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Abstract 

Parameter sharing plays an important role in statistical modeling since training data are usually limited. On 
the one hand, we would like to use models that are as detailed as possible. On the other hand, with models too 
detailed, we can no longer reliably estimate the parameters. Triphone generalization may force two models 
to be merged together when only parts of the model output distributions are similar, while the rest of the 
output distributions are different. This problem can be avoided if clustering is carried out at the distribution 
level. In this paper, a shared-distribution model is proposed to replace generalized triphone models for 
speaker-independent continuous speech recognition. Here, output distributions in the hidden Markov model 
are shared with each other if they exhibit acoustic similarity. In addition to detailed representation, it also 
gives us the freedom to use a large number of states for each phonetic model. Although an increase in 
the number of states will increase the total number of free parameters, with distribution sharing we can 
essentially eliminate those redundant states and have the luxury to maintain necessary ones. By using the 
shared-distribution model, the error rate on the DARPA Resource Management task has been reduced by 
20% in comparison with the baseline SPHINX system. 
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1. Introduction 

In speech recognition, hidden Markov models (HMMs) have been successfully used to model 
various acoustic phenomena [ 1 3 , 2 2 , 2 8 , 4 , 1 7 , 2 5 , 1 8 ] , In these systems, each H M M is responsible 
for representing a specific unit of speech, such as a phoneme or a word. A n H M M consists of 
several states and transition arcs between these states. Associated with each state / is an output 
distribution, />/(.), representing a distinct acoustic event in that unit of speech. 1 State transition 
probabilities r/,-/s specify t ime-varying properties related to different acoustic events. The output 
probability can be a mixture of continuous probability density functions [15, 32] , or a discrete or 
semi-continuous output probability distribution [2, 22, 10]. The forward-backward algorithm [2] 
is generally used to iteratively reestimate both output and transition probabilities, and the Viterbi 
beam search algorithm [37,33] is used during recognition to find out the most likely word sequence. 
Interested readers are referred to [19, 3 1 , 9, 38] for more detailed treatments on H M M s for speech 
recognition. 

To improve the structure of the stochastic model of speech, the complexity or dimensionality of 
the model usually needs to be increased; this leads to the increased effective number of degrees-
of-freedom in the models . For large vocabulary speech recognition, hidden Markov modeling 
of words becomes more difficult because of the many repetitions needed to train a single word 
H M M . Instead, subword units like context-dependent phonetic models are introduced [1 , 35, 20] 
as they are both consistent and trainable units. A triphone is a phone that takes into consideration 
its left and right phonetic contexts. Triphone models are typically poorly trained because there 
are so many of them. For example, there are approximately 7500 context-dependent triphones 
[33, 11] in the DARPA Resource Management (RM) task [30]. If each triphone is represented 
by a discrete H M M , there will be several millions of parameters to be estimated. To estimate the 
increased number of free parameters, more training data are generally needed. Conversely, faced 
with a limited amount of training data, the advantage of improved structure of the stochastic model 
may not be realized since these free parameters may not be reliably estimated. Thus, one of the 
most important issues in designing an HMM-based system is how to estimate a huge amount of 
parameters with only limited training data. 

Because of the di lemma between detailed model structure and available training data, we 
must resort to a way of smoothing or reducing free parameters. To smooth parameters, deleted 
interpolation [14] or heuristic interpolation [35, 33 , 3] has been successfully employed to smooth 
those less well-trained parameters with relative well-trained, but less detailed parameters. The 
interpolation weights can be determined according to the ability of predicting unseen data [14], or 
a function of training tokens [34]. For example, parameters of triphone models can be interpolated 
with parameters of diphone or context-independent phoneme models [35 ,20] , coocurrence matrices 
[35, 33] , or several layers of intermediate clustered phonetic models constructed by a decision tree 
[24, 6 ] . Alternatively, to reduce the amount of free parameters, techniques based on parameter 
sharing have also been applied successfully in many speech recognition systems. Generalized-
triphone models [20] group similar tr iphones together when they are poorly trained or when they 
are close to each other based on an information-theoretic distance measure. Similar approaches 
based on the number of training tokens are also used in [18, 25] . Another parameter-sharing 

Output distributions may also be associated with arcs instead of states. 
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example is the semi-continuous (tied-mixture) H M M (SCHMM) [9]. S C H M M s make different 
continuous probability density functions shared across different phonetic models . In comparison 
with the discrete H M M , S C H M M s use multiple codewords instead of the best codeword in vector 
quantization (VQ), which leads to relative well trained parameter sets. 

