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Abstract 

An optimal arc consistency algorithm AC-4 was given by Mohr and Henderson [8]. AC-
4 has cost 0(ea2), and cost (na2) for scene labelling. Although their algorithm is indeed 
optimal, under certain conditions a constraint satisfaction problem can be transformed 
into a less complex problem. In this paper, we present conditions and mechanisms for 
such transformations, and show how to factor relations into more manageable 
components. We describe how factorization can reduce AC-4's cost to O(ea), and apply 
this result to RETE match. Further, with our factorization, the cost of scene labelling is 
reduced to O(na). 
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1. Introduction 

There are search problems that entail the generation and testing of the cartesian 
product of n sets. Following [8], let 

N = {i, j , . . . } be the set of variables, INI = n, 
A = {b, c,...} be the possible values of the variables, IAI = a, 
ib be the binding of variable i to value b, 
Ri be a unary relation, where ib is admissible if Ri(b), 
Ai = {b € A I Ri(b)}, be the i t h set following unary filtering, 
Rij be a binary relation, where (ibjc) is admissible if Rjj(b,c), 

I Rij I = rij, the number of pairs in Rij, 
E be the binary relation {(i j ) e NxN I Ry is not trivially true }, IEI = e. 

The binary constraint satisfaction problem (CSP) is to find all n-tuples in IlNAi 
which satisfy the binary relations. 

Suppose a partial solution k-tuple, k<n, is not admissible. Then any extension of 
this k-tuple is not admissible. Backtrack control is a strategy that reduces search 
by eliminating these inadmissible extensions from the cartesian product 
computation. 

Since CSP is NP-complete, additional preprocessing can be helpful [6], such as 
decreasing the initial size of each Ai set prior to forming the cartesian product. One 
mechanism for this filtering is arc consistency, which examines the Rij to eliminate 
any b€ Ai which lacks support in an Aj. Arc consistency is used, for example, in 
machine vision problems [17]. 

Waltz's original arc consistency algorithm for scene labelling [17] was based on the 
successive consideration of each variable's value set Ai. This had a computational 
complexity of 0(ena 3 ) . Mackworth and Freuder [7] introduced algorithm AC-3, 
which used the edges in E, rather than the variables in N, to guide the filtering. 
This reduced the complexity to 0(ea 3). Mohr and Henderson [8] introduced AC-4, 
which used the edges between values (instead of variables) to direct the filtering, 
further reducing the cost to 0(ea 2 ). Since scene labelling employs a planar graph, 
0(e) = 0(n), and AC-4fs complexity for scene labelling is 0(na 2 ) . 
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In building a Waltz scene labelling application within a graphical user interface 
methodology [10], we implemented an O(na) arc consistency algorithm. In this 
paper, we first motivate our algorithm by considering the graph of supporting 
relations. We present AC-5, a version of AC-4 that explicates the underlying graph. 
We then examine how, under certain circumstances, edge relations can be 
factorable. For some problems, this can reduce the 0(ea 2 ) cost to O(ea). We apply 
this factorization to scene labelling, obtaining an O(na) cost, and also describe how 
our arc consistency method can be applied to RETE matching [3]. 

2. Support for Values 

We write the set images under a binary relation B as: 
B(x,*) = {y I B(x,y)}, 
B(*,y) = {x I B(x,y)}. 

After filtering with the unary relations, we have the sets Ai. The relations Rij are 
between the values in Ai and Aj. We construct the union of the Rij, forming the 
relation R on values, defined for be Ai and ce Aj as 

R(ibJc) <=> Rij(b,c). 
If it is not the case that Rij(b,c), then no n-tuple t with t(i)=b and t(j)=c is admissible. 
Identically, R(ib jc) is necessary for a tuple t with t(i)=b and t(j)=c to be admissible. 

Suppose that for no ce Aj, R(ib jc). Then no tuple t with t(i)=b will be admissible. 
Therefore, ib can be removed from Ai, and not affect the CSP. This can be used as a 
filtering strategy [17] for reducing the Ai. We define 

supported'pdb) <=> V j e E(i,*), 
AjnR(ib,*) * 0 . 

When supported-p(ib) is false, value ib can be removed from Ai, and ib's relations 
removed from R. 

