
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Continuations: Unifying Thread Management and
Communication in Operating Systems

Richard P. Draves Brian N. Bershad Richard F. Rashid
Randall W. Dean

March 1, 1991

CMU-CS-91-1152.

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abs trac t

Thread management and interprocess communication are two key operating system services.
Within an operating system, these services can be unified by managing the state of a compu­
tation as a continuation, a first class object that can be explicitly examined and manipulated
through a well-defined interface. Continuations as first class objects improve the performance of
thread management and interprocess communication facilities, and can be used to generalize many
optimizations that are common to operating systems. These optimizations can be recast in terms
of a single, unifying implementation methodology. We have used continuations to redesign the
internals of the Mach operating system at Carnegie Mellon University. On a DECstation 3100, our
new system consumes over 85% less space per thread and executes a cross-address space procedure
call 14% faster than earlier, heavily optimized versions. This paper describes the application of
continuations to the Mach operating system.

This research was sponsored in part by The Defense Advanced Research Projects Agency, Information Science and
Technology Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by DARPA/CMO
under Contract MDA972-90-C-0035 and in part by the Open Software Foundation (OSF). Draves was supported by
a fellowship from the Fannie and John Hertz Foundation.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA, OSF, the Fannie and John Hertz Foundation
or the U .S. government.

K e y w o r d s : Operating Systems, Communication, Structure, Performance

1 Introduction

We have achieved significant improvements in the performance of the Mach operating system [Ac-
cetta et al. 86, Golub et al. 90] by redesigning it to use continuations as the basis for control
transfers between execution contexts. A continuation represents the static and dynamic state of a
computation as a first class object which can be examined and manipulated through a well-defined
interface. Continuations have allowed us to unify the control transfer aspects of thread management
and interprocess communication (IPC), significantly reduce the storage requirements of threads,
and improve the performance of IPC facilities. On a DECstation 3100, for example, our new system
consumes over 85% less space per thread and executes a cross-address space procedure call 14%
faster than earlier, heavily optimized versions [Draves 90]. Additionally, continuations enable many
common thread and IPC optimizations to be recast in terms of a single implementation method­
ology. We believe that this first class treatment of control transfer will yield similar results for
other operating system kernels which, like Mach, rely on threads and interprocess communication
to support distributed computing, multithreaded programming, and multiprocessing [Mullender
et al. 90, Cheriton 88, Rozier et al. 88].

1.1 T h e P r o b l e m : T o o M a n y T h r e a d s , T o o M a n y M e s s a g e s

Strictly speaking, continuation management is a fundamental responsibility of any operating sys­
tem. System calls, synchronization, preemptive scheduling, interrupts, processor exceptions, and
interprocess communication represent just a few of the ways in which computations stop and start
in an operating system as control transfers between execution contexts. Operating systems have
traditionally managed continuations implicitly using primitive operations that save and restore
processor context in terms of machine-dependent kernel stacks &nd process control blocks.

The use of implicit continuations (kernel stacks) to manage control transfer can place a serious
burden in terms of space and time on system resources. Newer operating systems and applications
rely on large numbers of processes or threads, both as a software structuring tool and as a way
to manage CPU and I/O parallelism. As the number of threads in a system grows, so too must
the number of kernel stacks required to represent those threads' implicit continuations. Implicit
continuations also make it difficult to take time-saving "shortcuts" when resuming a blocked thread.
New system applications, such as database managers, file systems, and windowing systems, require
frequent control transfers both internally (as they tend to be multithreaded) and externally (as
they tend to be heavy clients of IPC facilities). The frequency with which threads transfer control
to one another increases with the number of threads in the system and with the degree to which
the system is decomposed [Bershad 90, Cook 78]. Consequently, overall system performance is
directly affected by the high latency of using implicit continuations to transfer control between
contexts [Anderson et al. 91].

We encountered these problems in early versions of the Mach kernel. Mach's support for
multiple address spaces with multiple threads per address space encouraged the development of
complex, multithreaded programs. This resulted in a situation where applications required hun­
dreds of threads to be managed on a single machine. Additionally, Mach's "kernelized" approach,
whereby traditional operating system features are implemented as user-level applications, increased
the frequency of cross-address space control transfers relative to more monolithic operating sys­
tems such as Unix. For example, preliminary measurements of our multi-server operating system
environment revealed that the frequency of cross-address space communication was at least three
times as great as that of a system where the entire operating system was in a single address space.

These problems forced us to reconsider the use of implicit continuations when managing the

transfer of control between execution contexts. Implicit continuations simply provided too little
information as to the real control transfer needs of a computation and complicated our attempts
to reduce storage costs and improve IPC performance. Dedicating a kernel stack to each thread
- even a pageable kernel stack - placed too high a burden on system resources. Improving the
performance of control transfer, and therefore IPC, required a better handle on the actual control
transfer needs of computations than we had available with implicit continuations.

1 .2 T h e S o l u t i o n : E x p l i c i t C o n t i n u a t i o n s

We have addressed these thread management and IPC performance problems by modifying the
kernel to use continuations explicitly when transferring control between contexts. Implicit con­
tinuations (saved context on a kernel stack) have been replaced by explicit continuations that are
implemented as first class kernel objects. These explicit continuations describe what a thread is
supposed to do next in terms of a machine-independent interface and compact representation. As
a result, explicit continuations may be examined and manipulated by other active computations
within the kernel prior to their reactivation.

Explicitly managed continuations have enabled us to make performance optimizations that im­
prove the efficiency of the operating system by reducing the space and time overheads of thread
management and interprocess communication. We have identified two important runtime opti­
mizations that specifically address the performance problems described above: continuation com­
pression, which reduces the space required by a kernel thread, and continuation recognition, which
reduces the latency required to resume a blocked thread, thereby improving the performance of IPC
facilities. We have also found that many low-level optimizations associated with control transfer in
operating systems can be recast in terms of explicit continuations. For example, handoff schedul­
ing [Black 90b, Thacker et al. 88], stackless kernel threads [Thacker et al. 88], asynchronous
I/O [Levy & Eckhouse 89], kernel-to-user upcalls [Hutchinson et al. 89, Anderson et al. 90, Scott
et al. 89], and Lightweight Remote Procedure Call [Bershad et al. 90] each represent an optimiza­
tion to IPC and thread management systems that can be described and implemented in terms of
continuation management, compression and recognition.

Our experiences with the use of explicit continuations in Mach for both thread management
and IPC has led us to conclude that continuations are a unifying mechanism for handling control
transfer in an operating system. We have used continuations to handle a diversity of control
transfers in the Mach kernel, and have been able to improve system performance in a large number
of places by applying a small set of optimizations in a uniform way. Consequently, the improved
performance that has resulted from using continuations demonstrates that this unifying approach
is also a viable one.