In the SPHINX system, generalized triphones [20] are used to merge similar triphones together 
in order to reduce the amount of parameters , However, clustering at the H M M level may not 
provide us with very accurate models . This is because clustering two entire models may force 
output distributions with quite different shapes to be merged together when only parts of the models 
actually exhibit close resemblance. Shared-distribution models have been successfully employed 
for speaker-adaptive speech recognition where adaptive distributions are shared across different 
phonetic models [7]. In this paper, we propose an approach that makes output distributions or 
H M M states shared across different phonetic models for speaker-independent continuous speech 
recognition. Unlike model-level clustering, distribution-level clustering merges two distributions 
only if these distributions themselves exhibit certain acoustic similarity. In a similar manner as 
the S C H M M where continuous probability density functions are shared across different phonetic 
models , our new approach shares H M M output distributions across different phonetic models . 
Shared-distribution models not only provide us with a more accurate representation but also gives 
us the freedom to increase the number of states in each H M M . It is true that an increase in the 
number of states for each H M M will result in an increased number of parameters. However, armed 
with distribution sharing, we can essentially eliminate those redundant states for some phonetic 
models and have the luxury to maintain more states for others. As long as the number of states 
in an H M M and the total number of shared distributions are properly determined, we can achieve 
both detailed and robust model ing of speech signals. The proposed method thus provides us with a 
general way to reduce the number of free parameters. Moreover, the same principle can be applied 
to either discrete, continuous, or semi-continuous H M M s . 

To evaluate the proposed approach, we choose the improved SPHINX speech recognition 
system [8] as the baseline system. The improved version of SPHINX incorporated four codebooks 
including both first-order and second-order dynamic features. The discrete H M M s were replaced 
with the sex-dependent S C H M M s . The improved system reduced the error rate of the original 
SPHINX system significantly [8], and had the lowest recognition error rate in the June 1990 
DARPA Resource Management (RM) evaluation [27]. In this study, we modified the basic H M M 
topology of the SPHINX system with an increased number of distributions for each model . A n 
information-theoretic distortion measure was used to cluster distributions across different phonetic 
models. We will demonstrate that distribution-level clustering indeed provides us with better 
representation. For the 997-word, R M , speaker-independent, continuous speech recognition task, 
the error rate was further reduced by 2 0 % in comparison with the improved baseline S P H I N X 
system. 

The organization of this paper is as follows. We will first review the improved SPHINX baseline 
system. In Section 3, the algorithm on distribution clustering and its foundations are introduced. 
We will also discuss practical issues and clustering examples. Section 4 includes experimental 
evaluation of the proposed approach with the R M task. Our conclusion and future work direction 
are reported in the last section. 
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2. The Improved SPHINX System 

SPHINX is a large vocabulary, speaker-independent, continuous speech recognition system de­
veloped at Carnegie-Mellon University [22]. Recently, the error rate of the SPHINX system was 
reduced by more than 5 0 % with between-word coarticulation model ing [12], high-order dynamics 
[8], and sex-dependent S C H M M s [8]. This section will review the improved SPHINX system, 
which will be used as our benchmark system in this study. 

2.1. Signal Processing 

The input speech signal is sampled at 16 kHz with a pre-emphasized filter, 1 — 0.9Z~K Hamming 
window with a width of 20 msec is applied to speech signal every 10 msec. The 32-order LPC 
analysis is followed to compute the 12-order cepstral coefficients. Bilinear transformation of 
cepstral coefficients is employed to approximate mel-scale representation. In addition, relative 
power energy is also computed together with cepstral coefficients. Speech features used in the 
improved S P H I N X system include: 

1. LPC cepstral coefficients (dimension 12) 

2. 40-msec and 80-msec differenced LPC cepstral coefficients (dimension 24) 

Acep(t) = cep{f + 2) - cepit - 2 ) 

Acep(t) = cep(t + 4) - cep(1 - 4) 

3. second-order differenced cepstrum (dimension 12) 

AAcep(t) = Acep(t + 1) - Aeep(t - 1) 

4. power, 40-msec differenced power, second-order differenced power (dimension 3) 

Apower(t) = poicer(i + 2) — poirer(t — 2) 

AApowtr{f) = Apoirer{t + 1) - Apoirer(t - 1) 

These features are vector quantized into four independent codebooks by the Linde-Buzo-Gray 
algorithm [23], each of which has 256 entries. 

2.2. Training 

The phonetic H M M topology is shown in Figure 1. There are three output distributions associated 
with the arcs for each H M M . They are labeled as Beginning, Middle, and Ending as illustrated in 
the figure. 
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B M E 

initial final 

Figure 1: The H M M topology used in SPHINX. 

