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Abstract 

Data-parallel programming languages have many desirable features, such as single-thread semantics and 
the ability to express fine-grained parallelism. However, it is challenging to implement such languages 
efficiently on conventional MIMD multiprocessors, because these machines incur a high overhead for small 
grain sizes. This paper presents compile-time analysis techniques for data-parallel program graphs that 
reduce these overheads in two ways: by stepping up the grain size, and by relaxing the synchronous nature 
of the computation without altering the program semantics. The algorithms partition the program graph 
into clusters of nodes such that all nodes in a cluster have the same loop structure, and further refine 
these clusters into epochs based on generation and consumption patterns of data vectors. This converts the 
fine-grain parallelism in the original program to medium-grain loop parallelism, which is better suited to 
MIMD machines. A compiler has been implemented based on these ideas. We present performance results 
for data-parallel kernels analyzed by the compiler and converted to single-program multiple-data (SPMD) 
code running on an Encore Multimax. 
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1 Introduction 

The diversity of parallel computer hardware makes it very difficult to port parallel programs without 
sacrificing execution efficiency. Research in portable parallel programming has largely taken one of 
two forms: those based on parallelism extraction [34] and those based on virtual machine emulation [17]. 
However, both approaches have their drawbacks. Parallelism extraction systems can only extract parallelism 
that exists in the original code. Virtual machine emulators are usually limited in the machine topologies 
they can support, and often have large overheads associated with mapping and emulation. They also usually 
rely on the user to solve the difficult problem of program and data partitioning. 

We believe that parallelism should be explicit in the source program. However, it should not be based 
on the notion of processes, as this requires the programmer to manage a great amount of difficult low-level 
detail like process creation, load balancing and synchronization. Instead, we have chosen a data-parallel 
style of programming, where parallelism is expressed as (parallel) operations over (large) sets of data. A 
large fraction of the existing parallel algorithms for PRAM and other machine models are either data-parallel 
in nature or can be easily converted to such a form [5,16, 31]. 

Data-parallel languages have historically been linked with SIMD parallel computers, and researchers 
have largely shied from implementing such languages on MIMD parallel machines. A naive implementation 
of data parallelism on a MIMD machine has the following performance bottlenecks, which affect both the 
asymptotic performance of the parallel program and the performance for small problem sizes. 

• The parallelism of the source language is too fine-grained for the multiprocessor to handle. The 
startup overheads are too large. Since loop overhead scales with problem size, it limits the asymptotic 
performance of the parallel program. Serial overhead related to load balancing, on the other hand, 
depends on the machine, but is independent of the problem size, and therefore influences the small 
problem size performance but not the asymptotic performance. 

• The implicit lock-step synchronization of the data-parallel language is expensive to implement on 
MIMD machines, whereas it comes for free on SIMD machines. As the cost of a barrier on a MIMD 
machine depends on the number of processors but is independent of problem size, this only affects 
the performance at small problem sizes. 

• The intermediate results generated by the fine-grained parallelism cause problems for the memory 
organizations typically found in MIMD machines. In particular, locality of reference and its con
comitant benefits are compromised. Loss of locality increases data access times; it scales with the 
problem size, and limits asymptotic performance. 

This paper demonstrates how to solve these problems, and how to make data parallelism an appropriate 
programming model for both classes of machines. Maintaining efficiency on MIMD machines requires 
aggregating the fine-grained operations into larger-grained tasks (loops) and relaxing the lock-step syn
chronization while maintaining semantic equivalence. The aggregation of multiple operations also allows 
traditional code improvement techniques to be applied to the aggregate. Recently, Quinn and Hatcher [28] 
have demonstrated techniques for compiling the data-parallel language C* [30] for MIMD multiprocessors. 
However, the programs they can handle are limited by the restricted semantics of C*. Our work goes beyond 
this, showing how to handle loops with dependences, such as the scan primitive of APL [19]. 

Given a data-parallel program, the problem, then, is to gather information about the program variables 
and statements to obtain a good aggregation. In this paper we develop compile-time techniques called size 
and access inference that extract such information and perform the aggregation. The steps involved in this 
process are as follows: , . r M ^ . , 
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Size inference: This technique is used to derive symbolic relations between "sizes" of vectors (the 
variables in the data-parallel program) based on the semantics of operations. This is completely symbolic; 
the user does not have to specify sizes of vectors. The relations derived for vector sizes are used to 
characterize the loop structures of the operation nodes. 

Cluster formation: The size information produced by the previous step is used to partition the program 
graph into clusters based on loop structure and scheduling constraints. Operations that have provably 
different loop structures are put into different clusters. Clusters serve as units of work allocation. 

Access inference: This technique analyzes generation and consumption patterns of vectors within clusters 
and identifies conflicts requiring synchronization. 

Epoch formation: The conflict information produced by access inference is used to subdivide clusters 
into epochs. Operations within a single epoch do not require synchronization and can be performed in any 
order that respects data dependences. 

Epochs map fairly naturally to loops, which can be executed in parallel by scheduling different iterations 
of the loop on different processors [34]. Our adoption of loop parallelism as our model of parallel execution 
has been guided by the Fortran experience, which suggests that this form of parallelism is well-matched to 
the capabilities of MIMD multiprocessors. In our model, some number of threads (specified as a command 
line parameter) are spawned when the program begins execution, and remain active until the program 
terminates. Other models of parallel execution, such as macro-actors [32] or functional pipelines [11], are 
beyond the scope of this paper. 

A complementary issue is that of storage. A naive implementation often creates many unnecessary 
large intermediate results. Our storage allocation techniques tie in with our analysis to remove such 
intermediate storage, or reduce it to storage for a small section of a vector. This is similar to "drag-through" 
transformations in APL or loop fusion in Fortran. 

The work described here is related to compilation techniques for APL, FP [3] and similar languages, 
the compilation of C* for multiprocessors, and optimizations performed by Fortran compilers. It differs in 
the kinds of operations it can handle, and we will return to these differences further in Section 10. 

The analysis techniques and program transformations discussed in this paper apply to uniprocessor as 
well as multiprocessor systems. They provide benefits in the following areas: 

Granularity: The grain size of the output program is larger than that of the input program, making it 
suitable for execution on MIMD multiprocessors. 

Synchronization: The only synchronization in the output program is that required for maintaining se
mantic equivalence with the original program. 

Storage: Storage requirements are reduced, and many temporary vectors are eliminated. Vector storage 
can be reduced to storage for small sections of vectors, and can therefore take advantage of scalar and vector 
registers. 

