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Abstract 

We investigate two published approaches to the problem of estimating frac­
tal dimension: the box-counting approach, and the fractal Brownian function 
approach. In experiments with synthetic images, we find the fractal Brow­
nian function methods proposed by Pentland and Yokoya to be superior to 
the box-counting approaches described by Voss, because the former do not 
require data sampled at equal intervals, and are more robust to Gaussian 
noise. For experiments with real images, we extend the fractal Brownian 
function methods to accommodate irregularly sampled data supplied by a 
scanning laser rangefinder. Applying the extended methods to noisy range 
imagery of natural terrain (sand and rocks), we find (1) that the resulting 
estimates of fractal dimension correlate closely to the human perception of 
the roughness of the terrain, (2) that it is appropriate to model the natural 
terrain studied as a fractal Brownian function, and (3) that the fractal di­
mension of the sensed point set is a practical and effective measure of the 
roughness of natural terrain. 
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Figure 1: Synthesized one-dimensional fractal patterns 
The figure shows three fractal patterns exhibiting fractional Brownian motion. For the upper pattern, the 
fractal dimension is D = 1.8. For the middle, D = 1.5, and for the lower, D = 1.2. 

1 Introduction 
Many problems in the analysis of natural surface shapes and the construction of terrain maps to 
model them remain unsolved. One reason is that the familiar Euclidean geometry of regular shapes, 
such as surfaces of revolution, does not capture well the irregular and less structured shapes found 
in nature, such as a boulder field, or surf washing onto a beach. 

Mandelbrot [12, 13, 14] proposed fractals as a family of mathematical functions to describe 
natural phenomena such as coastlines, mountains, branching patterns of trees and rivers, clouds, 
and earthquakes. Figure 1 illustrates three fractal patterns with different fractal dimensions. Since 
Mandelbrot introduced them, fractal sets and functions have been found to describe many other 
environmental properties [1], and have received a great deal of attention from scientists, artists, 
and others. 

Researchers in computer graphics and image understanding have applied fractal theory to a 
variety of problems. In computer graphics, fractals have been used to synthesize models of complex 
natural objects such as trees, mountain ranges, and clouds [20]. The rendered images and models 
exhibit a high level of realism compared to previous efforts. In image understanding, fractals 
have been employed to analyze projections of natural scenes. Since our research concentrates on 
analysis rather than synthesis, in the following we review briefly the image understanding literature 
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on fractal analysis, which addresses modeling the shapes of natural objects, segmenting textured 
surfaces, and interpolating natural surfaces. 

For modeling shapes of natural objects, Pentland [18] presents a method to estimate fractal 
dimension from the "second-order statistics" of image intensities. He goes on to show that 
measurements of fractal dimension may be used to measure perspective gradient, thus providing 
an independent check on estimates of surface orientation derived from analysis of foreshortening. 
Kube and Pentland [9] report that, given certain assumptions (Lambertian reflectance, modest 
surface slopes, and the absence of occlusions and self-shadowing), a fractal surface with power 
spectrum proportional tof ~'j produces an image with power spectrum proportional t o / 2 - ' . 

Keller et al. [8] estimate the fractal dimension using a least-square linear fit, and use it 
to distinguish silhouettes of trees from silhouettes of mountains. Dubuc [2] and Dubuc et al. 
[3] develop a method, called the variation method, for estimating the fractal dimension of both 
curves and surfaces. Maragos and Sun [15] use morphological operations with varying structuring 
elements to evaluate the fractal dimension of arbitrary fractal sets. They develop an iterative 
optimization method that converges to the true fractal dimension. 

For segmenting textured surfaces, Pentland [18] computes a self-similarity parameter and uses 
it to segment real images of scenes of urban areas, mountains, and deserts. He reports classification 
accuracies of 84 and 88 percent on Brodatz texture patterns. Peleg et al. [17] derive a set of 48 
features based on the ^-blanket method of estimating fractal dimension suggested by Mandelbrot 
[13]. They use these features as global characteristics to recognize 128 x 128 patches of natural 
textures. Medioni and Yasumoto [16] report that fractal dimension alone does not provide sufficient 
discriminatory power to classify natural textures. Their results are confirmed by Keller et al. [7], 
who use estimates of fractal dimension together with features based on the concept of lacunarity 
as global signatures of texture and as local measurements of texture for segmentation purposes, 
They present segmentation results for 8 Brodatz texture patterns, an outdoor scene, and a variety 
of artificial patterns. 

Kaneko [6] extends the concept of fractal dimension (as described and applied to texture 
analysis in his earlier work [5]) to a fractal matrix. This is a multi-dimensional generalization of 
the fractal dimension, which is a scalar. He applies the fractal matrix model to analyze and classify 
13 Brodatz patterns. 

For interpolating natural surfaces, Yokoya et al. [22] adopt a recursive midpoint displacement 
scheme using four neighbors to interpolate natural surfaces. They compute two features—a self-
similarity parameter and the standard deviation of the distribution function—and use them for 
stochastic interpolation in order to preserve the statistical characteristics of the true surface. 