Training procedures are based on the forward-backward algorithm. Word models are formed 
by concatenating phonetic models; sentence models by concatenating word models . Forty-eight 
context-independent discrete phonetic models are initially estimated from the uniform distribution. 
Deleted interpolation [14] is used to smooth estimated parameters with the uniform distribution. 
There are 7549 triphone models in the DARPA R M task when both within-word and between-
word triphones are considered. Because of memory limitation, it is impossible to estimate all 
these triphone models . Therefore, for both the context-independent and the context-dependent 
model at thjg stage, we used only one codebook, where each codeword consists of the cepstral 
coefficients, 40-msec differenced cepstrum, power arid 40-msec differenced power. We first started 
with the one-codebook system, and 7549 discrete models are estimated. The generalized-triphone 
clustering procedure [20] is then applied to reduce the number of models from 7549 to 1100. Here, 
the goal is to cluster similar triphones together such that these model parameters could be well 
trained. For example, EY ( L , S ) (which stands for the phoneme EY with immediate left context L 
and right context S, l ike -place) and EY (L , SH) (such as —lation) are merged together. In such 
a clustering approach, all the distributions in EY ( L , S) are merged with all the distributions in 
EY (L , SH) respectively. As we will see in Section 3.3, clustering at the model level may merge 
quite different-shaped distributions together, like the the rear parts of EY (L , S) and EY (L , SH) . 

Based on generalized tr iphone clusters, we first estimate 48 context-independent, four-codebook 
discrete models with the uniform distribution. With these context-independent models , we then 
estimate the 1100 generalized S C H M M s [8]. S C H M M s assume that each codeword k of a V Q 
codebook is represented by a continuous probability density function J\.(x), where x is the acoustic 
vector. The discrete output distribution b; (k) is replaced with the semi-continuous function B} (x): 

where L is the codebook size. In practice, 2 to 8 most significant / A - ( X ) ' S are adequate. We assume 
that each /A (x) is a Gaussian density function with mean fik and diagonal covariance Ek. Means 
and covariance matrices are reestimated according to the following formula [9]: 

L 
Bi(x) = Y,h(x)b;(k) 

Et E* Xt(i,k) 
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where Xt(u ^) is the probability that at t ime /, V Q symbol A is emitted at state /. Because of 
substantial difference between male and female speakers, sex-dependent S C H M M s are employed 
to enhance the performance. 

To summarize, the configuration of the improved SPHINX system has: 

• four codebooks, 

• 1100 generalized between-word and within-word triphone models , 

• sex-dependent SCHMMs. 

2 3 . Recognition 

In recognition, a language network is pre-compiled to represent the search space. Figure 2 shows 
a part of the language network which illustrates the connections of w h a t 9 s a and w h a t ' s —> 
t h e . Connection through S I L (silence) represents less coarticulated speech at the word boundary, 
while those such as TS (3 6) -> DH ( 1 0 ) , TS (9 ) -> AX ( 4 ) , and TS (9 ) - > A X ( 5 ) attempt 
to capture the strong between-word coarticulation in fluent speech. Here, generalized triphone 
TS ( 3 6 ) represents the cluster containing TS (AH, DH) e . 2 As will be described in this paper, 
when shared distributions are used, TS ( 3 6 ) will be restored to be TS (AH, DH) e since no two 
triphones will be completely merged, albeit parts of their parameters may be shared with each 
other. 

For each input utterance, the Viterbi beam search algorithm is used to find out the optimal state 
sequence in the language network. In order to use sex-dependent SCHMMs, codebook-based sex 
classification [7, 36] is carried out before recognition starts. Experiments show that the error rate of 
sex-classification is below 1%. Based on sex classification, only the corresponding sex-dependent 
S C H M M s are activated for the Viterbi search. 

2The suffix e means this triphone appears at the end of a word. 
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Figure 2: The network used in Viterbi beam search. 
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3. Distribution Sharing 

Although triphone generalization provides us with a way to reduce the number of free parameters, 
it nevertheless introduces many inaccurate models since two quite different output distributions 
may be forced to be combined whenever two models are clustered. In contrast, clustering at the 
distribution level could avoid this problem and achieve the same goal—reduce the amount of 
parameters . It also provides us with the freedom to have more elaborate acoustic representation as 
w e can use a large number of states for each H M M . 

3.1. Sharing Algorithm 

In order to merge two output distributions, we need to define the distortion measure between 
them. There are many ways to measure the distance of two distributions/HMMs, such as distortion 
measures based on cross entropy [16], divergence and discrimination information [16], output 
string/symbol probability [5], maximum mutual information [5], chi-square measure [29], and 
generalized triphone distance measure [20]. All these distortion measures could provide us with 
reasonable clustering results. 