Locality: Combining multiple operations into single loops improves locality of reference. This can take 
advantage of chaining in vector machines, and of registers and caches in general. 
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Name Symbol init kernel 
plus + out[i] - inl[i] + in2[i] 

times * out[i] - inl[i] * in2[i] 
not i o u t [ i ] = ! inl[i] 

select SEL out[i] - inl[i] ? in2[i] : in3[i] 
plus-scan + \ ou t[0] = 0 o u t [ i ] = o u t [ i - l ] + inl[i-l] 

plus-reduce + / o u t = 0 o u t = o u t + inl[i] 
min-reduce MIN/ o u t = INT_MAX o u t = min ( o u t , inl[i]) 

length LEN ou t ' = inl__siz 
dist DIST out[i] = inl 

distv DISTV out[i] = inl 
permute PERM out[in2[i]] - inl[i] 

bpermute BPERM out[i] = inl[in2[i] ] 
dpermute DPERM out[i] = in3[i] out[in2[i] ] = inl[i] 

index INDEX out[i] = i 
get GET o u t = inl[in2] 

lo, hi 
0, inl_ 
0, inl_ 
0, inl_ 
0, inl__ 
1, inl" 
0, inl_ 
0, inl_ 
0, 0 
0, in2 
0, in2_ 
0, inl_ 
0, inl_ 
0, inl_ 
0, inl 
0, 0 

Table 1: Primitive data-parallel operations, and corresponding C code. The input vectors to an 
operation are called i n l , i n 2 and so on. The template for the C code is as follows: i n i t ; f o r 
( i = l o ; i < h i ; i + + ) { k e r n e l ; } . The output vector is called o u t . All operations except 

the permutes can be done in-place. 

2 Language and Machine Models 

The compiler operates on data-parallel program graphs, where graph nodes are data-parallel operations and 
graph edges represent data inputs and outputs of the operations. These are similar to dataflow graphs [25], 
except that operations compute on entire vectors at a time. The primitive data type is the homogeneous 
vector of atomic types. Scalars are treated as singleton vectors. The primitive operations are shown in 
Table 1 and all take vectors as arguments; they include traditional arithmetic and logical operations applied 
elementwise to vectors (such as A+B), as well as associative scans (+ \A in APL), permutations (A [ B ] in 
APL) and distribute operations (similar to the s p r e a d intrinsic in Fortran 90 [2]). Any set of primitives 
can be used as long as each primitive has an efficient parallel implementation. This excludes operations 
such as nonassociative scans as primitives. The set we have chosen is based on the scan vector model of 
computation [5], and is part of an experimental data-parallel language called VCODE [6]. It is the ability 
to handle scans and permutations that sets our work apart from other work in this area. The code can be 
equivalently represented in single-assignment form, which we also use (with a LISP-like syntax) for ease 
of understanding. 

Using graphs as the internal representation of programs allows us to formulate the analysis problems in 
graph-theoretic terms, and also gives a good handle on storage optimizations. It also allows us to handle 
various input languages without much effort. We now give a formal definition of a computation graph for 
a function. This is similar to the IF1 graph representation for SISAL functions [25]. 

Definition 1 (Computation graph) The computation graph G(F) for a function F is a directed acyclic 
graph (N, E), where 

• N isa set of nodes. A node n€ N is the tuple (t, op, in, out), where 

- t is the type ofn; t € T = {SIMPLE, IF, FNCALL, INPUT, OUTPUT}. 
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- op is: the operation performed by n, ifn.t = SIMPLE; the function called by n, ifn.t = FN CALL; 
undefined otherwise. 

- in is the number of input ports ofnt numbered Lin. 

- out is the number of output ports of nt numbered L.out. 

• E is a set of edges representing data inputs and outputs of the nodes. An edge e e E is the pair 
{{ns,ps),{nd,pd)),where 

- / v € N is the node from which the edge originates. 

- ps is the outputport of ns from which the edge originates; 1 < ps < ns.out. 

- rid€Nis the node at which the edge terminates. 

- pd is the input port of nd at which the edge terminates; 1 < pd < nd.in. 

We abbreviate an edge to (ns, n<t)ifports are unimportant, or can be inferred from context. 

There are two control flow mechanisms: an if-then-else form, and recursion (for iteration). The IF 
node contains a THEN subgraph and an ELSE subgraph, and thus introduces hierarchy in the computation 
graph. One or the other of the subgraphs is executed, depending on the value of a scalar Boolean control 
input. The two subgraphs must produce the same number of results of matching types. It would be easy to 
add other structured looping constructs to the language. 

The complete language model [6] supports additional data types, segmented versions of the opera
tions [5], and function definition/call as encapsulation mechanisms. For the present, we ignore segmenta
tion and assume that all nonrecursive function calls are inlined, and defer a discussion of these issues to 
Section 9. 

The parallel execution model is based on data partitioning, i.e., each processor is responsible for a 
contiguous portion of the vector. The output of the compiler is single-program multiple-data (SPMD) loop 
code [21] suitable for execution on MIMD multiprocessors. Storage is of two types: vector storage, which 
holds a complete vector, and buffer storage, which holds an iteration's worth of computation on a vector. 

Given a computation graph, on which initial transformations such as function call inlining and common 
subexpression elimination have been performed, we first use size inference to identify nodes that have the 
same loop structure. We use this information to partition the graph into clusters, and allocate vector storage 
to cross-cluster arcs. We then examine clusters and further refine them into epochs based on information 
provided by access inference, allocating vector and buffer storage where needed. Finally, we generate code 
in a straightforward manner for each epoch. 

3 A Few Examples 

Before getting to the details of the analysis techniques, we present a few simple examples to give the reader 
a feel for the end-to-end effect of the techniques. For each example, we show the Lisp-like code for the 
original program, the original program graph, the (uniprocessor) C code generated by the compiler, and 
running times for: (a) efficient serial code for the problem, (b) uniprocessor code generated by the compiler, 
and (c) multiprocessor code generated by the compiler. All times are on the Encore Multimax [14]. The 
data size is 64000 elements, and the multiprocessor times are on eight processors. 

The first example (Figure 1) is the SAXPY operation. This computation takes two vectors X and Y 
and a scalar A, and returns A.X + Y. This routine is one of the Basic Linear Algebra Subprograms [24]. 
The straightforward implementation requires three loops (one each for distribution, multiplication, and 
addition), and storage for the distributed scalar and the intermediate result of the multiplication. The 
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(d«fun SAxpy (a x y) 
(+ y 

(* (diatv a x) 
x))) 

for (i = 0; 1 < x «iz; { 
r[l] » y[i] +~(a * x[i]); 

Serial: 833.8 ms 
Uniprocessor: 882.6 ms 
Mulitprocessor (8 way):108.7 ms 

Figure 1: The SAXPY operation. The figure shows the original program, the computation graph, 
and the final C code produced by the compiler. The dashed rectangles show the grouping of nodes 
into clusters and epochs. Running times are also shown for an input size of 64000 elements. 

analysis techniques produce one cluster containing one epoch, and the C code produced by the compiler 
has the desired single loop with the distribution of the constaht folded into the multiplication, and no 
intermediate storage. 

The second example (Figure 2) is normalizing a vector, i.e., dividing each element of the vector by its 
norm. The s q r t operation in the middle of the graph is a scalar operation separating two loops over the 
vector. A naive transcription produces four loops, a scalar operation, and storage for two additional vectors. 
Size analysis infers that the s q r t operation is scalar, and the other nodes have the same loop structure. 
However, such a partitioning cannot be scheduled, and the vector cluster must be split into two as indicated. 
Each cluster has a single epoch. The C code produced by the compiler contains two loops and no additional 
vector storage. 

