the knowledge needed to verify an attachment's semantic
consistency, a search for that knowledge occurs here. The Semantics space has two ways of
validating an attachment: pragmatic justification and inference. In the former, the find operator
looks at the current situation model for instances of the proposed attachment. If an instance of
the relation is already present, it must be semantically correct. If, for example, there is already a
blue block in the situation, then blue must be a legitimate modifier for block. If no evidence is
found in the situation model, the justify operator uses NL-Soar's general world knowledge to
infer a validating relation.8 Thus, if no blue block was present, justify would conclude that blue
could modify block because blue modifies physical-objects and block isa physical-object.

in * £ f r ™ y ; a J l ! S t i f y 0 p e ? t 0 ^ i s U S u a l I y i m P l e m e n t e d i n another instance of the Constraints space via an impasse
In this Constraints space check operators are proposed that access world knowledge. The system's world knoTledee

}«1J* c ™ * f * taowlfge sources for this space. Such an ontological commitment will, of cSrae tave
consequences for the set of properties and relations used in the situation model as well.

14

Chunks from Semantics bring the reasoning done in the lower space into Constraints in
production form. There it becomes part of Constraints' problem solving, to be returned in its
chunks to Language and so on up to Comprehension. In this way, even the semantic and
pragmatic knowledge brought to bear at the bottom of the hierarchy is integrated into
comprehension operators.

In this description of NL-Soar's problem spaces and operators we have focused on the constant
flow of knowledge upward toward Comprehension. It is important to remember, however, that
chunking results in increased efficiency in each problem space in the hierarchy by transforming
search in the lower spaces into direct operator implementation in the higher space under similar
circumstances. Still, chunking is only one aspect of the process of language comprehension in
NL-Soar. The interplay of chunking, search, annotated models, and knowledge about language
and the world is demonstrated next.

3. The Comprehension Process
The previous section described the building blocks from which NL-Soar has been constructed:

the Soar architecture, a particular set of problem spaces and operators, and a representation of the
result of the comprehension process as models. We are now ready to show how each of these
pieces contributes to the general model of adult recognitional comprehension outlined in Section
1.

We build up a detailed picture of the working system by examining increasingly complex
variations on a simple sentence. We begin in Section 3.1 by extending our analysis of the
sentence fragment in Figure 2-1 to include the entire sentence, John knows Sharyn. This example
introduces specific instances of many of the operators described in Section 2.3, shows concretely
how the utterance and situation models are constructed, and demonstrates how comprehension
operators arise in a bottom-up fashion. In Section 3.2, we examine a variation of this initial
sentence that demonstrates how comprehension operators come to include top-down knowledge.
This variation also allows us to look at the generality and transfer of the chunks learned in the
first example. The example in Section 3.3 builds on knowledge attained from problem solving in
the first two examples. It completes our description of NL-Soar by demonstrating the system's
limited recovery capacity when its single-path mechanism is led astray.

3.1. Example 1: Simple, bottom-up construction of comprehension operators
We begin by looking in detail at a simple declarative sentence taken from our work on garden

path phenomena. The sentence is John knows Sharyn, considered in the context of an initially
empty situation model. As a point of reference, Figure 3-1 shows what the processing trace looks
like when NL-Soar is capable of pure recognitional behavior for this sentence. The utterance
model and situation model are also shown.

Soar interacts with the external environment via state changes in its Top problem space. In the
trace above, the presence of new input on the state triggers the proposal of the comprehend-input
operator (d3). Since the knowledge that implements this operator is not available in the Top
problem space, an impasse arises in d4 and a subgoal is created to resolve the impasse. The
comprehend-input operator is implemented in the Comprehension space. This space is
established along with its initial state in d5 and d6. Next, each word in the utterance is attended

15

OG:gl
1 P: Top
2 S: Top-state

Type your input > John knows Sharyn.
3 O: comprehend-input
4 ==>G: operator no-change
5
6
7
8
9
10
11
12
13
14

P: Comprehension
S: Comprehension-state
O: attend(/<9/m)
O: comprehend(/0/m)
O: attend(knows)
O: comprchend(knows)
O: attend(S/iary*)
O: comprehend(S7iaryn)
O: attend(.)
O: comprehendQ

UTTERANCE MODEL
> = edge set

refers

SITUATION MODEL
(given / |

o 2
isa know-act

refers

refers

Figure 3-1: Expected recognitional behavior for John knows Sharyn
and the resulting utterance and situation models.

to and comprehended in turn. The comprehension of each word requires only a single
operator—no search is involved.

Let us now consider, as we began to in Section 2.1, what happens when the comprehension
operators needed to understand this utterance are not yet available. As we saw in Figure 2-1,
when a word has been attended to but the comprehension operator for that word does not exist or
is inappropriate in the current context, an impasse is detected by the Soar architecture and a
subgoal is created to resolve that impasse. NL-Soar then attempts to resolve the impasse via
deliberate problem solving in the Language space. The result of that problem solving are chunks
that extend the comprehension operator for the word being comprehended. Figure 3-2 shows this
process for the word John, including those portions of the trace ellided in Figure 2-1.

Processing through d8 proceeds as in Figure 3-1, with the attend operator creating a node for
the word John to be linked to the utterance model. At d9, however, the lack of knowledge to
implement the comprehension operator for John is detected as an impasse and a subgoal is
created to resolve it. The first step in the Language space (dl2) is to access the lexical definitions
of John (John has only one, but, in general, a word may be polysemous). Each lexical definition
is given as a profile of attributes and values that represent one interpretation of the word. The
production that accesses the lexical entry for John is given below. In this and future productions,
the & symbol separates the multiple values that may fill an attribute while the word and
separates clauses in the condition and action. In addition, we will sometimes use labels of the
form a<number> in the right margin to provide easier reference to pieces of the production. As
shown, this profile includes syntactic information (al and a2), semantic classifications (a3 and
a4), the grammatical roles that the interpretation may assign or receive in the utterance model
(a5), and information used in establishing referential ties to the situation model (a6 and a7).

16

0 (see Figure 3-1)
.7 O: attend(/0/m)
8 O: comprehend(/0/m)
9 ==>G: operator no-change
10 P: Language
11 S: Language-state
12 O: lexical-access(/o/m)
13 O: link(/o/w, first-word)
14 ==>G: operator no-change
15 P: Constraints
16 S: Constraints-state
17 O: record-changes
18 O: check(progress)
19 O: constraint-success
Build: p32
Build: p65
20 O: rcfer(John)
Build: p76
21 O: attend(knows)

Figure 3-2: Deliberate comprehension of John in John knows Sharyn.

Language*lexical-access*JOHN:
If the problem space is Language and

the lexical-access operator is being applied for John
Then add to the state a profile with

subclass = count & proper al
number = 3s a2
most-specific-class = John a3
base-level-class = person a4
receives = subject & object a5
unused referring-information = isa John a6
template = isa John & isa person a7

Once the lexical definitions are available in working memory, the next step in the Language
space is to find those profiles with a role to assign or receive that matches a role to be received or
assigned by a profile on an active edge in the utterance model. For every (assigner, receiver,
role) triple that can be found, a link operator is proposed. If more than one link is proposed, they
are tried in an arbitrary order. In our example, John has only one definition and is the first word
in the sentence, so only the first-word link is proposed (dl3). Note that because NL-Soar is a
single-path parser, even if many link operators are proposed, only the first successful link is
implemented as changes to the utterance and situation models (what we mean by "successful"
will become clear in the discussion that follows).

The proposal of a link operator means that an assigner/receiver match has been found between
the new word and an active edge of the utterance model. The actual implementation of the link,
however, is permitted only after all the relevant constraints on the link have been passed. To

17

insure that all constraints pass, the link operator is implemented via search in the Constraints
space (see dl4-dl6 in Figure 3-2).

