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Abstract 

This p a p e r presents a new parallel a lgor i thm to c o m p u t e Grobner bases uti
lizing two different forms of parallelism. A coarse-grain technique developed by 
Jean-Phi l l ipe Vidal expands and reduces S-polynomials in parallel . A fine-grain 
technique , proposed by Melenk and Neun, cons t ruc ts a pipeline of processors 
to overlap execution of the reduct ion opera t ions . A hybr id a lgor i thm t h a t out
performs bo th of t h e original approaches is p resen ted below. I also discuss the 
design and implementa t ion approaches used to cons t ruc t an efficient version of 
this a lgor i thm. 

1 Introduction 
Grobner bases are one of t he basic tools of computa t iona l algebraic geometry, t he branch 
of ma thema t i c s which deals wi th t he solution of sets of algebraic equa t ions . Grobner bases 
give a normal form to ideals in polynomial rings. Once a Grobner basis is found for the 
corresponding ideals, it becomes easy to tes t if a polynomial belongs to an ideal, if two 
ideals are equal , if an ideal is contained in ano the r , and so on. T h e in te res ted reader is 
referred to Buchberger [4, 6], where one will find a comple te in t roduc t ion to Grobner bases , 
a descript ion of their computa t ion , as well as a list of m a n y appl icat ions. A review of t he 
various a t t e m p t s to parallelize t h e a lgori thm can be found in [17]. 

T h e a lgor i thm transforms a set of polynomials in to ano ther set of polynomials , a Grobner 
basis genera t ing t h e same ideal. These polynomials have ra t ional coefficients, and indeter-
mina tes d rawn from some finite set of variables. Whi le t h e theory beh ind the algori thm is 
qui te complex, t h e ac tua l computa t ion is relatively simple to describe. This implementa t ion 
is based on a version of t he a lgori thm given by Gebauer and Moller [10]. 

T h e computa t ion of Grobner bases require a great deal of t ime in prac t ice . The re are 
several theoret ica l bounds but they are of l imited use in predic t ing ac tua l performance 
because t hey are based on worst-case complexi ty which is unlikely to occur in prac t ice . One 
well known result is a double exponent ia l lower b o u n d due to Mayr and Meyer [12]. Even 
when a par t icu lar ins tance of t he problem does not require t ime approaching this bound , 
it often requires a large amoun t of computa t ion . One pa ramete r i zed family of examples 
due to Arnborg and Davenpor t appears to require t ime at least exponent ia l in the number 
of equat ions , bu t this is an artificial example . These exper iments were carried out using 
examples from the l i t e ra ture , bu t a more useful set of measu remen t s would require the abil i ty 
to character ize and produce average case examples similar t o those typically encountered 
when the a lgor i thm is used, for example , in a symbolic m a t h e m a t i c a l sys tem to solve a set 
of equat ions . 

One way to speed up t h e solution of t h e p rob lem is to t ransform t h e sequential a lgor i thm 
into a parallel one and execute it on a mult iprocessor . T he r e have been m a n y a t t e m p t s 
over the pas t few years to develop an efficient parallel a lgor i thm. In his thesis , W a t t [18], 
and Buchberger himself [7] were t h e first to propose parallel a lgor i thms to compu te Grobner 
bases bu t they did not implement t h e m , nor a t t e m p t to measure or predict their per formance . 
Ponder [14] implemented corrected versions of W a t t ' s a lgor i thm b u t obta ined only l imited 
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parallel speed-up. Melenk and Neun [13] designed a pipelined version of the most t ime 
consuming s tep of t he a lgor i thm. T h e y s imula ted it and obta ined good parallel efficiency 
for a small number of processes. More recently, Siegl [16] modified Buchberger ' s parallel 
version of the a lgor i thm by dis t r ibut ing t he basis , which is a set of polynomials , among the 
processes. He implemented this version and ob ta ined good per formance for small examples . 
Senechaud [15] had already implemented a similar version of t h e a lgor i thm, b u t only for 
Boolean polynomials . Vidal was t he first to implement an efficient parallel a lgori thm on a 
shared memory mult iprocessor . This work, as well as a longer descript ion of these different 
a t t e m p t s , can be found in [17]. 

T h e work presented here differs from the a t t e m p t s descr ibed so far in several respects : 

• T h e underlying archi tec ture is a shared m e m o r y mul t iprocessor and the main objects 
used dur ing t h e computa t ion are shared among all processes. 

• T h e implementa t ion can be used for problems of size significantly larger t h a n t h e 
o ther implementa t ions . Also, in general , t h e parallel per formance achieved is b e t t e r 
t h a n t h a t observed in t he o ther imp lemen ta t ions , especially for problems of large size. 

• This implementa t ion is t h e first one which combines two parallel schemes: t he coarse-
grain level of parallelism similar to wha t W a t t and Buchberger proposed is comple
men ted by a fine-grain level of parallelism similar t o wha t Melenk and Neun proposed . 
After we discuss these two parallel schemes, we will see how well b o t h combine in one 
a lgor i thm. 

In section 2, we present a brief descript ion of t h e various machines on which these experi
men t s were performed. In section 3, we give an in t roduc t ion to t h e Grobner basis a lgor i thm. 
In section 4, we present t he coarse-grain parallelism of Vidal . In section 5, we describe t h e 
fine-grain parallelism using reduct ion pipelines, and point out t he key issues in t he imple
men ta t ion . In section 6, we discuss t h e combined version of t h e a lgor i thm and t h e various 
scheduling and load balancing issues. In section 7, we analyze t h e various implementa t ions . 
In section 8, we conclude wi th a discussion of addi t ional work and future direct ions. 

