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Abstract 

In principle, three orthographic images of four points are sufficient to recover the 
positions of the points relative to each other (shape), and the viewpoints from 
which the images were taken (motion). 
In practice, however, the solution to this stracture-from-motion problem is reliable 
only when the viewing direction changes considerably between images. This 
conflicts with the difficulty of establishing correspondence between images over 
long-range camera motions. 
Image streams, long sequences of images covering a wide motion in small steps, 
allow solving this conflict by using tracking for correspondence and redundancy 
for increased reliability in the structure-from-motion computation. 
This report is the second of a series on a new factorization method for the com
putation of shape and camera motion from a stream of images. While the first 
report considered a camera moving on a plane, we now extend theory, analysis 
and experiments to general, three-dimensional motion. 
In our method, we represent feature points in an image stream by a 2F x P 
measurement matrix, which gathers the horizontal and vertical coordinates of the 
P points tracked through F frames. If coordinates are measured with respect to 
their centroid, we show that under orthography the measurement matrix is of rank 
3. 
Using this fact, we cast structure-from-motion as a matrix factorization problem, 
which we solve with an algorithm based on Singular Value Decomposition. Our 
algorithm gives accurate results, without relying on any smoothness assumption 
for either shape or motion. 
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Preface 

In principle, the stream of images produced by a moving camera allows the 
recovery of both the shape of the objects in the field of view, and the motion of the 
camera. Traditional algorithms recover depth by triangulation, and compute shape 
by taking differences between depth values. This process, however, becomes very 
sensitive to noise as soon as the scene is more than a few focal lengths away 
from the camera. Furthermore, if the camera displacements are small, it is hard to 
distinguish the effects of rotation from those of translation: motion estimates are 
unreliable, and the quality of the shape results deteriorates even further. 

To overcome these problems, we have developed a factorization method to 
decompose an image stream directly into object shape and camera motion, without 
computing depth as an intermediate step. The method uses a large number of 
frames and feature points to reduce sensitivity to noise. It is based on the fact that 
the incidence relations among projection rays can be expressed as the degeneracy 
of a matrix that gathers all the image measurements. 

To explore this new method, we designed a series of eleven technical reports, 
as shown in figure 1, going from basic theory to implementation. 

The first report, already published as CMU-CS-90-166, illustrates the idea in 
the case of planar motion, in which images are single scanlines. 

The present report, number 2, extends the idea to three-dimensional camera 
motion and full image streams. It also carries out a somewhat more systematic 
error analysis, and discusses an experiment with a real stream. The method used 
to track points from frame to frame is described in detail in report number 3. 

If point features are too sparse to give sufficient shape information, line features 
can be used either instead or in addition, as discussed in report number 4. Report 
number 5 shows how to extract and track line features. 

The performance of our shape-and-motion algorithm is rather atypical. Be
cause it does away with depth and capitalizes on the diversity of viewpoints made 



possible by long image streams, it performs best when the scene is distant and the 
motion of the camera is complex. Report number 6 examines what happens when 
objects are close to the camera, and perspective foreshortening occurs. Report 
number 7 shows how to deal with degenerate types of motion. 

Occlusion can be handled by our method, and is treated in report number 8. 
A basic assumption of our shape-and-motion algorithm is that only the camera 

moves. In some cases, however, a few points move in space with respect to the 
others, for instance, due to reflections from a shiny surface. Report number 9 
examines how to detect these cases of spurious motion. 

Our factorization algorithm deals with the whole stream of images at once. 
For some applications this is undesirable. Report number 10 proposes an imple
mentation that can work with an indefinitely long stream of images. 

Report number 11 considers a more radical departure from the assumption of 
a static scene than spurious motion. If several bodies are moving independently 
in the field of view of the camera, our factorization method can be used to count 
the number of moving bodies. 

1. planar motion 

4. line features 
in 3D motion 11. multiple motion 

3. detection and tracking 
of point features 

S. detection and tracking 
of line features 

6. perspective 7. degenerate 
motion 8. occlusion 9. spurious 

motion 

10. implementation issues 

Figure 1: The reports in the series. Number 1 was published as CMU-CS-90-166. 



Chapter 1 

Introduction 

In principle, three orthographic images of four points are sufficient to recover 
shape and motion, that is, the positions of the points relative to each other and the 
viewpoints from which the images were taken. 

In practice, however, the solution to this stracture-from-motion problem is 
reliable only when the viewing direction changes considerably from image to 
image. For a given level of image noise and scene distance, this implies a 
substantial camera motion to achieve good performance. 

Too wide a camera motion, on the other hand, poses two fundamental problems 
which limit the range of acceptable motions from above: establishing correspon
dence between images and avoiding occlusion of features from image to image. 

To summarize, correspondence and occlusion are lesser problems with short-
range motions, while reliability calls for long-range motion. Typically, for the 
classical structure-from-motion problem, characterized by few frames and points, 
these requirements are not compatible. 

Image streams, that is, long sequences of image frames covering a wide motion 
in small steps, allow bridging the gap between short and long range motion. On 
the one hand, features can be, thus establishing correspondence between distant 
frames through the solution of many, simple correspondence problems between 
consecutive frames. On the other hand, the redundancy of information intrinsic 
in a stream improves the resiliency to noise, and allows dealing with streams 
spanning a shorter range of viewing angles. 

