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Abstract

This paper presents a new parallel algorithm to compute Grobner bases uti-
lizing two different forms of parallelism. A coarse-grain technique developed by
Jean-Phillipe Vidal expands and reduces S-polynomials in parallel. A fine-grain
technique, proposed by Melenk and Neun, constructs a pipeline of Processors
to overlap execution of the reduction operations. A hybrid algorithm that out-
performs both of the original approaches is presented below. I also discuss the
design and implementation approaches used to construct an efficient version of
this algorithm.

1 Introduction

Grébner bases are one of the basic tools of computational algebraic geometry, the branch
of mathematics which deals with the solution of sets of algebraic equations. Grébner bases
give a normal form to ideals in polynomial rings. Once a Grébner basis is found for the
corresponding ideals, it becomes easy to test if a polynomial belongs to an ideal, if two
ideals are equal, if an ideal is contained in another, and so on. The interested reader is
referred to Buchberger [4, 6], where one will find a complete introduction to Grébner bases,
a description of their computation, as well as a list of many applications. A review of the
various attempts to parallelize the algorithm can be found in (17].

The algorithm transforms a set of polynomials into another set of polynomials, a Grobner
basis generating the same ideal. These polynomials have rational coefficients, and indeter-
minates drawn from some finite set of variables. While the theory behind the algorithm is
quite complex, the actual computation is relatively simple to describe. This implementation
Is based on a version of the algorithm given by Gebauer and Moller (10,

The computation of Grobner bases require a great deal of time in practice. There are
several theoretical bounds but they are of limited use in predicting actual performance
because they are based on worst-case complexity which is unlikely to occur in practice. One
well known result is a double exponential lower bound due to Mayr and Meyer {12]. Even
when a particular instance of the problem does not require time approaching this bound,
it often requires a large amount of computation. One parameterized family of examples
due to Arnborg and Davenport appears to require time at least exponential in the number
of equations, but this is an artificial example. These experiments were carried out using
examples from the literature, but a more useful set of measurements would require the ability
to characterize and produce average case examples similar to those typically encountered
when the algorithm is used, for example, in a symbolic mathematical system to solve a set
of equations.

One way to speed up the solution of the problem is to transform the sequential algorithm
into a parallel one and execute it on a multiprocessor. There have been many attempts
over the past few years to develop an efficient parallel algorithm. In his thesis, Waitt (18],
and Buchberger himself [7] were the first to propose parallel algorithms to compute Grébner
bases but they did not implement them, nor attempt to measure or predict their performance.
Ponder [14] implemented corrected versions of Watt's algorithm but obtained only limited
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parallel speed-up. Melenk and Neun [13] designed a pipelined version of the most time
consuming step of the algorithm. They simulated it and obtained good parallel efficiency
for a small number of processes. More recently, Siegl [16] modified Buchberger’s parallel
version of the algorithm by distributing the basis, which is a set of polynomials, among the
processes. He implemented this version and obtained good performance for small examples.
Senechaud [15] had already implemented a similar version of the algorithm, but only for
Boolean polynomials. Vidal was the first to implement an efficient parallel algorithm on a
shared memory multiprocessor. This work, as well as a longer description of these different
attempts, can be found in [17].
The work presented here differs from the attempts described so far in several respects:

¢ The underlying architecture is a shared memory multiprocessor and the main objects
used during the computation are shared among all processes.

e The implementation can be used for problems of size significantly larger than the
other implementations. Also, in general, the parallel performance achieved is better
than that observed in the other implementations, especially for problems of large size.

e This implementation is the first one which combines two parallel schemes: the coarse-
grain level of parallelism similar to what Watt and Buchberger proposed is comple-
mented by a fine-grain level of parallelism similar to what Melenk and Neun proposed.
After we discuss these two parallel schemes, we will see how well both combine in one
algorithm.

In section 2, we present a brief description of the various machines on which these experi-
ments were performed. In section 3, we give an introduction to the Grobner basis algorithm.
In section 4, we present the coarse-grain parallelism of Vidal. In section 5, we describe the
fine-grain parallelism using reduction pipelines, and point out the key issues in the imple-
mentation. In section 6, we discuss the combined version of the algorithm and the various
scheduling and load balancing issues. In section 7, we analyze the various implementations.
In section 8, we conclude with a discussion of additional work and future directions.

