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Abstract 
It is well accepted that knowledge base development and maintenance costs are key obstacles to the 
further proliferation of knowledge-based systems. We consider here an approach to dramatically reduce 
this cost by developing learning apprentice systems: knowledge-based advisors which learn from their 
users throughout their life-cycle. In particular, we present a learning apprentice for calendar 
management, which allows users to schedule meetings and provides advice regarding parameters such 
as the meeting time, duration, topic, and location. Each observed user's decision is used as a training 
example of the correct decision in the current context. The system learns to provide increasingly 
competent advice by generalizing from these training examples. We present preliminary results showing 
that knowledge automatically acquired by two learning methods (ID3 and Back-Propagation) compares 
favorably to manually developed rules when used to schedule meetings for a university faculty member. 
The system has recently been put into use on a regular basis by one secretary in our environement and is 
currently undergoing further testing and development. 
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1. Introduction 
The chief obstacle to widespread proliferation of knowledge-based systems is the cost of software 

development and maintenance. For example, the XCS systems used by Digital to configure computers 
has a staff of approximately sixty people who maintain and update the knowledge base used by this 
system [Barker, et al. 89]. While the development and maintenance overhead is worth the cost for this 
particular application, there are many other potential applications where high costs prohibit use in 
practice. 

In this paper, we consider an approach to solving this knowledge base development and maintenance 
problem by constructing systems that learn from their users. In particular, we present a learning 
apprentice system, as defined in [Mitchell, et al. 85]: 

W e define learning apprentice systems as the class of interactive knowledge-based consultants that directly 
assimilate new knowledge by observing and analyzing the problem-solving steps contributed by their users 
through their normal use of the system [Mitchell, et al. 85] . 

To see the advantages of such a learning apprentice, consider the problem of developing a computer 
program to assist a secretary, Jane, in maintaining an online calendar of meetings for a particular 
university faculty member, Tom. This program is to provide an interface that allows editing the calendar 
(e.g., adding, moving, deleting meetings). We also want it to provide useful advice for each of the editing 
operations, such as when to schedule a specific meeting, how long it should last, where it should be 
located, whether to move an existing meeting to make room for the new meeting, whether and when to 
send reminder messages to the participants, and so on. Several difficulties arise: 

• Problem 1: The elusive specification. Typical software engineering practice involves 
writing a software specification, then implementing it. The problem here is that the 
specification for the program is simply not known. For instance, given a request to schedule 
a new meeting, by what criterion should the program decide whether to bump an existing 
meeting to make room for the new meeting? By what criterion should it choose the duration 
of the meeting? In interviewing faculty members and secretaries, we have found that neither 
could provide a crisp specification for how the program should behave, despite the fact that 
both make such decisions daily. 

• Problem 2: User customization. Suppose we wish to provide the calendar assistant to all 
the secretaries and faculty in the department. Since each individual has his/her own 
preferences (e.g., for choosing how long to meet with a particular graduate student, Sally), 
the knowledge base will have to be customized for each individual user. 

• Problem 3: Times change. Even once the initial knowledge base is developed for Jane and 
Tom, times will change. Once the summer ends and the new semester begins, the 
regularities in scheduling meetings may change. For example, Sally may have passed her 
thesis proposal and now require fewer but longer meetings as a result. The cost of keeping 
the knowledge base and decision-making rules up to date can become the dominant one in 
many applications. 

Learning apprentices offer a potential solution to all these difficulties. To the degree that it can observe 
and learn from the decisions of its users, a learning apprentice will be able to infer the desirec program 
specification (and implementation) by itself, as well as adapt to the idiosyncratic and changing 
specifications of different users. Given this, the key technical issues we consider here are: 

1. Can a convenient interactive assistant be structured so that it can capture useful training 
examples of users' decisions as well as the information on which these decisions are 
based? 

2. Can a learning mechanism be developed to correctly generalize from such training 
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examples to formulate a useful decision-making strategy of its own? 

This paper considers a case study of a learning apprentice for calendar management, called CAP, 
analyzing the system from the perspective afforded by these questions. We argue that CAP provides a 
convenient interface for manually editing a calendar, and is able to capture useful training examples. The 
chief evidence in support of this claim is that CAP is presently in daily use by one secretary in our 
department, collecting such training examples. We also argue that it is possible to automatically 
generalize from the training examples captured by CAP to learn rules comparable to those developed by 
hand. This claim is supported by experimental results applying two different generalization methods (ID3 
and Backpropagation) to training data summarizing meetings scheduled by this secretary over a five 
month period. Finally, we suggest that the approach embodied in CAP can be adapted to a variety of 
applications where personally customized knowledge-based assistants will be of use. 

There have been a number of previous attempts to develop learning apprentice systems. Mitchell, et 
al. [Mitchell, et al. 85] describe a learning apprentice for digital circuit design, called LEAP. LEAP 
provides interactive advice to a circuit designer on how to hierarchically decompose abstract circuit 
modules into submodules, eventually resulting in a gate-level circuit design. It is able to learn new rules 
for decomposing circuit modules, as well as rules for choosing among alternative decompositions. LEAP 
is limited to learning rules for designing circuits with fairly simple functional specifications (primarily 
boolean functions), since its explanation-based learning methods require verifying the correctness of user 
circuits in order to generalize them. Segre [Segre 88] describes a learning apprentice for robot planning, 
called ARMS. ARMS provides a user interface to a simulated robot, which a user could instruct to 
perform simple block-stacking tasks. ARMS generalizes from the user-supplied plans to form useful 
planning strategies for subsequent use. Schlimmer describes a learning apprentice for document 
cataloging, called REDSTONE [Schlimmer 90]. It learns a grammar for translating a document abstract 
into library catalog form. Kodratoff and Tecuci describe a learning apprentice called DISCIPLE [Kodratoff 
and Tecuci 86] for rule learning, which they have used for designing detailed manufacturing technologies, 
for establishing the assimilation strategy of a new product, and for aiding the manager of a computer 
center in its decision activity. Whereas REDSTONE uses an inductive learning method, LEAP and ARMS 
are based on explanation-based learning, and DISCIPLE uses both explanation-based and similarity-
based methods. Our experiments thus far with CAP are based on two inductive learning methods: ID3 
and Backpropagation. 