2 Multiprocessor Architectures Used in the Imple
mentation 

A wide variety of mult iprocessor a rchi tec tures have been descr ibed in t he l i t e ra ture over t h e 
pas t few years . T h e characteris t ics of these archi tec tures vary widely and are de te rmined by 
the available technology, t he class of applicat ions addressed, t h e trade-offs be tween processor 
speed, memory sys tem complexi ty and communica t ion costs , and o ther design decisions. In 
this pape r , we describe a lgor i thms implemen ted on th ree shared m e m o r y arch i tec tures . 

T h e Encore Mul t imax is a classic shared m e m o r y mul t iprocessor using a central bus for 
communica t ion be tween processors and main memory. Each processor has a local cache 
and uses a snooping protocol to ma in ta in cache coherency. T h e M u l t i m a x is sui table for 
m e d i u m and coarse grained parallel applicat ions [9]. T h e par t icu la r machine used in these 
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exper iments had 16 Nat ional Semiconductor 32332 processors, each ra ted at roughly 2 M I P S , 
and 32 megabytes of shared memory. T h e local cache size is 64K bytes , shared between two 
processors . 

T h e R P 3 is a large-scale research parallel processor developed at the I B M T. J . Watson 
Research Center . T h e machine consists of a n u m b e r of processor-memory elements connected 
by an Omega- in terconnect ion network. Local m e m o r y references are handled immediate ly , 
while r emote m e m o r y references must be resolved over t h e network. T h e a rch i tec ture pro
vides th ree types of memory pages: local pages , global pages, and replicated pages. T h e 
machine does not suppor t au toma t i c cache coherency; ins tead, cache managemen t is t he 
responsibil i ty of t he p rog rammer or compiler [11]. The vir tual memory interface allows 
each page to be marked as cacheable or non-cacheable , as well as allowing the cache to be 
flushed under user level control . T h e current version of the system has 64 R O M P processors. 
Each processor has 8 megabytes of s torage, and a 64K by te local cache shared between two 
processors . 

T h e Plus a rch i tec ture [2] is a mesh of processor-memory elements connected by a de
terminis t ic rout ing network. T h e routers always send messages along an L-shaped p a t h in 
t h e mesh, so t h a t t h e message first p ropaga tes vertically, t hen horizontally to t h e destina
t ion. R e m o t e m e m o r y references are t r anspa ren t ly rou ted to the appropr ia te dest inat ion. 
In addi t ion several special features enhance this basic design. Local computa t ion proceeds 
while r emote writes are being comple ted , increasing overall t h roughpu t . W h e n needed, a 
fence opera t ion is used to stall t he local processor unt i l all r emote writes have completed. 
Also, any page in m e m o r y may be repl icated to o ther processing nodes. Reads from these 
repl icated pages are handled locally, while writes are directed to t he mas te r copy of t h e page 
and t r anspa ren t ly p ropaga ted to all repl icated copies. This allows the processor which owns 
the page to wri te it wi thout s topping, while t he h a r d w a r e keeps t rack of these writes and 
u p d a t e s t he m e m o r y of o ther processors which have a copy of the page. Tuning an appli
cat ion to run on this a rchi tec ture involves s tudying reference pa t t e rns of t h e algori thm and 
selecting a m e m o r y replication scheme t h a t minimizes remote read references, while l imiting 
r emote writes and overall network traffic. This t y p e of a rchi tec ture is expected to perform 
b e t t e r t h a n a pure message-passing archi tec ture because addi t ional ha rdware suppor t s t he 
r emote m e m o r y references, as opposed to a software layer processing these m e m o r y requests . 
T h e exper iments descr ibed in the pape r were run on the Plus simulator. A machine with 40 
nodes is current ly under const ruct ion. 

These implementa t ions were all wr i t t en in C and use the C-Threads package [8i, which 
allows parallel p rog ramming under t he M A C H opera t ing sys tem [1]. T h e p rogramming 
model provided by C-Threads is one of m a n y execut ing processes sharing a common global 
address space. Synchronizat ion is provided th rough locks for m u t u a l exclusion and conditions 
for waiting and signaling of events . T h e model is augmen ted on the non-uniform memory 
access machines to provide for t he ass ignment of specific th reads to specific processors, and 
for controlling the p lacement and replication policy of memory pages. 
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3 The Basic Algorithm 
T h e pr imit ive s tep of the compu ta t i on , called reduct ion , involves deleting t he first t e r m of 
the current working polynomial , called the S-polynomial, by sub t rac t ion of an appropr ia te 
mult iple of a polynomial a l ready in t h e set . T h e result of this reduct ion is of lower order , 
bu t not necessarily smaller in size or n u m b e r of t e r m s . A polynomial is total ly reduced with 
respect to a set of polynomials when no fur ther reduct ion is possible. 

Reduce(P,Q) := { 
Assert(Q reduces P) 
G LCM(LeadingTerm(P), LeadingTerm(Q)) 
Mp := G J Leading Term(P) 
Mq := G J Leading Term(Q) 
Reduce := Mp • P - Mq • Q 

Reduce(x2y2 + 2x2y + 3, 2x2y2 + y) := 
G = LCM(x*y2\2x2y2) = 2x3y2 

Mp = 2, Mq = x 
Reduce := 2 • (x3y2 + 2x2y + 3) - x • (2x2y2 + y) 

— Ax2y — xy 

T h e S-polynomial of two polynomials a l ready in the set is compu ted by finding the least 
common mult iple of t he leading t e r m s , mul t iplying by appropr ia te monomials to make the 
two leading te rms equal , and t h e n finding t h e difference of these polynomials . Intuit ively, 
each polynomial is scaled by the smallest factor such t h a t the lead t e rms become equal; 
sub t rac t ing t h e m cancels out the lead t e r m s . 