2 Multiprocessor Architectures Used in the Imple-
mentation '

A wide variety of multiprocessor architectures have been described in the literature over the
past few years. The characteristics of these architectures vary widely and are determined by
the available technology, the class of applications addressed, the trade-offs between processor
speed, memory system complexity and communication costs, and other design decisions. In
‘this paper, we describe algorithms implemented on three shared memory architectures.
The Encore Multimax is a classic shared memory multiprocessor using a central bus for
communication between processors and main memory. Each processor has a local cache
and uses a snooping protocol to maintain cache coherency. The Multimax is suitable for
medium and coarse grained parallel applications [9]. The particular machine used in these
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experiments had 16 National Semiconductor 32332 processors, each rated at roughly 2 MIPS,
and 32 megabytes of shared memory. The local cache size is 4K bytes, shared between two
Processors.

The RP3 is a large-scale research parallel processor developed at the IBM T. J. Watson
Research Center. The machine consists of a number of processor-memeory elements connected
by an Omega-interconnection network. Local memory references are handled immediately,
while remote memory references must be resolved over the network. The architecture pro-
vides three types of memory pages: local pages, global pages, and replicated pages. The
machine does not support automatic cache coherency; instead, cache management is the
responsibility of the programmer or compiler '11]. The virtual memory interface ailows
each page to be marked as cacheable or non-cacheable, as well as allowing the cache to be
flushed under user level control. The current version of the system has 64 ROMP processors.
Each processor has 8 megabytes of storage, and a 64K byte local cache shared between two
processors.

The Plus architecture (2] is a mesh of processor-memory elements connected by a de-
terministic routing network. The routers always send messages along an L-shaped path in
the mesh, so that the message first propagates vertically, then horizontally to the destina-
tion. Remote memory references are transparently routed to the appropriate destination.
In addition several special features enhance this basic design. Local computation proceeds
while remote writes are being completed, increasing overall throughput. When needed, a
fence operation is used to stall the local processor until all remote writes have completed.
Also, any page in memory may be replicated to other processing nodes. Reads from these
replicated pages are handled locally, while writes are directed to the master copy of the page
and transparently propagated to all replicated copies. This allows the processor which owns
the page to write it without stopping, while the hardware keeps track of these writes and
updates the memory of other processors which have a copy of the page. Tuning an appli-
cation to run on this architecture involves studying reference patterns of the algorithm and
selecting 2 memory replication scheme that minimizes remote read references, while limiting
remote writes and overall network traffic. This type of architecture is expected to perform
better than a pure message-passing architecture because additional hardware supports the
remote memory references, as opposed to a software layer processing these memory requests.
The experiments described in the paper were run on the Plus simulator. A machine with 40
nodes is currently under construction.

These implementations were all written in C and use the C-Threads package [8') which
allows parallel programming under the MACH operating system [1]. The programming
model provided by C-Threads is one of many executing processes sharing a common global
address space. Synchronization is provided through locks for mutual exclusion and conditions
for waiting and signaling of events. The model is augmented on the non-uniform memory
access machines to provide for the assignment of specific threads to specific processors, and
for controlling the placement and replication policy of memory pages.



3 The Basic Algorithm

The primitive step of the computation, called reduction, involves deleting the first term of
the current working polynomial, called the S-polynomial, by subtraction of an appropriate
multiple of a polynomial already in the set. The result of this reduction is of lower order,
but not necessarily smaller in size or number of terms. A polynomial is totally reduced with
respect to a set of polynomials when no further reduction is possible.

Reduce( P,Q) := {
Assert(Q reduces P)
G := LCM(LeadingTerm{F), Leading Term(Q))
M, := G/ LeadingTerm(P)
M, := G/ Leading Term(Q)
Reduce := M, - P — My - ()
}

Reduce{x®y? + 227y + 3,22y + y) :=
G = LCM(zy?,22%y?) = 2z°y°
M,=2,M,=x
Reduce := 2 - (z®y? + 22y + 3) —z - (227" + y)
= 4z’y — 2y

The S-polynomial of two polynomials already in the set is computed by finding the least
common multiple of the leading terms, multiplying by appropriate monomials to make the
two leading terms equal, and then finding the difference of these polynomials. Intuitively,
each polynomial is scaled by the smallest factor such that the lead terms become equal;
subtracting them cancels out the lead terms.