While tr iphone generalization clusters triphones, our goal is to cluster distributions. Thus, the 
major difference is the granularity of the clustered objects. Here, the distortion measure is based 
on the amount of information loss when two distributions/clusters are merged, which works in the 
same way as the one used in generalized triphone clustering. 

Figure 3: Clustering of two distributions. 

To elaborate, suppose there are two distributions a and 3, each with L entries. The occurrence 



counts for each entry in a and 3 are denoted as o\.o2 oL, and 61. b2 bi respectively. Let 
Hf=\ (7/ — .4; Ylh=\ hi = entropy for distribution a and 3 can be computed as follows: 

i=l 

^ 77 g 77 
/ = 1 

When two distributions are merged, the new count for the resulting distribution is the summation 
of the two merged distributions. Therefore, the entropy for the resulting distribution is: 

The entropy (uncertainty) increase, weighted by counts, due to merging two distributions can be 
computed as: 

ilia.i) = (A+ Bill - Ml-, - BH-;i 

= - 2 > . > g ( £ f ) - log ^fj 

- E , - 6 , [ l o g ( ^ ) - log I ] 

= - . 4 E . - f e ) l o g [ ( ^ ) / ( ^ ) ] 

- £ £ , f t ) i o g [ ( ^ ) / ( | ) ] 

It can be verified that \n{x) < x — 1 with equality if and only if x = 1. Given this inequality, 
it can be derived that 

I > i ° g - < 0 ,7 s > = 5 > 

with equality if and only if xt = ytJ V*. Therefore, the uncertainty increase is always greater than 
{ or equal to zero since Hi ^ = Hi # = ^ * = w ^ z e r o ^ o n t y ^ = V/, that 
j is, when two probability distributions are exactly the same. The most similar pair of clusters is 
\ defined to be the pair that, when merged, gives the least uncertainty increase. Weighting entropy 

by the occurrence count c i n also take into account how well a distribution is trained. For those 
\ distributions that appear infrequently, they will be merged first in comparison with those well 

" trained ones. This makes each shared distribution more trainable. 

Using such a distortion measure, the clustering algorithm can be described as follows: 
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1. All H M M s are first estimated. 

2. Initially, every distribution of all H M M s is created as a cluster. 

3. Find the most similar pair of clusters and merge them together. 

4 . For each pair of clusters, consider moving every element from one to 
the other: 

(a) move the element if the resulting configuration is an improve­
ment; 

(b) repeat until no such moves are left. 

5. Go to step 3 unless some convergence criterion is met. 

Without step 4, this would just be a greedy algorithm, where every merge could not be undone. 
Step 4 is a heuristic optimization that attempts to improve the clustering procedure by allowing 
elements to be moved from one cluster to another. In step 4(a) , a new configuration is considered 
to be an improvement if its grand weighted entropy is less than that of the existing one. The 
grand weighted entropy is computed as the sum of the weighted entropies of all the clusters in 
the configuration. To reduce computational complexity at step 4, step 4(b) can be terminated 
prematurely when the number of movements are over a predefined threshold, or when a minimum 
improvement fails. In addition, when an element is to be moved, recomputation of the entropies for 
the two changed clusters is also expensive. Therefore, unlikely moves should not be considered. 
To achieve this goal, poorly trained distributions are not worthy of reconfiguration. Besides, we 
can utilize the uncertainty increase matrix for all the distribution pairs, f>( d\. dz), to decide unlikely 
moves . The uncertainty increase matrix is computed once and for all at the first t ime of step 3. 
While considering whether to move distribution d from cluster 1 to cluster 2, we first compare the 
average uncertainty increases for d when it is in cluster 1 and in cluster 2. The average uncertainty 
increase for distribution d can be easily derived from the uncertainty increase matrix as follows: 

Only if the ratio of 9J(d)/Vt(d) is less than a predefined threshold, do w e compute the grand 
weighted entropy of the new configuration to see if moving a will lead to an improvement . 

The convergence criterion in step 5 could be the total number of clusters left or a maximum 
ratio of the new grand weighted entropy over the previous one, and the like. 

The clustering algorithm provides an ideal means for finding equilibrium between trainability 
and sensitivity. Given a fixed amount of training data, it is possible to find the largest number of 
trainable distributions or the smallest number of sensitive distributions. 
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3.2. Incorporation of Shared Distributions into SPHINX 

3.2.1. Model Topology 

With distribution sharing, we have the freedom to use more states and distributions for each phonetic 
H M M in order to have more detailed acoustic representation. When extra distributions are used 
for each H M M , our clustering procedure will automatically squeeze those redundant distributions 
and keep those necessary ones. However, the number of states should not be too large because we 
have to obtain a set of reliable H M M s for the clustering algorithm. 