The final example (Figure 3) is the s p l i t operation, which takes a vector of values (integers) and 
a vector of flags (boolean, encoded as 0/1 integers), packs the values corresponding to the 0 flags to the 
bottom and those to the 1 flags to the top, maintaining order within each part, and returns the resulting 
vector. This operation forms the core of sorting algorithms such as radix sort and stable quicksort [22]. 
The computation involves two plus-scans, a plus-reduction, three elementwise operations, a distribute, and 
a final permutation. The unoptimized code has eight loops and six intermediate vectors. Size inference 
infers that all the nodes can be put into a single cluster. However, the scalar output of the + / node causes an 
access conflict, which results in the cluster being split into two epochs as shown. In the multiprocessor case 
shown on the right, the scans must be split to allow multiprocessing. (The reason for this is explained in 
Section 7.) In either case, the C code produced by the compiler has two loops and one intermediate vector. 

4 Size Inference 

Our intent is to partition the program graph into chunks that can be executed in parallel, with synchronization 
and loop partitioning occurring only between chunks. Since all our primitives can be expressed as loops in 
C or Fortran, we use the size of the iteration space (the difference of the loop bounds) of the nodes as the 
basis for partitioning. In this section, we introduce size inference, which uses the semantics of the primitives 
to infer relations among the sizes of variables and the iteration space sizes of nodes. In Section 6, we show 
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(dofun normalize (v) 
(/ v 

(distv 
(sqrt (plus-reduce (* v v))) 
v))) 

sum = 0.0; 
for (i = 0; i < v_slz; i++) { 

sum += v[i] * v[lj; 
} 
sum = sqrt((double) sum); 
for (i = 0; i < vjsiz; i++) { 

r[ij = v[i] / sum; 
> 

Serial: 1784.4 ms 
Uniprocessor: 1901.6 ms 
Multiprocessor (8 way): 248.9 ms 

Figure 2: Normalizing a vector. The figure shows the original program, the computation graph, and 
the final C code produced by the compiler. The dashed rectangles show the grouping of nodes 
into clusters and epochs. Running times are also shown for an input size of 64000 elements. 

how to use this information to partition the graph into clusters, such that all nodes within a cluster have the 
same iteration space size. 

4.1 Node and edge attributes 

We associate a vector with each output port of every node in the graph, and map the vector associated with 
(ns,Ps) to each edge e = ( ( n 5 , p 5 ) , (nd,pd)). The size of a vector is the number of elements it contains. 
Given this map between vectors and edges, we define the following attributes for a graph edge e: 

• size(e), the size of the vector associated with that edge. 

• gen(e), the generation pattern of the vector, this refers to the order in which the elements of the vector 
are generated by the source node of the edge. 

• use(e), the consumption pattern for the vector on that edge; this refers to the order in which the 
elements of the vector are used at the destination node of the edge. 

The gen(e) and use(e) attributes are required only for access inference (Section 7), and will not be used 
further in this section. 

Analogously, an operation node n (i.e., one of type SIMPLE) has the following attributes: 

• A set In(n) of constraints on the sizes of its input vectors of the form U = lj or U = k, where 
1 < hj < rc.irc. U is the size of the vector associated with the edge e = ( ( n 5 , p s ) , (n , i)), and k is 
a constant; these constraints define the vector sizes for which the computation is well-formed. The 
only value of k we currently use is 1. 

• A set of transfer functions Out(n, i) (1 < i < n.out) that compute the sizes of the output vectors of 
the node in terms of the sizes of its input vectors. 
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(dafun split (v f) 
(lat* ((NotF (not f)) 

(Up (plus-scan f)) 
(Down (plus-scan NotF)) 
(Sum (plus-raduca NotF)) 
(RaalUp (+ (distv Sum v) Up)) 
(Indax (salact f RaalUp Down))) 

(paxmuta v Indax))) 
Exampla: 

v 
t 
Notf 
Up 
Down 
Sum 
RaalUp 
Indax 
r 

[5 
[0 
[1 
[0 
[0 
4 
[4 
CO 
[5 

2] 
0] 
1] 
3] 
3] 
7] 
31 
0] 

sua m 0; 
for (i m 0; i < • six; i++) { 
^ sum +- (Notf[I] - ! f[ij); 
up « down m 0; 
for (i - 0; i < T_S±S; i++) ( 

r[f[±]?sum+up:down] - v[i]; 
up +- f[i]; 
down +- Notf[iJ; 

Serial: 825.9 
Uniprocessor: 1402.4 
Multiprocessor (8 way): 299.9 

Figure 3: The s p l i t operation. The figure shows the original program, the computation graph, 
an example computation, and the final C code produced by the compiler. The graph on the 
left (respectively, right) is the uniprocessor (respectively, multiprocessor) version. The dashed 
rectangles show the grouping of nodes into clusters and epochs. Running times are also shown 
for an input size of 64000 elements. 

• An iteration size function Loop(n) that computes the size of the iteration space of the operation 
performed by the node in terms of the sizes of its input and/or output vectors. This is important as 
nodes can take inputs of several sizes, or produce outputs whose sizes differ from those of the input. 

The node and edge attributes of the operations shown in Table 1 are shown in Table 2. Note that the size of 
the output may be different from the iteration space size, as for the + / operation. 

4.2 The basic algorithm 

The goal of size inference is to symbolically determine which nodes of a computation graph have the same 
loop structure. To this end, we first symbolically determine the size(e) attributes for the edges, and then use 
the formula for Loop(n) to determine the loop structures of the nodes. With perfect information, we could 
assign symbolic size labels to the edges of the graph such that two edges would have the same label if and 
only if the vectors associated with them always had the same size at runtime in order for the computation 
to be well-formed. Such an assignment is not always possible with compile-time information, because the 
sizes of vectors can depend on values contained in other vectors, information that is not available until 
runtime. This lack of information shows up as an imprecise transfer function. The DIST operation is an 
example. Its transfer function requires the value of the second argument in order to compute the size of the 
result. Hence, the analysis performed by the compiler makes a conservative approximation to this ideal; if 
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n.op In(n) Out(n,i) Loop(n) size gen use 

+ {h = h) h h h ind ind, ind 
* {h = h) h h h ind ind, ind 
i 0 h h h ind ind 

SEL {/, = l2,h = h} h h h ind ind, ind, ind 

+ \ 0 li h h ind ind 
+/ 0 l h l acc ind 

MIN/ 0 l li l acc ind 
LEN 0 1 l l ind ind 

DIST {/l = l , / 2 = l } j . lo lo ind ind, ind 
DISTV {h = 1} h h h ind ind, unused 

PERM {h = h} h h h arb ind, ind 
BPERM 0 h h h ind arb, ind 
DPERM {h = h] h h h arb ind, ind, ind 
INDEX ih = 1} ± lo lo ind ind 

GET {h = l , / 2 = 1} l 1 1 ind ind, ind 

Table 2: Node and edge attributes for the data-parallel operations defined in Table 1. / 0 is the 
size of the output vector. Each node shown here has exactly one output. A Out(n, i) value of ± 
indicates that the output sizes cannot be computed in terms of the input sizes. The edge attributes 
are explained in Section 7. 

two edges are assigned the same size label, then the vectors associated with them are guaranteed to always 
have .the same size at runtime if the function call is well-formed. In order to make this approximation, we 
restrict Out(n, i) so that it returns either the size of one of the input vectors, a constant, or the reserved value 
JL 

In general, the following cases may arise in the course of analysis: 

• The compiler infers that two vectors are guaranteed to have the same size. No runtime checks are 
required. 