SpollP,Q) = {
G := LCM(LeadingTerm(P}, Leading Term(Q))
K, := G/LeadingTerm(P)
M, := G/ LeadingTerm{Q)
Spol := M, -P— M, -Q
}

Spol(2z®y + 3zy + 1,3zy® + 2y + 2y + 2) =
G = LCM(2z%y,3zy*) = 62y°
K, = 627y*/22%y = 3y, M, = 62%y*/3zy® = 2z
Spol = 3y - (2z%y + 32y + 1) — 2z - (3zy” + oy + 2y + 2)
= —2z%y + 9zy? — 4oy — 4z + 3y

The simplest form of the algorithm can now be stated, and is presented in figure 1.
Termination is guaranteed by restrictions on the ordering of terms in each polynomial. For
our discussion, it is enough that such orderings exist. :

The algorithm begins with the input set B, and constructs the set P of all pairs of
distinct polynomials in B. Then, while pairs remain, the algorithm processes a pair from
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GrobnerBasis(B) := {
P = {(bi,bj)fbi,bj € B,: i ]}
while (P not empty) {
choose and delete any pair (b, b;) from P,
s := Spol(b;,b;)
while (3r € P which reduces s) {
5 := Reduce(s,r)

if (5 0) {
P:=P_(sx B)
B := B {s}

Figure 1: The Grébner basis algorithm

P. This processing consists of computing the S-polynomial of the pair, and then reducing
it with the polynomials in B until no further reductjons are possibie. Sometimes, the §-
polynomial reduces all the way to 0, in which case the algorithm proceeds to the next
iteration of the loop with no additional work. However, if the S-polynomial reduces to a
non-zero polynomial, then this new polynomial is added to the set B. In addition, the new
polynomial is paired with each polynomial already in B, and these additional pairs are added
to the set P. Eventually, the set of pairs is empty, and the algorithm terminates. It should be
noted that while B is a Grobner basis upon termination, a follow-up step to transform B into
a reduced Grébner basis is often needed, (This is accomplished by reducing each element of
the basis by the other polynomials, which in effect means that the final polynomials added
to the basis are used to eliminate those polynomials that were produced earlier, and are no
longer necessary to span the ideal.}) We have not addressed that step in this paper, although
some of the techniques presented here can also be applied.

Of course, the order in which the pairs are selected is very important to the practical
efficiency of the algorithm. One heuristic is to select the pair whose S-polynomial has
the smallest leading term under the selected order. In addition, several tests have been
developed to delete pairs whose S-polynomial will reduce to zero. These criteria can be
found in [5, 10] and involve testing for certain constraints on the leading terms. The order in
which reductions are performed is less well defined; in this implementation we use the order
in which the polynomials first appear when searching for a reducing polynomial. Most of
the computation time is spent in the S-polynomial and reduction steps.

The typical computation described below consists of tens to hundreds of S-polynomial
computations and hundreds to thousands of reduction steps. Because of the very rapid
growth in the actual complexity of the problem, larger inputs will tend to produce polyno-
mials with more terms and larger coefficients. In our sample executions, we observed that
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the total number of S-polynomials actually reduced does not grow as |B|?, where B is the
number of polynomials in the basis, but at a somewhat greater than linear rate. This 1s
an important difference from some of the earlier parallel algorithms, in which every pair of
polynomials in the basis was used to compute an S-polynomial.

4 Coarse Grain Parallelism.

Most of the computation time in the algorithm is spent in reducing the S-Polynomials. Since
neither the basis B, nor the set of pairs are changed during this step of the computation.
the algorithm could reduce several pairs simultaneously on different processors. The only
immediate bound on the parallelism of this technique is that there are only a fixed number
of pairs under consideration at any point in the algorithm.