There are two kinds of constraints that must be satisfied before a link is made. The first kind
are the semantic and syntactic constraints triggered by the specific link itself (for example, a
number agreement constraint is triggered by a link for the subject role). Semantic constraints
may also bring pragmatic information to bear, as explained in Section 2.3. In the process of
passing these constraints some features on the profile of the assigner or receiver may be modified
(this is similar to setting or modifying the contents of registers in an ATN-style parser [50] or to
unifying feature vectors in a unification-style parser [40]). For instance, the number feature on a
regular verb's profile always changes when the verb is linked to the subject (it begins as Is, 2s,
lp, 2p, 3p and changes to whichever subset agrees with the subject nounphrase). As another
example, the roles that remain to be assigned or received may change, allowing exocentric
constructions.9 When all the syntactic and semantic constraints have passed, the record-changes
operator puts the current word's correct sense and the mutually consistent feature sets for the
assigner and receiver profiles in a change record (dl7). The use of a declarative structure to
record changes ensures that the sets of compatible features remain tied together during
subsequent processing (why this is important will become clear as we follow the change record
back up the goal hierarchy to the Comprehension space). The change record for John as the first
word is quite trivial: it simply preserves the profile we've already seen.

The second kind of constraint that must be passed is called the progress constraint. The
progress constraint forces NL-Soar to maintain a single, cohesive interpretation of the utterance
at all times. It does this by ensuring that all nodes in the utterance model will still be connected
after the current Language operator (in this case link) has been implemented (a connected
utterance model implies a well-formed situation model, because all semantic constraints and
pragmatic information have been taken into account). It is always checked after a change record
has been created (dl8), so that the effect of those changes on the connectedness of the resulting
model can be examined. The progress constraint is passed trivially for the first word in a
sentence, but we will see in Section 3.1 that passing the progress check can be quite complex.

With all constraints passed, a final state has been reached in the Constraints space. Recall that
a chunk is created whenever an impasse is resolved or a result is returned to a higher space. In
dl9 both events occur. First, the constraint-success operator signals that the impasse in the
Language space has been successfully resolved by notating the link operator with both
constraints-passed and the change record. This leads to the creation of chunk p32, shown below:

Chunk p32:
If the problem space is Language and

the link operator is assigning the first-word role to a profile, p, for a word
Then mark the link operator as having all constraints passed and

add a change record to the link operator that
makes the word's only profile p and
links the word to the utterance model as the first word

18

Next, productions in the Language space return the change record to the Comprehension space as
an intermediate result, creating p65 (below), part of the comprehension operator for John. The
appearance of the change record in the Comprehension space immediately triggers productions
that make the changes to the model, recompute the active edge set, and copy the new model and
edge set down to the Language-state. Thus, the changes that establish the correct profile for John
in the Comprehension and Language spaces are actually made during dl9.

Chunk p65:
If the problem space is Comprehension and

the Comprehension-state has no edge and
the Comprehension-state has an incoming word, w, and
the comprehend operator is being applied to w and
w is John

Then add a change record to the comprehend operator that
links w to the utterance model as the first word and
makes w's profile

subclass = count & proper
number = 3s
most-specific-class = John
base-level-class = person
receives = subject & object
unused referring-information = isa John
template = isa John & isa person

Note that despite having returned an intermediate result, we have not yet resolved the impasse
on the comprehend operator by reaching a final state in the Language space. The last operator on
the path to a final state in the Language space brings pragmatic information to bear on the
interpretation by finding the referent set for John. The refer operator is triggered by the unused
referring-information on the profile (see p65, above). In the simplest case, the refer operator
selects objects already in the situation model that match the new word's referring-information. If,
as in our example, there is no matching situation object, one is created from the profile's
template. As we saw in Section 2.2, in more complex situations, the system's preference for
interpreting descriptions as referring to pre-existing objects in the situation model may bias the
interpretation of an utterance.

With a referent established, the final state in the Language space has been reached and the
impasse that led to the subgoal in d9 resolved. Chunk p76, also part of the comprehension
operator for John, results:

Chunk p76:
If the problem space is Comprehension and

the Comprehension-state has a word, w, on the edge and
the comprehend operator is being applied for w and
w's profile has a template and unused referring-information = isa John and
the Comprehension-state has a situation model and
the situation model has no object that isa John

Then add to the situation an object that instantiates the template and
mark that object created and
add that object to the profile as a referent
mark the referring-information as used

In fact, p76 is triggered by p65, as described in Section 2.1 (p65 places unused referring-
information on the profile, which p76, in turn, uses to create a referent and connect the two

19

models). Together the two chunks give the system recognitional comprehension of John when it
appears as the first word in a sentence and no referents are available in the situation model.

Now that we have followed a change record from its creation in Constraints back to its role as
part of the comprehension operator, we are in a position to explain why this declarative structure
is necessary. The movement of knowledge in the system from deliberate to recognitional form
will eventually result in chunks whose simultaneous firing indicates local ambiguity in the
utterance. If all the chunks made their changes directly to the models, the system could detect
that conflicting interpretations were possible but could not detect which changes were caused by
which interpretation. The use of a change record creates the opportunity for the ambiguity to be
detected before any changes are made, and allows knowledge to be brought to bear to make a
principled selection of a single interpretation.10 Once a particular interpretation's change record
has been selected, other productions that rely on the established profile will fire to complete the
comprehension operator's implementation in the same decision cycle.

The example of deliberate reasoning we saw in processing John was quite simple. Although
we discussed the problem solving steps taken in the Language space in some detail, the
contribution of the Constraints space was minimal, and the lower spaces (as outlined in Section
2.3) were not required. By following the comprehension process for the word knows, we can see
the contribution of the other spaces more clearly. Figure 3-3 continues where Figure 3-2 stopped,
with NL-Soar attending to the word knows.

In d21, the attend operator creates a node for the word to be linked into the utterance model.
Then, as expected, an impasse occurs when the system tries to comprehend the word
recognitionally (d22 and d23). The Language space is chosen to find out how to comprehend
knows, with the lexical-access operator chosen as the first step (d24-d26). The production that
establishes the lexical entry for knows is shown below:

Language*lexical-access*KNOWS:
If the problem space is Language and

the lexical-access operator is being applied to knows
Then add a profile to the state with

subclass = conjugate
number = 3s
tense = present
most-specific-class = know-act
base-level-class = cognitive-act
assigns = subject & object & clausal-object
requires = rolel & role2 al
rolel = subject
role2 = object & clausal-object a2
maps = subject to actor & object to object & clausal-object to thought a3
restricts = actor to isa animate & object to isa thing & thought to isa act a4
unused referring-information = isa know-act
template = isa know-act & isa act

°The ambiguity is detected as an attribute impasse
operator. At present, the system resolves such impasses
situation model and the other interpretation does not
interpretation with the existing referent.

[21] on the change-record attribute of the comprehend
arbitrarily unless one interpretation has a referent in the
In that case, the impasse is decided in favor of the

20

.21 O: atlend(knows)
22 O: comprehend(£rtovv.s)
23 ==>G: operator no-change
24 P: Language
25 S: Language-state
26 0: lexical-access(Ww5)
27 0: lirik.(knows, John, object)
28 =>G: operator no-change
29 P: Constraints
30 S: Constraints-state
31 0: check(word-order)
Build: p89
32 0:]mk(knows, John, subject)
33 =>G: operator no-change
34 P: Constraints
35 S: Constraints-state
36 0: check(word-order)
37 0: check(np-well-formedness)
38 0: check(number-agreement)
39 0: check(semantic-consistency)
40 =>G: operator no-change
41 P: Semantics
42 S: Semantics-state
43 0:find
44 0: justify
.50 0: record-changes
51 0: check(progress)
52 0: constraint-success
Build: pl86
Build: pi 87
53 O: refer(knows)
Build: p202
54 O: rtfer(knows)
Build: p212

Figure 3-3: Deliberate comprehension of knows in John knows Sharyn.

It contains the same type of information that we saw in the definition of John, with a few
noteworthy additions. In particular, information is included that dictates roles that must be filled
(al), roles that are mutually-exclusive (a2, as interpreted by other productions), the mapping
between grammatical utterance roles and relations in the situation model (a3), and restrictions on
what types of situation objects can fill a role (a4). The influences of these new attributes will be
seen below.