The work on modeling natural shapes, segmenting textured surfaces, and interpolating natural 
surfaces represents significant advances. In this paper, we extend the work on estimating fractal 
dimension to patterns of natural terrain acquired by a laser rangefinder sensor [11]. Using the 
sensor, we can only acquire fairly noisy depth data and the observed points are not spaced regularly 
in Cartesian system. Therefore, we first refer to some proposed techniques for estimating fractal 
dimension and address their applicability to our purpose. In Section 2, we review some of the 
techniques proposed for estimating fractal dimension from digitized data. Next, we investigate and 
compare experimentally two of the techniques, paying attention to the issues of robustness against 
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sensor noise, and applicability to irregularly sampled data. Finally, we discuss the results, and 
conclude that the fractal dimension estimates can be used as a reasonable measure of the roughness 
of natural terrain. 
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2 Estimating Fractal Dimension 
Of the many methods proposed to estimate fractal dimension, we concentrate on two: box-counting 
approaches, and fractal Brownian function approaches. Because others have already surveyed the 
related literature [2], we do not consider other important methods, for instance power spectrum 
methods [18]. 

In this section, we first define some terms related to self-similarity and self-affinity. Then, we 
state the two approaches, as reported and developed in the literature, and discuss their strengths 
and limitations. 

2.1 Definitions 

In a Euclidean space of dimension £ , consider a set S of points x = (JCI JC#). After scaling by r, 
0 < r, the set 5 becomes rS, with points rx = (rjci rjCf). 

The set S is self-similar when S is the union of N distinct (non-overlapping) subsets, each of 
which is identical, up to translation and rotation, to rS. The fractal dimension D of self-similar S 
then satisfies 

l=Nr° or D = - logA^/ logr . (1) 

The set S is statistically self-similar if it is composed of N distinct subsets, each of which is scaled 
by ratio r from the original, and is identical in all statistical respects to rS. The fractal dimension 
of statistically self-similar S is given by (1). 

A collection of real scaling factors r = (n r^), with r ; > 0, determines an affinity &y 

where & transforms x G S into ^(x) = (riJCi rEX£). This operation transforms S into ^(S) by 
scaling different coordinates by different amounts. The set S is self-affine when S is the union of N 
distinct subsets, each of which is identical to the sets transformed by affine If the condition of 
invariance under non-uniform scaling is satisfied statistically, the set is statistically self-affine (cf. 
the definition of statistical self-similarity). 

In (1) we defined fractal dimension in terms of the self-similar set S. We can also define it in 
terms of the self-affine set S [21], but for the purposes of this paper, we will define it in terms of 
one particular class of self-affine shapes (ff. 2.3). 

2.2 Box-Counting Approach 

Counting the number of boxes of various sizes which cover a fractal pattern is one method for 
estimating fractal dimension. We explain this box-counting approach following Voss [21]. 

Consider a one-dimensional fractal pattern, for instance, a coastline. Mandelbrot [12] observes 
that the apparent length of the pattern varies with the size of the measuring ruler. To see this, 
assume that the self-similar pattern is of maximum size L ^ . For a smaller scale r < 1, the size is 
a fraction of the maximum size L = r L ^ , and the pattern consists of N = l/r° segments of length 
L. Thus, 

Length = LN = L±=L = jfi = l*^™ . 
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This expression shows clearly that the measured length varies inversely with L; the shorter is the 
ruler, the longer is the measured length of the pattern. Taking logs, the expression for length can 
be rewritten as 

log(ZJV) = (l - D ) l o g L + X \ 

where K = D\ogLmax is a constant. The plot of this equation on log-log axes is linear; the slope 
of the line is (1 — D). Therefore, by measuring N segments with different rulers of size L, and 
identifying the line that best fits the measurements, we can determine the fractal dimension from 
the slope of the line. This does not require knowing or r. 

The fractal dimension D characterizes the covering of the set S by ^-dimensional "boxes" of 
linear size L. If all of S is contained within one box of size Lmax, then each of the N = 1 jr° subsets 
will fall within one box of size L = rLmax- Thus, the number of boxes of size L, Nbox(L), needed to 
cover 5, is L ^D 

Nbox(L)=(^) . (2) 

Taking logs and rearranging yields 

\ogNbox(L)=-D\ogL + K. 

If these functions are differentiable, the fractal dimension D is 

<9logL 

so as above, we can estimate D as the slope of the line that best fits the points (logL, — log Nb0x(L)). 
If the function log Nbox{L) is not differentiable, we can estimate the slope by the ensemble average 
of many pair-wise slopes 

log Nbox(Lj) - log Nbox(Lj) 
log Li - logL ; 

Voss proposed a method for measuring fractal dimension using Mandelbrot measures [21]. The 
method is based on a statistical expansion of fractal dimension, and it is more robust against noise 
in the samples than is the previous method. 