Figure 4: The new topology used in the shared-distribution model . 

The baseline SPHINX system has three distributions for each H M M . We increase the number 
of distributions for each model by about 60%. The new topology is shown in Figure 4. It is a 
left-to-right Bakis H M M with five distributions. N o output distribution is associated with the final 
state in order to facilitate implementation. This topology will be used for subsequent experiments 
conducted in this paper. 

3.2.2. Training and Interpolation 

As described in Section 2.2, we first estimated the one-codebook based, 48 context-independent 
and 7549 context-dependent discrete models using the topology shown in Figure 4 . This gave us 
the estimates needed for the clustering algorithm, where the distributions of the 7549 5-distribution 
discrete H M M s need to be clustered. 

After clustering is done, the next step is to train 4-codebook models . Context-independent 
discrete models are estimated based on the uniform distribution. Here, no shared distributions 
are employed since these context-independent models have sufficient training data. Then context-
dependent S C H M M s with shared distributions are estimated. To apply the forward-backward 
algorithm for the shared-distribution model , parameter counts for shared distributions need to be 
accumulated before Baum-Welch reestimation. In the same manner as the S C H M M , parameter-
sharing will not affect the maximum likelihood estimation criterion [9]. The Q-function can be 
modified to prove this [9]. 

To initialize each shared distribution for the 7549 context-dependent models , one component dis­
tribution is randomly chosen from the corresponding distribution cluster. The context-independent 
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counterpart is used as the initial shared distribution. For example, Table 1 shows all the members 
in the 94th D shared distribution when these 7549 * 5 distributions are merged into 4500 clusters. If 
by chance, distribution B2 of context-dependent model D ( S , AE) is selected, the B2 distribution 
from the context-independent model D will be copied as the initial value for the 94th D shared 
distribution. 

triphone distribution triphone distribution triphone distribution 
D ( S , A A ) D ( C H , A A ) b Bx D ( S , AE) Bx. B2 

D ( S , AO) Bx. B2 D ( S , E H ) Bx D ( S , E R ) b Bx 

D ( S , E Y ) Si D ( S , I Y ) Bx D ( S , I Y ) b Bx 
D ( S , R ) b Bx. B2 D ( T S , E R ) b lh D ( Z , A X ) b Bx 
D (Z ,EY) Bx 

Table 1: Members of the 94th D shared distribution when 4500 clusters are left. 

We experimented with 3500, 4500, and 5500 shared distributions for these 7549 models . As 
will be discussed in Section 4 , 4 5 0 0 distributions produced the best recognition accuracy. In these 
experiments, no matter how many distributions are used, H M M transitions are never shared with 
each other. Therefore, there are 7549* 14 transition probabilities (v.s. 1100* 12 in 1100 generalized 
triphones). 

EY 

EY(L,S) 

i n 112 109 114 

from cxt-indep 
model 

from last iter, 
of F/B algorithm 

interpolated 
furthermore 
with uniforms 

interpolated' 

EY(US) smoothed parameters 

Figure 5: Expansion from shared distributions. 

Context-dependent models need interpolation to make them have better generalization capa­
bility. To start interpolation, we first expand the shared distributions (Figure 5), assuming the 
clustering of EY (L , S) 's distributions is given in Table 3(a) in Section 3.3. Every unshared dis­
tribution of a triphone is copied from the shared distribution to which it belongs. These unshared 
distributions are interpolated with the corresponding context-independent model and the uniform 
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distribution. Thus, after interpolation, there may be several interpolated versions for the same 
shared distribution. For example, from Table 1, there will be 16 interpolated distributions for 
the 94th D cluster, respectively from the B\ distribution of interpolated D ( S , AA) , B\ and B2 of 
interpolated D ( S , AO ) , and so on. To maintain the sharing structure, the counts of the interpolated 
distributions that originate from the same shared-distribution cluster are subsequently averaged to 
obtain final estimates. In addition to distribution interpolation, transitions of context-dependent 
models are also interpolated with those of context-independent ones. 