Spol(P,Q):={ 
G := LCM(LeadingTerm(P), LeadingTerm(Q)) 
Kp := GI LeadingTerm(P) 
Mq := G/LeadingTerm(Q) 
Spol := Mp >P-Mq-Q 

Spol(2x2y + Zxy + 1, Zxy2 + xy + 2y + 2) : = 
G = LCM(2x2y,3xy2) = 6x2y2 

Kp = 6x2y2/2x2y = 3y, Mq = Gx2y2/Zxy2 = 2x 
Spol = Zy - (2x2y + 3xy + 1) - 2x • ( 3 x y 2 + xy + 2y + 2) 

= —2x2y + 9xy2 — 4xy — 4x + 3y 

T h e simplest form of t h e a lgor i thm can now be s t a ted , and is presented in figure 1. 
Termina t ion is gua ran teed by restr ict ions on the order ing of t e rms in each polynomial . For 
our discussion, it is enough t h a t such orderings exist . 

T h e a lgor i thm begins wi th t h e inpu t set B , and cons t ruc ts t h e set P of all pairs of 
dist inct polynomials in B . T h e n , while pairs r ema in , t h e a lgor i thm processes a pair from 
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GrobnerBasis(B) := { 
P:= { (Mj)IM; 
w h i l e ( P not empty) { 

choose and delete any pair (6 z-,6j) from P. 
s := Spol(bi, bj) 
w h i l e (3r £ P which reduces s) { 

s := Reduce(s^r) 
} 
if (* # 0) { 

P := P U ( 5 x £?) 
5 : = J B U { 5 } 

} 
} 
r e t u r n B 

} 

Figure 1: T h e Grobner basis a lgor i thm 

P. This processing consists of comput ing t h e S-polynomial of t h e pair , and then reducing 
it wi th t h e polynomials in B unti l no fur ther reduct ions are possible. Somet imes , t he S-
polynomial reduces all t he way to 0, in which case t h e a lgor i thm proceeds to t he next 
i te ra t ion of the loop with no addi t ional work. However, if t h e S-polynomial reduces to a 
non-zero polynomial , t hen this new polynomial is added to t h e set B . In addi t ion, t h e new 
polynomial is paired with each polynomial a l ready in B , and these addi t ional pairs are added 
to t he set P. Eventually, t h e set of pairs is empty, and the a lgor i thm t e rmina te s . It should be 
no ted t h a t while B is a Grobner basis upon t e rmina t ion , a follow-up s tep to t ransform B into 
a reduced Grobner basis is often needed . (This is accomplished by reducing each element of 
t he basis by t he o ther polynomials , which in effect means t h a t t h e final polynomials added 
to t he basis are used to e l iminate those polynomials t h a t were p roduced earlier, and are no 
longer necessary to span t h e ideal.) We have not addressed t h a t s tep in this pape r , a l though 
some of t h e techniques presented here can also be applied. 

Of course, the order in which t h e pairs are selected is very i m p o r t a n t to the pract ical 
efficiency of the a lgor i thm. One heuris t ic is to select t he pair whose S-polynomial has 
t h e smallest leading t e r m under t h e selected order . In addi t ion , several tests have been 
developed to delete pairs whose S-polynomial will reduce to zero. These criteria can be 
found in [5, 10] and involve tes t ing for cer ta in cons t ra in ts on t h e leading t e rms . The order in 
which reduct ions are performed is less well defined; in this implemen ta t ion we use the order 
in which the polynomials first a p p e a r when searching for a reducing polynomial . Most of 
the compu ta t i on t ime is spent in t h e S-polynomial and reduc t ion s teps . 

T h e typical computa t ion described below consists of t ens to hundreds of S-polynomial 
compu ta t i ons and hundreds to t housands of reduct ion s teps . Because of t he very rapid 
growth in t h e ac tua l complexi ty of t he p rob lem, larger i npu t s will t end to p roduce polyno
mials wi th more te rms and larger coefficients. In our sample execut ions , we observed t h a t 
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the to ta l number of S-polynomials actual ly reduced does not grow as | £ | 2 , where B is t he 
n u m b e r of polynomials in the basis, bu t at a somewhat greater t h a n linear r a t e . This is 
an i m p o r t a n t difference from some of the earlier parallel a lgor i thms, in which every pair of 
polynomials in the basis was used to compu te an S-polynomial. 

4 Coarse Grain Parallelism. 
Most of t he compu ta t i on t ime in the algori thm is spent in reducing the S-Polynomials. Since 
nei ther t he basis B, nor t he set of pairs are changed dur ing this s tep of the computa t ion , 
the a lgor i thm could reduce several pairs s imultaneously on different processors . T h e only 
immed ia t e bound on t h e parallelism of this technique is t h a t there are only a fixed number 
of pairs unde r considerat ion at any point in the a lgor i thm. 

In this parallel a lgor i thm, t h e basis of polynomials is an append-only s t ruc tu re . Once a 
polynomial is added to t he basis, it becomes read-only, allowing t h e basis to be repl icated 
to the local m e m o r y of each processor if t h e archi tec ture suppor t s such a facility. T h e 
only o ther shared d a t a s t r uc tu r e is t he set of pairs current ly under considerat ion. One 
possible technique would be to have each processor main ta in a local set of pairs , and expand 
those completely before contac t ing o ther processors for work. Unfor tunate ly , the a lgor i thm's 
performance depends on the pairs being expanded in a par t icu la r order . Any type of locally 
ma in ta ined s t ruc tu re would necessi ta te changing t h e order of expansion, causing much more 
work to be done. For this reason, the re is a single, shared set of pairs , which is p ro tec ted 
by a lock which is acquired whenever t h e set needs to be modified. W h e n a processor s ta r t s 
execut ion, it locks t h e set , removes and deletes t h e first pair , unlocks t h e set, and proceeds 
with t h e S-Polynomial expansion and reduct ion process . W h e n a reduced polynomial is 
r eady for addi t ion to t h e basis , t h e processor locks t he set of pai rs , u p d a t e s t he set of pairs 
to include new pairs be tween t h e basis and the addi t ional polynomial , and appends t h e 
polynomial to t h e basis , replicat ing it if appropr ia te . I t t hen releases t h e lock, and begins 
t he process all over again. (This single shared lock is potent ia l ly a bot t leneck , bu t is not 
expec ted to become a problem because of two factors. F i rs t , t h e critical sections p ro tec ted 
by t h e lock are very short when compared to the rest of the compu ta t i on . Second, t h e 
s t ruc tu re of t h e problem decreases the ut i l i ty of expanding too m a n y pairs at once. This 
means t ha t relatively few processors will contend for t he lock at one t ime , as any addi t ional 
processors will be execut ing t h e pipeline parallelism described in t h e next section.) 