• The compiler infers that two vectors cannot have the same size, making some operation ill-formed. 
This is a program error, and the program is rejected. 

• The compiler infers that two vectors must (in general) have different sizes, but cannot determine 
a functional relation between the sizes due to lack of knowledge in the compiler (about symbolic 
arithmetic on vector sizes, for instance). 

Two vectors determined to be of unequal size may, in fact, have the same size in a certain run of 
the program (because of the the data values at runtime). The compiler cannot take advantage of this 
possibility. 

• The compiler determines that the operation is well-formed provided two vectors have the same size, 
but can neither prove nor disprove this equality, since it may depend on runtime values. The compiler 
proceeds on the assumption that the sizes are equal, but inserts code to check for equality at runtime. 
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Figu re* How size inference works on the s p l i t operation. The figure shows the initial assignment 
of size labels to the graph edges. 

The Loop attribute of nodes is trivial to compute given the size attribute of edges. The key component 
of this evaluation, therefore, is the assignment of size labels to edges of the graph. The method is shown in 
Algorithm 1. 

Algorithm 1 (Size inference of a data-parallel computation graph.) 
Input: A data-parallel computation graph G. 
Output: Size labels for the edges of G. 
Method: 

1. Arbitrarily assign distinct symbolic sizes to each vector of the computation graph, and assign this size 
to each edge the vector maps to. 

2. Form a system of equations S representing the constraints on symbolic sizes as follows. 

(a) For each non-IF node n in the graph, instantiate each element of In(n) with the sizes assigned 
to its input edges and add the constraint to £. 

(b) For each node n in the graph whose transfer function does not return JL, instantiate Out(n, i) 
with the sizes assigned to its input edges, equate it to the size assigned to the output vector, and 
add it to £. 

(c) For each IF node in the graph: 

i. Equate the size of the boolean input to 1 and add it to £. 
ii. Recursively label the then- and else-subgraphs. 

iii. Merge the output sizes from the two subgraphs. This point is elaborated in Section 4.3. 

3. Solve £. Given the forms of the constituent equations, the solution partitions the set of sizes into 
equivalence classes. Assign distinct labels to each class. 

4. Replace the size label on each edge of the graph with the label of the equivalence class to which the 
size belongs. 
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PSBKOTE [a] 

a (ind, ind) 

la (ind, ind) 

a (--, ind) 

Figure 5: Computation graph of s p l i t operation, with node and edge attributes shown. The edge 
label is the size, with generation and use patterns in parentheses. The node label (in square 
brackets) gives the size of the iteration space. 

To illustrate how the above algorithm works, consider the s p l i t operation. Given the initial labeling 
of the edges as shown in Figure 4, and using the node characteristics shown in Table 2, we get the following 
system of equations: 

This gives the edge labeling shown in Figure 5. The other node and edge attributes are easily computed 
given the size labels on the edges and are also shown in Figure 5. 

4.3 Refinements to the basic algorithm 

A complication arises in Algorithm 1 concerning IF nodes. In general, it is not necessary for corresponding 
results from the THEN and ELSE subgraphs to have the same size. Therefore, if the result vectors have 
different symbolic sizes, we must take a conservative view and assign a new symbolic size after merging. 
This, however, is not as discriminating as we would like. In particular, it works poorly in the presence of 
recursive function calls. There are some important special cases where we can do better. 

We classify IF nodes into two categories: simple and recursive. We only consider self-recursion for 
the moment. Simple IF nodes do not have recursive calls in either branch, while a recursive IF node has 
a recursive call in at least one branch. If a function contains a recursive IF node, wellformedness requires 
that there be at least one source-to-sink path in the graph free of recursive calls. 

As simple IF nodes do not present any problems for the size inference algorithm, we will only consider 
recursive IF nodes. The general form of a recursive IF node with a recursive call in one branch is shown in 

S = {b = c,c = d,e = 1,6 = f,g = a,g = f,h = g,b = d, 

b = h,i = b,a = i,j = a} 

which upon solution yields the following two equivalence classes: 

SC\ = {e},£C2 = {a,b,c,d,f,g,h,ij}. 
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true => (<5=</3,7>) 
(<r = 7 ) => (* = £)A(* = /J) 

(a = /J) A (a = 7) => (<$=</>,a >) 
(a = /?) A (a = p) A (cr = 7) =» (<5 = a) 

( / j = l ) A ( < r = 7 ) => ( * = 1 ) A ( ( T = 1 ) 

Figure 6: Size possibilities for a recursive i f node with a recursive call in one branch. The Greek 
symbols indicate vector sizes, and the right hand sides of the equations indicate inferences that 
may be made if the conditions on the left hand side are fulfilled. The shaded ovals represent 
arbitrary nonrecursive'computation graphs. 

Figure 6. Without loss of generality, we assume that the IF node is the last node in the function definition. 
In the absence of additional information, we can only infer that the output size S is either (3 or 7. If we know 
that the computation following the recursive call is size-preserving, then we can conclude that the final 
output size will be (3. Note that 0 may not be simply related to a. If, in addition, the nonrecursive branch is 
size-preserving, all we can conclude is that the final output size is either p or a. Now, if we also know that 
the computation preceding the recursive call is size-preserving, we can infer that the entire computation is 
size-preserving. The last line deals with the special case where the output variable is a scalar. 

The compiler incorporates these refinements, choosing a new symbolic size when there are multiple 
possibilities for a size. 

4.4 Relationship to other work 

This work is related in a general way to research in abstract interpretation; Algorithm 1 is superficially 
similar to the type inference algorithm of ML [26]. However, the two differ in the following fundamental 
ways: 

• Size inference still requires runtime checks of some equalities. Type inference is completely a 
compile-time operation. 

• The output sizes of a function can be unrelated to the input sizes; output types must be related to input 
types. 

• Sizes need not match in the two branches of an IF statements to guarantee well-formedness. Types 
must match. 
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The d o m a i n construct in C* essentially provides the information that size inferencing computes. 
However, the C* model is more restrictive, since domains cannot be created dynamically within a program, 
and domain sizes must be known at compile time. 