In this parallel algorithm, the basis of polynomials is an append-only structure. Once a
polynomial is added to the basis, it becomes read-only, allowing the basis to be replicated
to the local memory of each processor if the architecture supports such a facility. The
only other shared data structure is the set of pairs currently under consideration. One
possible technique would be to have each processor maintain a local set of pairs, and expand
those completely before contacting other processors for work. Unfortunately, the algorithm’s
performance depends on the pairs being expanded in a particular order. Any type of locally
maintained structure would necessitate changing the order of expansion, causing much more
work to be done. For this reason, there is a single, shared set of pairs, which is protected
by a lock which is acquired whenever the set needs to be modified. When a processor starts
execution, it locks the set, removes and deletes the first pair, unlocks the set, and proceeds
with the S-Polynomial expansion and reduction process. When a reduced polynomial is
ready for addition to the basis, the processor locks the set of pairs, updates the set of pairs
to include new pairs between the basis and the additional polynomial, and appends the
polynomial to the basis, replicating it if appropriate. It then releases the lock, and begins
the process all over again. {This single shared lock is potentially a bottleneck, but is not
expected to become a problem because of two factors. First, the critical sections protected
by the lock are very short when compared to the rest of the computation. Second, the
structure of the problem decreases the utility of expanding too many pairs at once. This
means that relatively few processors will contend for the lock at one time, as any additional
processors will be executing the pipeline parallelism described in the next section.)

If no pairs are available when a processor acquires the lock, then it checks to see if all
other processors are also waiting. If so, then the algorithm has completed, and a post-
processing stage is executed. If other processors are still executing, the current processor
performs a condition_wait operation until it receives a signal from another processor that
new pairs are available. Figure 2 illustrates the progress of several processors executing the
parallel algorithm. Note that processors can always read any polynomial, and need the lock
only to add a new polynomial to the basis.
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The parallelism exploited by this method is speculative parallelism®, meaning that some-
times a pair will be expanded in parallel that would have been deleted in the sequential case.
This reduces the efficiency of the parallel algorithm because some of the work performed is
useless — expanding the S-polynomial of the pair will produce, after much computation, the
zero polynomial. Nevertheless, most of the pairs expanded in parallel are useful, and de-
crease the amount of time needed to find the Grobner basis. The algorithm can be viewed
as a search algorithm, with the nodes to be explored being the critical pairs. A pair which
reduces to the zero polynomial is a leaf node. Sometimes, expanding a critical pair produces
many other pairs, which are then put on the list of work to perform, and as a side effect, we
note the polynomial produced. Other pairs produce only the zero polynomial, and no new
pairs to be expanded. The algorithm terminates when the search space has been completely
explored, either by expanding or deleting each critical pair. Of course, the introduction of
new polynomials in the basis also prunes the search space, by causing more critical pairs to
reduce to zero. One modest improvement to the algorithm can be made by pruning more
frequently, particularly by checking to see if the pairs being expanded by other processors
could be deleted by a polynomial just now being added to the basis. If so, then the other
processors abort their current work and begin work on a new pair. This reduces some of the
penalty associated with the speculative parallelism.

Because this is a searching algorithm, the parallel algorithm can be expected to demon-
strate super-linear speedup on some inputs because of the opportunity to expand an impor-
tant pair earlier than a sequential implementation would do so. This more or less points out
that some of the speedup is due not to the parallel machine we are executing on, but to the
concurrent structure of the algorithm. This speedup might also occur on a uniprocessor, if
the costs of context switching and memory locality overhead could be adequately minimized.

Typical data runs vary over a wide range, with small inputs taking milliseconds and mod-
est ones hundreds or thousands of seconds on a sequential 2-MIPS processor. Larger inputs
require much more computation; an interesting area of inquiry is to discover if larger inputs
can be effectively computed using a larger parallel processor, or if the intractable nature of
the problem dominates on typical inputs as well as artificial examples. If the opportunity
for parallelism grows at least as rapidly as the amount of computation required for a given
problem size, then large parallel processors will be useful for solving these problems. On the
other hand, if the potential parallelism in the algorithm grows more slowly than the total
computation required, then these large machines will not be able to significantly increase the
size of problem instances which can be computed. As expected, the larger inputs benefit the
most from larger numbers of processors. However, inputs with only a very few large poly-
nomials, or which produce only a limited number of pairs at any stage in the compuation,
benefit. less from additional processors. Figure 3 presents the speedup versus number of pro-
cessors for two examples from the literature [3]. (Box indicates Multimax, Circle indicates
IBM RP3, Triangle indicates Plus Simulater). On a single Multimax processor, the Rose
example requires about 35 seconds, while the Trinksl example requires only 10 seconds.