These previous learning apprentice systems explored a variety of generalization methods and various 
modes of interacting with a user (ranging from passive observation of the user, to querying the user 
regarding his or her reasons for a particular decision). However, no learning apprentice system has yet 
passed the important threshold of successful deployment within a real user community. Thus, no direct 
evidence has yet been collected to support the conjecture that learning apprentices can enable efficient 
development of a new generation of knowledge-based systems. The typical reasons for this appear to be 
that (1) in some cases users find the system does not offer sufficient value to make it worth learning and 
using, and (2) in some cases the leaning methods are not sufficiently powerful to acquire high levels of 
competence. We present preliminary evidence here that CAP is viewed as useful by users, and that its 
learning methods compare favorably to manual methods for knowledge base development. 

The following section describes the calendar management problem addressed in this paper. Section 3 
describes the design of CAP, the organization of its knowledge base, and its learning mechanisms (this 
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The problem considered here is to provide an intelligent computer assistant to help people manage 
calendars. A calendar management agent should provide the user with a set of basic editing operations 
for adding, deleting, moving, and displaying meetings, as well as operations such as sending electronic 
mail reminders to meeting participants, or sending electronic mail requests to schedule rooms. It should 
also provide decision-making advice to the user. This advice might take the form of suggesting 
parameter values for operations initiated by the user. For example, when the user initiates the 
AddMeeting operation, the agent should provide advice on the meeting time, location, etc. Beyond this, 
the agent could itself take the initiative to recommend whether and when certain operations should be 
performed (e.g., to suggest moving a meeting, or to suggest sending an electronic message reminding 
the participants of the meeting time). For decisions at which it is especially competent, the agent could 
automatically perform the operation rather than trouble the user for approval of its advice. By observing 
the user's reaction to its advice, as well as the operations commanded by the user, the agent should learn 
to provide advice which corresponds more closely to the decision making strategies of its users. 

Interactive Advice-Giving Agents 

Figure 2-1 : Classes of Interactive Advice-Giving Agents. 

section may be skimmed or skipped by readers who are primarily interested in results of the learning 
experiments). Section 4 presents experimental results showing the effectiveness of two learning 
procedures, and the final section analyzes the potential for learning apprentice advisors for a broad class 
of related problems. 

2. The Problem 
The calendar management task is the task of arranging meetings and other calendar events for oneself 

or some other person. This task involves accepting requests for meetings, deciding whether and when to 
schedule the meeting, deciding on the meeting duration and location, deciding whether an existing 
meeting should be moved to make room for this meeting, deciding when to send reminders to participants 
of upcoming meetings, scheduling rooms as needed, etc. Many people schedule their own meetings. 
Others have secretarial assistants. In either case, this task requires a good deal of skill and knowledge to 
make appropriate decisions (e.g., How long should the meeting last? Should it be delayed until time is 
available or should some other meeting be bumped to make room?). 
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Our initial implementation of CAP provides only part of the desired functionality described above. In 
particular, the current implementation of CAP provides advice only regarding parameter values for 
operations initiated by the user, and does not yet interface to the electronic mail system. To date, we 
have focussed primarily on allowing CAP to provide competent advice for the duration and location of 
newly added meetings. However, even with this partial set of capabilities we have demonstrated that 
CAP is useful, able to capture informative training examples, and able to learn from these examples. We 
see no obvious roadblocks to broadening the types of operations and advice that CAP supports in the 
future. 

As depicted in figure 2-1, a calendar management agent as described above is one kind of personally 
customized assistant, or more generally a kind of interactive advice-giving agent. We believe that the 
calendar management task is representative of a large class of tasks which require personally customized 
knowledge for high performance, and the goal of our research is to develop an approach that will be 
viable for this large class of tasks. 

Note that the function of the learning calendar management agent is related to the function of typical 
scheduling algorithms (e.g., [Sadeh 91]). Scheduling algorithms accept as input a set of events to be 
scheduled, and precisely formulated constraints on the timing of these events. They produce as output a 
schedule that satisfies the given constraints. While calendar management might be viewed as a problem 
of this type, we believe that to do so misses the essence of the problem. The problem in calendar 
management is not so much to solve a set of well-formed constraints as it is to determine what these 
constraints are in the first place. For example, the most difficult problem for our system is not to 
determine that the newly requested meeting should be scheduled for Monday from 2-2:30 pm in order to 
satisfy the user's desire to meet for 30 minutes with a book publisher, but rather to learn the constraint 
that this particular user prefers to meet for 30 minutes with book publishers. Thus, the key difference in 
philosophy between traditional scheduling algorithms and the work described here is that we are 
concerned with how to organize scheduling assistants so that they learn the scheduling constraints from 
observing their users. 

3. The Program 
CAP is an implementation of a learning calendar management agent as described in the previous 

section. As shown in Figure 3-1, it provides an interactive editor for operating on the state of the 
calendar, contains a knowledge base capable of advising the user in selecting parameters such as 
duration and location of new meetings, and contains learning mechanisms for acquiring new advice-giving 
rules by generalizing from observed actions of the user. 

Table 3-1 lists the calendar operations that are available to the agent. Each operation can be invoked 
directly by the user, via an editor command. CAP provides advice by suggesting values for the 
parameters of each user-invoked operation. For example, when the user invokes the AddMeeting 
command, CAP suggests values for tbO Topic, SubTopic, Date, Duration, StartTime, and 
Location of the meeting. 
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advice commands 

Editor Interface (Gnu-Emacs) 

Knowledge 
Base 

+ 
Calendar State 

Command Executor 

Advice Giver 

Learner 

CAP 

Figure 3-1 : Organization of CAP. 

Operations 

Changing State 

Add Meeting 

Delete Meeting 
Move Meeting 
Change Meeting 

Annotate Meeting 
Add Upcoming Event 
Delete Upcoming Event 

Parameters 

Attendees, Topic, SubTopic, Date, 
Duration, StartTime, Location. 
Date, StartTime. 
Date, StartTime, NewDate, NewStartTime. 
Date, StartTime, Attendees, Location, 
Topic, SubTopic, Duration. 
Date, StartTime, Annotation. 
Date, UpcomingEvent. 
Date, UpcomingEvent. 