Now consider an object, defined by a set S of points, that is statistically self-similar. We assume 
all of the points to be equivalent. The spatial arrangement of these points determines P{m.L), 
which is the probability that there are m points within an ^-dimensional box (or sphere) of size L, 
centered on an arbitrary point in S. P(m.L) is normalized such that, for all L, 

N 

m=l 

The number of boxes of size L needed to cover S is 

N j 
Nbox(L) = £ - P ( m . L ) . 

, m 
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As above, the fractal dimension is computed as the slope of a line that best fits the points 
( l o g L . - l o g A ^ ( L ) ) . 

For ^-dimensional patterns of N data points, the computational complexity of the box-counting 
method is 0(NLsearch), and that of Voss' method is 0(NL^rch), where the maximum search size is 
Lsearch- Thus, the complexity of Voss' method is significantly larger than the box-counting method. 

Keller et al. [7] suggest that the fractal dimension estimated by Voss' method saturates as it 
approaches 3.0, even on synthesized two-dimensional fractal patterns. For small L, and fractal 
dimension approaching 3.0, some cubes will contain only the point about which the cube is 
centered, because the points are widely spaced. We can increase L up to the size of the image, 
but no more. Therefore, we cannot count accurately the number of points in many cubes, which 
effectively decreases the estimated dimension. Keller et al. proposed a refinement for the purpose 
of normalization of each scale, in which the two-dimensional pattern between the center point of a 
cube and each of its adjacent points is approximated by linear interpolation. This technique distorts 
(smooths) the original pattern, which may itself decrease the estimated fractal dimension. 

The box-counting methods apply to regularly sampled patterns, such as images. They do not 
apply to irregularly sampled patterns, such as terrain maps constructed from sparse sensor data. 
Modifying the box-counting approach to account for irregularity would require deforming the 
pattern, for example, by interpolation. 

2.3 Fractal Brownian Function Approach 
One class of fractal patterns is created by a process with fractional Brownian motion. The fractal 
Brownian function approach applies to this class of fractal patterns. In this section, we explain 
fractional Brownian motion, define fractal Brownian functions, and discuss methods proposed for 
using them to estimate fractal dimension. 

Brownian motion B{t) is a stochastic process defined as follows. 

1. 5(0) = constant. 

2. B(b) - B{a) - W(0. (b - a)a2\ for a < b. 

3. B{b) - B(a) and B(c) - B(b) are statistically independent, for a < b < c. 

This can be rewritten as 
B(rt) = rl/2B(t). 

A trace of B(t) requires different scaling factors in the two coordinates: r for f, but r 1 / 2 for B{t). 
Therefore, it is self-affine. 

Fractional Brownian motion Bn{t) generalizes Brownian motion, and is defined as follows. 

1. BH(Q) = constant. 

2. For constant C, 

BH(t) - BH(Q) = C {(t - sf~1'2 - (sf-1/2} dB{s) + J\t - sf-1/2dB(s) 
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A trace of BH(f) exhibits a statistical scaling behavior. If the scale f is changed by the factor r, then 
the increments ABH{t) change by a factor r11: 

ABH(rt) oc r^ABnit) . 

Traces of fractional Brownian motion are one class of fractal patterns. 
Pentland [18] defined & fractal Brownian function as an extension of statistical self-affinity that 

characterizes self-affine processes, including fractional Brownian motion. A random function/ (f) 
is a fractal Brownian function if, for all t and Aty there exists H in 

jf(t+At)-f(t) \ 
Pr I — < x > = g(x) (4) 

which is independent of At, where g(x) is a cumulative distribution function. In this definition, 
Af_±t=f(t+ At) -f{t) is statistically self-affine, and H is a self-affinity parameter, related to the 
fractal dimension D off (f) by D = 2 — H. If g(x) is a zero-mean Gaussian with unit variance, then 
/ ( f ) represents fractional Brownian motion BH(t). If, in addition, H = 1/2, t h e n / ( f ) represents 
classical Brownian motion 5 ( f ) . 

Interpreting f as a vector quantity t extends this definition to higher topological dimensions. 
In this case, the At appearing in the denominator of (4) must be re-written as the norm \\At\\. If 
/ (t) is a pattern in £-dimensional Euclidean space, then D = E + 1 — H [21]. For instance, if we 
analyze fractal dimension of natural terrain, we can express the terrain as an elevation m a p / (t) on 
a horizontal plane t = (x.y) and the fractal dimension can be estimated by D = 3 — / / . 