3-3. Model-Level and Distribution-Level Clusters 

Based on R M training data, Table 2 shows the number of shared distributions for each phonetic 
model when 7549 * 5 distributions are merged to 4500 clustered distributions. The number of 
triphones for each phone is also included in the table. In this experiment, two distributions are 
merged only if they represent the same context-independent phonetic model . It is also possible 
to merge distributions across different phonetic models , albeit experiments for speaker adaptation 
indicated this did not make any significant difference [7]. 

phone tr iphone# cluster* phone tr iphone# cluster* phone tr iphone# cluster* 
A E 138 127 L 327 178 P 171 82 
EH 211 211 R 251 171 T 200 108 
IH 148 133 W 124 67 F 237 91 
IY 309 162 Y 59 35 S 462 188 
U H 12 13 EN 10 12 SH 84 45 
A H 52 58 ER 250 147 T H 128 54 
A X 431 247 M 252 125 V 179 110 
I X 119 144 N 468 250 Z 385 142 
A A 126 108 N G 43 43 H H 109 50 
A O 67 52 CH 89 44 SIL 1 unshared 
U W 119 102 JH 95 35 D D 194 94 
AW 27 31 B 141 74 P D 34 16 
AY 80 58 D 179 109 T D 269 167 
EY 178 129 D H 71 60 K D 75 43 
O W 161 100 G 97 54 D X 40 51 
OY 2 6 K 249 126 TS 97 48 

Table 2: The number of triphones and shared distributions for each context-independent phone. 
There are a total of 4500 shared distributions and 7549 triphones. 

To understand the difference between model-level and distribution-level clustering, clusters 
generated by both techniques are carefully examined. Here, we compared 1100 3-distribution 
generalized triphone models and 4500 shared distributions clustered from the 5-distribution model . 
Both approaches combine similar triphone distributions as well as less well trained distributions 
together. However, distribution-level clustering provides us with more flexibility. 
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Table 3 illustrates several typical distribution clusters generated by these two clustering algo­
ri thms. Let P (L , R) denote phoneme P with left context L and right context R. Let P (L , R) b 
denote the triphone that appears at the beginning of the word, P ( L , R ) e denote the last tr iphone of 
the word, and P (L , R) s denote exclusively for single-phone word. Triphones without any suffix 
occur only within a word. Triphones in the same subtable are in the same generalized triphone 
cluster. Indices in the table are the labeling within all the shared-distribution clusters that represent 
the same context-independent phone. 

In Table 3(a), it is reasonable to see that triphone E Y ( L , S ) and EY (L , SH) are in the same 
generalized triphone cluster as they have the same left-context. Unfortunately, model-level clus­
tering must ignore the differences of right-contexts due to the fact that the front parts of these two 
models are very similar. On the other hand, clustering at distribution-level can keep the difference 
apart despite that those resemblance parts are merged. Thus, these two triphones are represented 
by seven distributions (111 , 112, 27 , 109, 114, 68 , 21) in comparison with only five distributions 
if both EY ( L , S) and EY ( L , SH) have five distributions and are merged by the generalized tri­
phone approach. This clearly demonstrates that the shared-distribution models have more detailed 
representation in comparison with the generalized triphone models. Forcing models (multiple 
distributions) to be shared with each other will not be as accurate as forcing sub-model units (single 
distribution) to be shared with each other. Table 3(b) is illustrates again that distributions in similar 
contexts are merged and distinctive ones retained. 

There are cases that distributions of two triphones are not shared at all, even though they represent 
similar triphones. For example, both the left and right contexts of the two triphones in Table 3(c) are 
the same. The only difference is their locations — one of them appears within a word like th real 
and the other appears at the beginning of a word like at in the context things are at sonn irlu re. 
This may be partly due to dramatic acoustic transition changes at the word boundary in fluent 
speech, and partly because of the fact that the word-boundary triphones do not occur as frequently 
as those within-word triphones. From Table 3(c), we also see that the first three distributions of 
EH (R, TD) are combined together. This indicates three distributions are sufficient to model its 
acoustic variations. Thus, the shared-distribution clustering procedure is able to squeeze redundant 
distributions inside an H M M elegantly. 

Despite the enhanced capability of shared-distribution models , w e also observed some unex­
pected clustering results. One example is illustrated in Table 3(d). We can see that the first four 
distributions of D (Z , E Y) and D ( S , E Y) are forced to be grouped together even though their left-
contexts are different. The reason for such merging could be due to less well-trained distributions 
and the fact that the realization of a phoneme may be affected not only by its immediate contexts 
but also far-away contexts. 