Observing State 

View Meeting Date, StartTime 
Go To Week Date. 
List Upcoming Events No parameters. 
Print Week No parameters. 
Print Month No parameters. 

Table 3-1 : CAP Operations On Calendar State. Advice consists of recommended 
values for operation parameters. 
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3.1. User Interface 
The two key issues in designing a user interface for a learning apprentice such as CAP are (1) user 

acceptance, and (2) ability to capture training examples. To maximize usability and familiarity (and thus 
user acceptance) the interface was designed around an editor familiar to most users: Gnu-Emacs. 
Furthermore, the visual display of the calendar is based on a display evolved over several years by a 
secretary who had been using Gnu-Emacs to maintain an online calendar (and who has since become 
the first fulltime user of CAP). 

Within Gnu-Emacs, CAP provides the macros listed in Table 3-1. These macros provide a calendar 
management tool with which the user is comfortable and which allows us to capture information that is 
needed for subsequent learning. The macros communicate with a subordinate lisp process which runs a 
frame-based system called Theo [Mitchell, et al. 91]. Theo provides the representation, inference, and 
learning mechanisms on which CAP is built. When the user invokes an editor macro (e.g., AddMeeting), 
the macro prompts the user for values of the various relevant parameters. For each such prompt, the 
editor macro first queries Theo for advice and presents this advice to the user in the form a suggested 
value for the desired field (e.g. Duration = 60 minutes). The user can either accept this advice as 
correct or override it with another value. Once the user has supplied a value, it is passed back to Theo, 
which updates the calendar state according to the user's command, and stores the training example for 
later use. 

Figure 3-2 shows the display presented by CAP to the user. In this figure, the user is in the process of 
adding a new meeting. CAP has prompted the user for the value of the meeting Duration, and has 
suggested the value of 60 minutes. In this case, the user overrides this advice by entering the value 120. 
Notice the calendar display is organized by weeks. At the top of the display for a week is a list of 
upcoming events for the week, which have been previously entered via the AddUpcomingEvent 
command. A display containing the complete list of all upcoming events is also available. Because of the 
limited amount of display space available, only the most important information about a meeting is 
displayed. The ViewMeeting command allows the user to request a display of all information about a 
particular meeting. 

For many commands, the values of command parameters are restricted to certain values (e.g., there is 
a particular list of legal values for meeting Topic). For these parameters CAP presents not only a 
suggested value, but also (upon demand) all of the legal values for this parameter. Constraining the 
interface in this way leads to more structured meeting descriptions, which, in turn, lead to more successful 
learning by the system. 

3.2. Knowledge Base Organization 
CAP'S knowledge base consists of two parts: the objects or entities which represent the elements 

needed to manage a calendar, and a set of rules which define relations on these objects. 

3.2.1. The Objects 
All the objects represented in the system are specializations of the five object types summarized in 

Table 3-2. As this table shows, the state of the calendar is represented by a collection of DAY entities 
and a collection of EVENT entities which represent meetings occurring on those days. An example DAY 
is: 
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Figure 3-2: A Typical CAP Display. The user is adding a meeting. At the bottom 
of the screen CAP prompts for the duration of a meeting and offers advice that it should be 

60 minutes. The user overrides this advice by typing the desired value of 120.. 



Calendar Apprentice 8 

Objects Describing the Calendar State: 

DAY : a day in the calendar e.g. apr-1-1991 

EVENT: an event (meeting) in the calendar 

Objects Describing Permanent Background Knowledge: 

PEOPLE : a person with whom the calendar owner meets 

WORK : an ongoing work activity in which the calendar owner is involved 

Objects Describing User-Generated Tasks: 

REQUEST : a request for an update to the calendar 

Table 3-2: Types of Objects Represented by CAP. 

apr-1-1991 
Generalizations: monday 
WeekDay?: yes 
SortedEvents: (eventl-2 1200 1300), (request-4-1 1400 1430), 

(event2-2 1430 1500), (event3-2 1500 1630), 
(event4-2 1630 1730) 

ParityWeek: odd-week 
RegularEvents: eventl, event3, event2, event4 
Events: request-4-1, event4-2, event2-2, event3-2, eventl-2 
Date: (1 4 1991) 

The name of this DAY entity is apr-1-1991. The entity itself is defined by its slots and their values. The 
slot Generalizations shows that this day is a Monday, and the following slot shows that it is a 
weekday.1 The slot Events stores a list of the meetings occurring on this day. One meeting, event2-2, is 
an instance of a regularly scheduled meeting (thus its template, event2, is stored in RegularEvents). In 
contrast, the meeting represented by request-4-1 is not an instance of a regularly scheduled meeting, but 
was scheduled as a one-time meeting by the user. The meetings are also sorted by start time; event2-2 
starts at 14:30 and ends at 15:00, request-4-1 starts at 14:00 and ends at 14:30. 

Each EVENT is also represented by an entity with slots and slot values. For example, the following 
event represents a meeting occurring on April 1, 1991 at 14:30 for 30 minutes in room Wean Hall 5309 
with Dent about a research problem related to the Theo project. 

event2-2 
Location: weh5309 
Attendees: Dent 
Topic: research 
SubTopic: theo-project 
Duration: 30 

1 Some slot values (e.g., WeekDay?) are automatically inferred from the values of other slots (e.g., Generalizations). 
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StartTime: 1430 
Generalizations: event2 
DateEvent: apr-1-1991 
Creator: event2 
Regular: t 

The DAY and EVENT objects are sufficient to describe the state of the calendar. However, in order to 
be able to give advised values for calendar parameters, more information is needed. This background 
knowledge consists of facts about the people and activities with which the calendar owner is involved. 
For example, the decision of how long a meeting should last may be based on information about the 
attendees of the meeting: Who are they? What position do they have? Where are they working? In 
which project? How often do they meet? and so forth. Information about meeting attendees is stored in 
entities representing people. For example, the following entity describes Dent, a third year graduate 
student at CMU whose advisor is Tom Mitchell. 