Pentland [18] proves that under certain conditions (constant illumination, constant albedo, and 
a Lambertian surface reflectance function), a three-dimensional surface with a spatially isotropic 
fractal Brownian shape produces an image (i) whose intensity surface is fractal Brownian, and (ii) 
whose fractal dimension is identical to that of the components of the surface normal. He also shows 
that the definition of a fractal Brownian function on intensity /(t)-instead o f / ( f ) in (4)—can be 
rewritten as 

E(AlllMl0\\AttH = E(AIl]Mll={) . (5) 

where jt||) is the expected value of the change in intensity I(t) over distance ||~At||. 
To evaluate the suitability of this fractal model for images of natural surfaces, he observed the 

empirical distributions of intensity differences ^/|mn for different distances | |^t||. He observed 
the distributions to be approximately Gaussian. Moreover, he computed the standard deviation 
£(_l/||^t||) of each distribution, and found the points (log || At || „ log S( AI\\^t\\)) to lie on a line. From 
this line in log-log space, he estimated the slope / / , which is 

aiog| |J. | | • ( 6 ) 

Given / / , the fractal dimension of the two-dimensional pattern is D = 3 — H. 
Yokoya [22] also assumed that intensity in images is distributed by a fractal Brownian function, 

and that g(x) ~ N(0. a 2). He developed a method for estimating fractal dimension similar to 
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Pentland's. Instead of the standard deviation in (6), he used the expected value E(Al\\/±t\\): 

cHogE(-l/|^t||) 
"~ dtog\\At\\ • ( 7 ) 

Both methods are reasonably robust against noisy data, because they use statistics computed 
from a large number of data points. Yokoya's method, in particular, tolerates zero-mean normally 
distributed sensor noise, because the method implicitly performs an averaging operation. 

The computational complexity of both methods is 0(N\\Atsearch\\) for regularly sampled data, 
where N is the number of data points, and ||.-XtJ€flfC*|| is the maximum search size. Because 
Pentland's method computes the standard deviation, it requires slightly more computation than 
Yokoya's method, which computes the first moment. 
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3 Experiments 
We present the experimental methods and results in three parts. First, we apply Voss' method to 
synthetic fractal images. Then, we apply Pentland's method and Yokoya's method to the same 
images. Finally, we extend the latter two methods to handle irregularly spaced data, and apply 
them to range images of rough, natural terrain. 

3.1 Box-Counting Approach on Synthetic Patterns 
We synthesized synthetic two-dimensional images using the midpoint displacement algorithm given 
by Saupe [19]. This algorithm synthesize traces of fractional Brownian motion. Figure 2 illustrates 
isometric plots of two examples, with/) = 2.2 and 2.5. The size of all synthesized images studeid 
here is 256 x 256 8 bit pixels. 

We implemented Voss' method following (3), and in order to confirm its effectiveness we used 
it to estimate the fractal dimension of the synthetic fractal images. Figure 3 shows the result 
of plotting the Mandelbrot measures computed by Voss' method when Lsearch = 50 pixels. The 
estimated fractal dimensions are 2.204 and 2.460, and the least-square line fit errors, normalized by 
l o g N b o x ( L ) , are 0.007 and 0.013. The plotted points (logL. — l o g N b o x ( L ) ) are distributed linearly, 
so the errors are relatively small, as illustrated. The computation time is about 10 4 s on a Sun4/40 
with 24 MB of physical memory. 

Figure 3 also compares the synthetic and computed fractal dimensions. We observe fairly good 
correspondence between D = 2.1 and 2.5. We observe saturation for D > 2.6, as noted by Keller 
et al. [7]. Figure 3 also shows the correspondence between the fractal dimension for synthesis 
and the estimated fractal dimension on patterns with Gaussian noise N(0. a 2). In this case, we 
normalized the range of the pattern to lie between 0 and 1. According to the graph, if a exceeds 
10~ 2, we cannot expect Voss' method to compute a reasonable estimate of the fractal dimension. 

Voss' method is not vulnerable to Gaussian noise if we have a sufficiently large number of data 
points. However, the fractal dimension estimated by Voss' method saturates if the real dimension 
exceeds 2.6. Therefore, this method would not be effective for estimating the fractal dimension of 
"rough" sets, such as rugged, natural terrain. Moreover, as pointed out in Section 2, box-counting 
approaches in general (including Voss' method) are not applicable to irregularly sampled patterns. 

3.2 Fractal Brownian Function Approach on Synthetic Patterns 
We implemented the methods proposed by Pentland and Yokoya, and applied them to the same 
synthetic fractal images (similar to those in Figure 2). The synthetic images are isotropic fractal 
patterns, therefore, we need only take account of differences of pixel values ^n^t| | along rows and 
columns of the images. 