If no pairs are available when a processor acquires t he lock, t h e n it checks to see if all 
o ther processors are also wait ing. If so, t h e n t h e a lgor i thm has comple ted , and a post
processing s tage is execu ted . If o ther processors are still execut ing , t h e current processor 
performs a condition-wait opera t ion unt i l it receives a signal from ano the r processor t h a t 
new pairs are available. F igure 2 i l lustrates t he progress of several processors execut ing the 
parallel a lgor i thm. Note t h a t processors can always read any polynomial , and need the lock 
only to add a new polynomial to t he basis . 
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B. P2 acquires a pair, while P1 performs a reduction 
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C. PI waits for a lock before adding a new polynomial to the basis D. PI adds PoI5 and creates new pairs while P2 waits for the lock. 
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Figure 2: Coarse Grain Parallel ism - processors concurrent ly select pairs , perform reduct ions 
create polynomials , and u p d a t e t he set of pairs . 
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T h e parallelism exploited by this m e t h o d is specula t ive para l le l i sm 1 , mean ing t h a t some
t imes a pair will b e expanded in parallel t h a t would have been deleted in the sequential case. 
This reduces t he efficiency of t he parallel a lgor i thm because some of t he work performed is 
useless - expanding t h e S-polynomial of t h e pair will p roduce , after much compu ta t ion , the 
zero polynomial . Nevertheless, most of t he pairs expanded in parallel are useful, and de
crease t h e amoun t of t ime needed to find t h e Grobner basis . T h e a lgor i thm can be viewed 
as a search a lgor i thm, wi th t he nodes to be explored being t h e critical pai rs . A pair which 
reduces to t he zero polynomial is a leaf node . Somet imes , expand ing a critical pair produces 
many other pairs , which are then put on t he list of work to perform, and as a side effect, we 
note the polynomial p roduced . O the r pairs p roduce only t he zero polynomial , and no new 
pairs to be expanded . T h e algori thm t e rmina te s when the search space has been completely 
explored, ei ther by expanding or delet ing each critical pair . Of course, t h e in t roduc t ion of 
new polynomials in the basis also prunes the search space, by causing more critical pairs to 
reduce to zero. One modes t improvement to t h e a lgor i thm can be m a d e by pruning more 
frequently, par t icular ly by checking to see if t he pairs being expanded by o ther processors 
could be deleted by a polynomial jus t now being added to the basis. If so, t hen t h e o ther 
processors abor t their current work and begin work on a new pair . This reduces some of the 
pena l ty associated with t he speculat ive parallel ism. 

Because this is a searching a lgor i thm, t h e parallel a lgor i thm can be expec ted to demon
s t ra te super-l inear speedup on some inpu t s because of t h e o p p o r t u n i t y to expand an impor
t an t pair earlier t h a n a sequential implementa t ion would do so. This more or less points out 
t h a t some of the speedup is due not to t h e parallel machine we are execut ing on, bu t to t h e 
concurrent s t ruc tu re of t he a lgor i thm. This speedup might also occur on a uniprocessor , if 
t h e costs of context switching and m e m o r y locali ty overhead could be adequate ly minimized. 

Typical d a t a runs vary over a wide range , wi th small inpu t s t ak ing milliseconds and mod
est ones hundreds or thousands of seconds on a sequential 2 -MIPS processor. Larger inpu ts 
require much more computa t ion ; an in teres t ing area of inquiry is to discover if larger inputs 
can be effectively compu ted using a larger parallel processor , or if t he in t rac tab le n a t u r e of 
t h e problem domina tes on typical inpu t s as well as artificial examples . If t he oppo r tun i t y 
for parallelism grows at least as rapidly as t h e a m o u n t of compu ta t i on required for a given 
problem size, t hen large parallel processors will be useful for solving these problems. On the 
o ther hand , if t h e potent ia l parallelism in t he a lgor i thm grows more slowly t h a n the to ta l 
computa t ion required, t hen these large machines will not be able to significantly increase t he 
size of problem instances which can be c o m p u t e d . As expec ted , t h e larger inpu t s benefit t h e 
most from larger numbers of processors . However, inpu t s wi th only a very few large poly
nomials , or which p roduce only a l imited n u m b e r of pairs at any s tage in t h e compua t ion , 
benefit less from addi t ional processors. F igure 3 presents t h e speedup versus n u m b e r of pro
cessors for two examples from t h e l i t e ra ture [3]. (Box indicates Mul t imax , Circle indicates 
I B M R P 3 , Triangle indicates Plus Simula tor ) . On a single M u l t i m a x processor, t he Rose 
example requires abou t 35 seconds, while t h e T r inks l example requires only 10 seconds. 