This paper describes the use and performance of continuations in the Mach 3.0 operating system.
In Section 2 we define and develop continuations as a model for control transfer in operating
systems. In Section 3 we describe the implementation of continuations in Mach. We examine the
performance improvements that result from using continuations and the optimizations they allow
in Section 4. In Section 5 we show how continuations generalize many optimizations found in
other operating systems. In Section 6 we discuss related work. Finally, in Section 7 we summarize
and present our conclusions.

2

2 Continuations and Control Transfer

A continuation captures the state of a computation and saves it in a form callable as a function.
When a continuation is called, the saved computation resumes with a restored environment. Unlike
a normal function call, though, control does not return to the continuation's caller. Instead, a
continuation call is like a "goto" for which the destination's address and context are both specified.

Continuations can form the basis of thread management in an operating system. Operations
that block a computation, such as a system call, a preemption, a message-receive operation, a
page-fault, or an exception, are equivalent to creating a continuation that will later be called when
the computation resumes.

The language community has identified two types of continuations for managing control transfer
within a program, programming language, and compiler [Steele 90]: statement continuations and
expression continuations [Milne & Strachey 76]. A statement continuation enables a control transfer
from a command statement in one execution context to a command statement in another. No
information is passed as a result of the control transfer. In contrast, an expression continuation
captures the evaluation context of an expression. The calling context specifies a value that is passed
into the receiving context as the result of the expression.

We can divide continuations into two further subtypes: implicit continuations and explicit
continuations. A continuation may be created implicitly by saving the current processor state
when transferring control out of a computation; that state will be restored when control transfers
back. In contrast, an explicit continuation is one that is specified by a computation as the context in
which execution should resume when control returns to that computation. The difference between
implicit and explicit continuations is illustrated by Figure 1. For an explicit continuation, the
resumption context is specified as an argument to the transfer function. In our terminology, the
Save_Context, Restore_Context operations found in most operating systems generate and call
implicit continuations.

Implicit Continuation Transfer Explicit Continuation Transfer

Context A Context B Context A Context B
Transfer(B) Transfer(B,cont)

>• cont'

cont Transfer(A)

Transfer(B)
Save_Context(A)
Restore_Context(B)

Transfer(B,cont)
A.continuation = cont
Transfer B.Continuation

Transfer(A)
Save__Context (B)
Restore__Context (A)

Transfer (A, cont')
B.continuation = cont'
Transfer A.continuation

Figure 1: Transferring Control With Implicit and Explicit Continuations

Previous operating systems have used implicit continuations to describe the state of a suspended

3

computation. After a call or trap into the kernel, low-level code saves the user's registers on
the kernel stack as a kind of implicit continuation. As the system call makes its way through
kernel code, the computation pushes call frames onto the kernel stack. If the computation blocks,
a Save_Context operation saves the kernel's registers onto the kernel stack (just as was done
when control transferred into the kernel). When the computation is resumed, a Rest ore-Context
operation restores the kernel's computation so that it can eventually unwind its way back up the
kernel stack to the low-level trap-handling code. This code restores the user's state in a manner
similar to Restore.Context and resumes the user-mode computation. The saving and restoring of
processor context on the stack correspond to the creation and calling of implicit continuations.

An explicit continuation embodies a much higher level representation of a computation's state,
independent of the machine and compiler architecture, than does an implicit continuation. Al­
though an implicit continuation captures the control and environment components of a suspended
computation, its representation (registers and a kernel stack) reflects a computation's state at the
machine level in terms of return addresses, saved registers and automatic variables. In contrast,
an explicit continuation describes what to do next and in which context to do it in a machine-
independent form, just as a procedure call represents a machine-independent way to transfer con­
trol within a single program. At this level, a continuation becomes a first class object, allowing
it to be manipulated by the operating system just as any other first class object such as address
space maps and message queues.

2 .1 C o n t i n u a t i o n - B a s e d O p t i m i z a t i o n s

The use of explicit continuations in an operating system admits two important control transfer op­
timizations: continuation compression and continuation recognition. These optimizations improve
the performance of thread management and IPC operations while preserving the machine inde­
pendence and internal structure of the operating system kernel (i.e., it is not necessary to expose
private interfaces or resort to long assembly language paths to improve performance).

Cont inuat ion C o m p r e s s i o n

Because an explicit continuation specifies the context in which a thread is to be resumed, its use
does not assume that the context active when a thread blocks will be restored when it resumes. It
follows that there is no need to maintain that context while the thread is blocked. A continuation
may, therefore, be replaced with an equivalent but smaller continuation while that thread is not
active. We call this kind of continuation replacement continuation compression.

Continuation compression can result in savings of both space and time. It allows the kernel to
save space by discarding a thread's kernel stack when that thread blocks with an explicit contin­
uation. Moreover, if the next thread ready to run is represented by an explicit continuation, that
thread can use the blocking thread's discarded stack to resume execution. We call the transfer of
a stack directly from one thread to another a stack handoff.

Cont inuat ion R e c o g n i t i o n

Time can be saved during a control transfer via a continuation call by recognizing when the call
can be avoided, either because the work that would be done in the call can be done more simply,
or because it need not be done at all. This optimization is called continuation recognition and it
is made possible by having a machine-independent representation for explicit continuations. This

4

representation can be examined and manipulated before it is called to allow a variety of special
cases to be handled.

The stack handoff made possible by compression assists in the task of continuation recognition.
A stack handoff from a thread /1 to a thread t<i gives t2 a context in which to execute its own
code. More importantly, the handoff allows t\ to communicate pieces of its own context to ¿2-
When a thread /1 blocks on a compressed continuation and hands off its stack to a thread ¿2? ¿2
can be resumed in the still-active procedure call context left behind by t\. Within this context, t<i
may complete the control transfer by calling its previously stored explicit continuation, or it may
transfer to an alternate, simpler continuation depending on the context inherited from t\.

3 Using Continuations in Operating Systems

We have applied the two optimizations described above to the Mach operating system kernel with
good results. The implementation of explicit continuations in Mach, while straightforward, was
an object lesson in the value of having a small kernel to work with, careful interface design, and
maintaining a strict division between machine independent and machine dependent code.

3 . 1 C r e a t i n g E x p l i c i t C o n t i n u a t i o n s

Whenever the operating system is involved in the transfer of control between contexts, a continu­
ation must be generated. Control transfers can occur at the user/kernel boundary, or within the
kernel when one thread transfers control to another. Traps, exceptions, and faults at the user level
transfer control to entry points inside the kernel, where the kernel creates a continuation which will
later be used to resume execution at user level. We distinguish between system calls, which cause
a voluntary kernel entry, and exceptions and interrupts, which cause an involuntary entry into the
kernel. System calls generate an expression continuation that is invoked with the return code for
the system call. Exceptions and interrupts, which do not return values to user programs, generate
a statement continuation that is invoked without arguments. The generated continuation, when
called from within the kernel, returns control to the user level immediately; control does not return
to the caller.