5 Scheduling 

In the remainder of the paper, we will be replacing the partial order of the computation DAG with a linear 
order in various ways. The problem may be described as follows. We are given the DAG with some subset 
of its edges marked (represented as a mapping 6 : E -» {0,1}), and are asked to pack the nodes into a 
chain of buckets, each of infinite capacity. If edge (m, n) is marked, we must place node m in a bucket that 
occurs earlier in the chain than the bucket in which we place node n. We also want to minimize the number 
of buckets used. The length of a packing is the number of buckets it consumes. A schedule of G under 6 
is a packing of minimal length, and its length is denoted 6). Define 6 on a path as the sum of the 6 
values of its constituent edges. Then the following lemma is obvious. 

Lemma 1 C(G, 6) = 1 + mzK{6(P): P is a source-to-sinkpath in G}. 

5.1 Lower and upper bounds 

The scheduling problem has the characteristic that nodes have upper and lower bounds on their position in 
any schedule. We separate policy from mechanism by splitting the scheduling process in two: finding these 
bounds, and then actually choosing a schedule. The method for finding the bounds is given in Algorithm 2. 

Algorithm 2 (1-h labeling of a graph.) 
Input: A graph G = (N, E\ and a function S : E -+ {0,1}. 
Output: Functions / and h: N —• {0, ,.,£(G,6) - 1} that give the lower and upper bounds on the 

position of a node in any schedule of N under 6. 
Method: 

1. Sort the node set N into list F such that all ancestors of a node precede it on the list. This can be done, 
for instance, by a breadth-first traversal of the DAG. 

2. Sort the node set N into list B such that all descendants of a node precede it on the list. This can be 
done, for instance, by a breadth-first traversal of the graph with the edges reversed. 

3. For each node n on F, in order: 

l[n) = 0, if n is a source node 
= min {/(m) + Ke)})->otherwise. 

e=(m,n) 

4. Compute L = max n { / (n )} . 

5. For each node n on B, in order: 

h(n) = L, if n is a sink node 
= max {h(m) - <5(e)},otherwise. 

e=(n,m) 
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5.2 Scheduling policies 

Two obvious schedules are S = / and S = h, where / and h are the labelings calculated by Algorithm 2. 
These schedules are derived from purely local considerations. 

The next natural step is to determine a "good'* schedule based on some notion of cost. In our context, 
a useful cost measure is the intermediate storage required by the schedule. We will see in later sections 
that storage is needed only for edges that cross between buckets, and the size of the vector associated 
with that edge gives the storage requirement for the edge. Let Opt be a schedule that minimizes storage 
lifetime, which we define as the product of the size of the storage and its extent. In the absence of additional 
information, we assume that all vectors have the same size, and normalize this to 1. We can formulate this 
as the following integer programming problem: 

Minimize Yl(m,n)£E (Opt(n) - Opt(m)) subject to 

l(n) < Opt(n) (lower bound) 
Opt(n) < h(n) (upper bound) 

Opt(m) < Opt(n) - 6((m, n)) (marked edge) 

It is easy to verify that the corresponding linear programming problem has integer solutions, and hence it is 
sufficient to solve the linear programming problem to determine Opt. 

The compiler provides switches for all these scheduling mechanisms. The default scheduling is 5 = h, 
since this is inexpensive to compute and also tends to reduce storage requirements. 

5.3 Comparison with other work 

It is interesting to compare our scheduling problem with previous work in the field, such as microcode 
compaction [15] and scheduling of macro-dataflow graphs [32]. Those techniques use integer weights on 
nodes and edges to represent computation and communication costs respectively. As our interest is in 
grouping nodes together rather than forming an actual timing schedule, we use 0/1 weights for edges and no 
weights at all for nodes. Further, the critical resource in our problem is related not to nodes (as in microcode 
compaction) but to edges. 

6 Cluster Formation and Refinement 

Size inference provides information about the iteration space sizes of the graph nodes. We want to group 
together computation nodes that have the same Loop(n) value into larger clusters. Conversely, nodes with 
different Loop(n) values must be placed in separate clusters. We must also ensure that clusters can be 
scheduled, i.e., a cluster can run to completion once all its inputs are available. As all nodes in a cluster have 
the same iteration space size, the data needs to be divided among the physical processors only at cluster 
entry. Thus, clusters serve as natural units of loop partitioning Goad balancing). We are interested in making 
clusters as large as possible, since the optimizations that follow do not go beyond cluster boundaries. We 
now present a framework for achieving these ends. 

Definition 2 (Critical edge) A graph edge (ns,rid) is said to be critical iffLoop(ns) / Loop(rid). 

Definition 3 (Cluster) A cluster Q = (JV\£) of a computation graph G is a connected subgraph of G 
containing no critical edges. 

Definition 4 (Clustering) ,4 clustering P= . . ,Qm} is a node partition of G into clusters. 
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Figure 7: A program graph G, M(G)t and the condensation graph Cq(U). The graph is that of the 
s p l i t operation where + - R E D U C E is not considered a primitive operation. Instead, it is simulated 
by performing a + - S C A N on the vector, and adding the final values of the original and the scanned 
vectors. The maximal clusters of the graph are indicated by dashed lines, and condensation 
graphs are shown on the right. The upper graph is c£f ( G \ which shows that M(G) is not viable. 
The lower condensation graph is acyclic, but the mapping of nodes to clusters is not unique, as 
shown by the indicated + - S C A N node. 

Definition 5 (Refinement) A clustering P is a refinement of another clustering Q iff every cluster ofP is 
a subgraph of some cluster ofQ. 

The maximal clusters of the computation graph can be found by removing all critical edges of the graph 
and finding the connected components of the resulting graph. The set of maximal clusters form a clustering 
of the computation graph, which we will refer to as M{G). It is clear that M(G) is unique. Define the 
condensation graph of a computation graph under a clustering as follows: 

Definition 6 (Condensation graph) Let P = . . ,Gm} be a clustering of a computation graph G = 
(N, E), where Qi = {Mi, £,). The condensation graph ofG under P is the graph Cq = (P, Ep), where 
{Gi, Qj) € Ep iff there exist nodes ns G Afi and nj € Afj (i ^ j) with (ns,nd) € E. 

Definition 7 (Viability) A clustering PofG is said to be viable ifCQ is acyclic. 

The condensation graph collapses each cluster to a vertex and captures the data dependences between 
clusters of a computation graph. Intuitively, the clusters of a viable clustering can be scheduled (linearized) 
based on data dependences, and a cluster can run to completion once all its input data are available. M(G) is 
not necessarily viable, as Figure 7 shows. However, the following property holds of any clustering (hence, 
of any viable clustering), due to the maximality of M(G). 

Lemma 2 Any clustering ofG is a refinement of M (G). 

As we are interested in finding large clusters, the only candidates for refinement are the clusters that 
form some non-trivial strongly connected component (SCC) of Cq^G\ We need a way to break the cycle 

14 



Figure 8: Proof of the viability lemma. Straight lines represent edges, and wavy lines 
paths in the graph. 

in an SCC in order to achieve viability. While the minimum number of breaks required for this is unique, 
there can, however, be several ways of breaking the cycle with that number of breaks. For instance, in 
Figure 7, the cluster CI must be refined into two clusters to make the resulting clustering viable. However, 
the rightmost + \ node can be scheduled in either of the two refinements. The following lemma captures 
the property that nodes must satisfy in a viable clustering. 