1 Speculative parallelism is the eager evaluation of a subtask in a computation before the necessity of 
performing this work is known. If the subtask had to be performed anyways, the algorithm benefits from 
increased concurrency. On the other hand, if the subtask could have been avoided, some computation time 
has been spent uselessly. 
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Spccdups for Problem ROSE S p e e d u p s f o r T B J N R S 

Figure 3: Grobner Basis speedup curves - coarse-grain a lgor i thm 

In summary , these are the principal characteris t ics of t he coarse-grain parallelism of the 
Grobner Basis a lgor i thm: 

• Infrequent access to d a t a s t ruc tures in t h e critical sections - t he a lgor i thm spends a 
small fraction of t ime u p d a t i n g t h e set of pairs and t h e basis of polynomials while 
holding an exclusive wri te lock. This allows t h e processors to work efficiently in par-
alllel. 

• Good Memory Reference P a t t e r n - T h e a lgor i thm creates and appends new polyno
mials to t he basis, never changing an old polynomial . This means t h a t on d is t r ibuted 
m e m o r y archi tec tures such as P L U S , t h e polynomials m a y be repl icated locally on 
each processor. In addi t ion, only t he opera t ions on the set of pairs require a globally 
shared r e a d / w r i t e reference p a t t e r n , l imiting t he per formance pena l ty of local versus 
global memory. 

• Global ordering on work - T h e a lgor i thm requires t h a t the critical pairs be processed in 
a par t icu lar sorted order for efficiency reasons. This prevents a s t ruc tu re in which each 
processor keeps a local work queue , and ins tead requires t he a lgor i thm to main ta in a 
globally ordered work queue . 

• Speculat ive Parallel ism in a Searching Algor i thm - This p rob lem m a y be viewed as a 
parallel search. As such, this parallelism is often specula t ive , in t h a t t h e same work 
might not be performed by t h e sequential version. Because of this speculat ive n a t u r e , 
the a lgor i thm may exhibit superl inear speed-up because some of t h e i m p o r t a n t critical 
pairs may be expanded and reduced earlier in the parallel compu ta t i on t h a n in t h e 
sequential one. 
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5 Fine Grain Parallelism 
At the hear t of t he Grobner basis compu ta t ion is the opera t ion of reduct ion , in which 
one polynomial is used to e l iminate t h e most significant t e r m from an initial polynomial . 
Speeding up this s tep is critical to improving the performance of the a lgor i thm. 

T h e source of fine-grain parallelism in t h e a lgor i thm occurs in the reduct ion loop. T h e 
key observat ion of Melenk and Neun [13] is t h a t t h e a lgor i thm only branches based on t h e 
leading power p roduc t of t he polynomials . This means t h a t as soon as t he first t e r m of any 
polynomial is computed , the next step of the a lgor i thm may begin concurrent ly with the 
computa t ion of the remainder of the polynomial . 

In this implementa t ion , the pipeline of processors is cons t ruc ted explicitly with a proces
sor assigned to comput ing one reduct ion , and t h e n reenter ing the computa t ion at ano ther 
reduct ion s tep . In cont ras t , Melenk and Neun used a Lisp implementa t ion wi th a dataflow 
style. Under this approach , processes block, wait ing for a t e r m to b e comple ted , and yield 
t h e processor to perform other work in t h e a lgor i thm. Since a single big n u m b e r multiplica
t ion domina tes t h e computa t ion , our implementa t ion spins ins tead of context switching to 
ano ther t h read , because t he t ime to begin work on ano ther reduct ion is much longer t h a n 
t h e t ime spent busy wait ing. In this way we also avoid t he overhead of scheduling each t e r m 
as a separa te uni t of work. 

T h e reduct ion loop consists of searching t h e list of polynomials for a reducing polyno
mial , t hen set t ing up the reduct ion , and finally performing it t e r m by t e r m . T h e critical 
observat ion here is t ha t t h e next i te ra t ion of t h e loop will examine the t e rms in t h e same 
order as t hey are p roduced . 

In order to exploit this parallel ism, this implementa t ion stores two synchronizat ion fields 
wi th t he polynomial . A size field keeps t rack of the n u m b e r of t e rms and a done flag 
indicates t h a t this polynomial is comple te or still under cons t ruct ion . T h e reduct ion process 
begins as in t he sequential case wi th an examina t ion of t h e leading t e r m and a search for a 
reducing polynomial . T h e n before actual ly comput ing t h e reduct ion , a second processor is 
assigned the task of performing t h e next loop i te ra t ion . T h e second processor busy wai ts , 
checking for e i ther a new t e r m or a done indicat ion, while t he first processor computes t h e 
polynomial t e r m by t e r m . W h e n t h e first processor finishes, it will wait once more in a queue 
to be assigned addi t ional work. T h e second processor, meanwhi le , waits for a t e r m to be 
p roduced . Once a t e r m is p roduced , the polynomial is definitely known to be non-zero, and 
the second processor will search for ano ther reducing polynomial . If t he search is successful, 
t he second processor will assign a th i rd processor to consume the next in te rmedia te resul t , 
and the process repea t s . If no t e rms are p roduced , and t h e done flag is set , t h e n the second 
processor has de tec ted a zero polynomial . T he r e is no need to u p d a t e t he pairs set , and a 
new pair may be expanded . If t h e search for ano ther reduct ion fails t he second processor 
begins t he upda te -pa i r s rou t ine , in which useless pairs are deleted and the new pairs are 
added . This overlaps with t h e previous compu ta t i on . This processor t hen begins expansion 
of t he next pair . T h e S-polynomial expansion m a y be forced to wait because one of t h e 
polynomials in the pair may still be incomple te . T h e code to c o m p u t e t h e S-polynomials 
uses the same synchronizat ion technique to consume t e rms as they are p roduced , overlapping 
addi t ional computa t ion and providing b e t t e r speedup . Figure 4 i l lustrates t h e various stages 
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in the pipel ined computa t ion . 