In addition to investigate how different triphone models are organized, we also examined what 
each shared distribution consists of. Table 1 from the previous subsection and Table 4 list all of the 
members for the 94th D and the 27th E Y shared distributions. These two tables show us that the 94th 
D shared distribution consists of the 1 st and 2nd (B\ and B2) distributions of several triphone models 
in different contexts, and the 27th EY shared distribution consists of the 3rd (M) distribution of 
several triphone models . It is interesting that the A - t h distribution of one triphone model is usually 
merged first with the A -th distribution of other triphone models . Thus, distributions that are in 
the same cluster are mostly from the the same k-th distribution of different models . Moreover, 
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tr iphone example Bx 5 2 
-V/ Ei E2 

E Y ( L , S) -place 111 112 27 109 114 
E Y ( L , S H ) —Isttion 111 112 27 68 21 

(a) 

triphone example Bx 
B2 .U £ i £2 

AE (K, S) -ca-s/Ve 113 16 76 105 122 
AE (K, Z) ca*rtj)— 113 16 76 53 52 

(b) 

triphone example Bx B2 M Ex E2 

E H ( R , T D ) threat 65 65 65 61 113 
E H ( R , T D ) b are zt 63 185 63 64 207 

(c) 

t r iphone example Bx B2 
M Ex £2 

D ( Z , E Y ) Tuesday 94 105 95 103 96 
D ( S , E Y ) state 94 105 95 103 87 

(d) 

Table 3: Shared distributions of several triphones; triphones in the same subtable are in the same 
generalized triphone cluster. 

tr iphone distribution triphone distribution 
EY (M,K) M EY (L,DX) M 

EY (L , IH) e M E Y ( L , S H ) M 
EY ( L , P ) e M E Y ( L , B ) e M 
E Y ( L , S ) M 

Table 4: Members of the 27th EY shared distribution when 4500 clusters are left. 
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the first two distributions are never merged with the last two distributions. When we reduced the 
total number of distributions to 4500, the average number of unique distributions in each triphone 
model is 4 .655. This shows that most of the triphone models keep 5 unique distributions. As each 
triphone tends to keep more states, the original 3-distribution based SPHINX system has obviously 
insufficient distributions. To justify this, DARPA R M task will be used to evaluate the proposed 
method in the following section. 
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4. Performance and Discussions 

In order to create highly versatile and useful systems, research on large vocabulary, speaker-
independent, continuous speech recognition is particularly important. This study is intended to 
improve acoustic-modeling performance using the shared-distribution models . 

4.1. Evaluation Database 

The task, DARPA's resource management , which is designed for inquiry of naval resources [30], 
was used to evaluate the shared-distribution models in comparison with the improved baseline 
SPHINX system [8]. 

At the lexical level, the 997-word resource management task is very complex. There are many 
confusing pairs, such as w h a t and w h a t 9 s , t h e and a, f o u r and f o u r t h , a n y and m a n y , and 
many others. Most of the proper nouns can appear in singular, plural, and possessive forms. On 
the other hand, at the grammatical level, the task is not a very difficult one because the sentences 
are generated from a set of 900 sentence templates which resemble realistic questions in a database 
query system. 

The most obvious and correct way to model the R M task language is to use a finite state 
language that generates the same set of sentences as those 900 templates. As the perplexity of 
such a grammar is too low (about 9) to evaluate the acoustic part of a speech recognition system, 
the word pair grammar, which can generate all sentences including the 900 sentence templates and 
some illegal sentences, is used here. The word pair grammar specifies only the list of words that 
can legally follow any given word, which can be extracted from the 900 sentence templates. Each 
template is a network of tags, or categories of words . Given these templates, the list of tags that can 
follow any given tag can be easily determined. From this information and the list of words in each 
tag, a list of words that can follow any given word can then be generated. The word-pair grammar 
specifies 57,878 word pairs, versus 997 * 997 = 994,009 possible word pairs. This grammar has 
a test-set perplexity of about 60. During recognition, each word H M M can be followed only by 
those word H M M s allowed by the word-pair grammar. The transition probability between a given 
word H M M to a following word H M M is 1 / k, where k is the number of words that can follow the 
given word. 

The speech database used for the development of SPHINX consists of 3990 training sentences 
from 105 speakers and 600 test sentences (used in February and October 1989 evaluations) from 
20 new speakers. 

4.2. Recognition Performance 

We replaced generalized triphone models with shared-distribution models in SPHINX. The new 
technique was evaluated with the R M task. 

Varying the total number of shared distributions from 3500 to 5500, a series of experiments 
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system error rate error reduction 
baseline SPHINX 4 .7% — 
3500 shared dists 4 .2% 1 1 % 
4500 shared dists 3 .8% 2 0 % 
5500 shared dists 4 . 1 % 1 3 % 

Table 5: Error rates with the word-pair grammar. 

system error rate error reduction 
baseline SPHINX 19.5% — 
4500 shared dists 17.9% 8% 

Table 6: Error rates with no-grammar. 

were conducted in comparison with the baseline SPHINX system. The error rates of different 
distribution sizes on the test set are shown in Table 5 and Table 6 for the word-pair grammar 
and no-grammar respectively. Word errors include substitutions, deletions, and insertions. The 
error reduction rates compared with the baseline SPHINX system are also computed. From these 
experiments, w e can see that shared-distribution models outperformed generalized triphone models . 
When 1100 generalized tr iphone models are used, there are 3300 distributions in total. With about 
the same amount of parameters, 3500 shared distributions reduced the error rate by 1 1 % . This 
demonstrated that shared-distribution models have more accurate representation since combination 
of two distributions are not enforced by other distributions. 