Lemma 3 Two nodes n\ and ni cannot be in the same cluster of a viable clustering if there exists a path 
from n\ to nz containing a critical edge. 

Proof: By contradiction. By definition, the two nodes cannot be in the same cluster if Loop(n\) ^ Loop(ri2). 
We therefore only consider the case where Loop(n\) = Loop(ri2). Refer to Figure 8 and suppose that n\ 
and ri2 satisfying the given condition are in the same cluster Qn of a viable clustering P. Observe that since 
n\ and ri2 are in the same cluster, there must be at least two critical edges on some path between them, one 
leaving the cluster and another entering it. Call these critical edges E\ and £ 2 . Now consider the path p = 
( 6 i , . . . , E\,... , £ 2 . . . . , ek) between n\ and 712. Since E\ and E2 are critical edges, Loop(a) ^ Loop(n\) 
and Loop(b) ^ Loop(712). Let nodes a and b be in clusters Qa and Sb (not necessarily distinct) of P. But then 
Cq contains the cycle Qn —• Qa —• Qb -+ Qn, and hence P is not viable. • 

We call (n i , 712) above a critical pair if a path between them begins and ends with critical edges. 
To separate the elements of critical pairs, we add separator edges between them, producing the separator 
graph Gs = (NyE U Es), where Es is the set of separator edges. The separator edges encapsulate the 
interactions between clusters, so that we can now examine and refine each cluster in isolation. As explained 
in Section 5, the number of refinements required to make a cluster viable is equal to the maximum number 
of separator edges on any path within the cluster, but there is some flexibility in the actual assignments of 
nodes to refined clusters. Intuitively, separator edges must span refined clusters. A viable partition of a 
graph is generated by Algorithm 3. 

Algorithm 3 (Viable partitioning of a data-parallel program graph.) 
Input: A data-parallel computation graph G on which size inference has been performed. 
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Output: An assignment of cluster numbers to nodes of G such that the resulting clustering is viable. 
Method: 

1. Compute M(G) by finding the connected components of the graph (JV, E - Ec), where Ec is the 
set of critical edges of G. 

2. Find L, the set of non-trivial strongly connected components of [1, p. 193]. 

3. For each / £ L: 

(a) Identify critical pairs and create the separator graph Is. 

(b) Apply Algorithm 2 with G = Is and 6 defined as follows: 

4. Assign refined cluster numbers to nodes n from the range [/(n), h(n)]9 using one of the scheduling 
policies mentioned in Section 5.2. 

The clusters of the resulting viable clustering can now be scheduled in any way that maintains the 
inter-cluster data dependences. 

7 Access Inference 
Each cluster of a viable clustering represents a section of code that could potentially be fused into a single 
loop. It does not necessarily guarantee that this is always possible, as operations within a cluster may conflict 
in the order in which they produce and use vectors, or may require other kinds of synchronization. Access 
inference identifies these conflicts and further refines clusters into epochs, where each epoch corresponds 
to a single loop in C. 

Recall that we defined gen(e) and use(e) attributes for edges in Section 4. We now define the possible 
values of these attributes. We choose gen(e) and use(e) from the following set of stylized patterns: 

1. unused: not used. This means that the data values are not required for the operation. DISTV is an 
example, where only the length of the second input is needed. 

2. ind: generated/consumed in index order. 

3. acc: generated by accumulation. This means that the value is available only after all iterations of the 
loop have completed. 

4. arb: generated/consumed in some data-dependent order that cannot be predicted at compile time, 
e.g., in a PERMUTE operation. 

These patterns are representative, not exhaustive. Also, because a vector may be mapped to multiple edges 
with the same source (corresponding to fanout), the consumption pattern for a vector is defined as the 
"most constrained" consumption pattern among all the edges to which the vector is mapped, arb being more 
constrained than ind, which is more constrained than unused. Table 2 shows the edge attributes for various 

The language primitives can be divided into the following groups: elementwise operations, structure 
accessors (such as LENGTH), permutes and distributes, and scans and reductions. The first three groups 

nodes. 

16 



SUM TLAAANTI 1A OWN 
SACTLOA STARTING 
WITH ATART-OFFAOT. 

SCAN SUM FROM ALL 
PROCOAAORA TO GOT 
CORROCT ATART-OFFAOT. 

. . . . . SCAN SUMS FROM ALL 
(SYNCHRONISATION \ BYNCHROALSATLOJ PROCOAAORA TO GOT 
' 1 , 1 1 GLOBAL AUM. 

SUM OLAMANTA IN OWN / \ i I \ SUM OLOMONTA IN OWN 

PORTION OF VACTOR. \ J / [ ->) PORTION OF VACTOR. 

Figure 9: Templates for S C A N and R E D U C E operations that expose their microstructure. 

can be implemented on a multiprocessor in a single loop, as there are no loop-carried dependences [34] in 
these operations. This is not true for scans and reductions, however, where processors need to communicate 
state information. In order for access inference to effectively handle S C A N and R E D U C E operations, we 
must expose their microstructure. The idea is to decompose these operations into more primitive loops with 
inter-processor communication isolated between the loops. 

The decomposition follows from the standard parallel algorithm for scans [23], where each processor 
performs the following three phases: 

• Sum the elements in its partition of the data. This is an elementwise loop requiring no interaction 
with other processors. 

• Scan the sums from all the processors to obtain the correct start-offset. This involves inter-processor 
communication (synchronization). 

• Sum the elements of its section starting with the start-offset derived from the previous step. This is 
another elementwise loop that requires no interaction with other processors. 

Note that we do not have to know the exact number of processors, or the algorithm used for the synchro
nization step. These details are relegated to the runtime system. A reduction is treated in much the same 
way, except that the third phase is not required, and the synchronization step returns to each processor 
the global sum instead of the start-offset. The templates for these two operations are shown in Figure 9. 
We replace occurrences of scan and reduce nodes with the corresponding templates, and perform common 
subexpression elimination to remove any redundant nodes. For the s p l i t operation, this results in the 
graph shown in Figure 10. 

The identification of edges requiring synchronization is based on def-use conflicts for the vectors 
corresponding to those edges, and a special case for scan operations. Intuitively, the idea is as follows. 
If a vector is produced and consumed in ways that are compatible (such as ind and ind), then storage is 
only required for a small section of the vector at any given time, the producer and consumer nodes can 
be executed in a single loop, and no synchronization is needed. Conversely, for incompatible patterns, 
the entire vector must be generated before any of it can be used, the producer and consumer nodes must 
be in different loops, and synchronization is required between the loops. (However, loops need not be 
repartitioned, as we are still within a single cluster.) We capture this notion by defining an incompatibility 
relation Tl(gen(e), use(e)) between gen(e) and use(e), as shown in Table 3. We define the access weight 
of an edge as follows: 

17 



IIIIIIIII Synchronization 

WJl'l Epoch 

l ~ l Cluster 

Figure 10: The s p l i t operation after template expansion and CSE. Cluster and epoch boundaries 
are shown, along with computation nodes and synchronization events. 

use(e) 
unused ind arb 

ind 0 0 1 
gen(e) arb 0 1 1 

acc 0 1 1 

Table 3: Incompatibility relation Tl(gen(e),use(e)) between generation and usage patterns. A 0 
entry indicates that the two patterns are compatible, while a 1 indicates an incompatibility. 