Dent 
Position: grad-student 
Group?: no 
InTomsGroup?: yes 
AtCMU?: yes 
Generalizations: grad-student, tom-group-member 
Office: dhl323 
Advisor: Mitchell 
NumberofYearsAtCMTj: 3 

CAP also has knowledge about the activities of the calendar owner, represented by WORK entities. 
For instance, the following entity describes one research project activity which has five people as 
participants: 

calendar-pro j ect 
Generalizations: research-project-work 
Keyword: ca 
Participants: Jourdan, Dent, Zabowski, McDermott, Mitchell 

The last type of object in the knowledge base is the entity REQUEST. Requests represent instances of 
user-invoked editing commands, along with information about the meetings to which they pertain. They 
are the connection between the interface and the knowledge base, and they correspond to the training 
examples used for learning. 

An example of a request is: 

request-4 
Generalizations: requests 
Action: AddedEvent 
ActionTime: 1116 
ActionDate: (2 4 1991) 
Result: request-4-1 

Attendees: cheng 
Duration: 30 
Day: apr-3-1991 
StartTime: 1730 
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Location: w e h 5 3 0 9 
Topic: research 
SubTopic: misc-research 

ModifiableBySecretary?: yes 
DesiredDuration: 60 
Next S imi la rMeet ing: unknown 
Urgency: 2 
NumberOfPeople: 1 
SinglePerson?: yes 

which represents the user's request to add a meeting for Cheng on April 3 at 5:30 in Wean Hall 5309. 
Notice that the desired duration is 60 minutes but the final selected Duration is only 30. There are 
three kinds of information stored in the REQUEST (separated in the example by spaces). First there is 
information about the request itself. This includes the type of action requested (e.g., AddedEvent), the 
time and date when the request occurred, and the outcome of the request (e.g., it succeeded, creating 
the event request-4-1 as a side effect). Second, there is information which corresponds to the values of 
macro parameters for which the user is prompted (e.g., Attendees, Duration). Finally there is extra 
information inferred automatically by CAP, and used when providing advice for this request (e.g 
DesiredDuration, Modif iableBySecretary?). 

Each of these slot instances is also an entity which may have its own (sub)slots and values. CAP 
associates an AdvisedValue and GivenValue subslot with each of the slots corresponding to macro 
parameters. These subslots record the parameter value advised by CAP and the value specified by the 
user, respectively. For example, the Duration associated with a particular request may have both 
AdvisedValue2 Of 60 and a GivenValue Of 30. 

request-4 
Duration: 3 0 

AdvisedValue: 60 
GivenValue: 3 0 

As we have seen, each entity in the knowledge base is characterized by a set of features called slots. 
A summary of the entities and the associated properties is given in Table 3-3. Note that in this knowledge 
base, the calendar owner's name is Tom. Thus, the slot name KnownByTom? refers to whether the 
person is known to the calendar owner. We intend to generalize the system to support multiple calendar 
Owners, and tO replace SlOtS SUCh as KnownByTom? by Slots SUCh as KnownByCalendarOwner?. 

3.2.2. The Rule Base 
The knowledge base contains a set of rules for supplying advice for calendar commands. These rules 

were created by talking with two expert calendar managers. Currently CAP contains about 110 rules for 
parameters of the AddMeeting macro3. Writing these rules took about two person-weeks of effort, and we 

2 Note the slot AdvisedValue should not be confused with the slot DesiredDuration. The former is the value recommended 
by CAP. The later is an intermediate value inferred in order to calculate the AdvisedValue. 

3Rules for other calendar commands such as Delete Meeting and MoveMeeting have not been as fully developed. 
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PEOPLE DAY EVENT REQUEST WORK 
AtCMU? RegularEvents 
KnownByTom? Events 
Position WeekDay? 
Busy Date 
P ro j ect s BusyNextWeek 
Office ParityWeek 
InTomsGroup? SortedEvents 
NextMeeting 
HasRegularMeeting? 
LastMeeting 
Institution 
Department 
Advisor 
TomlnCommittee? 
NumberOfYearsAtCMU 
Group? 

SubTopic 
Attendees 
Day 
Location 
Creator 
Regular 

StartTime 
EndTime 
Duration 
Topic 

Action Participants 
Result 
ActionTime 
ActionDate 
Date 
StartTime 
Notes 
Duration 
Topic 
SubTopic 
Location 
Attendees 
Urgency 
SinglePerson? 
NumberOfPeople 
P reviousSimilarMeeting 
Next S imilarMeeting 
ModifiableBySecretary? 
DesiredDuration 
Day 
DaylnWeek 

Table 3-3: Features of Different Entities. 

feel the rules represent a reasonably complete summary of the knowledge of our experts. While 
additional effort might further improve the quality of these rules, we believe we are at the point of 
diminishing returns and that further effort will produce only modest improvements in the quality of the rule 
set. 

Figure 3-3 shows a sample of these hand-coded rules for predicting the Durat ion of a meeting. 
There are two stages to the computation of the Duration of a meeting. First, the DesiredDuration is 
found based on static features of the meeting. This value refers to the duration that would be prefered if 
there were no conflicting demands on time of the participants. Second, the current calendar is checked to 
see how busy the calendar owner is. If the owner is very busy, the DesiredDuration is reduced; 
otherwise it is used. Note that the rules are order dependent. 

Two kinds of predicates are tested by these rules. The first kind of predicate tests information directly 
available from the knowledge base (for example, Position). Other predicates are computed by rules 
from the basic knowledge (for example, SinglePerson?). Thus one can trace the dependencies of the 
advised value for Duration through several levels. The dependency of advised Duration on other 
features, based on all the hand-coded rules, is shown in Figure 3-4. 

3.3. Learning Mechanisms 
Each time the user enters the value of some parameter of some requested calendar operation, CAP 

treats this input not only as a parameter value, but also as a training example. For instance, if the user 
executes the AddMeeting editor macro, and enters a Duration of 60 minutes, then CAP obtains a very 
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If The Topic of ?r is committee-mtg; 
Then the DesiredDuration of ?r is 6 0 . 

If The Topic of ?r is funding-mtg; 
Then The DesiredDuration of ?r is 3 0 . 

If The SinglePerson? of ?r is yes, and 
The Attendees of ?r is ?a, and 
The Position of ?a is grad-student; 

Then The DesiredDuration of ?r is 3 0 . 