Recall that the single active edge (John) can receive either a subject or object role. Since
knows can assign either role, two link operators have been proposed at the end of the decision

21

procedure in d26. With no knowledge yet available to prefer one role over the other, the object
link is arbitrarily instantiated first. The knowledge of whether or not to implement the link
resides in the Constraints space, so an impasse occurs. In d31 a check operator is applied in order
to verify the word order for the object link. Since the syntactic object must follow the verb, the
proposed link fails this constraint. That failure is captured in a general way as chunk p89 in the
Language space. In the future, no impasse will be necessary to know that it is incorrect to link a
receiver on the edge of the utterance model and an assigner that is the new word via the object
role.

Since the object link fails, the subject link is proposed in d32. Once in the Constraints space,
this link passes three syntactic tests: word order (d36), well-formedness of the nounphrase (d37),
and number agreement between the subject and verb (d38). The productions that signal success
for these constraints are given below:

Constraints*word-order*subject-verb*ok:
If the problem space is Constraints and

the check operator for word order on (assigner, receiver, role) is being applied and
the role is subject and
the receiver is on the edge

Then mark the constraint as having passed
Constraints*np-well-formed*proper-noun*ok:
If the problem space is Constraints and

the check operator for np-well-formedness of a node is being applied and
the node's profile has subclass = proper

Then mark the constraint as having passed

Constraints*number-agreement*ok:
If the problem space is Constraints and

the Constraints-state has a change record and
the check operator for number-agreement on an assigner and receiver is being applied and
the assigner and receiver profiles have a number value in common

Then mark the constraint as having passed and
put the common number value(s) for the assigner and receiver on the change record

The word-order check makes certain that the syntactic subject precedes the verb. The well-
formedness check makes certain that a full nounphrase is present; it passes here because the
nounphrase is a proper name (well-formedness fails, for example, for a singular noun without a
determiner). The number-agreement check detects that both John and knows have number 3s.
Notice, however, that this production may restrict the values found on the number attribute in the
profile of the receiver and assigner to the set that they have in common.

In d39, a semantic check is proposed to ensure that the referent of the receiver is a
semantically appropriate actor for the act. This check operator is implemented in the Semantics
space (d40-d42). Recall that proof of semantic validity can be achieved in either of two ways in
the system. The first way is to find an instance of the situation being described already in the
situation model (d43). In our example, if previous context had already introduced into the
situation model an example of John knowing something, we would have the necessary evidence
that John is a legitimate actor for a know-act. If the system cannot find the evidence, it must
search for it by deliberate reasoning (d44). This process, not elaborated further in Figure 3-3,
occurs in a new instance of the Constraints space in which check operators are proposed based

22

on know's restrictions for the actor. In our example, the knowledge that John is a person
(available from the situation model) combines with general knowledge that people are animate to
justify the semantic consistency of the link. 1 1

Having passed the syntactic and semantic constraints triggered by the subject link, the system
creates a change record (d50) and moves on to the progress check (d51). As was the case with
the first-word link, the subject link passes this check trivially (linking a new node to a connected
structure leaves a connected structure). Thus, the constraint-success operator allows processing
to return to the Language space (creating pi86, analogous to p32 above) where a partial result
can be returned to the Comprehension space (pi87, analogous to p65 above). Chunk pi87 is
shown below. Note that its conditions consist of exactly those attributes and values— the word
knows, the number, subclass, base-level-class, and receives for John—that were available prior
to the impasse in d22 that were needed to pass all of the constraints on the link.

Chunk pl87:
If the problem space is Comprehension and

the Comprehension-state has node p2 on the edge and
p2's profile has

number = 3s
subclass = proper
base-level-class = person
receives = subject and

the Comprehension-state has an incoming node nl and
nl corresponds to the word knows and
the comprehend operator is being applied to nl

Then add a change record to the comprehend operator that
links p2 to nl as subject and
makes p2's profile

number = 3s
tense = present
assigns = subject & object & clausal-object
etc.

When the result is returned, the change record is immediately implemented by productions in the
Comprehension space: the profile for knows is established, the new edge set is computed, and a
subject link is created between John and knows in the utterance model. This information is then
copied down to the Language-state where the unused referring information in the profile triggers
the refer operator (d53). The refer operator creates an object for the act in the situation model
(see Figure 3-1) and returns it as a partial result to Comprehension, thereby creating p202. To
complete the deliberate comprehension of knows, another refer operator uses the maps attribute
in knows9 profile to establish the actor relation between knows9 referent and John's referent.
This final change to the situation model is captured by p212 (d54).

Together pl87, p202, and p212 contain all the changes to the models required by knows in the
current context. Despite their similarity in being part of knows9 comprehension operator, the
three chunks nevertheless differ significantly in their generality, and, therefore, in their

n O n e could imagine extending the present Semantics space to incorporate episodic memory. In other words, the
system might reason that John is a viable actor for some act not because it finds the act and actor already in the
situation model, or because of general knowledge, but because the juxtaposition of act and actor reminds it of some
episode in the past in which John performed that action [18,19].

23

likelihood of transferring to other contexts. None of the productions relies on the appearance of
the particular lexeme John in the subject position of the sentence, for example, but pi87 does
test for the lexeme knows in order to perform the lexical access. Chunk p202, on the other hand,
does not test for knows, but does require that the verb's referring-information be a know-act.
Thus, p202 will transfer to morphological variants of knows while pi87 will not (depending
upon the degree of semantic discrimination in the lexicon, p202 may also transfer to related
verbs, for example, thinks). Chunk p212 is more general still, testing for none of John, knows or
referring-information as a know-act, and relying only on the existence of a subject link in the
utterance model between two nodes that already have referents. Through comprehending John
knows, then, we have added to the system recognitional knowledge that contributes to
understanding entirely novel utterances.

Figure 3-4 shows deliberate comprehension of the last word in our first example sentence. The
dynamic for Sharyn is similar to that for knows and John. The comprehend operator impasses,
resulting in lexical access, linking, and referent resolution in the Language space. Sharyri*s
lexical definition (d60) is analogous to John's. The proposed link operator (d61) for the object
role must pass semantic and syntactic checks similar to those passed by the subject link (d63-
d72). When the constraints have been passed, the change record is returned as an intermediate
result (d78-d80), producing p296 (analogous to pl87). To finish the process, a referent for
Sharyn is created (d81, p320) and linked to the referent for knows with an object relation (d82,
p328). The utterance and situation models now look like those in Figure 3-1. The
comprehension operator for Sharyn is now partially defined by the chunks p296, p320, and p328.

At the beginning of this section, in Figure 3-1, we showed what we would expect NL-Soar's
processing to look like if the system could recognitionally comprehend our example sentence.
We then assumed that the system did not have the appropriate knowledge immediately available
in the Comprehension space, and demonstrated how deliberate comprehension would proceed
for each word in turn (Figures 3-2 (John), 3-3 (knows), and 3-4 (Sharyn)). In each case, there
were two distinct aspects to deliberate comprehension. First, search over multiple knowledge
sources in NL-Soar's lower problem spaces produced additions to the models that described the
structure and the meaning of the sentence. Second, Soar's general learning mechanism integrated
the knowledge from the disparate sources into a form that could be immediately brought to bear
with a single comprehend operator. Figure 3-5 demonstrates that through this compilation and
integration process, the system has achieved the expected behavior.

3.2. Example 2: Learning top-down knowledge in the comprehension operator
The lexical-access, link, and refer operators were all that was needed in the Language space to

deliberately construct the utterance and situation models for the sentence John knows Sharyn.
But these operators are not always adequate for deliberate comprehension. To see why not, recall
that link operators are proposed only when an (assigner, receiver, role) triple can be produced
using the profile for a node on the edge set and a profile for the word being comprehended. Now
consider the sentence Sharyn knows a chemist. When processing reaches the word a, which
receives only a determiner role, the only node that is on the edge represents knows, which does
not assign a determiner. Consequently, no link operator can be proposed. The problem is that
link, as we have defined it, provides only word-driven or bottom-up knowledge during
comprehension. Contexts such as the one that arises for a, on the other hand, require expectation-
driven or top-down processing if each word is to be interpreted immediately. In this section we

24

...55 0: attend(S/tary«)
56 0: comprehendCS/jary")
57 ==>G: operator no-change
58 P: Language
59 S: Language-state
60 0: lexical-access(S/tary«)
61 0: \mk.(knows, Sharyn, object)
62 =>G: operator no-change
63 P: Constraints
64 S: Constraints-state
65 0: check(word-order)
66 0: check(np-well-formedness)
67 0: check(semantic-consistency)
68 ==>G: operator no-change
69 P: Semantics
70 S: Semantics-state
71 0:find
72 0: justify

...78 0: record-changes
79 0: check(progress)
80 0: constraint-success
Build: p295
Build: p296
81 0: T&fer(Sharyri)
Build: p320
82 0: referOfc/tovus)
Build: p328
83 0: attendC)
84 0: comprehend(.)