Figure 4 shows experimental results from Pentland's method on synthetic fractal images with 
D = 2.2 and 2.5. We fit lines to the sets of points (log ||^At||,log5(il/||^t||)) with errors 0.015 and 
0.014 (these errors are normalized by logS(~l/||/\t||)). The slopes of the lines corresponding to H 
are 0.714 and 0.464. Therefore, the estimated fractal dimensions are 2.286 and 2.536. 
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Figure 2: Synthesized fractal images 
The figure shows isometric plots of two fractal images. For the image on the upper left, the fractal dimension 
is D = 2.2. For the lower right, D = 2.5. 
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fractal dimension for synthesis fractal dimension for synthesis 

Figure 3: Results and errors with Voss' method 
The upper graphs show Mandelbrot measures and a line fitted to them. For the upper left, the fractal 
dimension is D = 2.2, and for the upper right, D = 2.5. 
The graph on the lower left plots the real fractal dimension against the dimension estimated by Voss' method, 
with no noise. The dotted line illustrates the ideal relation. The graph on the lower right illustrates the effect 
of Gaussian noise. The solid line represents estimates from data without noise. The dotted, dot-dashed and 
dashed lines represent estimates from data with noise with a = 10 _ 1 , 10~ 2 , and 10~ 3 respectively. The line 
with a = 10~ 3 almost overlays the line without noise. 

11 



Figure 4: Results with Pentland's and Yokoya's methods 
The two upper graphs show points (log ||J\t||,log5(Ji/mt||)) computed by Pentland's method. The two 
lower graphs plot points (log ||-it||. log£(-A/||^t||)) computed by Yokoya's method. The straight line is fitted 
to the plotted points. For the graphs on the left, the fractal dimension is D = 2.2, and for the graphs on the 
right,/) = 2.5. 
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Figure 4 also shows experimental results with Yokoya's method on the same images. We fit lines 
to the sets of points (log ||j^t||.log£(-A/||_u||)) with errors 0.019 and 0.017. The slopes are 0.730 
and 0.477. Therefore, the estimated fractal dimensions are 2.270 and 2.523. The computation time 
for each result is about 60 s when the maximum value of d is 50 pixels. 

Figure 5 plots fractal dimension for synthesis against fractal dimension estimated using Pent­
land's and Yokoya's methods. The estimated values increase monotonically with the fractal 
dimension for synthesis, and there is no saturation. The fractal dimensions estimated by Pentland's 
method are slightly larger (by about 0.02) than those estimated by Yokoya's method. Overall, 
we do not observe any significant difference between the results, and conclude that both methods 
compute reasonable estimates of fractal dimension over a wide range of scales. 

In order to determine the robustness of the methods against Gaussian noise, we repeated these 
trials on synthetic images with additive noise distributed N(0. a 2 ) . Figure 5 illustrates the results, 
which do not reveal significant differences between the two. We conclude that if the standard 
deviation of noise does not exceed 10~ 2 , then both methods compute reasonable estimates of the 
fractal dimension. This compares favorably to Voss' method (cf. Figure 3). 

Based on the above results, we conclude that these two methods are superior to Voss' method 
because, in practice, they estimate fractal dimension over a wider range of scales, they are as 
robust in the presence of Gaussian noise, they have lower computational complexity, and they are 
more easily extensible to irregularly spaced data. Comparing Pentland's and Yokoya's methods, 
we conclude that there are no significant differences between the results attained, and that there 
is a minor difference in computation time (Pentland's method requires more computation to find 
standard deviations than Yokoya's method requires to find expected values). 

3.3 Fractal Brownian Function Approach on Range Images 
In this section, we apply the fractal Brownian function approach to range images acquired with a 
scanning laser rangefinder manufactured by Perceptron. The data is elevation rather than image 
intensity, so we change our notation to use z(d) (with d = (x.y)) instead of /(t). 

As we showed earlier, the proposed methods for estimating fractal dimension require regularly 
sampled data. The Perceptron sensor acquires range images with respect to a spherical-polar 
coordinate system. Equal sampling intervals in this coordinate system become unequal and irregular 
when mapped into a Cartesian system. Thus, the Perceptron data points are not equally spaced 
when expressed in Cartesian coordinates. In this section, we extend the fractal Brownian function 
approach to accommodate this irregularity. 

Procedure 

The procedure for estimating the fractal dimension from an input Perceptron range image is stated 
in the five following steps. 

1. Delete corrupted pixels. 
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fractal dimension for synthesis fractal dimension for synthesis 

fractal dimension for synthesis fractal dimension for synthesis 

Figure 5: Errors with Pentland's and Yokoya's methods 
The graph on the upper left-hand side plots the real fractal dimension against the dimension estimated by 
Pentland's method. The dotted line illustrates the ideal relation. The graph on the upper right-hand side 
shows the same for Yokoya's method. 
The graph on the lower left-hand side illustrates the effect of Gaussian noise on Pentland's method. The 
solid line represents estimates from data without noise. The dotted, dot-dashed and dashed lines represent 
estimates from data with noise with o = 1 0 - 1 . 1 0 ~ 2 , and 10~ 3 respectively. The line with a = 10~ 3 overlays 
the line without noise. The lower right-hand side shows the same for Yokoya's method. 
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Known problems with the Perceptron sensor, such as internal reflections and vignette effects, 
cause some range image pixels to have incorrect or invalid depth values. We remove these 
pixels by thresholding specified image regions [11]. 