When we increased the total number of shared distributions from 3500 to 4500, the error rate 
was reduced by about 2 0 % in comparison with the baseline SPHINX. Further increase in the total 
number of shared distributions to 5500 did not give us any more improvement, as they may not 
have been well trained. 

When no grammar is used, the error reduction is not as high as the word-pair grammar case. This 
is partly because the duration w e used was estimated by using within-word generalized triphone 
models* and partly because the no-grammar system requires less smoothed models . 

In these experiments, the transition probabilities have been deemphasized. Our experiments 
show that it is not very sensitive, especially when multiple codebooks are used. In fact, we found 
that uniform transition probabilities yield only slightly worse results. 

Since we used more states in these experiments in comparison with the baseline SPHINX, our 
improvements might not come from shared-distribution models , but from the increased number of 
states within each triphone. To clarify, w e tested 1100 generalized triphone models by increasing 
the number of distributions to five for each model . The results are shown in Table 7. The error 
rate was 4 .6% for the same test set, which is about the same as the original baseline system. 
As there are 5500 distributions in 5-distribution based generalized triphone system, we include 
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shared-distribution models with the same number of distributions in the table. Once again, the 
shared-distribution model outperformed the generalized triphone model . This demonstrates that 
distribution sharing does contribute to our improvements . 

3 - d i s t l l 0 0 
generalized triphones 

5-dist 1100 
generalized triphones 

5500 
shared dists. 

error rate 4 .7% 4 .6% 4 . 1 % 

Table 7: Error rates using generalized triphones and shared distributions. 

The shared-distribution model has been incorporated into SPHINX system and was evaluated 
with DARPA February-1991 test set. Under the same training and testing conditions, results 
reported from different sites are shown in Table 8. Our new SPHINX system had the lowest 
recognition error rate among the the top 5 systems evaluated in February 1991 [26]. 

AT&T B B N C M U MIT-LL SRI 
word-pair grammar 5.2% 3.8% 3.6% 4 .4% 4 . 8 % 

no grammar 19.8% 18.8% 17.0% 19.7% 17.6% 

Table 8: Official R M evaluation conducted in February 1991. 
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5. Conclusion and Future Work 

Each distribution in an H M M describes certain acoustic event. Triphone generalization may force 
two models to be merged together when only parts of model output distributions are similar. 
Combination of those quite different distributions will lead to degraded representation as different 
acoustic events are blended. In this paper, a novel method for parameter reduction is employed 
to have distribution shared across different phonetic H M M s . Classification of acoustic events at 
distribution level provides us with an elegant way toward more detailed modeling. In addition to 
detailed representation over generalized triphone, it also gives us the freedom to use more states 
for each phonetic model . The principle of shared distributions proposed in this paper can be 
applied to either discrete, continuous, or semi-continuous H M M s . This method also provides us 
with a way to learn the topology of H M M s . When shared distributions occur inside a model , this 
indicates redundant structure in the model topology. By using more complicated model topology 
and shared-distribution modeling, we could prune away redundant states while keeping those 
necessary ones. 

With the DARPA Resource Management task, we demonstrated that clustering at distribution-
level is superior to conventional techniques. The error rate of the baseline SPHINX system was 
reduced by 20%. 

In this study, several issues remain to be further explored: 

• What is the optimal number of distributions in the H M M topology? 

• What is the optimal total number of shared distributions? 

• What is the optimal distortion measure for distribution clustering? 

In order to reliably estimate model parameters with fixed amount of training data, we have to 
trade off the number of distributions within each H M M and the number of distributions within 
each shared cluster. In our experiments, 5 states per H M M with 4500 distributions in total means 
5 * 7549 /4500 = 8.39 distributions per cluster on average. Increasing the number of states to 10 
for each H M M and maintaining the ratio of 8.39 distributions per cluster will result in 9000 shared 
distributions. It is unlikely that they can be reliably trained. On the other hand, if we reduce the 
number of distributions down to 4500, we will on average have 16.78 distributions per cluster. 
Will this make each cluster blurred? Alternatively, we can use 3 states per H M M and have 6000 
shared distributions, we would have 3.77 distributions per cluster. Will 3 states be sufficient to 
model these p h o n e m e s 7 All these problems need to be further addressed. 
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