If The Attendees of ?r is ?a, and 
The AtCMU? of ?a is no, and 
The KnownByTom? of ?a is yes; 

Then The DesiredDuration of ?r is 6 0 . 

If The DesiredDuration of ?r is ?d, and 
The ModifiableBySecretary? of ?r is yes, and 
?r > 3 0 , and 
Day of ?r is ?x, and 
BusyNextWeek of ?x is true, and 
ShorterDuration of ?d is ?d2 

Then The Duration of ?r is ?d2. 

If The DesiredDuration of ?r is ?d; 
Then The Duration of ?r is ?d. 

The default AdvisedValue of Duration of ?r is 3 0 . 

Figure 3-3: Selected Rules for Duration. 

specific training example of a situation in which it should recommend a value of 60 for Duration. This 
training example includes the detailed state of the calendar, as well as any other parameter values which 
the user may already have entered for this macro (e.g., before entering Duration, the user will already 
have been prompted for the Attendees, Topic, and SubTopic of the meeting). 

For each parameter of each user command, CAP thus faces a learning problem: generalize from the 
specific encountered training examples to formulate a strategy for providing subsequent advice. The 
measure of correctness for this advice in our experiments is agreement with the user's decisions. To date 
we have experimented with two inductive learning methods which are provided by the THEO system: a 
symbolic decision-tree learning method which is a variant of ID3 [Quinlan 86, Quinlan 87], and a 
connectionist algorithm using back-propagation [Rumelhart 86]. Both these methods have previously 
been shown to be effective in learning from examples (see, for example, [Fisher and McKusick 
89, Mooney, et al. 89]). 
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Figure 3-4: Dependency of Meeting Duration on other Knowledge. 

3.3.1. ID3 
Our variant [Schlimmer 91] of ID3 initially constructs a decision tree to discriminate between examples 

from different classes, and then converts the tree into a set of production rules. We use ID3 to construct 
rules which predict various calendar meeting parameters from other available features. To construct a 
tree, ID3 applies an information-theoretic evaluation function to select the single most discriminative 
feature. This feature becomes the feature tested at the root of the decision tree. ID3 then constructs a 
branch for each possible value of the feature and partitions the examples accordingly. The process is 
repeated recursively at each subtree until either ail the examples are of the same class, or there are no 
more features to test4. To convert the tree into a set of rules, the algorithm constructs an initial rule for 

4 Note that some decision tree learning methods use a pruning heuristic to stop tree construction when the examples cannot be 
reliably discriminated. 
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each leaf in the decision tree. The conditions of the rule are the features tested along the path from the 
root to the leaf together with their corresponding values. The action of the rule is the most common class 
of the leaf. Each rule is individually pruned by iteratively testing the rule without each of its conditions. If 
removing a precondition does not increase the number of negative training instances covered, the rule is 
pruned (generalized) accordingly. Some decision tree learning algorithms also prune the set of rules as a 
whole by iteratively testing the rule set without each rule. However, this can make the rules order 
dependent, which makes understanding the rules very difficult. Since we would like to easily interpret the 
rules, our version of the algorithm prunes individual rules but does not perform this second type of 
pruning. 

3.3.2. Back-Propagation 
Connectionist algorithms are typically based on a network of interconnected nodes, each of which 

computes a weighted sum of its inputs. We use a standard three-layer feed-forward network, where input 
nodes encode features of the examples and pass "activation" forward through an intermediate layer of 
"hidden" units to an output layer. Every input node is connected to every hidden node, and every hidden 
node is connected to every output node. The total activation of a node is a weighted sum of its inputs. 
We build and train a standard feed-forward network to predict each calendar parameter from a hand-
selected set of input features. The input features are encoded as one or more network units using 
various strategies depending on the type of the feature. For example, features with nominal values are 
encoded using a set of input nodes, one for each possible value ([Sejnowski 87]). Each output node 
represents one class; the node with the highest activation is selected as the predicted class. We use the 
standard back-propagation algorithm ([Rumelhart 86]) to train the network, with the learning rate set at 
2.0, and momentum at 0.4. We kept the number of hidden units small to avoid overfitting. Back-
propagation adjusts the network weights to improve the match between actual and desired output. At 
present we have no way of extracting rules from the final network. 

4. Learning Experiments 
As discussed in section 1, the primary thesis of this research is that learning apprentice systems will 

allow the development of personally customized assistants which are not presently feasible because of 
the high cost of knowledge base development and maintenance. We present here a set of experiments 
demonstrating that CAP'S learning mechanisms can acquire knowledge which correctly predicts a large 
proportion of the user's decisions regarding meeting Location and Duration. Furthermore, this 
learned knowledge compares favorably to the rule base we developed by hand for our initial user. We 
first describe the experimental design, then the experimental results. 

4.1 . Experimental Design 
The most direct way of testing our thesis would be to monitor the success rate of advice given by CAP 

over time, in order to determine its success at learning. However, CAP has only been in routine use for 
approximately one month, and has not yet acquired sufficient training data to allow this direct test. 
Therefore, the experiments reported here are based on training data collected by hand, rather than by 
CAP. In particular, the training examples used here describe meetings of a single university faculty 
member which took place during the fall and spring semesters of 1990-915. 

5 These are meetings for the same faculty member, scheduled by the same secretary who is presently using CAP. Therefore, we 
believe they are a realistic approximation to the types of examples CAP will encounter in its current use. 
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Because these examples were recreated from a text calendar file containing past meetings, some 
relevant information was no longer available. For example, for each training example of AddMeeting, 
CAP records the time at which the meeting is added to the calendar (not just the time at which the 
meeting is scheduled). However, this information was not available from the text calendar file from which 
we extracted training examples. This incompleteness of training information constrained our choice of 
which meeting parameters to learn to predict. We chose to predict meeting Duration and Location, 
because we suspect these parameters do not depend strongly on the missing information. 

FEATURES FOR PREDICTING DURATION: 

Feature set D1: Topic SinglePerson? 
*AtCMU? *InTomsGroup? ^Position *KnownByTom? 