1$peculative parallelism is the eager evaluation of a subtask in a computation before the necessity of
performing this work is known. If the subtask had to be performed anyways, the algorithm benefits from
increased concurrency. On the other hand, if the subtask could have been avoided, some computation time
has been spent uselessly.
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Figure 3: Grobner Basis speedup curves - coarse-grain algorithm

In summary, these are the principal characteristics of the coarse-grain parallelism of the
Grébner Basis algorithm:

* Infrequent access to data structures in the critical sections — the algorithm spends a
small fraction of time updating the set of pairs and the basis of polynomials while
holding an exclusive write lock. This allows the processors to work efficiently in par-

alllel.

* Good Memory Reference Pattern — The algorithm creates and appends new polyno-
mials to the basis, never changing an old polynomial. This means that on distributed
memory architectures such as PLUS, the polynomials may be replicated locally on
each processor. In addition, only the operations on the set of pairs require a globally
shared read/write reference pattern, limiting the performance penalty of local versus
global memory.

» Global ordering on work - The algorithm requires that the critical pairs be processed in
a particular sorted order for efficiency reasons. This prevents a structure in which each
processor keeps a local work queue, and instead requires the algorithm to maintain a
globally ordered work queue.

e Speculative Parallelism in a Searching Algorithm — This problem may be viewed as a
parallel search. As such, this parallelism is often speculative, in that the same work
might not be performed by the sequential version. Because of this speculative nature,
the algorithm may exhibit superlinear speed-up because some of the important critical
pairs may be expanded and reduced earlier in the parallel computation than in the
sequential one.



5 Fine Grain Parallelism

At the heart of the Grobner basis computation is the operation of reduction, in which
one polynomial is used to eliminate the most significant term from an initial polynomial.
Speeding up this step is critical to improving the performance of the algorithm.

The source of fine-grain parallelism in the algorithm occurs in the reduction loop. The
key observation of Melenk and Neun [13] is that the algorithm only branches based on the
leading power product of the polynomials. This means that as soon as the first term of any
polynomial is computed, the next step of the algorithm may begin concurrently with the
computation of the remainder of the polynomial.

In this implementation, the pipeline of processors is constructed explicitly with a proces-
sor assigned to computing one reduction, and then reentering the computation at another
reduction step. In contrast, Melenk and Neun used a Lisp implementation with a dataflow
style. Under this approach, processes block, waiting for a term to be completed, and yield
the processor to perform other work in the algorithm. Since a single big number multiplica-
tion dominates the computation, our implementation spins instead of context switching to
another thread, because the time to begin work on another reduction is much longer than
the time spent busy waiting. In this way we also avoid the overhead of scheduling each term
as a separate unit of work.

The reduction loop consists of searching the list of polynomials for a reducing polyno-
mial, then setting up the reduction, and finally performing it term by term. The critical
observation here is that the next iteration of the loop will examine the terms in the same
order as they are produced.

In order to exploit this parallelism, this implementation stores two synchronization fields
with the polynomial. A size field keeps track of the number of terms and a done flag
indicates that this polynomial is complete or still under construction. The reduction process
begins as in the sequential case with an examination of the leading term and a search for a
reducing polynomial. Then before actually computing the reduction, a second processor is
assigned the task of performing the next loop iteration. The second processor busy waits,
checking for either a new term or a done indication, while the first processor computes the
polynomial term by term. When the first processor finishes, it will wait once more in a queue
to be assigned additional work. The second processor, meanwhile, waits for a term to be
produced. Once a term is produced, the polynomial is definitely known to be non-zero, and
the second processor will search for another reducing polynomial. If the search is successful,
the second processor will assign a third processor to consume the next intermediate result,
and the process repeats. If no terms are produced, and the done flag is set, then the second
processor has detected a zero polynomial. ‘There is no need to update the pairs set, and a
new pair may be expanded. If the search for another reduction fails the second processor
begins the update-pairs routine, in which useless pairs are deleted and the new pairs are
added. This overlaps with the previous computation. This processor then begins expansion
of the next pair. The S-polynomial expansion may be forced to wait because one of the
polynomials in the pair may still be incomplete. The code to compute the S-polynomials
uses the same synchronization technique to consume terms as they are produced, overlapping
additional computation and providing better speedup. Figure 4 illustrates the various stages
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in the pipelined computation.