T h e re are several issues to point out abou t this pipel ined reduct ion process. (1) T h e 
busy wait ing loops all spin on two cached variables. This means t h a t t he busy wait ing does 
not s a tu r a t e t h e bus and slow other processors down. (2) Once the reduct ion begins, each 
processor in t h e pipeline consumes t e rms at approx imate ly the same speed as the previous 
processors p roduces t h e m ; therefore very li t t le t ime is spent busy-wai t ing in the middle of 
a reduct ion pipel ine. (3) Because the synchronizat ion cons t ra in ts flow in one direction only, 
no synchronizat ion primit ives are used beyond s t rong o rder ing 2 of reads and wri tes . (4) 
The re is no speculat ive parallelism in this pa r t of the computa t ion . Each reduct ion must be 
performed, and this approach simply overlaps the computa t ion performed by the inner loop 
as much as possible. 

F igure 5 presents the speedup versus number of processors for the Butcher example from 
the l i t e ra tu re . (Box indicates Encore Mul t imax) . T h e software pipeline mechanism was not 
implemented on the R P 3 because of the d e m a n d for very t ight coupling between processors , 
which was unavai lable on t h a t machine . 

T h e pr incipal characterist ics of the fine-grain parallelism include the following: 

T h e basic reduct ion step can be implemen ted as a pipeline. This means the next 
opera t ion may begin as soon as t h e first t e r m of t h e result of the previous opera t ion 
is c o m p u t e d . 

T h e pipel ine uses only a linear communica t ion p a t t e r n in which a processor communi
cates wi th its two neighbors . This p a t t e r n should be especially well sui ted to a mesh 
archi tecure . 

T h e pipel ine utilizes a small grain size where communica t ion be tween processors takes 
place frequently wi th respect to t he unit of work. This means t h a t busy-wait ing is 
the best m e t h o d for delaying a processor in t he pipeline, since o ther synchronizat ion 
pr imit ives are too t ime consuming. 

T h e re is no speculat ive parallelism is this level of parallelism. T h e same work is 
performed here as in the sequential case. T h e p r imary loss of efficiency is due to the 
overhead of spinning in a t ight loop while waiting for the pipeline to s tar t processing 
t h e next reduct ion sequence. 

,j!TnS °]d™Rgit t h e t ^ i t i o n a l processor memory model in which reads and writes to the memory 

ntroTucTmore" ffi , J" * N ™ P ^ H e l architectures h a S introduced more efficient, weak ordering models. 
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t e rms which are consumed by the next processor in the p ipe . W h e n no more reduct ions can 
t ake place, t he polynomial is added to t he basis. 
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Figure 5: Grobner Basis speedup curves - fine-grain a lgor i thm 

6 Combining the Two Levels of Parallelism 
T h e two forms of parallelism described above combine in a complementa ry fashion. T h e 
coarse-grain m e t h o d performs m a n y reduct ions in parallel; t he fine-grain m e t h o d parallelizes 
the reduct ion chains. We exper imented with a n u m b e r of processor scheduling mechanisms 
before choosing the one used in the implementa t ion . One version used a single work queue , 
ano the r separa te queues wi th locks, and the final version uses a fixed ordering among pro
cessors. We expect t h a t t he two forms of parallelism are independen t , since performing the 
pair expansions in parallel , only faster, reduces the average t ime between pair expansion and 
u p d a t i n g t h e set of pairs . Because of this speedup , the fraction of t ime spent in the critical 
section u p d a t i n g t h e shared d a t a increases. We believe t h a t this will not become a bot t le 
neck unti l hundreds of processors are used, bu t varying rat ios of processor to synchronizat ion 
speed across different archi tec tures may make this an i m p o r t a n t considerat ion. 

The r e were several s teps t aken in choosing the mechanism for scheduling t h e processes. 
These issues are closely coupled wi th the synchronizat ion techniques used in t h e reduct ion 
pipel ine, fur ther complicat ing t he problem. T h e first a t t e m p t to implement t h e a lgor i thm 
used a single queue of available processors, each of which would be assigned t h e next reduc
tion s tep anywhere in t h e global computa t ion . All synchronizat ion was implemented using 
m u t e x locks and c th read condit ions. T h e conceptual goals of this approach was clear: to 
provide nearly ideal load balancing as well as high-level synchronizat ion on a t ight ly-coupled 
shared memory mul t iprocessor . ( T h e Encore Mul t imax was t he first machine on which this 
technique was successfully implemented ; the PLUS implementa t ion came la t t e r . ) Unfortu
nately, t h e t ime between s ta r t ing reduct ion steps was too short ; t he central queue became a 
bot t leneck. At t h e same t ime , it also became clear t h a t condit ions were too heavy a synchro-
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nization pr imit ive to use for such short dura t ion opera t ions as t he t e r m by t e r m reduct ions 
in t he pipeline. T h e first design choice was to replace the pipeline synchronizat ion with only 
reads and wri tes . P roducers signaled t h e complet ion of a t e r m by increment ing a counter , 
while consumers busy-wai ted on the counter variable unt i l t h e nex t t e r m became available. 
T h e second design decision was to replace t h e single queue of processors with several sep
a ra t e queues , one for each level of coarse grain parallel ism. Processors now entered these 
queues and busy-wai ted on a variable in the queue entry. W h e n a reduct ion was assigned, 
t h e processor would be dequeued and would begin t he reduct ion opera t ion immediate ly , 
tak ing on the role of consumer initially, and t hen assigning ano ther processor to perform the 
next reduct ion and act ing as a p roducer of t e rms also. This implementa t ion allowed some 
speed-up , bu t was still slower t h a n expec ted . 