Definition 8 (Access weight) The access weight 6a(e) of an edge e = (ns,n<i) is 1 ifns.op = SCAN_1 and 
nj.op = SCAN-2, and is equal to 1l(gen(e),use(e)) otherwise. 

As explained in Section 5, while the number of epochs that a given cluster must be broken into is 
well-defined, there is some flexibility in the mapping of nodes to epochs. The upper and lower bounds can 
be computed for each node of a cluster by Algorithm 4, which is similar to Algorithm 3. 

Algorithm 4 (Access inference of a cluster of a data-parallel computation graph.) 
Input: A cluster C from a viable clustering of a data-parallel program graph. 
Output: An epoch numbering of the nodes of the cluster. 

Method: 

1. Apply Algorithm 2 with G = C and 6 = 8a. 

2. Choose an assignment of nodes to epochs, using one of the policies in Section 5.2. 
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The epoch assignments for the s p l i t operation are shown in Figure 10. Note that multiple synchro
nization events at an epoch boundary can be combined, as in the case of the two scans and the reduce at the 
end of the first epoch. 

8 Implementation and Results 

We have implemented a compiler for data-parallel computation graphs incorporating the above ideas. The 
compiler produces C Threads code [13] suitable for execution on a shared-memory multiprocessor. In this 
section, we briefly discuss storage management and code generation, and then present some preliminary 
results on the Encore Multimax. 

8.1 Storage management 

Intermediate storage required for the computation is of two types: vector storage and buffer storage. The 
former is needed for those edges that cross cluster or epoch boundaries, while the latter is needed for 
intra-epoch edges with fanout. Vector storage can be further subdivided into three categories based on the 
persistence of the vector, as follows: 

• Vectors that persist across epochs within a single cluster. 

• Vectors that persist across clusters of a single function. 

• Vectors that persist across functions. 

This distinction is important because of the high overhead of parallel memory allocation on a multipro
cessor. Heap storage is required for vectors that persist across functions, while stack storage is sufficient 
for the other two categories. The runtime system uses separate vector stacks for the first two categories. 
Allocation and reclamation is much cheaper for stack storage than for heap storage, since it can be done 
without interprocessor communication. Standard liveness analysis techniques can be easily augmented 
to optimize reuse of storage. The extension consists of taking into account the size of a memory block 
allocated for a vector when considering it for reuse. 

8.2 Code generation 

Code generation is fairly straightforward, since at this point the compiler is dealing with well-structured 
loops. The compiler generates C code and relies on the native C compiler to perform machine-specific 
optimizations. This use of C as a universal assembly language allows the use of a single back end in the 
compiler. The compiler does, however, perform source-level transformations such as strength reducing 
array indexing to pointer incrementing, and unrolling loops to reduce loop overheads, as native C compilers 
are not very good at such optimizations. Code generation is done by traversing backwards through epochs; 
buffer storage associated with nodes with fanout is used to avoid recomputation of results. 

8.3 Results 

In Figure 11, we show preliminary performance numbers for eight test kernels, for various data sizes 
and number of processors. Note that the speedup is calculated with respect to a good serial algorithm 
for the problem, not the parallel algorithm running on one processor. In some cases the serial code 
uses completely different data structures and algorithms from those used by the parallel code. Source 
level tuning [4] was done for the serial programs, including loop invariant motion and converting array 
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indexing to pointer incrementing. The measurements were taken on a 16-processor Encore Multimax (with 
NS32332 processors and 96 Mbytes of main memory) running the Mach operating system [29]. Timing was 
done using the memory-mapped free-running microsecond timer, with averaging over multiple trials. The 
processor allocation facility of the Mach kernel was used to gain exclusive access to the appropriate number 
of processors. We now analyze the results in greater detail. We emphasize once again that the results are 
preliminary. We are currently adding more optimizations to the compiler, and we expect the numbers to 
improve in future. 

Example 1: (SAXPY) This computation was discussed in Section 3. It is a straightforward elementwise 
loop, and shows the expected linear speedup. The superlinear speedup for moderate data sizes is a cache 
effect: the data overflows the cache on a single processor, but not on multiple processors. 

Example 2: (Normalize) This computation was discussed in Section 3. The reduction at the end of the 
first loop causes a serial bottleneck. This, however, becomes less significant for larger data sizes, where the 
speedup shows a linear trend. 

Example 3: (First minimum) This computes the first location of the minimum value of a vector. The 
computation can be written in a trivial serial loop (Livermore Loop 24), which unfortunately does not 
parallelize well. The data-parallel algorithm involves two min-reductions, two distributes, a comparison, 
and the INDEX operation. Our analysis coalesces this graph into two loops with two synchronization points. 
The speedup is limited to about 3 because of the extra work done by the parallel algorithm. This is a result of 
the limited set of reduction operators we allow, and could be improved by augmenting the language model 
to allow reduction with user-defined functions. 

Example 4: (Split) This computation was discussed in Section 3. Note that the parallel version of scan 
performs twice as many operations as the serial version. This is inherent to the parallel algorithm for scan 
and is not an artifact of the compiler. Any parallel algorithm for split requires this extra work. This limits 
the speedup we can expect. The additional memory traffic due to the permute gives a maximum speedup of 
about 5. 

Example 5: (Pack) This takes a vector of values and a vector of flags, and returns only those values 
whose corresponding flags are 1. The serial algorithm can take advantage of the fact that the size of the 
result is less than that of the input to simplify computing the size of the output. The parallel version requires 
two loops, one to count the number of flags that are 1, and the second to actually permute the values into 
the result. This extra work and bus contention limits the speedup to about 2. The compiler does not yet 
generate optimal code for this benchmark. 

Example 6: (Leaffix) This operation takes a tree with a value at each node, and returns to each node 
the sum of the values at all its descendants. The tree is represented as an Euler tour, and the details of 
the representation and algorithm may be found in [5]. This computation can be used as a kernel for many 
tree operations, such as determining the number of descendants for each vertex. The size of the iteration 
space changes during the computation (the scan operates on a vector that is twice the length of the original 
vectors). The analysis techniques transform this graph to four loops with three synchronization points. A 
speedup of 6 is achieved on this benchmark, which is close to the bound based on operation counts. 