2. Transform range image measurements from sensor-centered polar coordinates into sensor-
centered Cartesian coordinates. 
Given the polar coordinates (r. c,pr,c) of a pixel located in the row r and column c of the 
range image, we find coordinates (jc.y. z) by 

x = p sin 6 , y = p cos o sin 6 . z = p sin o sin 9 . 

r o f ° v
 _L ^ a _ c6fov 

P = qPr.c + 0 . 0=~ - + Qstart • 

where g and <9 denote the quantization error (meters per grey-level) and standoff distance 
(m) of the sensor, OfOV and o s t a r t denote the horizontal field of view and the horizontal start 
angle, 6fOV and 6start denote the vertical field of view and the vertical start angle, and Nrows 

and Ncois denote the numbers of rows and columns in the range image. 

3. Compute statistics of \zx,y — zx+dxy+dy\. 
In the sensor frame, consider two points on the xy plane: (x.y) and (JC + dx.y + dy). The 
Euclidean distance between them is Ad = \jdx2 + dy2. We are interested in statistical 
variations in the absolute value of the difference in elevation between these two points: 
Az^d = \zx%y — Zx+dx.y+dy \. Pentland's method requires the standard deviation of the distribution 
of elevation differences; Yokoya's method requires the expected value (first moment) of the 
distribution of elevation differences. 

Because the data points are distributed irregularly on the xy plane in the sensor frame, we 
must extend the original methods, which assume the data is distributed regularly (i.e., that the 
sampling interval is constant). For i = 0.1 m, and Adk < Adk+u we prepare counters A t, 
Bi and C; to correspond to distance Adi. Let £ be a small distance that satisfies 0 < £ < Ad[, 
for any L This parameter represents the width of a circular permissible area including a circle 
of radius Adj (Figure 6). Suppose there is a data point at (JC + dx. y + dy) with elevation z'. 
If \Adj — Ad\ is less than £, then the point lies in the permissible area, and we update the 
counters as follows: 

Ajr <- Aj+ \z-z \ . Bj <- Aj + (z-z')2 . Cj*-Cj + 1 . 

After considering all pairs of data points, we ensure that C,- is larger than a threshold of 
number of pairs. If C,- is small, then we question whether the number of samples was 
sufficient to compute reliable statistics, and discard this data. Otherwise, we compute the 
sample standard deviation for Pentland's method by 

c *rl l i - / * ' • " ( A ? / Q 

•JAdi = ol\Zx.y — Zx+dx.y+dy\\ - \j Q- — \ 
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permissible 
area 

Figure 6: Accommodating irregular sampling intervals 
Because of irregular sampling, we cannot detect a pair of points located a certain distance Adj away on the 
xy plane. As a permissible area, we set a circle whose width is 2£ around a point Qc. y) with z. If the point 
(JC + dx. y + dy) exists in the area, its elevation z' is used to compute Aj and Bj. 

and the sample mean for Yokoya's method by 

E^di = E[\zx.y — Zx+dx.y+dy\] = Ai/Ci 

4. Plot the points in log-log space and identify linear segments. 

For Pentland's method, the point coordinates are (log Adi* l ogS^ . ) . For Yokoya's method, 
the point coordinates are (log Ad;. l o g E ^ . ) . 
Because most natural patterns exhibit self-similarity only over certain scales, and not over 
all scales, it is necessary to segment sets of points that are linear. We investigated two 
approaches to this segmentation problem. 
The first approach is polyline fitting using the minimax method, as proposed by Kurozumi 
[10]. In the field of document image processing, this technique is frequently used to detect 
line segments. The technique segments the given points into several sets of points which 
distribute within narrow rectangles, i.e., nearly along lines. The width of the rectangle must 
be specified as a threshold. The cardinality of the sets is a natural criterion for determining 
which should be used to estimate the fractal dimension. However, the cardinality is fairly 
sensitive to the rectangle width, thus making it difficult to select the proper threshold for this 
segmentation technique. 
The second approach employs iterative least-square line-fitting (Appendix A). Using this 
technique, we can construct a set of points that lie within a specified distance of the line. 
This technique is not sensitive to changes of the threshold. However, the technique selects 
only the first linear part satisfying the criterion. In the case where several fractal patterns 
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exist, each with a different fractal dimension, multiple linear segments will appear in the 
log-log plot. Simply selecting the first will preclude consideration of the others. In these 
experiments, we use one or the other method; a future topic of research is to combine them 
to identify all of the fractal patterns. 

5. Estimate fractal dimension from the slope of linear segments. 

When the points lie on a line in the log-log space, we can estimate the fractal dimension of 
the pattern by the difference between the Euclidean dimension of the pattern and the slope 
of the line formed by the points. 

Experimental Results 

We selected eight patterns from range images acquired with the Perceptron rangefinder. Figures 7, 
8 and 9 illustrate the images, which are presented in order of increasing roughness, as determined 
subjectively by the authors. We estimated the fractal dimension of the regions indicated by white 
rectangles. 