Now, for efficient implementation, we view the set of values uAi as the nodes of a 
graph G, and the relation R as the links between them. Ordinarily in arc 
consistency algorithms [8], a graph Go is employed that uses the variables {i} as 
node set, and E as edge set. Our G, however, refines Go by using values instead of 
variables, linking the values in AixAj according to Rij. 
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Our algorithm AC-5 for arc consistency is given in Figure 1. It roughly replicates 
algorithm AC-4 [8]. However, instead of using counters, sets, and flags, AC-5 makes 
explicit use of G. Specifically, in our formulation, AC-4's 

• Counter[(i j),b] = # ApRGb,*), 
• set Sj c = R(* jc), 
• flag M(i,b) = 0, if b€ Ai, and 1 otherwise. 

Our unit of complexity is the use of a node or link in G. 

Step 1. INITIALIZER, R) 
1 Construct the nodes and links of the graph 

from the values in uAi and the relation R. 
2 V b e u Ai 
3 V j € E ( i , * ) 
4 IF AjnRCib,*) = 0 , 
5 ENQUEUE-UNSUPPORTED(ib) 

Step 2. FILTERING UNSUPPORTED VALUES 
6 WHILE (jc <- DEQUEUE-UNSUPPORTEDO) 
7 V ib e R(* jc) 
8 IF AjoR(ib,*) = 0 , 
9 ENQUEUE-UNSUPPORTED(ib) 
10 SPLICE-OUT(jc) 

Procedure for removing a value node and its relation links. 
SPLICE-OUT(jc) 

Aj *- Aj - {jc} 
V ib e R(* jc) 

Rij <r- Rjj - (ib jc) 
Figure 1. The arc consistency algorithm AC-5. Its time and space cost is 0( IGI). 

In Step 1, the cost of initialization is proportional to the size of graph G, or 0( IGI). 
Line 1, constructing G, has cost 0(na+XErij)> the number of nodes and links; this is 
precisely 0( I GI). Line 2 iterates over the nodes, and line 3 iterates over the 
outdegree of each node, i.e., the links. This, again, has cost 0( IGI). Step 4 
performs the test 
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AjnRttb,*) = 0 , 
which can be done in constant time by checking whether the set (e.g., a list) of links 
from value ib to variable j is empty. 

When a node ib is found to violate supported-p(ib), it is placed on the control queue. 
The queue is maintained as a set (e.g., by marking deleted nodes). ENQUEUE-
UNSUPPORTED(ib) and DEQUEUE-UNSUPPORTEDO can be each done in 
constant time (e.g., by using a stack representation). 

In Step 2, the cost of arc consistency filtering is also 0( IGI). Step 6's WHILE loop 
considers each node jc at most once. Line 7 then examines all the links emanating 
from jc. These links can occur in this way at most once, since jc is to be deleted from 
the graph. Therefore, the constant time operation in Steps 8 and 9 can occur no 
more than IGI times. By similar counting, the SPLICE-OUT operation in line 10 
can occur at most once for each node and link in the graph. 

The total space cost is also 0( IGI). The only two data structures are G, and the 
queue. G's representation is clearly 0( IGI). The queue size is bounded by the 
number of nodes, hence by IGI. 

3, Factoring Relations 

The cost of our AC-5 algorithm (and the equivalent AC-4) is 0( IGI), the size of the 
graph comprised of variable values and their relations. Further, as shown in [8], 
this is a minimal algorithm. How, then, is it possible to decrease the complexity of 
arc consistency? 

If relation B between two sets is factorable, then B may be rewritten as the product 
PxQ, where P and Q are two new relations. In some cases, P and Q are sparser 
thanB. If 

IPI + IQI < IBI, 
then the factorization will reduce the total number of links connecting the two sets. 
Such factorizations appear in other divide-and-conquer [5] algorithms. For 
example, the Fast Fourier Transform works by factoring a matrix with n 2 nonzero 
entries into log(n) matrices, each having O(n) nonzero entries [1]. 
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The relations Rij used in arc consistency may be factorable in this way. 
Factorization introduces new variables, and extends the graph G to a new graph G'. 
Importantly, our arc consistency algorithm AC-5 (or AC-4) can operate on this new 
graph G1 without modification. Since the complexity of arc consistency is bounded 
by the number of links in G, if G' has fewer links than G, the factorization may 
reduce the execution cost of AC-5, 

In general, there may be no useful factorization of G's link relations. However, for 
certain key situations, such as scene labelling and RETE match, the relations are 
factorable. We now develop two general classes of factorizations. 