Figure 3-4: Deliberate comprehension of Sharyn in John knows Sharyn.

show how this top-down processing arises naturally in NL-Soar by examining the behavior of
the Language space's expect and merge operators during comprehension of Sharyn knows a
chemist. To simplify the exposition, we assume that the system now contains the chunks built
during comprehension of John knows Sharyn.

Figure 3-6 shows processing for the first two words. Although the word Sharyn was seen in the
sentence from the previous example, it was not encountered as the first word in the sentence.
Consequently, part of the current comprehension operator for Sharyn (specifically chunk p296
which establishes the change record) is inappropriate to this context. Consequently, an impasse
arises (d9) and processing continues in the Language space. Although there was no transfer in
the Comprehension space, there may, nevertheless, be transfer in the lower problem spaces.
Indeed, p32 is a chunk accessible in Language that resulted from problem solving in the
Constraint space for John as the first word. Since the conditions for that link apply in the current
situation, the chunk transfers, creating the correct change record immediately (contrast d 13-d 19

25

OG:gl
1 P: Top
2 S: Top-state

Type your input > John knows Sharyn.
3 O: comprehend-input
4 ==>G: operator no-change
5 P: Comprehension
6 S: Comprehension-state
7 O: attend(/6>/w)
8 O: comprehend(/0/m)
Firing: p65, p76
9 O: attcnd(knows)
10 O: comprehend(£rttfHw)
Firing: pi87, p202, p212
11 O: tftcnd(Sharyn)
12 O: comprehend(S/itfryfl)
Firing: p296, p320, p328
13 O: attendC)
14 O: comprehendC)

UTTERANCE MODEL
> = edge set

SITUATION MODEL
(given / | P N E W L)

| J isa
person i sharyn |

Figure 3-5: Recognitional comprehension of John knows Sharyn after chunking.

in Figure 3-2 with dl3 in 3-6). The change record is then returned as a partial result, creating
p330, and extending Sharyn's comprehension operator to the current context. Since p330's
change record is immediately instantiated in the Comprehension-state, a piece of unused
referring information appears in the node's profile. This triggers transfer of chunk p320, the
portion of Sharyn9 s comprehension operator that creates a referent in the situation model. Note
that this transfer is in the Comprehension space, bypassing the need for a refer operator to follow
the link in Language, and completing the comprehension of Sharyn. Knows is then attended to
and its comprehension operator fires in full. The mixture of deliberate and recognitional
comprehension seen in processing these two words is normal in NL-Soar. Knowledge acquired
from other contexts (even for other words) may transfer to the current context, permitting
completely recognitional comprehension. If not, deliberate search occurs automatically to fill in
those parts of a word's comprehension operator that are new to the context. The deliberate search
may also involve a combination of chunked behavior and search in subspaces.

Figure 3-7 shows the utterance and situation models after the word a has been attended to and
picks up the trace at this same point, d l 7 . 1 2 The usual steps follow through d21, at which point
no link operator can be proposed. When no link is possible, expect is proposed. When
implemented, expect simply creates an empty node in the utterance model and causes
adjustments to the edge set. Like link, the implementation of expect is mediated by constraints
(d23-d26). Unlike link, however, there are no syntactic or semantic constraints associated with

p r S i n ^ r ^ " * * ^ ° f * * * * i n C h u n k s) i n 3 ' 7 t 0 m ^ ^ °vemll structure of the

26

OG:gl
1 P: Top
2 S: Top-state

Type your input > Sharyn knows a chemist.
3 O: comprehend-input
4 =>G: operator no-change
5 P: Comprehension
6 S: Comprehension-state
7 O: mcnd(Sharyn)
8 O: comprehends/wry*)
9 ==>G: operator no-change
10 P: Language
11 S: Language-state
12 O: lexical-access(S/wryn)
13 O: IwkiSharyn, first-word)
Firing: p32
Build: p330
Firing: p320
14 O: zttend(knows)
15 O: comprzhend(knows)
Firing: pl87,p202, p212
16 O: attend(a)

Figure 3-6: Mixed deliberate/recognitional comprehension of
| Sharyn knows in Sharyn knows a chemist.

the creation of an expectation object, so only the progress constraint is relevant (d27). For each
previous word we have examined, the progress constraint was passed trivially. This was because
the notion of progress exists in the system to ensure that a connected utterance model (and, thus
a well-formed situation model) is maintained; the previous instances of link maintained
connectedness. This is not the case with expect—the simple creation of a new node does not
connect either that node or the current word (a) into the utterance model. In order to pass the
progress constraint, then, the system must answer the question, "Does positing the existence of
some future word allow us to create a cohesive model?" NL-Soar answers this question by using
Soar's lookahead processing capability to search ahead in a copy of the Language space. This
lookahead search is not a lookahead in the input; rather, it is a lookahead in the space of
utterance and situation models that can result from creating the expectation.

The remaining decision cycles in Figure 3-7 demonstrate how the lookahead search progresses.
The impasse on expect's progress (d28) results in the creation of a new Language space which,
for clarity of exposition, we name Languagex (d29 and d30). Language1 is an exact copy of the
Language space in d20 with a single exception: the expect operator now has an annotation on it
that allows the system to simply assume expect's progress by creating the expectation node
(d31). Once this new node is part of Language-state 1 ? a link operator is proposed to link a to the
expectation. The processing in d33 through d45 is, therefore, simply normal constraint checking

27

...17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
.37
.44
45
46
47
48
49
50
51
52
53
54

..68
69
70

UTTERANCE MODEL
• = edge set

O: comprehend(a)
==>G: operator no-change

P: Language
S: Language-state
O: lexical-access(a)
O: expect
==>G: operator no-change

P: Constraints
S: Constraints-state
O: record-changes
O: check(progress)
==>G: operator no-change

P: Languagej
S: Language-state!
O: expect(just-do-it)
O: link(a, *exp*, determiner)
==>G: operator no-change

P: Constraints!
S: Constraints-statej
O: check(determiner-np-agreement)
O: record-changes
O: check(progress)
—>G: operator no-change

P: Language2

S: Language-stat^
O: link(a, *exp*, determiner, just-do-it)
O: refer(*exp*)
O: lwk(knows, *exp*, object)
=>G: operator no-change

P: Constraints2

S: Constraints-space2

O: record-changes
O: check(progress)
O: constraint-success

SITUATION MODEL
(given / |f"newl)

o2
isa know-act

actor

ol
isa person

sharyn

Figure 3-7: Models after attending to a and lookahead search during comprehension of a
in Sharyn knows a chemist.

on the proposed link. In other words, there is nothing special about Language!—it is just the
same old Language space. In it, NL-Soar makes a change to a local copy of the models by
creating the expectation. Then, the same type of processing used in the previous example plays
out the consequences of that change.

Figure 3-8 shows the utterance and situation models in Languagex after the link between a and
the expectation has been made. Notice that the expectation object is no longer empty. As a result
of the syntactic constraints brought to bear by the link (d37), the system now knows that the

28

word that this expectation is holding a place for must have number 3s. The expectation includes
other constraining information from other checks, as well. There is no special mechanism at
work here—each bit of constraining information is added to the expectation's profile in the same
way that the feature sets for profiles of regular words are dynamically constrained.

Figure 3-8: Hypothetical model change during lookahead search for Sharyn knows a.