Before applying the procedures to estimate fractal dimension, we checked whether the data 
acquired by the Perceptron satisfies the conditions on fractal Brownian functions stated in (4). 
Figure 10 histograms zx%y — zx+dx,y+dy for Pattern 2, with Ad =0.4, 0.6 and 0.8 m. From the figure 
it is clear that the condition in (4), that g(x) be a cumulative distribution function, is satisfied. We 
conclude that the patterns are fractal Brownian functions. 

A further condition on the distributions, imposed by Yokoya's method, is that they are normal. 
We conducted \ 2 tests for Gaussianity and observed negative results, i.e., that the probabilities of 
the data being normally distributed were quite low. This suggests that it is not probable that the 
points were created by a fractional Brownian motion process (which is a special case of a fractal 
Brownian function). However, to the extent that the distributions are symmetric, and exhibit a 
central tendency, there is some justification in proceeding to apply Yokoya's method, despite the 
negative \ 2 test results. 

Figure 11 shows the result of applying Pentland's method: the points (log-_W.log.S_^) seg­
mented by iterative least-square fitting. The points distribute linearly, therefore, we observe 
self-similarity in all of these natural terrain patterns. Figure 12 shows the result of applying 
Yokoya's method to the range image regions: the points (log Ad. log£/w). The results of the two 
methods are similar, as they were with synthesized data. On some patterns, plotted points distribute 
in several sets of linear parts. If we intend to estimate all fractal dimension in such distribution, 
segmentation by polyline fitting is useful. However, we must set a parameter of allowable error for 
fitting, because segmented results are very sensitive to the parameter. 

Table 1 lists the fractal dimensions estimated by both methods, with both segmentation tech­
niques. Some of the results for segmentation by polyline fitting required carefully selecting 
the amount of allowable error. We also illustrate fitting error normalized with log E(Az^d) or 
log S(Az_id). All errors are small enough to determine that the patterns are fractal. Moreover, 
the rows are ordered by roughness, as perceived by the authors. The order of estimated fractal 
dimension correlate strongly to the intuitive order (the last three patterns—sandy flat floors—are 
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Pattern 1 

Pattern 3 

Figure 7: Rangefinder images (1) 
The figure illustrates Perception image pairs: processed range (left) and raw reflectance. Only the range 
images are used to estimate fractal dimension. 
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Pattern 4 

Pattern 6 

Figure 8: Rangefinder images (2) 
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Pattern 7 

Pattern 8 

Figure 9: Rangefinder images (3) 
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-7.5 -1.0 -0.5 0.0 0.5 

Histogram of Pattern 2 with Ad = 0.4 m 

1.0 1.5 

z(d+D)-z(d) 

1500 r 

-0.5 0.0 0.5 

Histogram of Pattern 2 with Ad = 0.6 m 

1.0 1.5 

z(d+D)-z(d) 

-1.5 -1.0 -0.5 0.0 0.5 

Histogram of Pattern 2 with Ad = 0.8 m 

1.0 1.5 

z(d+D)-z(d) 

Figure 10: Empirical distribution functions 
These graphs illustrate histograms of zx,y - zx+dx,y+dy with Ad = \/dx2 + dy2 on Pattern 2. 
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-3.0 -2.5 

-3.0 _L 
-2.5 

-2.0 -f-5 -1.0 -0.5 0.0 

Result on Pattern 2 (slope=0.315) 
0.0 ~ 

Result on Pattern 4 (slope=0.705) 

-2.0 -1.5 -1.0 -0.5 0.0 

Result on Pattern 6 (slope=0.930) 

0.5 1.0 
log d 

0.5 1.0 
log d 

Figure 11: Results with Pentland's method on Perceptron images 
These graphs illustrate the segmented points and the lines fitted to them. The label (logd,log5(rf)) 
sponds to (log Ad, log Sid) in the text. 
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-3.(7 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 

Result on Pattern 2 (slope=0.455) 

-3.0 

-3.0 -2.5 

Result on Pattern 4 (slope=0.766) 

-2.0 -1.5 -1.0 -0.5 

Result on Pattern 6 (slope=0.889) 

0.5 1.0 

logd 

0.5 1.0 

logd 

Figure 12: Results with Yokoya's method on Perceptron images 
These graphs illustrate the segmented points and the lines fitted to them. The label (logd, logE(d)) corre­
sponds to (log Ad. log£_A<f) in the text. 
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Pattern D (error) D (error) D (error) D (error) 
Pentland, LSF Pentland, polyline Yokoya, LSF Yokoya, polyline 

1 2.793 (0.011) 2.754 (0.013) 2.691 (0.012) 2.661 (0.025) 
2 2.685 (0.012) 2.703 (0.016) 2.545 (0.021) 2.512 (0.016) 
3 2.621 (0.014) 2.657 (0.018) 2.498 (0.016) 2.486 (0.014) 
4 2.295 (0.020) 2.304 (0.021) 2.234 (0.024) 2.239 (0.025) 
5 2.198 (0.009) 2.206 (0.008) 2.210 (0.009) 2.196 (0.010) 
6 2.070 (0.008) 2.100 (0.018) 2.111 (0.018) 2.118(0.021) 
7 2.090 (0.009) 2.114 (0.006) 2.090 (0.009) 2.102 (0.014) 
8 2.101 (0.019) 2.126 (0.012) 2.038 (0.018) 2.010 (0.022) 

Table 1: Fractal dimensions estimated by Pendand's and Yokoya's methods 

almost identical). These results suggest that the fractal dimension estimated using these methods 
can be utilized as a measure of roughness of natural terrain. 