For in-kernel transfers, the kernel uses an explicit continuation whenever the current execution
context can be compressed and the kernel stack discarded. A blocking kernel thread specifies its
explicit continuation as a function which is passed as an argument to the kernel's thread blocking
procedure. The machine independent data structure used to represent threads contains a field for
the explicit continuation that can be examined by other threads. When the thread is resumed,
it resumes in the specified continuation function. If the blocking thread must preserve any state,
it must do so explicitly. 1 In the few cases where it is not possible (or not beneficial) to block
with an explicit continuation, a null argument to the blocking function will create an implicit
statement continuation (a machine-dependent representation stored on the kernel stack), precluding
the compression and recognition optimizations.

3 . 2 C o n v e r t i n g t h e K e r n e l t o U s e E x p l i c i t C o n t i n u a t i o n s

Revising the Mach kernel to use explicit continuations internally was a straightforward process.
First we identified all kernel procedures which could potentially block. We then separated each

l rThe thread structure contains a small scratch area large enough for 28 bytes of state. For anything larger, the
computation must allocate a structure in which to preserve its environment.

5

procedure into two parts: one before the block and one after. 2 We defined a new procedure that
consisted of the post-block, or continuing part of the original procedure, and left only the pre-block
part in the original. Next, we manually identified the stack context that was common to the two
parts, and modified the pre-block code to store that context in a data structure associated with the
blocking thread. Similarly, we modified the post-block procedure so that it used the context in the
data structure. In the pre-block procedure, we changed the call to the kernel's implicit blocking
function to one that took the post-block procedure as an explicit continuation. Lastly, we changed
the post-block procedure to invoke an explicit continuation on exit, rather than returning to its
caller off of the stack. Figure 2 illustrates a sample transformation.

Before Explicit Continuations After Explicit Continuations
generic_syscall(argl, arg2) { generic_syscall(argl, arg2) {

PKargl, arg2); PKargl, arg2);
if (need.to.block) { if (need.to.block) {
/* implicit continuation */ /* save context in thread */
thread.blockO ; thread_block(syscall_continue);
P2(argl); /•NOTREACHED*/

} else } else
P3(); P3();

/* return control to user */ /* return control to user •/
return SUCCESS;

>
thread.syscall.returnCSUCCESS);

}

syscall_continue() {
/* recover context from thread */

P2(recovered argl);

/* return control to user */
thread_syscall_return(SUCCESS);

>

Figure 2: Transforming < EL Blocking Kernel Procedure

In most cases, we did not find it difficult to create an explicit continuation for blocking kernel
functions. For user threads that trap into the kernel, the primary cases where blocking occurs are on
message receives, exceptions and preemptions. Each occurs as a result of a user-to-kernel transfer
(system call, exception or interrupt), and each, upon being handled, returns control immediately
to the user level by way of the continuation that was created when control transferred into the
kernel.

There is no return-to-user-level continuation for threads that run only in the kernel. In practice,
though, all of our kernel threads execute an infinite loop, blocking until an event occurs, doing
some work, and then blocking again. For these threads, we define the explicit continuation to be
a procedure containing the body of the loop, thereby achieving the same result as if we had an
infinite loop in a static context.

2 For procedures that could block multiple times, the separation was repeated.

6

T h e A d v a n t a g e of a Smal l -Kerne l S y s t e m

The task of changing the kernel to use explicit continuations was simplified by the fact that we
started with a small kernel for which synchronization points were few and easily managed. The
Mach 3.0 kernel supports only a few simple abstractions, and exports a small interface, so there
are only a few potentially blocking calls. In all, there are about 60 places in the entire kernel where
a thread can block, but, as we show in Section 4, over 99% of all blocks occur at only six places
in the code. We focused our reorganization on those few "hot spots." There are still paths in the
kernel where implicit continuations are used, making compression and recognition impossible, but
they are traveled so infrequently that they have no effect on system performance.

Had we instead tried to apply continuations to a monolithic operating system kernel such as
Mach 2.5, which implements the 4.2 BSD UNIX interface, our job would have been much more
difficult. There are over 180 places in the Mach 2.5 kernel where a thread can block, and there
are no real hot spots. Many of these blocks occur when a thread is deep within the kernel having
made numerous nested procedure calls as a result of a system call, so the blocking calls have very
complex continuations. In our estimation, it would have been extraordinarily difficult to have used
explicit continuations in Mach 2.5 as generally and as uniformly as we have done in Mach 3.0.

3 . 3 U s i n g C o n t i n u a t i o n s for C r o s s - A d d r e s s S p a c e R P C

Message passing is the dominant kernel operation in Mach, and so it is the primary candidate for
the continuation optimizations. Because so much Mach activity depends on message passing, all
non-runnable user threads are normally blocked in some type of message receive operation.

To demonstrate how the Mach kernel manages continuations during message passing, we exam­
ine the sequence of events that occurs during a remote procedure call between two address spaces
on the same machine. Figure 3 shows the fast path through the calling half of an R P C 3 ; the fast
path is taken when there are no errors or faults and the server's wait precedes the client's call.

A single system call, mach-msg, combines the sending and receiving phases of an RPC into one
operation. A client thread, the caller, uses mach-msg to send an RPC request message to a server's
port, and to receive a reply message from a reply port. A server thread, the callee, uses mach-msg
to send a reply message on the client's reply port, and to receive the next request from its own
port. In both cases, the sending thread wakes up a receiving thread and blocks itself, waiting for
a message.

The handoff at the heart of the RPC path implements both the continuation compression and
recognition optimizations. The RPC path does a scheduling handoff, exchanging the schedul­
ing states of the sending and receiving threads, and a stack handoff. The stack handoff imple­
ments continuation compression, leaving the sending thread blocked with an explicit continuation,
mach_msg_continue, and no kernel stack. The handoff changes the current thread to be the receiv­
ing thread, but it does not call the receiver's continuation. Instead, the kernel continues to run in
the context of the sender's mach-msg system call. This aspect of the handoff enables continuation
recognition, because mach-msg can check the receiver's continuation. If it is machjasg.continue
(because the receiver blocked in this same path), then mach_msg continues with the fast RPC path.
Otherwise mach_msg calls the receiver's general continuation.