Example 7: (Quick-median) This computes the median of a vector of values using an algorithm of 
O(n) average-case complexity. It is quite similar to quicksort. It chooses a pivot, and finds the number of 
elements whose value is less than the pivot value. Depending on this value, it either packs those elements 
or those that are greater than the pivot, and calls itself recursively on that packed vector. The graph contains 
nested recursive IF nodes. The synchronization required around recursive calls limits speedup to about 4 
over the serial program. This could be improved with further optimizations of function calls, as explained 
in Section 9.1. 

Example 8: (Prime sieve) This finds all prime numbers less than a given value using the sieve of 
Eratosthenes. A Boolean array distinguishes prime and composite numbers in the desired range. In 
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successive steps, the next prime is located, and its multiples are marked as composite. The program 
generates a large number of writes, which show up as bus transactions because the caches arc write-through. 
We therefore expect the performance to be limited by bus performance. We determined in a separate 
experiment that a steady write traffic causes bus saturation at seven processors, and the peaking of the 
speedup curve at that value confirms our hypothesis. 

9 Extensions 

9.1 Function calls 

Function calls can sometimes be inlined into the calling context. Inlining is simplified by the single-
assignment nature of our language. This transformation is generally desirable, as the compiler can then use 
information from the call site, and potentially generate larger clusters and epochs. 

However, inlining may not always be possible due to various reasons: 

• The function definition may not be available to the compiler (library functions, separate compilation); 

• Inlining the function call may cause an unreasonable expansion in code size; 

• The function may be recursive. 

If the compiler cannot access the function definition, the function call must be treated as a black box that is 
placed in a cluster by itself. This means that gen(e) and use(e) patterns for input and output edges must be 
considered to be arb, requiring storage and synchronization at those edges. 

We can do much better if the definition is available, or some properties of the function are known. In 
this case, we can do the following things, in increasing order of sophistication: 

• We can derive an end-to-end Out(n, i) for the function call by performing size inference on the 
definition and deriving the size of each output of the function in tenns of the input sizes. This allows 
information to pass through the function call in the calling context. 

• We can tag each function to indicate whether it has a synchronization point. For functions that do not 
have a synchronization point, we can associate a Loop(n) with the call, and treat it as a user-defined 
operator. This requires compiling a single-element version of the function to allow fusion with 
adjacent loops. 

• We can partially inline the function call. If the function has multiple clusters, or multiple epochs 
within a single cluster, we can inline the first and last ones and treat the interior as a black box. This 
allows optimization of the inlined clusters and does not introduce any additional synchronization. 
Partial inlining can be particularly useful for recursive functions that are not tail-recursive. 

• Tail-recursive functions can be converted to an equivalent iterative form. 

Our current compiler performs the first of these optimizations, and we are working on incorporating the 
others. 

9.2 Nested parallelism 

As mentioned in Section 2, we can augment the language with segmented vectors and segmented versions 
of the primitive operations. These augmentations allow the implementation of nested parallelism [7]. The 
analysis techniques extend quite naturally to handle segmented operations. Segmented operations simply 
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introduce more levels of loops, and the Loop(n) function must now return a tuple instead of a single value. 
There is also the question of runtime models for segmented vectors based on the data signature. These 
issues are beyond the scope of this paper. 

9.3 Alternative traversal orders 

One drawback of the current analysis is the limited choice of generation and use patterns of vectors. In 
particular, this restricts our ability to analyze structured permutations such as reverse and rotate. We are 
working on refinements to access inference similar to ideas in [33] that would allow us to identify such 
permutations and use this information to choose alternative and more efficient traversal orders through the 
iteration space. 

10 Relationship to Other Work 

The work described in this paper is related to research in compiling functional and applicative languages 
such as FP, APL and SISAL, loop fusion techniques in Fortran, and compilation of C* for multiprocessors. 
We now discuss how our work stands with respect to each of these. 

Applicative languages: APL has a long history of compilation efforts, and some of the techniques in 
this paper can be traced back to ideas presented by Guibas and Wyatt [18], such as stylized access modes, 
the compilation of streams, and slicing. However, they were investigating these issues for uniprocessors, 
and therefore did not consider multiprocessor issues such as synchronization. They also did not handle 
scans. More recently, Budd has looked at generating vector code from APL [8, 9]. Again, he confines 
his "drag-through" transformation to elementwise sections of code, and, in particular, does not deal with 
pipelining scan and reduction operations. This is partly due to the fact that APL allows nonassociative scan 
operators. Ching [12] presents results for compiling APL into System/370 assembly code. His type-shape 
analyzer is very similar to size inference, but his primary aim is to get tight bounds on the types, ranks and 
sizes of variables. He also does not treat multiprocessor issues such as load balancing and synchronization. 
Ju and Ching [20] present similar results. While they are aware of the benefits of loop fusion, their compiler 
does not perform this transformation automatically. Our techniques provide a systematic way of doing this. 

Similar work has also been reported for FP by Budd [10], and more recendy by Walinsky and Baner-
jee [33]. The goal of the latter work was to treat permutation computations as index manipulations. These 
suffer from the same limitation of being effective only in sections of code containing only insert and apply-
to-all functionals. Our work shows how to decompose scans and allow size and access information to flow 
through them. 

Compilation of SISAL by Sarkar [32] uses a similar approach to partitioning and scheduling. However, 
his work requires estimates of execution times for the nodes of the graph, and does not explore the epoch 
structure within clusters. 

Fortran: Loop fusion [34] is a well-known optimization technique in Fortran. The idea there is 
to fuse adjacent loop bodies, thereby reducing loop overheads, and allowing for further interstatement 
optimizations. Its use is again limited to elementwise sections, and cannot work through operations such 
as scans due to data-dependence considerations. Permutes present a major obstacle because they are 
impervious to dependence analysis. Recently, there has been some work on identifying idioms such as 
scans and reductions in Fortran programs [27]. 

C*: Quinn and Hatcher have worked on compiling C* for MIMD machines [28]. Their work has 
some of the same goals as ours. It differs from ours in two main ways: their runtime model involves 
virtual processor emulation by the physical processors, and they do not attempt any inter-statement storage 
optimizations. They also do not attempt to perform source-to-source optimizations such as loop fusion. The 

23 



d o m a i n construct in C* essentially provides the information that our size inferencing computes. However, 
the C* model is more restrictive, since domains cannot be created dynamically within a program, and 
domain sizes must be known at compile time. It is not clear how their techniques would handle scans, or 
extend to nested parallelism. 

11 Conclusions 
This paper has introduced two techniques for the analysis of data-parallel program graphs. The first, 
size inference, derives symbolic relations between the sizes of program vectors, and uses this information 
to partition the program graph into regions (called clusters) that have different loop sizes. The second 
technique, access inference, analyzes generation and usage patterns of vectors, and uses conflicts between 
these patterns to further refine clusters into epochs. These techniques are used to step up the grain size, 
reduce storage and synchronization requirements, and improve locality of data-parallel programs, making 
it viable to run them on traditional MIMD multiprocessors. The major contribution of this paper lies 
in demonstrating how to make the techniques work in the presence of scan, reduction, distribute and 
permutation operations. A compiler based on these ideas has been implemented, and results have been 
presented for several benchmarks. 
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