There are several issues to point out about this pipelined reduction process. (1) The
busy waiting loops all spin on two cached variables. This means that the busy waiting does
not saturate the bus and slow other processors down. (2) Once the reduction begins, each
processor in the pipeline consumes terms at approximately the same speed as the previous
processors produces them; therefore very little time is spent busy-waiting in the middle of
a reduction pipeline. (3) Because the synchronization constraints flow in one direction only,
no synchronization primitives are used beyond strong ordering® of reads and writes. (4)
There is no speculative parallelism in this part of the computation. Each reduction must be
performed, and this approach simply overlaps the computation performed by the inner loop
as much as possible.

Figure 5 presents the speedup versus number of processors for the Butcher example from
the literature. (Box indicates Encore Multimax). The software pipeline mechanism was not
implemented on the RP3 because of the demand for very tight coupling between processors,
which was unavailable on that machine.

The principal characteristics of the fine-grain parallelism include the following:

¢ The basic reduction step can be implemented as a pipeline. This means the next
operation may begin as soon as the first term of the result of the previous operation
i1s computed.

* The pipeline uses only a linear communication pattern in which a processor communi-
cates with its two neighbors. This pattern should be especially well suited to a mesh
architecure.

» The pipeline utilizes a small grain size where communication between processors takes
place frequently with respect to the unit of work. This means that busy-waiting is
the best method for delaying a processor in the pipeline, since other synchronization
primitives are too time consuming.

¢ There is no speculative parallelism is this level of parallelism. The same work is
performed here as in the sequential case. The primary loss of efficiency is due to the
overhead of spinning in a tight loop while waiting for the pipeline to start processing
the next reduction sequence.

2Strong ordering is the traditional processor memoty model in which reads and writes to the memory
system complete in the order in which they are issued by the processor. New parallel .architectures have
introduced more efficient, weak ordering models.
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6 Combining the Two Levels of Parallelism

The two forms of parallelism described above combine in a complementary fashion. The
coarse-grain method performs many reductions in parallel; the fine-grain method parallelizes
the reduction chains. We experimented with a number of processor scheduling mechanisms
before choosing the one used in the implementation. Omne version used a single work queue,
another separate queues with locks, and the final version uses a fixed ordering among pro-
cessors. We expect that the two forms of parallelism are independent, since performing the
pair expansions in parallel, only faster, reduces the average time between pair expansion and
updating the set of pairs. Because of this speedup, the fraction of time spent in the critical
section updating the shared data increases. We believe that this will not become a bottle-
neck until hundreds of processors are used, but varying ratios of processor to synchronization
speed across different architectures may make this an important consideration.

There were several steps taken in choosing the mechanism for scheduling the processes.
These issues are closely coupled with the synchronization techniques used in the reduction
pipeline, further complicating the problem. The first attempt to implement the algorithm
used a single queue of available processors, each of which would be assigned the next reduc-
tion step anywhere in the global computation. All synchronization was implemented using
mutex locks and cthread conditions. The conceptual goals of this approach was clear: to
provide nearly ideal load balancing as well as high-level synchronization on a tightly-coupled
shared memory multiprocessor. (The Encore Multimax was the first machine on which this
technique was successfully implemented; the PLUS implementation came latter.) Unfortu-
nately, the time between starting reduction steps was too short; the central queue became a
bottleneck. At the same time, it also became clear that conditions were too heavy a synchro-
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nization primitive to use for such short duration operations as the term by term reductions
in the pipeline. The first design choice was to replace the pipeline synchronization with only
reads and writes. Producers signaled the completion of a term by incrementing a counter,
while consumers busy-waited on the counter variable until the next term became available.
The second design decision was to replace the single queue of processors with several sep-
arate queues, one for each level of coarse grain parallelism. Processors now entered these
queues and busy-waited on a variable in the queue entry. When a reduction was assigned,
the processor would be dequeued and would begin the reduction operation immediately,
taking on the role of consumer initially, and then assigning another processor to perform the
next reduction and acting as a producer of terms also. This implementation allowed some
speed-up, but was still slower than expected.