Continuation recognition improves performance because it brings together in a single context
the sender's and receiver's message processing, allowing the two phases to be optimized together.
Checks for exceptional conditions can be combined and redundant work can be eliminated. For

3 The return phase is symmetric and works in the same way.

7

example, the fast RPC path avoids queueing and dequeueing the message, redundantly synchroniz­
ing (caller locks then unlocks; server locks then unlocks) and updating reference counts on message
data structures.

Client Address Space

call mach_msg

sender
running

sender blocked with

explicit continuation

translate ports

copyout message

exit kernel, calling
user continuation

enter kernel, saving
user continuation

copyin message

lookup ports

Handoff
receiver blocked with

explicit continuation

receiver
running

^ \ return from machjnsg

Server Address Space

Figure 3: Calling Half of the Fast RPC Path

3 . 4 U s i n g C o n t i n u a t i o n s for O t h e r T y p e s o f C o n t r o l T r a n s f e r s

In the Mach kernel, IPC is the most common cause of control transfer, so the use of explicit
continuations on the IPC path has the greatest effect on system performance. Several other control
transfer paths use explicit continuations as well:

• Exception Handling

A user-level exception that cannot be handled by the Mach kernel, such as a divide-by-zero
fault, causes the offending thread to block and the kernel to send a message to an exception
handling port associated with that thread [Black et al. 88]. Compression allows the faulting
thread and the exception handling thread to share the same stack, in the same manner that
occurs with RPC. Unlike user-to-user RPCs though, the source of an exception message is
the kernel. Creating a message in kernel space, however, and then copying it into the address
space of the exception handler are expensive operations. Continuation recognition allows us

8

to bypass these operations by recognizing an exception handling thread's general purpose
receive continuation before invoking it. This allows us to create the message directly in the
handler's address space (rather than in the kernel first), and to resume the handler thread in
code that simply exits out of the kernel.

• Preemptive Scheduling

The primary reason to use continuations for preemptive thread management is to reduce
the rescheduling latency; by blocking with little kernel context, there is little context to be
unwound upon unblocking. A user-level thread is preempted in Mach by forcing it into the
kernel with an interrupt from a clock or some other external device, setting a low-priority
asynchronous trap (AST), and returning to user level. At the kernel boundary, the returning
thread catches the AST, discovers that it is being preempted, and relinquishes the processor.
At the time a thread relinquishes its processor, its only critical state is that which was saved at
the time of the interrupt, and is stored in an explicit continuation that can be called to return
control to the user level. The stack context that the thread built up as it was fielding the
AST becomes unimportant once the thread blocks, and can therefore be discarded. When
rescheduled, the thread's explicit continuation can be called to resume the thread at user
level.

Explicit continuations, compression and recognition are also used when threads page fault at
the user level, and when threads voluntarily relinquish the processor.

3 . 5 I m p l e m e n t i n g C o n t i n u a t i o n s in a P o r t a b l e O p e r a t i n g S y s t e m K e r n e l

The Mach 3.0 kernel runs on a variety of processor architectures. This portability is achieved by
dividing the kernel into machine-independent modules, which implement the Mach kernel interfaces,
and machine-dependent modules, which manage the hardware. The machine-independent modules
manage scheduling, interprocess communication, and virtual-memory. The machine-dependent
modules handle the memory management unit, the low-level trap and exception machinery, stack
manipulation, and implicit continuations (the traditional context switch).

Using explicit continuations in the kernel required some additions to the internal machine-
dependent interface. The interface allows the machine-independent thread management and in­
terprocess communication modules to change address spaces, to manage the relationship of kernel
stacks and threads, and to create and call continuations. The new operations are listed in Figure 4.
The interface does not include any procedures for reading a thread's continuation; that operation
is part of the machine-independent interface. (As mentioned in Section 3.1, a blocked thread's
continuation function is part of the machine-independent thread data structure, and can therefore
be examined directly by any other thread.)

Although continuations are a unifying model for dealing with control transfer, and should
therefore have a uniform invocation method, they are poorly handled by C, the language in which
Mach is written. It is difficult to generate and use continuations within the framework of C because
the language does not support closures or execution contexts as first class callable objects. Despite
the language deficiency, though, the interface and the underlying implementation demonstrate that
it is possible to write C code that uses continuations. Appendix A demonstrates how these machine-
dependent functions can be combined to implement several machine-independent, low-level thread
management functions.

9

stack-attach (thread, stack, cont)
Attaches the kernel stack to the thread and initializes the stack so that when
switch-context resumes the thread, control transfers to the supplied continua­
tion function with the previously running thread as an argument.

stack-detach (thread)
Detaches and returns the thread's kernel stack.

stack -handof f (new-thread)
Does a stack handoff, moving the current kernel stack from the current thread to the
new thread. stack-handoif changes address spaces if necessary, stack-handof f
returns as the new thread.

call.cont inuat ion (cont)
Calls the supplied explicit continuation, resetting the current kernel stack pointer to
the base of the stack. This function prevents stack overflow during a long sequence
of continuation calls.

switch-context (cont, new-thread)
Resumes the new thread's implicit continuation, switching to its kernel stack. This
call changes address spaces if necessary. If a continuation for the current thread
is supplied, then its kernel stack is discarded and switch-context doesn't return.
Otherwise, switch-context saves the current thread's context and stack as an
implicit continuation and returns when the calling thread is specified as an argument
to a subsequent switch-context. This function returns the the previously running
thread.

thread_sys call-return (return-value)
Calls the current thread's user system call continuation to make the thread return to
user space from a system call with the specified return-value. (Low-level machine-
dependent trap code creates system call continuations).

thread_except ion-return ()
Calls the current thread's user exception continuation to make the thread return
to user space from an exception or page-fault. (Low-level machine-dependent trap
code creates exception continuations.)

Figure 4: Kernel Continuation Interface

3 . 6 S u m m a r y

Continuations represent one more case where leverage and uniformity can be gained by promoting
an operating system abstraction to a first class object. In this sense, explicit continuations are
similar to Mach's pmap abstraction [Rashid et al. 87]. A pmap is a first class object that reflects a
sequence of address mappings from virtual to physical memory. By encapsulating the abstraction
of memory mapping in a first class object, and by separating the abstraction from its machine-
dependent implementation (page tables and segment registers), the pmap can be used and optimized
in ways that were not originally obvious or even possible [Young et al. 87]. Continuations as a first
class kernel abstraction have yielded similar results. While our approach has resulted in substantial
changes to the internals of the system, none of the changes have affected the kernel interface, and
therefore none are visible to applications.

10

4 Performance

To evaluate the performance improvements made possible by the use of explicit continuations, we
compare an older version of the Mach 3.0 kernel that doesn't use continuations against one that
does. In brief, we show that:

• Almost all control transfers in the kernel take advantage of continuation compression.

• Most control transfers benefit from continuation recognition.