Since the expectation node is still not linked into the utterance model, the progress check at
d45 cannot be passed and the lookahead search must continue. The second step in lookahead
(d46 through d69) is analogous to the first step. A copy of the Language 1 space is created (d47)
that is identical to its predecessor except that it is assumed that the link between a and the
expectation makes progress. Again, we index this new Language space (as Language2) for
clarity. The link is instantiated using the change record created prior to the progress check (d44).
Next, a refer operator establishes a referent for the expectation in the situation model (d50). In
d51, a link operator is proposed to connect the expectation to knows via an object role. As
always, the proposed link must pass all constraints (d52 through d69). This time, however, we
find that all constraints pass, including progress, bringing an end to the lookahead search.

To understand the system's behavior in Figure 3-7, we must examine it at both global and local
levels. At the global level, the system still has made no changes to the utterance and situation
models in the Language space. It has only found a sequence of operators (expect, link, refer, and
link) which, if applied, will result in model changes that leave the models well-connected. At the
local level, however, the system has actually done the work of applying those operators to
transform the models, albeit on private copies. Further, the application of each operator acted to
constrain the features of the expectation and, hence, the future word in the sentence that could
play the appropriate roles. So, depending on the point of view, NL-Soar has done both a great
deal of work and almost no work at all. Figure 3-9 demonstrates how the recursive use of the
Language and Constraints problem spaces during lookahead combines with chunking to
automatically transfer work from the local to the global level. We repeat the relevant portions of
Figure 3-7 in Figure 3-9 to make the unwinding of the goal hierarchy easier to follow.

We begin in Figure 3-9 where we left off in Figure 3-7. In d70, all the constraints on linking
knows to the expectation have passed (including progress). As a result, the change record that

UTTERANCE MODEL
<^^> = edge set

subject /

SITUATION MODEL
(given / | new |)

o2
isa know-act

29

implements that link is returned to Language2, and p444 is created Remember that our use of the
index is just an expository convenience—the chunk, itself, tests for the token "language" in the
problem space name. The implementation of the link in Language2 resolves the progress impasse
in d45, creating p445. The success of progress, in turn, signals total constraint success in
Constraints! (d71).

...19

...22
23
24

...27
28
29

...31
32
33
34

...45
46
47

...51

...52
53

...70
Build: p444
Build: p445
71
Build: p446
Build: p447
72
Build: p448
Build: p449
73 O: link(a, *exp*, determiner)
Firing: p446
Build: p474
74 O: refer(*exp*)
Build: p500
75 O: lii)k(knows, *exp*, object)
Firing: p444
Build: p504
Firing: p328
76 O: attendCc/iemzsr)

P: Language
O: expect
==>G: operator no-change

P: Constraints
O: check(progress)
==>G: operator no-change

P: Languagex

O: expect(just-do-it)
O: link(a, *exp*, determiner)
=>G: operator no-change

P: Constraints!
O: check(progress)
=>G: operator no-change

P: Language2

O: lmk(knowsf *exp*, object)
==>G: operator no-change

P: Constraints2

O: constraint-success

O: constraint-success

O: constraint-success

Figure 3-9: Unwinding the lookahead search.

30

Now the pattern repeats. The constraint success in d71 returns a change record implementing
the link between a and the expectation to Language^ creating p446. Again, the chunk refers to
the token "language" not "language^'. The implementation of the link resolves the progress
impasse in d27, creating p447. The success of progress signals total constraint success in
Constraints (d72).

The constraint success in d72 returns a change record to the Language space that implements
the original expect operator, creating p448. Language then returns the change record as a partial
result to the Comprehension space to form part of the comprehension operator for a (and p449).
This part of a's comprehension operator creates an empty expectation node in the utterance
model. When the new node is copied down to Language, the Language-state becomes exactly the
same as it was in Language l at d31 (when the system had just assumed that positing the
expectation would make progress). Consequently, a link between a and the expectation is
proposed in d73 just as it was in d32. At d73, however, knowledge is available that was not
available at d32. Specifically, long-term memory now contains p446 which implements the link
between a and the expectation. Since the conditions in Language are identical to those that gave
rise to chunk p446, the chunk fires. In this way, the change record linking a to the expectation
appears on the Language-state where it is returned as a partial result to Comprehension, creating
p474 and adding another piece to a's comprehension operator. Chunk p474 is shown below:

Chunk p474:
If the problem space is Comprehension and

the Comprehension-state has
node pi whose word is to the left of
node nl whose word is to the left of
node el and

the comprehension operator is being applied to nl and
nl corresponds to the word a and
el is an expectation and
pi assigns the object role restricted to isa thing

Then add a change record to the comprehend operator that
links nl to el with the determiner role and
makes el's profile

number = 3s
assigns = describer & qualifier
receives = subject & object
most-specific-class = thing and

makes nl's profile
number = 3s
subclass = indefinite & demonstrative
receives = determiner
referring-information = isa thing

The chunk encapsulates all the conditions on the link's path to progress (the existence of the
expectation, the determiner, and the verb without an object) and preserves the constraints
imposed by that path (the number and most-specific-class of the expectation).

Having changed the utterance model to reflect the link to a, the system must perform referent
resolution on the expectation in the Language space. This happens in d74, resulting in p500.
Once the expectation has a referent the system is back in familiar territory: the current state of
the Language space (d75) now looks like it did in d5L Consequently chunk p444 transfers,

31

creating the change record for the link between knows and the expectation in Language The
partial result is returned, building p504 in Comprehension. The instantiation of the change record
in Comprehension triggers p328, a very general referent resolution chunk that transfers from the
sentence John knows Sharyn to create the object relation in the situation model. Figure 3-10
shows the utterance and situation models now that comprehension of a is complete.

UTTERANCE MODEL
<0>= edge set

SITUATION MODEL
(given / jjj new j)

1 Ol
isa person I

sharyn i

o3
isa thing

Figure 3-10: The models after comprehension of a in Sharyn knows a chemist.

Before moving onto the last word in the sentence (chemist), let's examine, again, what has
happened from global and local points of view. In the global view, the system found an
interpretation for the current word (a) by positing the existence of a future word in the sentence
that would link to both a and the utterance model created for Sharyn knows. It did this by
searching through the set of models permitted by the syntactic, semantic, and pragmatic
knowledge in the system. Along the way, it collected a number of feature restrictions that the
future word must meet. In the local view, the operators the system used at each step in this
search were just the normal Language and Constraints operators. Thus, the work that was done
at the local level was no different than the work that was done in the previous sentence. But at
the global level the system appears to have done something very different from the simple
linking in the previous example. The glue that holds these two views together is the notion of
progress: each step in the lookahead search was in the service of the higher goal of finding a
cohesive pair of structures in which a was connected to the utterance model. No actual changes
were made until it was certain that such a cohesion was possible. Once it was proven that
comprehension could make progress by positing an expectation, the actual changes came through
chunk transfer. If we pull back further, from deliberate comprehension to recognitional
comprehension, this global/local distinction disappears completely. Viewed from the
Comprehension space, all the search just results in the usual specification of a comprehension
operator for the current word and context that simultaneously brings to bear all the relevant
knowledge sources and makes all the relevant model changes.

Our analysis of the comprehension of a introduced the expect operator. An analysis of the
comprehension of chemist introduces expect's counterpart: merge. The merge operator
recognizes the appearance of the expected word in the input and replaces the expectation object
with a regular utterance node for that word. As shown in Figure 3-11, d82, the merge operator is

32

proposed when no link is available and there is an expectation object in the edge set. 1 3 As with
link and expect, before merge can be implemented, it must satisfy a variety of constraints. A
syntactic consistency check (d86) ensures that the syntactic features in chemist's lexical
definition are consistent with links that have been made for the expected word. In our example,
this means that the word's number must be 3s to maintain the validity of the link to the
determiner a. The simple token match used for establishing syntactic consistency is inadequate
to ensure semantic consistency, however. Instead, a regular semantic check must be done (d87
through d98), which includes subgoaling into the Semantics space to justify semantic
consistency through simple inference. In our example, the Semantics space provides the
knowledge that a word with base-level-class person is consistent with the expectation that the
most-specific-class be a thing.