Once again, the problem was the synchronization being too slow. A better design was 10
assign the processors a fixed order in the reduction pipeline. Each processor now consumes
terms from only one processor, and its terms are in turn consumed by just one processor.
The dequeune operation becomes trivial, while the enqueue operation disappears entirely.
This mechanism provides the best performance, but forces some additional constraints on
the implementation. In particular, a processor in the reduction pipeline can never signal the
previous processor to change state or perform additional work, because there is no longer
any reliable way to solve the race conditions introduced by this type of synchronization
using only reads and writes. The result is that it is no longer possible to dynamically
move processors between different reduction pipelines. It is difficult to measure how much
performance this costs the overall algorithm, but if there is large variance in the number of
reductions performed in reducing different S-Polynomials, there would be significant benefit
in this type of load balancing.

Of course, on the PLUS architecture, static reduction pipelines map perfectly to pro-
cessors connected by a mesh topology. Each critical pair expansion is now performed by
a row of processors communicating only with two neighbors. Only updating the basis and
set of pairs requires access to a globally shared memory, which improves performance of the
algorithm on this type of machine.

A second type of load balancing is that of migrating processors between the coarse-grain
method and the fine-grain method. Implementation issues aside, it is not theoretically clear
when to move processors down to the fine-grain level. A priorm, it is impossible to determine
whether one pair will be deleted by expansion of another pair. A statistical measurement
of the fraction of pairs which are useful could be used as one load balancing heuristic, but
a good global load balancing algorithm would have to examine the actual structure of the
basis under construction and then use heuristics to decide where processors may be used
most fruitfully.

In figure 6 below, we present performance results for the full algorithm with both levels
of parallelism. (Box indicates Encore Multimax, Triangle indicates Plus Simulator}. The
Rose example is large enough to benefit from the fine-grain parallelism, while the Trinksl
example is too small to speedup using this approach. The difference between these two
problems is that the polynomials that appear in the first example tend to have 20 or more
terms, while the second example has polynomials with 10 or fewer terms. The fine-grain
parallelism only works when there are many terms to process in each polynomial. The Rose
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example seems to be more typical of the type of problems which arise in practice. A large
multiprocessor will be able to handle problems with many more polynomials in their basis.
Such problems are also likely to generate polynomials with proportionally more terms and
lazger coefficients. Since the fine-grain parallelism operates more efficiently as the size of the
polynomials increase, these larger multiprocessors will show increased speed up from this
form of parallelism.
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Figure 6: Grébner Basis speedup curves - combined algorithm

Table 1 compares the execution time of the algorithm when different ratios of processors
are assigned to the coarse-grain and fine-grain parallelism. The execution times for the
sample Rose input are presented in seconds. Each line in the table lists the times for an
increasing number of processor groups. Each group executes an S-polynomial reduction in
parallel with the other groups. In each column, a different number of processors are assigned
to perform fine-grain pipeline parallelism within each reduction group. For example, in
the 2nd line, the entry under the 3rd column reports the result when six processors were
used, with two separate S-polynomial reductions being performed in parallel by sets of three
Processors acting as a fine-grain pipeline. The table shows poor performance with 14 or
15 processors, suggesting that 2 or 3 of the sixteen processors were interrupted to execute
system related functions during the sample runs. The first column indicates that relatively
little improvement is observed beyond five processors using only the coarse-grain parallelism.
Examination of the other columns clearly shows the benefit of assigning additional processors
to perform fine-grain parallelism.
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ProOCessors per group
groups 1 2 3 4 5

11353 202 153 133 119
21116 84 65 57 56
3| 86 48 38 3.4 14.4°
4] 59 40 29

51 49 27 53

6, 4.7 2.8

71 46 3.1

Table 1: Rose example - execution times in seconds for various combinations of coarse and
fine grain parallelism

7 Analysis

One problem encountered was the difficulty of implementing the fine-grain reduction pipeline
on the RP3. This form of parallelism depends on transmitting terms from the producer to the
consumer as quickly as possible. While a uniform shared-memory connecting all processors
to memory via a bus provides for instant access to a term as soon as it is written, the
RP3 has a relatively slow global memory accessable through a routing network. Reads and
writes take place one word at a time over this network, making it difficult to pass terms
efficiently between processors. Ideally, an architecture of this type should support a remote
write to another processor’s local memory, allowing a faster exchange of data. In this way
the data would only have to traverse the network once, from producer to consumer, instead
of twice, from producer to global memory, and then from global memory to the consumer.
Another possibility is to provide a pipelined block transfer of data from local memory to
local memory.