• Because continuation compression effectively changes kernel stacks from a per-thread resource
to a per-processor resource, it significantly reduces the space overhead of thread management.

• Continuation recognition and compression reduce the latency of cross-address space commu­
nication and user-level exception handling.

Additionally, we describe the effect that each of the optimizations has on overall performance.

4 . 1 E x p e r i m e n t a l E n v i r o n m e n t

We compare two versions of the Mach 3.0 kernel, referred to internally as MK32 and MK40. The
MK32 kernel predates the use of explicit continuations. The MK40 kernel uses explicit continuations
as described in Section 3 . 4

Both kernels run on a DECstation 3100 and a Toshiba 5200/100. The DS3100 is a MIPS R2000-
based workstation with separate 64K direct-mapped instruction and data caches and a four-stage
write buffer. It has a 16.67Mhz clock and executes one instruction per cycle, barring cache misses
and write stalls. The write buffer takes at least six cycles to process each write. Our DS3100 was
configured with 16 megabytes of memory and a 250-megabyte Hitachi disk drive. The Toshiba
5200 is an Intel 80386-based laptop with a 20Mhz clock and a 32K combined instruction and data
cache. Our Toshiba 5200 was configured with 8 megabytes of memory and a 100-megabyte Conner
disk drive.

We ran the tests in an environment in which Unix system calls are implemented with RPCs to
a Unix server running at user level [Golub et al. 90]. We also measured an MS-DOS emulation
environment on the Toshiba 5200. The MS-DOS emulation uses the 80386's virtual-8086 mode.
It implements privileged operations and MS-DOS system (BIOS) calls with a user-level exception
handler that catches the faults resulting from native-mode operations. The exception handling
thread runs in the address space of the emulated MS-DOS program.

4 . 2 O p p o r t u n i t i e s for C o m p r e s s i o n a n d R e c o g n i t i o n

The value of the compression and recognition optimizations depend on the frequency with which
they can be exercised. To determine this, we counted the number of blocking operations that could
take advantage of the optimizations in three tests run on the Toshiba 5200 using the MK40 kernel.
The first test measured a short C compilation benchmark. The second test measured a Mach
3.0 kernel build where all the files resided in AFS, the distributed Andrew File System [Satya-
naranyanyan et al. 85]. The third test measured the MS-DOS program Wing Commander™.
The short compilation and MS-DOS tests were run with the machine in single-user mode; the

4 The MK40 kernel also implements optimization unrelated to continuations. We added the unrelated optimizations
to the MK32 kernel reported here to ensure a fair comparison.

11

Toshiba 5200 running MK40 and Unix emulation

Operations
Using

Compression

Compile Test
(22 sees)

blocks %

Kernel Build
(4917 sees)

. blocks %

DOS Emulation
(698 sees)

blocks %
msg receive
exception
page fault
thread switch
preempt
internal threads

3113 83.4
0 0.0

34 0.9
0 0.0

288 7.7
239 6.4

1391769 86.3
882 0.0

3278 0.2
114 0.0

78602 4.9
135756 8.4

200167 55.2
137367 37.9

144 0.0
4 0.0

19101 5.3
5791 1.6

compression total 3674 98.4 1610401 99.9 362574 100.0
no compression 60 1.6 2117 0.1 7 0.0

Table 1: Frequency of Continuation Compression

Toshiba 5200 running MK40 and Unix emulation

Compile Test
count %

Kernel Build
count %

DOS Emulation
count %

• blocks
recognition
stack handoff

3734 100.0
2247 60.2
3614 96.8

1612518 100.0
1166449 72.3
1608320 99.7

362851 100.0
311277 85.9
362567 100.0

Table 2: Frequency of Continuation Recognition and Stack Handoff

kernel build was run in multi-user mode (AFS requires a user-level file cache manager). Table 1
summarizes the results.

The table shows that explicit continuations and compression are used for about 99% of all
control transfers. The most frequent operations are message receive and exception handling. The
other operations are page-fault handling, voluntary rescheduling [Black 90a], involuntary scheduling
preemptions, and blocking by internal kernel threads. The remaining blocking operations (which
do not use explicit continuations) include kernel-mode page faults, kernel memory allocation, and
places where the kernel does short-term blocks waiting for critical sections to empty, or for a
data structure to change state. These infrequent operations are still implemented with implicit
continuations in MK40.

Over 60% of the blocking operations in the tests take advantage of continuation recognition, as
shown in Table 2. The RPC and exception-handling paths use recognition to "shortcut" a general-
purpose continuation call. In addition, nearly all control transfers use stack handoff instead of a
traditional context-switch. Although we cannot quantify the effect, we believe that the context
sharing that occurs when threads share a stack across a reschedule improves processor performance
by reducing cache contention [Mogul & Borg 91].

12

4 . 3 T h e Ef f ec t o f C o n t i n u a t i o n C o m p r e s s i o n

Continuation compression effectively changes the kernel stack into a per-processor, rather than
per-thread, resource. For the three test applications, we measured the number of kernel threads
and stacks used. Although the number of threads varied from 24 to 43, sampling the count at
every clock interrupt revealed that all three tests averaged 2.0 stacks in use. The compile test and
DOS emulation never used more than 3 stacks, and the kernel build never used more than 6 stacks.
MK40 uses a stack for the currently executing thread and a stack for a special kernel thread that
handles global stack allocation and can never discard its kernel stack.

On a DECstation 3100, continuation compression reduces the space overhead of thread man­
agement by 85%. Table 3 shows the minimum, average and maximum sizes of the per-thread data
structures maintained by the kernel. The data structures potentially allocated for each thread
consist of machine-independent state, machine-dependent state, and a kernel stack. 5

min
MK40
mean max min

MK32
mean max

MI state 484 484 484 452 452 452
MD state 172 206 308 0 0 0
stack 0 0 0 336 3612 4432
total 656 690 792 788 4474 4884

Table 3: Thread Management Overhead on the DS3100 (in bytes)

The machine-independent state includes the thread structure and IPC data structures associ­
ated with each thread. The MK40 thread structure contains a 4 byte function pointer and a 28
byte scratch area used to store explicit continuations.

The machine-dependent state includes the user-level's saved register state. Space for floating­
point state is allocated only if the thread uses floating-point. The average size calculated here is
based on our observation that only about one in four threads relies on floating-point. Table 3 gives
machine-dependent sizes for the DS3100; the corresponding sizes for the Toshiba 5200 are 100 bytes
of general register state and 112 bytes of floating-point state. Because the MK32 kernel hides the
machine-dependent state at the base of the kernel stack, we calculate the size of that state to be 0
bytes.