Feature set D2: NumberOf People SinglePerson? SubTopic Topic 
*AtCMU? *Busy *InTomsGroup? *KnownByTom? *NumberOfYearsAtCMU 
^Position 
**Duration 

FEATURES FOR PREDICTING LOCATION: 

Feature set L1: NumberOf People SinglePerson? Topic 
*InTomsGroup? ^Position 

Feature set L2: DaylnWeek Duration NumberOfPeople SinglePerson? StartTime 
SubTopic Topic 
*AtCMU? *InTomsGroup? *KnownByTom? *Position 
**Location 

Table 4-1 : Features Used To Describe Training Examples. 
* These are features of the attendees of the requested meeting. 

** These are features of the previous meeting involving the same attendees. 

For each learning task, one must determine the set of features that will be used to describe the training 
examples (we shall refer to these as the predictive features). A very large set of predictive features is 
available. Each meeting can be characterized, for instance, by its date, start time, duration, topic, 
subtopic, its attendees, the office of each attendee, the position held by each attendee, the previous 
meeting held among these attendees, the duration of this previous meeting, the meeting previous to that 
one, etc. All this information (and more) is accessible to CAP for each training example. 

For each of the two predicted parameters (Duration and Location) we experimented with two sets 
of predictive features, as defined in Table 4-1. Feature set D1 is precisely the set of predictive features 
used by our hand-coded rules for predicting Duration, minus features which could not be easily handled 
by the neural net. For example, thtieature Attendees is not included even though the hand-coded 
rules used this feature. The reason is tjiat Attendees has 75 known values in the current knowledge 
base, and it would therefore require 75 input units to encode the value of this feature using our 1-of-n 
encoding scheme.6 Other features used by the hand-coded rules (e.g., BusyNextWeek) were omitted 

6Other encoding schemes exist which do not require one input unit per possible feature value. 
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because the training data from the text calendar file did not contain values for these features. Similarly, 
L1 is the set of features used by the hand-coded rules for Location. Feature sets D2 and L2 are 
supersets of D1 and L1, extended to include additional features which we felt might be relevant, even 
though these features were not used by the hand-coded rules. 

A set of 180 training example meetings was used to train and test the learning algorithms. Of these 
180, 120 were randomly selected for each run as training examples, and the remaining 60 were used as 
test cases. For each experiment, several runs (at least 4) were conducted and the results averaged. The 
experiments were run in "batch" mode; all the training examples were presented to the algorithms at once 
as input. 

4.2. Results 
Figure 4-1 summarizes the results of the learning experiments for predicting meeting Duration and 

Location. 

The Duration of a meeting has 6 legal values: 15, 30, 60, 90, 120 and 150 minutes. The most 
common value is 30 minutes (44% of the meetings). The 21 manual rules advise the correct value for 
65% of the training examples. In contrast, ID3 creates 27 rules when using the same predictive features 
as the manual rules (i.e., feature set D1), and achieves on average 69% accuracy. When using the 
expanded feature set D2, ID3 creates 60 rules and the accuracy drops to 54%, perhaps due to overfitting 
the training data. The neural network created for the first set of predictive features has 32 input units, 6 
hidden units and 6 output units. It produces correct advice 7 1 % of the time. When the net is expanded to 
include more input features (74 inputs), it is correct 72% of the time. In both of the neural net 
experiments, back-propagation was run for 800 epochs, and the nets converged after about 400 epochs. 
Due to ambiguous training examples (examples with all features the same except for Duration), the 
maximum possible accuracy with feature set D1 was 79%, and for feature set D2, 87%. 

The Location of a meeting has many more possible values (23) than Duration. However, the 
distribution of values is more skewed than for duration, as 7 1 % of these meetings are in one location: the 
office of the calendar owner. The 11 rules for Location achieve 8 1 % correct predictions on the training 
data. In contrast, ID3 created 32 rules using feature set L1, achieving 77% correct predictions. When 
using the augmented feature set L2, ID3 generated 45 rules and achieved only 7 1 % correct predictions. 
However, many of the failures of this rule set were meetings to which no rule applied. When evaluated 
only for meetings to which the rules did apply, ID3 achieved 86% correct predictions using feature set L2. 
Backpropagation took longer (more epochs) to converge for Location than for Duration, presumably 
because of the greater skew in the distribution of meeting locations. We ran each feature set for 2000 
epochs, and still had no evidence of overfitting (which we use as a signal that the net has converged). 
Thus it is possible that over several thousand more epochs, the correct predictions may rise above the 
reported 80% (L1) and 8 1 % (L2). Due to ambiguous training examples (examples with all features the 
same except for Location), the maximum possible accuracy witii feature set L1 was 91%, and for 
feature set L2,99%. 

Figures 4-1A and 4-1B summarize the results of predicting Duration and Location using the a 
number of methods: 

1. Default. Predict the Duration (Location) will be 30 minutes (Room 5309). The default value 
is simply the most common value over the training examples. 
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Figure 4-IB : Predicting Location of Test Examples 

Figure 4-1 : Predicting Duration and Location of Test Examples 
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2. Manual. Apply the hand-coded rules for Duration (Location) 

3. ID3-D1. Apply the rules learned by ID3 based on feature set D1 (L1); that is, only features 
which are also used by the manual rules. 

4. ID3-D1*. Apply the same rules as in ID3-D1. However, measure the percentage of correct 
predictions only over those test examples to which some rule applies (as opposed to all test 
examples). 

5. BP-D1. Apply the learned neural net based on features D1 (L1). 

6. Optimal-D1. This indicates the maximum possible performance using feature set D1 (L1). 
This is limited by the fact that some examples have identical values for all features except 
for Duration (Location). 

7. ID3-D2. Apply the rules learned by ID3 based on feature set D2 (L2). 

8. ID3-D2*. Apply the same rules as in ID3-D2. However, measure the percentage of correct 
predictions only over those test examples to which some rule applies (as opposed to all test 
examples) 

9. BP-D2. Apply the learned neural net, based on features D2 (L2). 

10. Optimal-D2. This indicates the maximum possible performance using feature set D2 (L2). 
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Test 2: Req-Duration, Feature Set 2,120 train/60 test 
Figure 4-2: Training Curve for Backprop Predicting Duration from Feature Set 2. 

Curve labeled BP-training shows performance on training examples. 
Curve labeled BP-test shows performance on test examples. 

Solid line shows performance of hand-coded rules. 