3.1. Using Tuples as Values 

In many situations, the values used as variable bindings are not atomic. Rather, 
they are actually formed as tuples of slot-values. This occurs when the role of each 
tuple component is to provide information about a neighboring edge. Specifically, 
for each edge j in E(i,*), the value ibe Ai has for its j t h component the slot-value ib(j). 
That is, 

TCIJ : ibc Ai -> ib(j)e Slot-Values. 
For example, as detailed below in Section 4.1 on scene labelling, if a variable i has h 
edge neighbors, its binding values are h-tuples of elements in the slot-values set 
{+,-,->,<-}. 

The key idea is to partition the elements of Ai (and Aj) into equivalence classes, and 
then connect the classes, instead of connecting the elements [14]. Given Ai, the 
inverse image of a slot-value v is 

7cij-l(v) = {ib€Ai I ib(j)=v}. 
If v and w are two compatible slot values, then Rij connects every ib in the subset 
rcyHv) of Ai to every jc in the subset rcifKw) of Aj. However, relation Rij between 
tuples can be compactly summarized by a core relation R°ij that connects compatible 
slot-values. The single link R°ij(v,w) can then replace the complete bipartite graph 
between subsets T&yHv) and riJf^v). 
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Using this partition, we can map variable i's tuple values {ib} along each 
neighboring edge j into their slot-value equivalence classes. The function 

7 C J J : ibeAi -» ^( ib ie Slot-Values, 
induces a sparse relation Py, having exactly I Ai I links. Similarly, the function 

TtJi: jceAj -> TO\(]C)S Slot-Values 
induces the sparse relation Qij, which maps tuples in Aj into their slot-value 
equivalence classes. 

The core relation R°ij can then be formed, connecting the slot-value equivalence 
classes of Pij(Ai) with those of Qij(Aj). This provides a factorization of Rij, 

R i j = P i j xRO i j xQ i j T 
shown in Figure 2. Here both Pij and Qij T are sparse relations formed from 
functions, with I Py I <a and I Qy T I <a. R°ij connects the slot-values of Py(Ai) and 

Figure 2. A. An example of relation Ry's links in graph G between variables i and 
j , where the variable binding values are tuples with component slot-values in {+,-}. 
B. The graph G' that results from factoring Rij into Pij x R% x Qij T. Note how Ry 0 

This factorization adds two new variables to G, k and k', whose binding values are 
slot-values. It also constructs additional links between k and k\ The utility of the 
factorization depends on r°ij = I R°ij I, since the number of links is now 

Pij + r°ij + qij T ^ a + r°ij + a. 
In the new graph Gf, the number of links is thus changed from a 2 to 2a + r°ij. If r°ij 
is small, this may reduce the size of G. 

Qij(Aj). 

(A) (B) 

clarifies the core slot-value relation {(+,+), (+,-), (-,-)}• 
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3.2. Equality Relations 

When R°ij represents an equality relation, then r°y is small. In fact, R°ij then 
becomes the identity relation I. This is shown in Figure 3.A, where the factorization 

Rij = Py x Iy x QyT 
has the number of links 

py + k + qij T <: 2a + k, 
where k is the number of common slot-values, #Vy, and Vij=Pij(Ai)nQjj(Aj). 

i l k' j i k j 

(++)vPlj Iij QjJ- (++) (++k Pij QjJ (++) 

(- +)-^> + — +^-~ (+ -) (- (++)^-- (+ -) 

(- +) 

+)-^> + — +^-~ (+ -) (- (++)^-- (+ 

(- -) 
(A) (B) 

Figure 3. A. A factorization in which R°y is an equality relation, i.e., the identity 
relation Iy. B. Collapsing the identity Iy into a single set. 

We can do better. In Figure 3.B, we collapse the identity Iy relation into the single 
set Vy, and reduce the factorization to 

Rij = Pij x QijT. 
Here, the number of links is 

py + qij T < 2a, 
Thus, when Ry is an equality relation, the upper bound on the number of links is 
lowered from a 2 to 2a. 

When all the Ry are equality relations on tuple slots, then all the Ry can be 
factored. This adds e variables, one for each factored edge, and describes a new 
constraint graph G f. The key property of G' is that every relation has at most a 
links between values in it. Therefore, 

n f = n + e, 
e' = 2e, 
r i / < a . 

Thus, the size of Gf is at most 
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IG' I = #nodes + #links 
= n + XE* rij' 
< (n + e) + (2e x a) 
= 0(ea). 

Therefore, we arrive at the reduced upper bound 
0(IG' l ) = 0(ea). 

And, for a graph with bounded out-degree (e.g., a planar graph), 
0(IG' l ) = 0(na). 