P a g e a b l e K e r n e l Stacks

The per-thread kernel stack overhead includes the stack pages and their supporting VM data
structures. The DS3100 and Toshiba 5200 both use 4K kernel stacks, but an additional 116 bytes
of VM data structures are required in MK32 to make the stacks pageable. When the stack of an
idle thread is actually paged out, an additional 220 bytes of VM-related data structures per thread
are required. A non-resident stack therefore consumes 336 bytes. However, periodic sampling
during day-to-day use of the MK32 system revealed that over 90% of the kernel stack pages remain
resident, even when the system pages other memory; most threads run often enough that their
stacks do not become eligible for pageout.

5 We only consider the direct cost of resident in-kernel data structures and do not consider the memory usage
resulting from user-level activities.

13

Pageable kernel stacks have other hidden costs as well. Because kernel stacks in MK32 are
potentially paged, they must be allocated from virtual memory. The MK40 kernel, when possible,
takes advantage of the fact that it is not necessary to page kernel stacks (since there are so few of
them), and saves a TLB entry by placing kernel stacks in unmapped physical memory.

4 . 4 T h e E f f e c t O f C o n t i n u a t i o n R e c o g n i t i o n

Continuation recognition improves the performance of the RPC and exception paths. We can show
this with two simple tests. The RPC test measures the round-trip time for a cross-address space
null RPC, which sends a minimal length message in each direction and executes a minimal amount
of user code. The exception test measures the time for a user-level exception server thread to
handle a client thread's exception. The exception server thread runs in the same address space as
the client thread and it does not examine or change the state of the client thread, so the client
retakes the exception. The average times for an RPC and an exception are shown in Table 4.

DS3100
MK40 MK32 Mach 2.5

Toshiba 5200
MK40 MK32 Mach 2.5

null RPC
exception

95 110 185
135 425 380

535 510 890
525 1155 1410

Table 4: RPC and Exception Times (in fisecs)

The MK32 RPC path was already highly optimized relative to Mach 2.5 [Draves 90], and yet
compression and recognition achieve an additional 15 /xsecs reduction in latency on the D53100.
The Toshiba 5200's RPC latency increased slightly because the machine-dependent code in MK40
implements stack handoff inefficiently. The low-level trap handler saves user register state on the
kernel stack, and the machine-dependent stack handoff procedure must copy the current thread's
state from the stack and copy the new thread's state onto the stack. We are fixing this and expect
that the Toshiba 5200 times will improve by approximately 50 ^secs.

To understand the source of the improvement in RPC latency, we counted instructions, loads,
and stores for each component of the total RPC path, as shown in Table 5. In this case, the
performance gain comes from doing a stack handoff instead of a context-switch. Continuation
recognition provides only enough performance benefit to offset the cost of saving and restoring
state with an explicit continuation.

Although the MK40 path uses 21% fewer instructions, it is only 14% faster. The reason for
this discrepancy is that the R2000's write buffer limits the performance of the MK40 path; its 212
stores (at 6 cycles per store) must take at least 1272 cycles.

The use of explicit continuations in MK40 slightly increases the work done at system call entry
and exit relative to MK32. The continuation for the user computation contains the cailee-saved reg­
isters; system call entry saves these registers for blocking system calls and thread_sysca l l_re turn
restores them. The MK32 system call code doesn't save and restore these registers because the
normal C calling conventions save and restore them on the kernel stack. Instead, the MK32 context-
switch saves and restores these registers. Because the majority of potentially blocking system calls
do block, though, little effort is wasted by saving these registers at kernel entry.

The MK40 path also saves an explicit continuation before doing a stack handoff and recovers
state after the handoff. As a side-effect of the stack handoff, some of the other work involved

14

MK40 MK32
instrs loads stores instrs loads stores

request path
syscall entry 64 7 25 67 8 20
msg copyin 41 6 6 41 6 6
sender 180 50 28 185 47 26
handoff or csw 83 22 18 250 52 27
receiver 149 53 20 139 46 15
msg copyout 41 6 6 41 6 6
syscall exit 35 21 1 24 11 1

reply path
syscall entry 64 7 25 67 8 20
msg copyin 41 6 6 41 6 6
sender 164 41 27 173 41 25
handoff or csw 83 22 18 250 52 27
receiver 105 40 15 96 34 10
msg copyout 41 6 41 6 6
syscall exit 35 21 1 24 11 1

user space
client code 21 3 5 21 3 5
server code 20 4 5 20 4 5
total 1167 315 212 1480 341 206

Table 5: RPC Component Costs on the DS3100

moves from the sending side of the handoff to the receiving side. Because continuation recognition
lets the receiving side avoid work, though, the total instruction cost of the sending and receiving
components remains roughly unchanged.

5 Generalizing Previous Optimizations wi th Continuations

Continuations are a good framework with which to realize many of the optimizations found in
other operating systems. To illustrate this point, we can compare Mach's continuation-based RPC
described in Section 3.3 to the control transfer aspects of Lightweight Remote Procedure Call
(LRPC) [Bershad et al. 90].

LRPC is a high-performance interprocess communication facility designed for the common case
of cross-address space (same machine) procedure call. Part of LRPC's good performance is due to
the fact that threads can cross address space boundaries. A thread in the caller's address space
traps into the kernel, but returns to the server's address space where it begins executing the server
stub immediately. Upon return, the caller's thread traps back into the kernel from the server's
address space and transfers back into the caller's address space at the instruction following the
trap. The primary performance advantage of the single thread approach is that message queueing
and scheduling can be avoided entirely on the fast LRPC path, since all work is being done in the
context of a single thread.

Mach's continuation-based RPC achieves many of the same performance advantages that LRPC

15

does: no queueing, no scheduling, and sharing a kernel stack between the caller and the callee.
Further, continuation-based RPC maintains the logical separation between a client's thread and a
server's.

A natural extension to the the continuation model (but one which we have not yet implemented)
will allow us to completely mimic the LRPC transfer protocol. Presently, when a Mach thread traps
into the kernel, it generates an implicit continuation which will transfer control back to the user-
level context in which the trap occurred. We are considering extending the IPC interface so that a
thread can register an explicit continuation for system call returns. This will allow a server thread
to return directly to its stub procedure, bypassing the dispatch machinery that is part of our RPC
system [Draves et al. 89].

With the ability to return out of the kernel to a context other than that which was active
at the time the kernel was entered, explicit continuations can be used to implement a rich col­
lection of control transfer mechanisms in a general way. For example, the upcalls required by
the "a;"-kernel [Hutchinson et al. 89] and Scheduler Activations [Anderson et al. 90] can be imple­
mented by keeping a pool of blocked threads in the kernel, each with a default "return-to-user-level"
continuation. To perform an upcall, we need only replace the default continuation with one that
transfers control out of the kernel to a specific address at user level. Asynchronous I/O [Levy
& Eckhouse 89] would behave in a similar fashion; on scheduling an asynchronous I /O, a thread
would provide the kernel with a continuation to be called when the I/O completes.