...76 0: mend(chemist)
77 O: comprehend(cAemwf)
78 ==>G: operator no-change
79 P: Language
80 S: Language-state
81 0: lexical-access(cAemwO
82 0: merge
83 =>G: operator no-change
84 P: Constraints
85 S: Constraints-state
86 0: check(match-syntactic-consistency)
87 0: check(semantic-consistency)

...98 0: record-changes
99 0: check(progress)
100 0: constraint-success
Build: p564
Build: p565
101 0: vcfcr(chemist)

..105 O: attendQ
Figure 3-11: Merging chemist with the expectation.

Since the profile for chemist is consistent with the restrictions placed on the word that can
fulfill the expectation, the change record created in d98 simply replaces the expectation with the
current word. The progress check passes trivially (because the expectation was already fully-
connected to the model) resulting in the Language chunk (p564) and then the Comprehension
chunk (p565). Deliberate comprehension of chemist finishes in the Language space after a
number of refer operators establish the relevant changes to the situation model. Figure 3-12
shows the final forms of both the utterance and situation models for the sentence.

1 3 I t is not necessary that the expected word be the next one in the sentence. If, for example, our sentence had been
Sharyn knows the taller chemist, the word taller would have been attached to the expectation as a describer,
changing the most-specific-class on the expectation's profile from thing to physical-object. Again, there is no special
mechanism for handling expectations; the dynamic constraint of features is part of NL-Soar's normal processing.

33

UTTERANCE MODEL
»= edge set

SITUATION MODEL
(given / | | new 1)

l idBsnBnn&Mi

refers

refers

o2
isa know-act

sharyn . / I " f e . . !

determiner
a *

object

ol
isa person

sharyn

o3
isa person

chemist

Figure 3-12: The models constructed during comprehension of Sharyn knows a chemist.

In this section, we examined in detail two operators in the Language space: expect and merge.
These operators give NL-Soar the capability of using top-down, or expectation-driven,
knowledge during both deliberate and recognitional comprehension. This additional capability
does not arise from adding new linguistic knowledge to the system, however. The expect
operator is simply proposed when no link is possible. The merge operator is proposed when no
link is possible and there is an expectation node in the edge set. Both operators are implemented
reusing the same problem spaces, operators, and knowledge that already existed for link. Rather,
the additional capability arises because of the notion of progress and the use of multiple problem
spaces in a lookahead search. Thus, in general, deliberate comprehension can involve the
combination of bottom-up and top-down application of multiple knowledge sources. No matter
which knowledge sources and which type of search is required, however, the result is still the
integration of those sequential actions into a set of productions triggered by a single operator in
Comprehension.

3.3. Example 3: Recognitional repair
Having added expect and merge to lexical-access, link, and refer, it might appear that the

system now has all the functional capability it needs. As we pointed out in Section 2.2, however,
NL-Soar is a single-path parser, constructing only one interpretation of the sentence at a time.
Using both bottom-up and top-down knowledge cannot guarantee that the current interpretation
is the correct one. Consider the sentence, John knows Sharyn knows a chemist. From our first
example (Section 3.1) we know that when processing reaches Sharyn it will be assigned the
object role of knows. This is incorrect; the correct interpretation assigns Sharyn as the subject of
the second knows and the whole clause Sharyn knows a chemist as the object of the first knows.
Yet the incorrect assignment cannot be detected until the next word is encountered (the second
knows), after the object link between knows and Sharyn has already been made. Thus, what NL-
Soar still needs is a way to undo an incorrect interpretation. The snip operator provides this
capability. The snip operator itself contains no special knowledge; it acts only as a disrupting
influence, removing an existing link. The actual repair of the models must be performed by
Language's other operators. In this section, we examine the behavior of snip in the sentence John

34

knows Sharyn knows a chemist assuming the existence of those chunks produced during the
previous two examples. For clarity, in the figures and discussion that follow, we index the two
instances of knows as knowsm, for main, and knowsc, for clause.

Figure 3-13 (dO through dl2) takes us quickly through John knows Sharyn, via chunks that
transfer from the example in Section 3.1. In d 14, we encounter the second instance of knows.
Although the verb is familiar, its current comprehension operator is inappropriate for this
context, so an impasse arises. As the first step in Language (dl8), the lexical-access operator
finds the same definition for the verb shown in Section 3.1. A link is then proposed to treat the
main verb as the clausal object of the embedded verb (dl9) . 1 4 The link fails in the Constraints
space due to a word-order violation. Since no other link is proposed, the expect operator is
proposed. What follows in the 129 decision cycles ellided from d24 to dl53 is the lookahead
search that uncovers that positing an expectation node will not allow the current interpretation to
make progress. Thus, at dl53, the snip operator is proposed to remove the object link that exists
between Sharyn and knowsm.

Why is the object link snipped? How does the system know some other link in the utterance
model is not the source of the error? It doesn't. The object link is snipped because it is the only
link connected to a node in the edge set (see Figure 3-1). A snip operator is proposed for every
link connected to a node in the edge set. Had there been more than one such link, snipping each
would have been tried in turn until a snip was found that allowed the re-establishment of a
single, coherent pair of models. The choice to limit the snip operator to links on the edge is
motivated by psycholinguistic data on garden path phenomena [4,7,9,10, 36,49] The data
indicate that there is a class of sentences that people find impossible to comprehend
recognitionally. The classic example of a garden path sentence is The horse raced past the barn
fell [4]. At raced, people almost invariably commit to the single interpretation of an active, past-
tense verb rather than the beginning of a reduced relative clause. When they reach fell, which
reveals the error of their initial interpretation, they cannot recover, feeling instead that the
sentence makes no sense. Such sentences stand in contrast to our current example, John knows
Mary knows a chemist, in which an initial wrong commitment seems to be overcome without
pause when the disambiguating word is encountered. Preliminary evidence in studying garden
path and non-garden path sentences supports the idea of limiting any repair mechanism to the
active edge. Thus, the model of recognitional comprehension in NL-Soar makes a prediction:
non-garden path sentences cause no problems for people because they allow for recognitional
repair via chunking over a snip operator at the edge, while garden path sentences preclude such a
repair.

We said that when link and expect fail, a snip operator is tried for every link in the active edge
set until one is found that allows the re-establishment of a single, cohesive pair of models. The
latter condition is met by the same interaction of the progress check and lookahead search we
encountered with expect. Figure 3-14 illustrates. In response to an impasse on the progress check
for performing the snip (dl58), a copy of the Language space is created in which the snip is
implemented just to see what will happen (dl62). This leads to a link proposal connecting

1 4 The reader who paused to look back at the lexical definition of knows will note that knows does not appear to
receive a clausal-object The clausal-object value is added to the verb's receives feature dynamically, when the verb
is linked to its subject This is an example of how NL-Soar handles exocentric constructions.

35

OG:gl
1 P: Top
2 S: Top-state

Type your input > John knows Sharyn knows the chemist.
3 O: comprehend-input
4 ==>G: operator no-change
5 P: Comprehension
6 S: Comprehension-state
7 O: attend(/o/m)
8 O: comprehendC/b/w)
Firing: p65, p76
9 O: attend(A:now5m)
10 O: comprehend(/7ww5m)
Firing: pi87, p202, p212
11 O: mcnd(Sharyn)
12 O: comprehend(S7iaryn)
Firing: p296, p320, p328
13 O: mcnd(knowsc)
14 O: comprehend(iknow5:c)
1 5 ==>G: operator no-change
16 P: Language
17 S: Language-state
18 O: lexical-access(/:no>v5c)
19 O: \wk.(knowsc, knowsm, clausal-object)

.24 O: expect

.153 O: smp(knowsm, Sharyn, object)

Figure 3-13: Discovering the need to undo a previous commitment in John knows Sharyn knows.

knowsc to Sharyn as subject in dl64. Progress for this link must then be established (dl73),
resulting in a copy of the Language! space in which the link is asserted in order to see what
follows (d!74-177). What follows is another link proposal, this time assigning the clausal-object
role from knowsm to knowsc. Notice that snip only undid a link; the relinking occurred via
operators we have already encountered.