4, Applicable Situations 

In applications of arc consistency, situations arise where 
• variable bindings are comprised of tuples, 
• the role of each tuple component is to provide information about a neighboring 

edge, and 
• the slot values constrain tuples to have equal components along neighboring 

edges. 
In these cases, factorization can construct a new graph G\ for which the cost of AC-
5 is O(ea). 

4.1. Waltz Scene Labelling 

In scene labelling [17], each junction in a line drawing is a variable i with a set Aj of 
physically realizable edge labellings. Suppose junction i has h neighboring edges. A 
value in Ai is then an h-tuple of possible labels for these edges. The slot values 
belong the set {+,-,—»,<—}, denoting convex, concave, or boundary edge labels. 

Slot values along neighboring edges are constrained to be equal. Therefore, as 
shown in Figure 4, we can factor a scene labelling problem's graph G into a new 
graph G\ in which 

0(IG' l ) = 0(ea). 
Since a line drawing is a two-dimensional projection, i.e., a planar graph, e is 
proportional to the number of variables n, and 

0 ( IG , l ) = 0(na). 
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This linear dependence of arc consistency on the number of candidate bindings a is 
a new result for the scene labelling problem. 

(A) (B) 
Figure 4. A. A 7-tuple CSP solution of 7 variables having tuple-valued bindings 

from graph G. Each circled vertex denotes a tuple-valued variable binding. 
B. Factoring each edge into two edges and a new variable to construct a new graph 

G'. The bindings of the 9 new edge variables are highlighted. 

4.2. RETE Match 

The conjunctive matching of rules against working memory (WM) employed in 
production systems [18] is a CSP that computes all solutions. In fact, in languages 
such as OPS-5, it is a binary CSP [12]. The usual recursive construction of 
conjunctive match uses a backtrack control to filter inadmissible extensions of k-
tuples [13]. When this recursion is transformed into an incremental network 
program [11], the RETE match [3] algorithm results. 

The key computation of RETE is incremental construction of the cartesian product 
IlNAi. Therefore, arc consistency can be of use: preliminary filtering of the Ai can 
reduce the cost of n-tuple formation. In RETE terminology, each variable i is called 
a condition element, and the Ai contain values called working memory elements 
(WMEs). The relations Rij are determined by binary join tests between variables. 
One can construct a CSP graph having one edge per binary join test. 

A variable binding value (or WME) is itself a tuple. Each join test compares the 
slot-value of a tuple binding of variable i with a tuple's slot-value from variable j . 
Therefore, the Ry are factorable into Py x R°y x Qy T via equivalence classes of slot-
values, as in Section 3.1. (There are other optimizations for conjunctive match that 
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exploit slot-value equivalence classes, such as hashed. RETE [16], copy and 
constrain [9], and MatchBox [14].) 

Interestingly, 90% of join tests are for equality [4]. If just these are used for arc 
consistency, then, by Section 3.2, the cost of AC-5 is reduced to O(ea). This is our 
improved linear bound, finding application to an important computation in AI: 
RETE match. Figure 5 shows the factoring of a rule's CSP. 

(B) Ai A 2 A 3 
Ai A 2 A 3 

Ai A 2 A 3 

Condition ] Element Variables A I -^jy~ A 2 -CO- A 3 

(A) (C) 
Figure 5. A. A graphical rule specification, following [15]. There are three 

variables (condition elements), and two equality relations (join tests). B. The graph 
G of the associated CSP. The relations are incorporated into the edges. C. The 

graph Gf after factoring the equality relations. The join tests now explicitly appear 
as CSP variables. The topology is identical to the specification shown in (A). 

5. Conclusions 

Arc consistency is an important and ubiquitous algorithm in AI, used to reduce the 
combinatorics of cartesian product formation. There has been steady improvement 
in arc consistency algorithms. Mohr and Henderson [8] presented an optimal 
algorithm for arc consistency AC-4, that has cost 0(ea 2 ), and only 0(na 2 ) for scene 
labelling applications. We improved this bound to a linear cost in a for factorable 
relations. Recently, an analogous improvement [2], also applicable to scene 
labelling, was developed for Constraint Logic Programming; the authors exploit 
functions as we do, but do not describe factorable relations. 

In this paper, we motivated and presented a variant of AC-4, called AC-5, that made 
explicit the use of the relation links between variable binding values, thus forming 
the graph G. We showed when and how the relations Rij were factorable, 
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transforming G into a new G\ With equality relations, IG' I < IGI, and the cost of 
scene labelling is reduced to O(na). This result extends to other applications, such 
as RETE match, for which we showed a factorization reducing the arc consistency 
cost from 0(ea 2 ) to O(ea). 
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