The computational complexity of the method utilized here is 0{N2), where N is the number of 
pixels, because it is necessary to calculate distances between all pairs of pixels in order to determine 
which pairs lie in the permissible area. On a Sun4/40 with 24 MB of physical memory, estimating 
the fractal dimension for Pattern 2 (10000 pixels) requires 1.2 x 10 3 s, and Pattern 5 (19600 pixels) 
requires 5.5 x 10 3 s. 
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4 Discussion 
Roughness is an ambiguous property. Geometrically, the Hausdorff-Besicovich dimension is a 
measure of elasticity, which is one of the main factors contributing to the notion of roughness [4]. 
The Hausdorff-Besicovich dimension is defined on general geometrical shapes, but it is equal to the 
fractal dimension only on fractal shapes. Natural terrain typically has a fractal shape (over some 
range of scales). Therefore, its fractal dimension can be used to express its roughness properly. 

In this report, we investigated two published approaches to the problem of estimating fractal 
dimension: the box-counting approach, and the fractal Brownian function approach. We imple­
mented the published algorithms and applied them to synthetic images and real range images. 

In the experiments with synthetic images, we found the fractal Brownian function methods 
proposed by Pentland and Yokoya to be superior to the box-counting approaches described by 
Voss. One reason is that the box-counting approaches require data sampled at equal intervals, 
while the fractal Brownian function approaches do not. Another reason is that the box-counting 
methods are significantly less robust to data corrupted by Gaussian noise (which has been widely 
used as a model of sensor noise). 

For the experiments with real images, we extended the fractal Brownian function methods to 
accommodate irregularly sampled data supplied by a scanning laser rangefinder. The extension 
involves considering neighbors that lie approximately, but not exactly, within a given distance from 
a data point. This requires searching a permissible area within the given distance. The extension 
also involves analysis of the distribution of points in a log-log space in order to determine which 
points to analyze further and which points to ignore (most real patterns are fractal only over 
some range of scales, not at all scales). We conduct this analysis by applying two segmentation 
methods—polyline fitting and iterative least-square fitting—to the points in log-log space. 

We applied the extended methods to noisy range imagery of natural terrain (sand and rocks) 
acquired with the Perceptron scanning laser rangefinder. The resulting estimates of fractal dimen­
sion correlate closely to the human perception of the roughness of the terrain. We conclude that 
it is reasonable to model natural terrain as a fractal pattern, and that the fractal dimension is a 
reasonable measure of roughness of terrain. 

Remaining problems in this work that we do not intend to pursue immeniately include deter­
mining the region in which to conduct fractal analysis, identifying which linear parts of the log-log 
curves are most significant, and segmenting multi-fractal patterns. We may need further simula­
tions using different noise models (e.g., non-Gaussian additive noise, quantization and truncation) 
in order to study sensitivity of methods estimate fractal dimension and to determine how appro­
priate the estimation is. In the future work, we will explore further the utility and limits of fractal 
dimension as a descriptor of natural terrain, concentrating on the problem of fractal interpolation. 

A Iterative Least-Square Line Fitting 
This appendix describes the method for iterative least-square line fitting for input data from 
Pentland's method. To apply it to data from Yokoya's method, simply exchange E^d for S^d-
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Let K represent the number of points fitted, and N represent the number of shifted points. The 
variable eth is a threshold on the initial fitting error, and rth is a threshold on the ratio of current to 
initial fitting error. 

1. s<-0 

2. Fit a line to the input points (log Adi* log S/^.)9 for i = s s + Ky using the method of 
least-squares. If the fitting error eini is less than a threshold eth, go to 4. 

3. s <-s + N 
If s > w, then halt (segmentation fails). Otherwise, go to 2. 

4. t +-S + K 
If t > m, then output (s, s + K) as the segmented linear part, and halt. 

5. u <- t + K 
If u > m, then u <— m 

6. Compute the average distance £ between the fitted line and the points (log Adi, log S_x), for 
i = f w. 
If e/e«u is less than a threshold r^, then fit a line to the points flog jAd,-. l o g f o r 
/ = s . w using the method of least-squares, and re-calculate e tm-. Otherwise, output (j . w), 
and halt. 

7. if u = m, output (s. m), and halt. 

Otherwise, f <— w and go to 5. 
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