Once again, t h e problem was the synchronizat ion being too slow. A be t t e r design was to 
assign the processors a fixed order in t he reduct ion pipel ine. Each processor now consumes 
t e rms from only one processor, and its t e rms are in t u r n consumed by jus t one processor. 
T h e dequeue opera t ion becomes tr ivial , while t h e enqueue opera t ion d isappears entirely. 
This mechanism provides t h e best per formance , b u t forces some addi t ional const ra in ts on 
t h e implementa t ion . In par t icu lar , a processor in t h e reduc t ion pipeline can never signal the 
previous processor to change s t a t e or perform addi t ional work, because the re is no longer 
any reliable way to solve t h e race condit ions in t roduced by this t ype of synchronizat ion 
using only reads and wri tes . T h e result is t h a t it is no longer possible to dynamical ly 
move processors be tween different reduct ion pipel ines. I t is difficult to measure how much 
performance this costs t he overall a lgor i thm, b u t if t he re is large variance in t he n u m b e r of 
reduct ions performed in reducing different S-Polynomials , t he re would be significant benefit 
in this t ype of load balancing. 

Of course, on t he PLUS arch i tec ture , s ta t ic reduc t ion pipelines m a p perfectly to pro
cessors connected by a mesh topology. Each critical pair expansion is now performed by 
a row of processors communica t ing only wi th two neighbors . Only u p d a t i n g the basis and 
set of pairs requires access to a globally shared memory , which improves performance of the 
a lgor i thm on this t y p e of machine . 

A second t y p e of load balancing is t h a t of migra t ing processors be tween the coarse-grain 
m e t h o d and the fine-grain m e t h o d . Implemen ta t ion issues aside, it is not theoret ical ly clear 
when to move processors down to t he fine-grain level. A priori , it is impossible to de te rmine 
whe ther one pair will be deleted by expansion of ano the r pair . A stat is t ical measurement 
of t he fraction of pairs which are useful could be used as one load balancing heuris t ic , bu t 
a good global load balancing a lgor i thm would have to examine t h e ac tua l s t ruc tu re of the 
basis u n d e r const ruct ion and then use heurist ics to decide where processors may be used 
most fruitfully. 

In figure 6 below, we present performance results for t he full a lgor i thm with b o t h levels 
of parallel ism. (Box indicates Encore M u l t i m a x , Triangle indicates Plus Simulator) . T h e 
Rose example is large enough to benefit from t h e fine-grain paral lel ism, while t he Tr inks l 
example is too small to speedup using this approach . T h e difference be tween these two 
problems is t h a t the polynomials t h a t appea r in t h e first example t end to have 20 or more 
t e r m s , while the second example has polynomials wi th 10 or fewer t e r m s . T h e fine-grain 
parallelism only works when the re are m a n y t e rms to process in each polynomial . T h e Rose 
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example seems to be more typical of t he type of problems which arise in pract ice . A large 
mult iprocessor will be able to handle problems with many more polynomials in their basis. 
Such problems are also likely to genera te polynomials wi th proport ional ly more t e rms and 
larger coefficients. Since t h e fine-grain parallelism opera tes more efficiently as the size of the 
polynomials increase, these larger mult iprocessors will show increased speed up from this 
form of parallel ism. 

10 15 20 25 
Processors 

Speedups for Problem ROSE 
10 15 20 25 

Processors 
Speedups for Problem TRINKS 1 

Figure 6: Grobner Basis speedup curves - combined a lgor i thm 

Table 1 compares t he execut ion t ime of the a lgor i thm when different ratios of processors 
are assigned to t h e coarse-grain and fine-grain parallelism. T h e execution t imes for t h e 
sample Rose inpu t are presented in seconds. Each line in the table lists the t imes for an 
increasing number of processor groups . Each group executes an S-polynomial reduct ion in 
parallel wi th t he o ther groups . In each column, a different number of processors are assigned 
to perform fine-grain pipeline parallelism within each reduct ion group. For example , in 
the 2nd line, t he en t ry under t h e 3rd column repor ts the result when six processors were 
used, wi th two separa te S-polynomial reduct ions being performed in parallel by sets of th ree 
processors act ing as a fine-grain pipel ine. T h e table shows poor performance with 14 or 
15 processors , suggesting t h a t 2 or 3 of t h e sixteen processors were i n t e r rup t ed to execute 
sys tem rela ted functions dur ing t h e sample runs . T h e first column indicates tha+ relatively 
li t t le improvement is observed beyond five processors using only t h e coarse-grain parallel ism. 
Examina t ion of t he o ther columns clearly shows the benefit of assigning addi t ional processors 
to perform fine-grain parallel ism. 
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processors per group 
groups 1 2 3 4 5 

1 35.3 20.2 15.3 13.3 11.9 
2 11.6 8.4 6.5 5.7 5.6 
3 8.6 4.8 3.8 3.4 14.4 3 

4 5.9 4.0 2.9 
5 4.9 2.7 5.3 
6 4.7 2.6 
7 4.6 3.1 

Table 1: Rose example - execut ion t imes in seconds for various combinat ions of coarse and 
fine grain parallelism 

7 Analysis 
One problem encountered was t h e difficulty of implement ing the fine-grain reduct ion pipeline 
on the R P 3 . This form of parallelism depends on t r ansmi t t i ng t e rms from t h e p roducer to t h e 
consumer as quickly as possible. Whi le a uniform sha red-memory connect ing all processors 
to m e m o r y via a bus provides for ins tan t access to a t e r m as soon as it is wr i t t en , t h e 
R P 3 has a relatively slow global m e m o r y accessable t h rough a rou t ing ne twork . Reads and 
writes t ake place one word at a t ime over this network, making it difficult to pass t e rms 
efficiently be tween processors. Ideally, an a rchi tec ture of this t ype should suppor t a r emote 
wri te to ano ther processor 's local memory , allowing a faster exchange of d a t a . In this way 
t h e d a t a would only have to t raverse the network once, from produce r to consumer , ins tead 
of twice, from producer to global memory , and then from global m e m o r y to t he consumer . 
Ano the r possibili ty is to provide a pipelined block transfer of d a t a from local m e m o r y to 
local memory . 