The RP3 memory architecture also made it difficult to store the basis locally on each
processor. Even though a memory region could be replicated to a set of processors, no
provision was made for broadcasting new data to the replicated memory. In order to achieve
this functionality, each processor would have to check the global data structure and manually
copy the new data to its local memory. While this is consistent with the philosophy of not
providing cache coherency on the machine, it makes the implementation slower, and more
complex, than it otherwise would be.

Finally, no provision was made to provide interprocessor interrupts directly to the user
process. This feature, which allows one processor to efficiently signal another, could have
been used to provide better synchronization, especially a busy-waitinr7 implementation of the
mutual exclusion algorithm. Note that without this feature, busy-waiting requires continuous
references to the global memory, causing increased contention for this critical resource, and
thereby slowing down other processors doing useful work.

In contrast, Plus provides a much more closely coupled memory system through repli-
cated memory. Writing to a local memory location which is replicated transparently sends

3The measured value was extremely volatile, with times falling in the range 7.0 to 21.7
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a message carrying the new data to other processors. This allows for efficient fine-grain per-
formance, which is eritical to utilizing larger numbers of processors efficiently. In addition, a
mesh topology is well suited to this problem because the fine-grain form of parallelism may
be arranged as a line of neighbor-to-neighbor communication. It is necessary to replicate the
basis to all processors, but since updating the basis occurs infrequently, the impact on overall
performance is relatively limited. In a large system with 256 or more processors, the inter-
connection network might become overloaded because some processor would almost always
be writing and replicating a new basis polynomial. One technique to limit this effect would
be to split the processors into even and odd groups - each processor would store only half
the basis, decreasing network load. Each polynomial would, on average, pass through one
additional processor in the reduction pipeline, introducing very little additional cost. This
technique could be generalized to any number of processor splitting sets, with Processors
selecting polynomials either deterministically or randomly.

8 Conclusion

The computation of Grébner bases can be carried out in parallel. Taking advantage of better
algorithms, larger machines and scalable architectures will allow much larger problems to
be solved, as long as they do not exhibit the intractable behavior of some of the artificial
examples. There are two different parallel techniques combined in this implementation,
demonstrating that better overall performance can be achieved in this way, as opposed
to relying on only one method of parallelism. The cost of this is added complexity in
the algorithm, especially in the areas of load balancing and scheduling of processors. In
addition, this implementation appears very suitable for one type of non-uniform access shared
memory machine. Future work should address how much and what type of resources can be
favorably exploited by this algorithm as well as other symbolic computations. In addition,
experimental evidence and theoretical insight need to be combined to provide good heuristics
for migrating processors between the two methods of parallelism, and better software tools
and implementation techniques are needed to actually make such an implementation of the
algorithm perform efficiently on larger machines.

The main contributions of this work include:

¢ Demonstrating that two distinct types of parallelisn may be combined in this algorithm
to produce a more efficient implementation.

* Examining the methods and issues involved in scheduling processors between the two
parallel methods.

e Utilizing more processors by implementing an algorithm that can effectively run on an
architecture other than a bus-based shared memory multiprocessor, which is limited
in size.

There are several other directions in which to pursue the Grébner basis algorithm. One
is the implementation on a massively parallel architecture, such as the Connection Machine.
Both implementation issues, such as the methods of coercing a decidedly MIMD algorithm
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with speculative parallelism into a deterministic SIMD form, as well as theoretical issues.
such as the complexity of the algorithm over stronger computation models with unit time
primitives for integer multiplication and reduction need to be considered. Another promising
area to investigate is the technique of using multiple orderings in the same computation, or of
constructing or modifying the ordering as the computation unfolds, to increase performance.
A third issue of concern is the behavior of the algorithm on completely distributed machines,
including large hypercubes and general network-connected distributed systems. Finally, a
survey of the practical uses of the algorithm, and case studies of real world problems solvable
by utilizing Grébner bases are necessary to determine where to concentrate future effort in
improving implementations of the algorithm.
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