Two observations are worth noting: 
• Both the learned neural net and the learned ID3 rules performed well compared to the hand-

coded rulesets. Note that this is despite the more limited representations employed by both 
learning methods. In particular, whereas the hand-coded rules are first-order Horn clauses, 
the rules learned by ID3 are restricted to propositional representation. Thus, ID3 cannot 
represent rules such as "the duration of this meeting should be the same as the duration of 
the previous meeting". Furthermore, Backpropagation has difficulty using predictive features 
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with large numbers of possible values. This raises significant difficulties with using predictive 
features such as meeting Attendees, since there are dozens of potential attendees which 
would have to be encoded as inputs to the neural net. 

• When the learning methods were allowed a larger set of instance features to consider as 
possible predictors (i.e., using features sets D2 or L2), there was evidence of overfitting the 
training data. In the case of ID3, this leads to a set of rules whose coverage of the test data 
is lower, though whose correctness is higher on those cases which are covered. In the case 
of the back-propagation algorithm, this results in the curve shown in figure 4-2. Notice that 
as training epochs increase performance increases monotonically in classifying the training 
set, but first rises and then falls on the test set.7 This is due to the net overfitting the training 
data, to the detriment of generalizing correctly to cover the test set. It is a common 
phenomenon associated with neural network learning methods [Knight 89], which may be 
handled by terminating training once performance on the test set begins to degrade. 

If The Position of Attendees of ?x is undergrad; 
Then The Duration of ?x is 30. 

If The SubTopic of ?x is coxnmittee-mtg; 
Then The Duration of ?x is 60. 

If The NumberOfPeople of ?x is 2, and 
The Position of Attendees of ?x is grad-student; 

Then The Duration of ?x is 60. 

If The InTomsGroup? of Attendees of ?x is no, and 
The NumberOfPeople of ?x is 1, and 
The SubTopic of ?x is research, and 
The Position of Attendees of ?x is grad-student; 

Then The Duration of ?x is 30. 

If The SubTopic of ?x is funding-mtg, and 
The Position of Attendees of ?x is funder; 

Then The Duration of ?x is 90. 

Figure 4-3: Selected Rules Learned by ID3 for Duration. 

Figure 4-3 shows a representative sample of the rules learned by ID3 for predicting Duration. 
Similarly, Figure 4-4 shows rules for predicting meeting Location. In general, the learned rules were 
relatively simple, and most appear to be reasonable to the user and calendar owner. Some rules, such 
as the final rule for Location in Figure 4-4, turn out to be statistical anomalies arising from the policy of 
ID3 to continue refining rules until it partitions the data as perfectly as possible. This rule, for example, 
covers just a single training example, and is unlikely to be useful in general. 

There are many aspects of the Backpropagation algorithm which can be changed; for example, number 
of hidden units, learning rate, and encoding strategies. We have only investigated changing the number 
of epochs. Similarly, there are many variations of ID3 which may cope better with noisy data, overfitting 

7 The BP-training curve is not the result of directly testing the net on the training cases, but rather an internal measure used by the 
back-propogation algorithm which tests output patterns against training data without decoding. Thus only the shape of the curve 
not its absolute value, should be compared with the BP-test line . 
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If The Position of Attendees of ?x is undergrade-
Then The Location of ?x is weh5309. 

If The Position of Attendees of ?x is dean; 
Then The Location of ?x is weh4220. 

If The Position of Attendees of ?x is grad-student; 
Then The Location of ?x is weh5309. 

If The SubTopic of ?x is thesis-proposal; 
Then The Location of ?x is weh5409. 

If NumberOfPeople of ?x is 4, and 
The SubTopic of ?x is research; 

Then The Location of ?x is frc-conf-room. 

If The SubTopic of ?x is interview; 
Then The Location of ?x is weh5309. 

If The Position of Attendees of ?x is unknown, and 
The Topic of ?x is miscellaneous; 

Then The Location of ?x is skibol07. 
Figure 4-4: Selected Rules Learned by ID3 for Location. 

of data, etc. Thus we cannot draw too much from the comparison of these learning methods. However, 
our initial results seem to repeat those of [Fisher and McKusick 89, Mooney, et al. 89]: Backpropagation 
performs slightly better than ID3 on average with noisy data, but takes much longer to train. We are 
currently investigating the possibility of initializing the network from the hand-coded rules or ID3-
generated rules, to try to improve the speed and accuracy of back-propagation.8 One advantage of ID3 is 
the comparatively readable rules it produces; we are also looking into producing rules from the back-
propagation network. 

5. Summary and Analysis 
The thesis of this research is that learning apprentice systems will enable the practical development of 

a variety of personalized software assistants which are not presently found in regular use due to (1) the 
costs of customizing such systems to each individual user or environment, and (2) the costs of 
maintaining systems as times change. Our argument in support of this thesis involves two claims: 

1. It is possible to construct interactive assistants which users will find helpful even when their 
initial level of expertise is low, and which are able to capture valuable training examples of 
user decisions as a side-effect of their routine use. 

2. Machine learning methods already exist which are able to generalize from these examples 
to Annulate useful advice-giving strategies that improve the competence of the system over 
time. 

This paper explores this thesis and provides evidence in support of these two claims, by way of 

8 S e e [Shavlik 89] for one approach to using prior knowledge to initialize network weights. 
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experiments with the CAP system for calendar management. 

Support for the first claim is provided by the fact that CAP is in routine use by one secretary in our 
environment, and that it is currently collecting useful training examples of this user's calendar 
management decisions. Although the system has only been in use by one person for one month, and 
therefore we have only limited experience, the initial response is favorable. Our user finds the system 
significantly more convenient and useful than the calendar management system she was previously using 
(simply editing a text file using the Emacs editor). Partly this is due to the easier interface it provides 
(e.g., it provides a number of convenient macros specifically tuned to editing meetings), and partly it is 
due to the fact that its advice is helpful. However, there are several factors that limit our ability to draw 
conclusions from this experience. First, the design of CAP was influenced by suggestions from this user, 
and was specifically designed to be upward compatible with the calendar format she had evolved while 
using the previous Emacs-based editor. Second, even the initial version of CAP was provided with a 
hand-coded set of rules, so that it was not beginning with the low level of knowledge it would have with a 
completely new user. Third, part of the reason this user adopted CAP is that her supervisor requested 
that she try it! Despite these special circumstances which make this user somewhat different from others 
who may be used to different systems for managing calendars, or who may work with less enthusiastic 
supervisors, the fact remains that CAP is of value to the one user who has tried it thus far. 