Processing in dl84 through d204 is exactly like the unwinding of the goal stack we saw in the
previous example—as we pop out of each Constraints space, chunks are built that transfer to
implement the successful sequence in the original Language space (d206 through d212). The
progression of operators executed in Language, as well as the final linked utterance model for
John knows Sharyn knows, is shown graphically in Figure 3-15. The productions that are
returned to Comprehension (pl425, which contains the change record for the snip; pl447, which
contains the change record for the subject link; and pl514, which contains the change record for
the clausal-object link), all become part of comprehension operator for knows in the current
context. The remainder of the sentence (the chemist) is comprehended recognitionally through
the firing of chunks transferring from Example 2.

36

...153 0: smp(knowsm, Sharyn, object)
154 ==>G: operator no-change
155 P: Constraints
156 5 5: Constraints-state
157 O: record-changes
158 O: check(progress)
159 ==>G: operator no-change
160 P: Languagej
161 S: Language-state1

162 O: smp(.knowsm, Sharyn, object, just-do-it)
163 0: refer(Sharyn)
164 0: lir>k(knowsc, Sharyn, subject)
165 =>G: operator no-change
166 P: Constraints!

...173 0: check-constraint(progress)
174 ==>G: operator no-change
175 P: Language2

...177 0: lmk(knowsc, Sharyn, subject, just-do-it)

...183 0: link(A7Wwsm, knowsc, clausal-object)
Build: pi 133
203 0: constraint-success
Build: pl421
Build: pl422
204 0: constraint-success

...Build: pl424
Build: pl425
Firing: p346
206 0:]ink(knowsc, Sharyn, subject)

...Firing: pl421
Build: pl447
Firing: p202, p212

...210 0: lwk.(knowsm, knowsc, clausal-object)

...Firing: pi 133
Build: pl513
212 0: attend(r/ie)

Figure 3-14: Finding a new interpretation for John knows Sharyn knows.

Having chosen to pursue only a single interpretation of the sentence at a time, it was necessary
that the system be given some way to undo a wrong commitment. In this section, we examined
the snip operator, which affords the system a limited capability for repair. The capability is
limited for two reasons. First, it is limited because snip, like expect and merge, introduces no
additional linguistic knowledge—the operator can only disrupt the current model's structure
which must be repaired by the same linguistic knowledge available during normal interpretation.

37

sharyn

knows
subjecty^Criausal-object

Figure 3-15: The progression of Language operators found through lookahead search
to reinterpret John knows Sharyn given the next word knows.

Second, the repair capability is limited because only links in the edge set may be undone 1 5 The
snip operator is also like expect and merge in another respect: even if deliberate comprehension
involves undoing an old link and creating one or more new ones through the application of
multiple knowledge sources, the processing that results in Comprehension is still recognitional in
nature.

4. Conclusion
Our purpose in this report is to describe NL-Soar in sufficient detail that its characteristics can

be compared and contrasted with both prior Soar versions and non-Soar language comprehension
systems. Since the current system has not yet achieved our goal of providing a general language
capability for Soar, it is reasonable to assume that extensions in the form of new problem spaces,
operators, and models will be needed to meet the demands of increasing capabilities.
Nevertheless, the current system achieves a basic functionality with respect to comprehension,
and from our description and examples, the following encapsulation is possible:

1. Comprehension operators assign meaning. Like previous versions of the system, the
current NL-Soar uses comprehension operators as its method of mapping language to
meaning. A comprehension operator is a set of productions that, together, tell the system
what changes to make to the representation of the utterance when a word is encountered

1 5Another way to look at NL-Soar's repair mechanism is as an alternative to backtracking in a single-path system.
Because the system does not implement backtracking, it does not need to store a large history of possible alternative
interpretations in the utterance model. If the supposition proves true that limiting the snip operator to the edge set
eliminates only those utterances people are unable to comprehend recognitionally, then this form of repair may
explain how people can both maintain a single, favored interpretation and still recognitionally change that
interpretation despite their memory limitations.

38

in any context. Moreover, comprehension operators take into account, simultaneously,
all the knowledge sources that contribute to determining meaning. While the use of
productions places NL-Soar in the company of other situation-action parsers, the
requirement of total integration of knowledge sources goes beyond previous attempts at
integration. The nature of the processing that results from comprehension operators is
similar in many respects to adult recognitional comprehension.

2. Comprehension operators arise automatically. Integrated comprehension operators are
produced automatically by the constant conversion of knowledge from a form that is
accessible only through deliberate problem solving to a form that is immediately
accessible from production memory (i.e., recognitionally). This incremental conversion
process relies on the chunking mechanism of the Soar architecture. It is unique to NL-
Soar.

3. Annotated model represents meaning. NL-Soar uses an annotated model to represent
the situation described by an utterance. Although not as restrictive as a pure model
representation, annotated models are, nevertheless, less expressive than first-order logic
Thus, NL-Soar is more constrained in its representation of meaning than systems that use
a logic-based formalism. This source of constraint seems to have some empirical
evidence in its support [16, 33, 34].

4. Annotated model represents utterance structure. NL-Soar also uses an annotated
model to represent the structure of the utterance. The utterance model does maintain a
strict one-to-one correspondence between words and nodes, unlike phrase-structure based
systems. Such a linear relation between the length of the input and the size of the model
improves processing efficiency.

5. System is single-path. Unlike all-paths parsers, NL-Soar keeps only a single
interpretation of the utterance at any time. In addition to being more efficient than all-
paths parsers, single-path parsers seem to be a better characterization of human
comprehension as well [7,9, 36,49]. On the other hand, single-path parsers have the
disadvantage that they cannot guarantee the correct interpretation of an utterance, only an
interpretation consistent with the knowledge available (see also 7, below).

6. System combines bottom-up and top-down knowledge. Processing in NL-Soar takes
advantage of both bottom-up, or word-driven, knowledge and top-down, or expectation-
driven knowledge. The combination of processing techniques is generally accepted to be
more efficient than either technique alone. Which type of knowledge NL-Soar uses at any
given point in deliberate comprehension arises naturally from the system's notion of
progress. Regardless of which type is used, however, the knowledge that results retains
its recognitional character.

7. System has a limited capacity for repair. To try to ensure that its single interpretation
is consistent with the knowledge available, NL-Soar has a limited capacity for repairing
incorrect interpretations. This limited repair is not a general backtracking mechanism,
and can undo commitments only at the active edge. The decision to limit repair is
motivated by psycholinguistic evidence of such limitations in adult recognitional
behavior. As in the case of mixed bottom-up and top-down processing, repair during
deliberate comprehension does not change the recognitional character of NL-Soar at the
comprehension operator level.

The automatic construction of comprehension operators from extendable and disparate
knowledge sources addresses a long-standing dichotomy between approaches that favor separate

39

phases of comprehension (usually progressing from morphology to syntax to semantics and
beyond) and those that favor integration. The distinction between deliberate and recognitional
comprehension in NL-Soar is evidence that a modular approach can co-exist with and evolve
into an integrated one. Thus, the dynamic of the system offers a possible bridge between the
autonomy-of-syntax hypothesis (and by extension, autonomy-of-semantics, etc) and the notion
of integration that usually accompanies the immediacy-of-interpretation principle. Each
assumption is represented, but at different levels in the processing. Although we have not
answered the genesis question (Where does the knowledge in the lower problem spaces come
from?), NL-Soar does demonstrate how knowledge of different types could be acquired
incrementally and opportunistically and still result, asymptotically, in essentially seamless
performance.

40

References

1. Allen, J., Natural Language Understanding, Benjamin/Cummings, Menlo Park, CA, 1987.
2. Anderson, J. R., The Architecture of Cognition, Harvard University Press, Cambridge,

Massachusetts, 1983.
3. Bateman, J. A., Kasper, R. T., Moore, J. D., and Whitney, R. A., "A general organization of

knowledge for natural language processing: The Penman Upper Model," Tech. report,
USCAnformation Sciences Institute, March 1990.

4. Bever, T. G., "The cognitive basis for linguistic structures/' in Cognition and the
Development of Language, Hayes, J. R., ed., Wiley, New York, 1970.