6 Related Work

The language community has been experimenting with continuations for almost two decades. Ward
used continuations to define the primitives of a message passing algebra called mu-calculus [Ward
& Halstead 80] and showed how all control transfer could be expressed in terms of that algebra.
Lampson [Lampson et al. 74] described a generalized control transfer interface based on continua­
tions for an early version of the Mesa programming language [Geschke et al. 77]. A much restricted
form of that transfer interface later appeared in the cross-address space RPC implementation for
Taos, an operating system designed for the Firefly, DEC SRC's experimental multiprocessor work­
station [Thacker et al. 88].

Functional languages that support concurrent execution and explicit continuations have been
successful in implementing the former in terms of the latter [Haynes & Friedman 84, Wand 80,
Cooper h Morrisett 90]. These efforts, however, have concentrated on control transfer at user
level between contexts in the same address space. Additionally, functional languages often use
non-contiguous data structures to implement procedure call stacks, partially reducing the incentive
to perform compression (a large portion of a kernel thread's discardable state is the unused stack
space below the bottom-most active call frame).

Blocking operations that take an explicit continuation argument are an example of continuation-
passing-style (CPS) programming [Steele 78, Appel & Jim 89], which was originally developed as
a compiler technique. A program written in CPS replaces normal control-flow constructs such as
loops and gotos with tail-recursive function calls that take a continuation argument. The compiler
converts the program to CPS and then concentrates on optimizing function calls, the sole remaining
transfers of control.

16

7 Future Work and Conclusions

Our work with continuations in Mach is ongoing. We are presently experimenting with continua­
tions at the application level within the context of our user-level threads package [Cooper & Draves
88]. It is our expectation that compression and recognition will result in benefits at the user level
analogous to those achieved inside the kernel. Specifically, for applications that do their own user-
level scheduling and synchronization [Bershad et al. 88, Anderson et al. 89, Weiser et al. 89], we
expect that explicit continuations will reduce the space and time overheads normally associated
with large numbers of user-level threads [Dean et al.] .

We are not the first to recognize the power and flexibility of continuations as a mechanism for
describing and implementing the transfer of control between contexts. The novelty of our work
lies in the fact that we have been able to successfully apply continuations as a unifying model
of control transfer in a general-purp ose operating system kernel. The use of continuations as the
basis for control transfer has allowed us to implement new optimizations, and to to recast several
optimizations found in in other operating systems in terms of a single abstraction. As a result of
this, we have achieved substantial improvements in system performance.

We believe that the methodology and techniques that we have described in this paper can be
applied to other operating system kernels to achieve results similar to our own. We invite the
reader to examine our system by obtaining the sources for the Mach 3.0 kernel via anonymous ftp
from cs.cmu.edu.

References

[Accetta et al. 86] Accetta, M. J., Baron, R. V., Bolosky, W., Golub, D. B., Rashid, R. F., Teva-
nian, Jr., A., and Young, M. W. Mach: A New Kernel Foundation for UNIX Development.
In Proceedings of the Summer 1986 USENIX Conference, pages 93-113, July 1986.

[Anderson et al. 89] Anderson, T. E., Lazowska, E. D., and Levy, H. M. The Performance Impli­
cations of Thread Management Alternatives for Shared Memory Multiprocessors. IEEE
Transactions on Computers, 38(12):1631-1644, December 1989.

[Anderson et al. 90] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy., H. M. Scheduler
Activations: Effective Kernel Support for the User-Level Management of Parallelism.
Technical Report 90-04-02, University of Washington, Department of Computer Science
and Engineering, April 1990. Submitted for publication.

[Anderson et al. 91] Anderson, T., Levy, H., Bershad, B., and Lazowska, E. The Interaction of
Architecture and Operating System Design. In Proceedings of the Fourth Symposium on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
April 1991.

[Appel & Jim 89] Appel, A. W. and Jim, T. Continuation-Passing, Closure-Passing Style. In Con-
ference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, pages 293-302, January 1989.

[Bershad 90] Bershad, B. N. High Performance Cross-Address Space Communication. PhD dis­
sertation, University of Washington, Department of Computer Science and Engineering,
Seattle, WA 98195, June 1990.

17

http://cs.cmu.edu

[Bershad et al. 88] Bershad, B. N., Lazowska, E. D., and Levy, H. M. PRESTO: A System for
Object-Oriented Parallel Programming. Soßware: Practice and Experience, 18(8):713-
732, August 1988.

[Bershad et al. 90] Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy, H. M. Lightweight
Remote Procedure Call. ACM Transactions on Computer Systems, 8(l):37-55, February
1990. Also appeared in Proceedings of the 12th ACM Symposium on Operating Systems
Principles, December 1989.

[Black 90a] Black, D. L. Scheduling and Resource Management Techniques for Multiprocessors.
PhD dissertation, School of Computer Science, Carnegie Mellon University, July 1990.

[Black 90b] Black, D. L. Scheduling Support for Concurrency and Parallelism in the Mach Oper­
ating System. IEEE Computer Magazine, 23(5):35-43, May 1990.

[Black et al. 88] Black, D. L., Golub, D. B., Rashid, R. F., Avadis Tevanian, J., and Young, M. W.
The Mach Exception Handling Facility. Technical Report CMU-CS-88-129, School of
Computer Science, Carnegie Mellon University, April 1988.

[Cheriton 88] Cheriton, D. R. The V Distributed System. Communications of the ACM, 31(3):314-
333, March 1988.

•>

[Cook 78] Cook, D. The Evaluation of a Protection System. PhD dissertation, Cambridge Univer­
sity, Computer Laboratory, April 1978.

[Cooper & Draves 88] Cooper, E. C. and Draves, R. P. C-Threads. Technical Report CMU-CS-
88-154, School of Computer Science, Carnegie Mellon University, February 1988.

[Cooper & Morrisett 90] Cooper, E. C. and Morrisett, J. G. Adding Threads to Standard ML.
Technical Report 186, School of Computer Science, Carnegie Mellon University, Decem­
ber 1990.

[Dean et al.] Dean, R., Bershad, B. N., Draves, R. P., and Rashid, R. Using Continuations to
Improve the Performance of User-Level Thread Management. Technical Report In Prepa­
ration., School of Computer Science, Carnegie Mellon University.

[Draves 90] Draves, R. P. A Revised IPC Interface. In Proceedings of the the First Mach USENIX
Workshop, pages 101-121, October 1990.