T h e R P 3 m e m o r y a rch i tec ture also m a d e it difficult to store t he basis locally on each 
processor. Even though a m e m o r y region could be repl icated to a set of processors , no 
provision was m a d e for broadcas t ing new d a t a to t he repl icated memory . In order to achieve 
this functionali ty, each processor would have to check the global d a t a s t ruc tu re and manual ly 
copy the new d a t a to its local memory . Whi le this is consistent wi th t he phi losophy of not 
providing cache coherency on the machine , it makes t he implemen ta t ion slower, and more 
complex, t h a n it otherwise would be . 

Finally, no provision was m a d e to provide interprocessor i n t e r r u p t s directly to t he user 
process . This feature , which allows one processor to efficiently signal ano the r , could have 
been used to provide b e t t e r synchronizat ion, especially a busy-wai t ing implemen ta t ion of t h e 
m u t u a l exclusion a lgor i thm. Note t h a t wi thout this fea ture , busy-wai t ing requires cont inuous 
references to t he global memory , causing increased content ion for this critical resource, and 
thereby slowing down o ther processors doing useful work. 

In cont ras t , Plus provides a much more closely coupled m e m o r y sys tem th rough repli
ca ted memory. Wri t ing to a local m e m o r y locat ion which is repl icated t r anspa ren t ly sends 

3 The measured value was extremely volatile, with times falling in the range 7.0 to 21.7 
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a message carrying the new d a t a to o ther processors. This allows for efficient fine-grain per
formance, which is critical to utilizing larger numbers of processors efficiently. In addi t ion, a 
mesh topology is well sui ted to this problem because the fine-grain form of parallelism may 
be a r ranged as a line of neighbor- to-neighbor communica t ion . It is necessary to replicate the 
basis to all processors , bu t since u p d a t i n g t h e basis occurs infrequently, t h e impac t on overall 
per formance is relatively l imited. In a large sys tem with 256 or more processors , t h e inter
connect ion network might become overloaded because some processor would almost always 
be wri t ing and replicat ing a new basis polynomial . One technique to limit this effect would 
be to split the processors in to even and odd groups - each processor would store only half 
the basis, decreasing network load. Each polynomial would, on average, pass th rough one 
addi t ional processor in the reduct ion pipeline, in t roducing very l i t t le addi t ional cost. This 
technique could be generalized to any n u m b e r of processor spli t t ing sets , with processors 
selecting polynomials ei ther determinist ical ly or randomly. 

8 Conclusion 
T h e computa t ion of Grobner bases can be carried out in parallel . Taking advan tage of b e t t e r 
a lgor i thms, larger machines and scalable archi tec tures will allow much larger problems to 
be solved, as long as they do not exhibit t he in t rac tab le behavior of some of the artificial 
examples . The re are two different parallel techniques combined in this implementa t ion , 
demons t r a t ing t h a t b e t t e r overall performance can be achieved in this way, as opposed 
to relying on only one m e t h o d of parallelism. T h e cost of this is added complexi ty in 
t h e a lgor i thm, especially in t h e areas of load balancing and scheduling of processors. In 
addi t ion , this implementa t ion appears very sui table for one t y p e of non-uniform access shared 
m e m o r y machine . F u t u r e work should address how much and wha t t y p e of resources can be 
favorably exploi ted by this a lgor i thm as well as o ther symbolic computa t ions . In addi t ion, 
exper imenta l evidence and theoret ica l insight need to be combined to provide good heurist ics 
for migra t ing processors be tween the two me thods of parallel ism, and b e t t e r software tools 
and implementa t ion techniques are needed to actual ly make such an implementa t ion of t he 
a lgor i thm perform efficiently on larger machines . 

T h e ma in contr ibut ions of this work include: 

• Demons t r a t ing t h a t two dist inct types of parallelism m a y be combined in this a lgori thm 
to p roduce a more efficient implementa t ion . 

• Examin ing t h e m e t h o d s and issues involved in scheduling processors be tween the two 
parallel m e t h o d s . 

• Utilizing more processors by implement ing an a lgor i thm t h a t can effectively run on an 
a rch i tec ture o ther t h a n a bus-based shared m e m o r y mul t iprocessor , which is l imited 
m size. 

The re are several o ther directions in which to pursue t he Gr6bner basis a lgor i thm One 
is t he implemen ta t ion on a massively parallel a rch i tec ture , such as t h e Connect ion Machine 
Bo th implementa t ion issues, such as the me thods of coercing a decidedly M I M D algor i thm 
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with speculat ive parallelism into a determinis t ic SIMD form, as well as theoret ica l issues, 
such as the complexi ty of the algorithm over s t ronger computa t ion models with unit t ime 
pr imit ives for integer mult ipl icat ion and reduct ion need to be considered. Another promising 
area to invest igate is t h e technique of using mult iple orderings in t he same computa t ion , or of 
cons t ruc t ing or modifying the ordering as t he compu ta t ion unfolds, to increase per formance . 
A th i rd issue of concern is the behavior of the a lgor i thm on completely d i s t r ibu ted machines , 
including large hypercubes and general ne twork-connected d is t r ibu ted sys tems. Finally, a 
survey of t he pract ica l uses of t he a lgor i thm, and case s tudies of real world problems solvable 
by utilizing Grobner bases are necessary to de te rmine where to concent ra te future effort in 
improving implementa t ions of the a lgor i thm. 
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