Support for the second claim is provided by the experimental results with the learning mechanisms 
reported here. Both ID3 and Backprop succeeded in learning from previous meetings to provide advice 
for durations and locations of new meetings. The level of advice achieved by the learned knowledge 
compares favorably with that provided by the hand-coded rules developed in advance of these 
experiments. Based on this evidence, we feel there is an excellent chance that CAP will be able to learn 
new advice-giving strategies customized to other users, without the need for significant manual 
development or maintenance of the knowledge base. Furthermore, in the experiments reported here, the 
learning programs were at a disadvantage compared to the envisioned system, since the training 
examples that are collected by CAP contain a richer set of features (e.g., the time at which the requested 
meeting is added to the calendar) than the training examples we were able to recover by hand. We have 
not yet tested how well the learning programs will be able to handle other types of advice such as 
recommending meeting times and dates or topics, but we plan to conduct such experiments soon. 

Based on this analysis, we believe CAP has a good chance of succeeding as a learning apprentice for 
calendar management. Our future plans include development of new generalization methods (e.g., 
combining analytic and inductive approaches), as well as work to incorporate these multiple methods into 
CAP. This latter topic involves issues such as allowing CAP to determine at any given time whether to 
base its advice on the hand-coded knowledge, the learned neural net, or the learned rules. 

In addition to these plans to extend and integrate CAP'S learning methods, we also plan to extend CAP 
to support additional calendar operations (e.g., sending electronic mail meeting reminders and requests 
for meeting rooms) as well as new kinds of advice (e.g., suggesting that a meeting be moved in favor of a 
higher priority meeting request, suggesting that reminder messages be sent). We also intend to 
experiment with multiple copies of CAP for multiple users. If several people in the environment were to 
use CAP, one could directly test the thesis that the system will be able to customize itself automatically to 
different users. This would also open the opportunity to study issues of multiple communicating CAP 
agents that exchange information directly with one another to further increase the competence of each. 
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We believe a collection of self-customizing personal software assistants operating in a real work 
environment will provide a rich research testbed to study these issues. 

While much of the discussion in this paper centers around CAP in particular, our primary interest lies in 
understanding how to develop personalized learning apprentices more generally. What are the key 
characteristics of CAP and the calendar management task that make this approach appear feasible and 
useful? The following seem important in explaining why CAP is a good fit to the calendar management 
task, and therefore provide insight into other tasks and environments for which similar approaches might 
work: 

• Users find even the unintelligent interface desirable. In order for the learning apprentice 
approach to work, the system must be able to collect training examples from users. Thus, 
users must find the system worth using even before it has had an opportunity to learn their 
personal preferences. Calendar management is a task for which many people already use 
computer text editors or interfaces, simply because of the convenience of editor interfaces 
and common file storage. By adding intelligent decision making to such systems one can 
significantly improve their value. However, for a learning apprentice approach to work, the 
initial system must already be above the threshold of user acceptability. 

• Perfect advice is not required. CAP can be successful as long as it provides useful advice 
much of the time. 

• Necessary manual development can be amortized over many users. Despite our focus 
on learning, part of the knowledge base of CAP cannot be easily learned. For example, CAP 
currently contains knowledge of about 70 people in our environment (e.g., their offices, 
positions, etc.), as well as knowledge about specific work activities of the calendar owner. 
This must currently be entered by hand, and could constitute a significant maintenance effort 
in itself. However, much of this is knowledge that is not specific to a single user (it is specific 
to our university), and thus its development and maintenance can be amortized over all 
potential users of CAP within our organization. Furthermore, some of this information may 
already be available online in many work environments. For instance, in our environment, 
we hope to allow CAP to access an existing database which describes people who work in 
our department, including their office, position, telephone number, email address, etc. 

• User decisions and the features which influence them are observable by the system. In 
order to learn effectively, CAP must be able to observe useful training examples. At present, 
those user decisions for which advice is learned correspond to choices of parameter values 
(e.g., Location) of calendar operations (e.g., AddMeeting). Such decisions are easy for the 
system to observe as a side effect of normal operation. Similarly, those features which 
influence the choice of these parameters (e.g., the choice of location is influenced by the 
number of attendees, meeting start time, etc.) are also observable to the system. While 
there are additional unobservable features which may also influence the decision (e.g., the 
choice of Location may also be influenced by whether the desired room has been previously 
reserved), there is a sufficient correlation between the observable features and the 
observable user decisions to produce training examples that lead to useful learned advice. 
In CAP, we have added additional knowledge to extend the set of situation features it can 
access, beyond just those parameter values entered directly by the user. For example, the 
knowledge base describing various people, their position within the organization, their office, 
their faculty advisor, their busyness, whether they are known to the calendar owner etc., 
allows CAP access to additional features which may be helpful in characterizing regularities 
in the observed user decisions. 

• The time constant of the learner is faster than the rate of change of the environment. 
For CAP to be successful in adapting to changing decision strategies of its users, it must be 
able to learn new regularities faster than the rate at which they change. In our environment, 
for example, the beginning and end of each semester typically brings with it a change in 
calendar scheduling strategies. Therefore, CAP'S learning methods must be able to collect 
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sufficient data to learn these new regularities in a period which is short relative to a single 
semester. We have not yet explored this issue in detail for CAP. However, the learning 
experiments reported here do indicate that one semester's worth of training data is more 
than sufficient for learning useful regularities. Furthermore, while some regularities change 
at semester boundaries, many others carry over for much longer periods of time. 

It is too early to say with certainty whether CAP will be a successful learning apprentice, though it has 
been adopted by one user, is presently collecting training data on a regular basis, and has been shown to 
be able to learn useful advice-giving strategies for at least meeting Duration and Location. We intend 
to evaluate it over the coming year by how well it learns to improve its advice for this initial user, and to 
adapt its advice to any changes that occur in this user's scheduling strategy. We also hope to attract new 
users, who will provide further data for evaluating CAP and more generally the concept of personalized 
learning apprentices. 
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