[Draves et al. 89] Draves, R. P., Jones, M. B., and Thompson, M. R. MIG — The MACH Inter­
face Generator. Technical Report Unpublished manuscript available from the School of
Computer Science, School of Computer Science, Carnegie Mellon University, July 1989.

[Geschke et al. 77] Geschke, C , Morris, J., and Satterthwaite, E. Early Experiences with Mesa.
Communications of the ACM, 20(8):540-553, August 1977.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an Application Program.
In Proceedings of the Summer 1990 USENIX Conference, pages 87-95, June 1990.

[Haynes & Friedman 84] Haynes, C. T. and Friedman, D. P. Engines Build Process Abstractions. In
Conference Record of the 1984 ACM Symposium on LISP and Functional Programming,
pages 18-23, August 1984.

18

[Hutchinson et al. 89] Hutchinson, N. C , Peterson, L. L., Abbott, M. B., and O'Malley, S. RPC
in the x-Kernel: Evaluating New Design Techniques. In Proceedings of the 12th ACM
Symposium on Operating Systems Principles, pages 91-101, December 1989.

[Lampson et al. 74] Lampson, B. W., Mitchell, J. G., and Satterthwaite, E. H. On the Transfer of
Control Between Contexts. In Lecture Notes On Computer Science: Proceedings of the
Programming Symposium, pages 181-203. Springer-Verlag, 1974.

[Levy & Eckhouse 89] Levy, H. M. and Eckhouse, R. H. Computer Programming and Architecture:
The VAX-11 (2nd Edition). Digital Press, 1989.

[Milne & Strachey 76] Milne, R. and Strachey, C. A Theory of Programming Language Semantics.
Halsted Press, New York, 1976.

[Mogul & Borg 91] Mogul, J. and Borg, A. The Effect of Context Switches on Cache Performance.
In Proceedings of the Fourth Symposium on Architectural Support for Programming Lan­
guages and Operating Systems (ASPLOS), April 1991.

[Mullender et al. 90] Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van Renesse, R., and van
Staveren, H. Amoeba: A Distributed Operating System for the 1990s. IEEE Computer
Magazine, 23(5):44-54, May 1990.

[Rashid et al. 87] Rashid, R., Tevanian, Jr., A., Young, M., Golub, D., Baron, R., Black, D.,
Bolosky, W., and Chew, J. Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures. In Proceedings of the 2nd Symposium on
Architectural Support for Programming Languages and Operating Systems, April 1987.

[Rozier et al. 88] Rozier, M., Abrossimov, V., Armand, F., Boule, I., Giend, M., Guillemont, M.,
Herrmann, F., Leonard, P., Langlois, S., and Neuhauser, W. The Chorus Distributed
Operating System. Computing Systems, 1(4), 1988.

[Satyanaranyanyan et al. 85] Satyanaranyanyan, M., Howard, J., Nichols, D., Sidebotham, R., and
Spector, A. The ITC Distributed File System: Principles and Design. In Proceedings
of the 10th ACM Symposium on Operating Systems Principles, pages 35-50, December
1985.

[Scott et al. 89] Scott, M. L., LeBlanc, T, J., and Marsh, B. D. Evolution of an Operating System
for Large-Scale Shared Memory Multiprocessors. Technical Report 309, University of
Rochester, School of Computer Science, March 1989.

[Steele 78] Steele, Jr., G. RABBIT: A Compiler for SCHEME. Technical Report TR 474, MIT AI
Lab, May 1978.

[Steele 90] Steele, G. L. Common Lisp. Second Edition. Digital Press, 1990.

[Thacker et al. 88] Thacker, C. P., Stewart, L. C , and Satterthwaite, Jr., E. H. Firefly: A Multi­
processor Workstation. IEEE Transactions on Computers, 37(8):909-920, August 1988.

[Wand 80] Wand, M. Continuation-Based Multiprocessing. In Conference Record of the 1980 LISP
Conference, pages 19-28, August 1980.

[Ward & Halstead 80] Ward, S. A. and Halstead, Jr., R. H. A Syntactic Theory of Message Passing.
Journal of the ACM, 27(2):365-383, April 1980.

19

[Weiser et al. 89] Weiser, M., Demers, A., and Hauser, C. The Portable Common Runtime Ap­
proach to Interoperability. In Proceedings of the 12th ACM Symposium on Operating
Systems Principles, pages 114-122, December 1989.

[Young et al. 87] Young, M., Tevanian, Jr., A., Rashid, R., Golub, D., Eppinger, J., Chew, J.,
Bolosky, W., Black, D., and Baron, R. The Duality of Memory and Communication in
the Implementation of a Multiprocessor Operating System. In Proceedings of the 11th
ACM Symposium on Operating Systems Principles, pages 63-76, November 1987.

A Using the Continuation Interface

Figure 5 illustrates how the continuation interface presented in Section 3.5 is used to implement
higher level thread management operations. The threadJiandof f call forms the basis of continua­
tion recognition. It performs scheduling and stack handoff operations, and returns control running
as the new thread, but does not call the new thread's continuation. This gives threadJiandof f's
caller a chance to do continuation recognition by inspecting the continuation and bypassing it with
special purpose code. In contrast, the thread-block call picks a new thread to execute. If the new
thread has an explicit continuation and thread-block's caller has provided an explicit continua­
tion, then thread-block can take advantage of the more efficient stackJiandof f path. Otherwise
it must use swi tch-context . This path requires special care because the old thread's stack can­
not be freed or the old thread returned to the run queues while still running on the old thread's
stack. Therefore swi tch-context returns the previously running thread to the new thread, so the
thread-d i spatch of that previously running thread happens after the swi tch-contex t .

20

thread.handoff(cont, new.thread) {
/* new.thread is waiting (not on run queues) */

old.thread * current.threadO;
stack.handoff (new.thread) ;
old.thread->cont * cont;

/* old.thread left waiting */
>

thread.block(cont) {
/* stop running the current thread */

old.thread * current.thread() ;
new.thread * pick thread iron run queues;

if (new.thread->cont) {
if (cont) {

stack.handoff (new.thread);
/* now current.threadO new.thread */

old.thread->cont » cont;
if (old.thread is still runnable)

return old.thread to run queues;

call.continuat ion(new.thread->cont);
/•NOTREACHED*/

} else {
allocate stack;
stack.attach(new.thread, stack, thread.continue);

}
}

thread.dispatch(switch.context (cont, new.thread));
}

thread.continue (old.thread) {
cur.thread =* current.threadO;
thread.dispatch (old.thread);
(*cur.thread->cont)();
/*NOTREACHED*/

}

thread.dispatch (thread) {
if (thread->cont) {

stack » stack.detach(thread);
free stack;

}

if (thread is still runnable)
return thread to run queues;

Figure 5: Using the Continuation Interface

21