5 . Birnbaum, L. and Selfridge, M., "Conceptual analysis of natural language," in Inside
Computer Understanding, Schank, R. C. and Riesbeck, C. K., eds., Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1981.

6. Burton, R. R. and Brown, J. S., "Toward a natural-language capability for computer-assisted
instruction," in Procedures for Instructional Systems Development, O'Neill, H., ed.,
Academic Press, New York, 1979.

7. Grain, S. and Steedman, M., "On not being led up the garden path: the use of context by the
psychological syntax processor," in Natural Language Parsing, Dowty, D. R. and
Karttunen, L. and Zwicky, A. M., eds., Cambridge University Press, Cambridge, U.K., 1985.

8. Dyer, M. G., In-Depth Understanding, MIT Press, Cambridge, Massachusetts, 1983.
9. Frazier, L. and Rayner, K., "Making and correcting errors during sentence comprehension:

Eye movements in the analysis of structurally ambiguous sentences," Cognitive Psychology,
Vol. 14, 1982, pp. 178-210.

10. Gibson, E., "Recency preference and garden-path effects," Twelfth Annual Conference of
the Cognitive Science Society, 1990, pp. 372-379.

11. Hauptmann, A. G., Young, S. R., and Ward, W. H., "Using dialog-level knowledge sources
to improve speech recognition," Proceedings of the Seventh National Conference on
Artificial Intelligence, American Association for Artificial Intelligence, 1988, pp. 729-733.

12. Hays, D. G., "Dependency theory: a formalism and some observations," Language, Vol. 40,
No. 4,1964, pp. 511-525.

13. Hendrix, G. G., "LIFER: A natural language interface facility," SIGART Newsletter,
February 1977, pp. 25-26.

14. Hudson, R., Word Grammar, Basil Blackwell, Oxford, England, 1984.
15. Huffman, S. B., "A Natural-language system for interaction with problem-solving domains:

Extensions to NL-Soar", Report on directed-study research. University of Michigan.
Unpublished.

16. Johnson-Laird, P., Mental Models, Harvard University Press, Cambridge, Massachusetts,
1983.

17. Just, M. A., and Carpenter, P. A., The Psychology of Reading and Language Comprehension,
Allyn and Bacon, Boston, Massachusetts, 1987.

18. Kolodner, J. L., "Maintaining organization in a dynamic long-term memory," Cognitive
Science, Vol. 7,1983, pp. 243-280.

19. Kolodner, J. L., "Reconstructive memory: A computer model," Cognitive Science, Vol. 7,
1983, pp. 281-328.

20. Kowalski, B. and VanLehn, K., "Inducing subject models from protocol data," Proceedings
of the Tenth Annual Conference of the Cognitive Science Society, 1988, pp. 623-629.

41

21. Laird, J. E., Congdon, C. B., Altmann, E. and Swedlow, K., "Soar User's Manual: Version
5.2," Tech. report, Electrical Engineering and Computer Science, University of Michigan,
October 1990.

22. Laird, J. E., Yager, E. S., Tuck, C. M., and Hucka, M., "Learning in tele-autonomous
systems using Soar," Proceedings of the NASA Conference on Space Telerobics, 1989,
forthcoming.

23. Laird, J. E., Newell, A., and Rosenbloom, P. S., "Soar: An architecture for general
intelligence," Artificial Intelligence, Vol. 33,1987, pp. 1-64.

24. Langley, P., "Language acquisition through error recovery," Cognition and Brain Theory,
Vol. 5, 1982, pp. 211-255.

25. Larkin, J. H., "Enriching formal knowledge: A model for learning to solve problems in
physics," in Cognitive Skills and Their Acquisition, Anderson, J. R., ed., Erlbaum, 1981.

26. Lewis, R. L., Huffman, S. B., John, B. E., Laird, J. E., Lehman, J. F., Newell, A.,
Rosenbloom, P. S., Simon, T., and Tessler, S. G., "Soar as a unified theory of cognition:
Spring 1990," Twelfth Annual Conference of the Cognitive Science Society, 1990, pp.
1035-1042.

27. Lewis, R. L. and Newell, A. and Polk, T. A., "Toward a Soar theory of taking instructions
for immediate reasoning tasks," Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society, 1989, pp. 514-521.

28. McCord, M. C , "A new version of slot grammar," Tech. report, IBM Research Division RC
14506,1989.

29. Mel'cuk, I. A., Dependency Syntax: Theory and Practice, State University of New York
Press, Albany, New York, 1988.

30. Newell, A. and Simon, H., Human Problem Solving, Prentice-Hall, Englewood Cliffs, New
Jersey, 1972.

31. Newell, A., Unified Theories of Cognition, Harvard University Press, Cambridge,
Massachusetts, 1990, Chapters 7 and 8.

32. Nirenburg, S., Lesser, V., and Nyberg, E., "Controlling a language generation planner,"
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 1989,
pp. 1524-1530.

33. Polk, T. A. and Newell, A., "Modeling human syllogistic reasoning in Soar," Proceedings
of the Annual Conference of the Cognitive Science Society, August 1988, pp. 181-187.

34. Polk, T. A. and Newell, A. and Lewis, R. L., "Toward a unified theory of immediate
reasoning in Soar," Proceedings of the Eleventh Annual Conference of the Cognitive Science
Society, 1989, pp. 506-513.

35. Poison, P. G. and Kieras, D. E., "A quantitative model of the learning and performance of
text editing knowledge," CHI '85 Proceedings, 1985, pp. 207-212.

36. Pritchett, B. L., "Garden path phenomena and the grammatical basis of language
processing," Language, Vol. 64, 1988, pp. 539-576.

37. Riesbeck, C. K., "An expectation-driven production system for natural language
understanding," in Pattern-directed Inference Systems, Waterman, D. A. and Hayes-Roth,
R., eds., Academic Press, New York, 1978.

38. Sager, N., Natural Language Information Processing, Addison-Wesley, Reading, MA, 1981.
39. Sells, P., Lectures on Contemporary Syntactic Theories: An introduction to government-

binding theory, generalized phrase structure grammar, and lexical-functional grammar,
Center for the Study of Language and Information, Stanford, CA, 1987.

42

40. Shieber, S. M., An Introduction to Unification-Based Approaches to Grammar, Center for
the Study of Language and Information, Stanford, CA, 1986.

41. Simon, H. A., Models of Thought, Volume 1, Yale University Press, New Haven,
Connecticut, 1979.

42. Simon, H. A., Models of Thought, Volume 2, Yale University Press, New Haven,
Connecticut, 1989.

43. Singley, M. K. and Anderson, J. R., The Transfer of Cognitive Skill, Harvard University
Press, Cambridge, Massachusetts, 1989.

44. Tambe, M., Newell, A., & Rosenbloom, P. S., "The problem of expensive chunks and its
solution by restricting expressiveness," Machine Learning, 1990, pp. 299-348.

45. Thibideau, R., Just, M. A., and Carpenter, P. A., "A model of the time course and content of
reading," Cognitive Science, Vol. 6, 1982, pp. 157-203.

46. Tomita, M., Efficient Parsing for Natural Language: A fast algorithm for practical systems,
Kluwer Academic Publishers, Boston, Massachusetts, 1986.

47. VanLehn, K., "Toward a theory of impasse-driven learning," in Learning Issues for
Intelligent Tutoring Systems, Mandle, H. and Lesgold, A., eds., Springer Verlag, 1988.

48. VanLehn, K., Mind Bugs: The origins of procedural misconceptions, MIT Press, Cambridge,
Massachusetts, 1990.

49. Warner, J. and Glass, A. L., "Context and distance-to-disambiguation effects in ambiguity
resolution: evidence from grammaticality judgements of garden path sentences," Journal of
Memory and Language, Vol. 26,1987, pp. 714-738.

50. Winograd, T., Language as a Cognitive Process, Volume 1: Syntax, Addison Wesley,
Reading, Massachusetts, 1983,

51. Woods, W. A., "Progress in natural language understanding: An application to lunar
geology," AFIPS Conference Proceedings, 1973, pp. 441-450.