A successful attack to the structure-from-motion problem based on image 
streams depends on our ability to deal with the great mass of data in an image 
stream in a systematic and computationally efficient way for the recovery of shape 
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and motion. 
In [Tomasi and Kanade, 1990a] (also presented at ICCV90, [Tomasi and 

Kanade, 1990b]), we showed that, under the assumption of orthographic projec
tion, we can directly factor the information contained in an image stream into 
shape and motion. However, we made the assumption that the camera move on a 
plane, in order to simplify the mathematical treatment In the present report, we 
remove this assumption. 

More specifically, we show that an image stream can be represented by a IF x P 
measurement matrix, which gathers the horizontal and vertical coordinates of P 
points tracked through F frames. If image coordinates are measured with respect 
to their centroid, we prove the following rank principle: under orthography, the 
measurement matrix is of rank 3. As a consequence of this principle, we show 
that measurement matrix can be factored into the product of two slender matrices 
of size IF x 3 and 3 x P, respectively, where the first matrix encodes motion, the 
second shape. 

The extension from planar to arbitrary camera motion is relatively straightfor
ward, as far as the computation of shape and motion is concerned. The measure
ment matrix becomes twice as large, and one must incorporate the constraint that 
the columns and the rows in every image are mutually orthogonal. 

Outline of the Report 
In the next chapter we examine how our work relates with relevant results in the 
literature. This review extends somewhat the one given in [Tomasi and Kanade, 
1990a]. 

We then show how to build the measurement matrix from a stream of full 
images (chapter 3), prove that the measurement matrix is of rank 3 (chapter 4), 
and show how to use this result to factor the measurement matrix into shape and 
camera rotation (chapter 5). 

Chapter 6 describes some experiments on synthetic and real image streams, 
and chapter 7 summarizes the differences with respect to the planar case. 
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Chapter 2 

Relations with Previous Work 

In this chapter, we place our algorithm within the context of the literature on 
stracture-from-motion, by pointing out papers which pursue closely related ap
proaches, and by stating our major contributions to the field. 

Some shape-from-motion algorithms address the most general problem, others 
only part of it Approaches differ in the assumptions they make about the world, the 
imaging model, and the motion. They require different types of input primitives, 
work on varying numbers of images, and produce different forms of output 

We address the problem of shape-from-motion in its entirety, in that we make 
no assumption on either shape or motion. In this regard, our work can be compared 
with that of Thompson [Thompson, 1959], one of the earliest solutions to the two-
frame problem, and Ullman [Ullman, 1979], who proposed an automated solution 
for four points and three frames. Our work can be contrasted to that of Baker et 
al. [Bolles et a/., 1987], and that of Matthies et al. [Matthies et al.9 1989], in that 
they recover depth from known motion. 

Heel [Heel, 1989] produces dense maps and recovers both depth and motion, 
but he restricts the latter to pure translation. Both Heel and Matthies use incre
mental methods, where new images are processed as they become available, while 
we process a whole sequence at once. This is a disadvantage of our method, which 
deserves future investigation. 

The only restrictions we make are the static (rigid) world and the orthographic 
imaging model. Ullman [Ullman, 1984] considers a less restrictive world model, 
allowing for non-rigid and rubbery motion, but is more interested in understanding 
biological systems than in achieving high precision. With Ullman [Ullman, 1979] 
we use an orthographic projection model, while Prazdny [Prazdny, 1980], Bruss 
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and Horn [Brass and Horn, 1983], Adiv [Adiv, 1985], Waxman and Wohn [Wax-
man and Wohn, 1985], and more recently Heeger and Jepson [Heeger and Jepson, 
1989] and [Spetsakis and Aloimonos, 1989] assume a perspective model. On the 
other hand, Pradzny, Brass and Horn, and Adiv cast the solution as a general search 
in the space of possible motions, which is computationally expensive, Waxman 
and Wohn use second order derivatives of image intensity, which are sensitive to 
noise, and Spetsakis and Aloimonos need a two-frame algorithm to initialize the 
search. The work by Heeger and Jepson is discussed below. 

We make no assumption about the motion, except that it must contain a 
sufficiently large rotation component around the scene. Frequent limitations in 
the literature are to pure translation [Lawton, 1983], [Jain, 1983], [Matthies et aL, 
1989], cases where one of the motion components is known [Horn and Weldon, 
1988], smooth motion [Broida et al., 1990], or constant motion [Debranner and 
Ahuja, 1990]. On the other hand, Lawton, Jain, Matthies et aL, Horn, Broida et 
ai propose solutions for the perspective model, and Matthies et aL and Broida et 
aL have incremental algorithms. 

Our solution is multi-frame, and can therefore achieve a lesser sensitivity to 
noise than other approaches. Ullman works with three frames in [Ullman, 1979], 
but extends it to an arbitrary number in [Ullman, 1984]. Tsai and Huang [Tsai and 
Huang, 1984] work on two frames at a time, and Heeger and Jepson [Heeger and 
Jepson, 1989] use instantaneous image velocities. 

The results by Heeger and Jepson [Heeger and Jepson, 1989] and Debranner 
and Ahuja [Debranner and Ahuja, 1990] are similar to ours at a conceptual level, in 
that they are also based on the bilinear nature of the projection equation. Heeger 
and Jepson, on the other hand, use essentially two frames at a time, and the 
perspective imaging model. Debranner and Ahuja limit the type of motion, as said 
above, and use a different mathematical formalism. 

We use Singular Value Decomposition as our major tool for solution. Also 
Tsai and Huang [Tsai and Huang, 1981], [Tsai et aL, 1982] use SVD, but only 
as an intermediate technical step to decompose their "essential parameter matrix19. 
In contrast, we use SVD to decompose the measurement matrix, corresponding to 
an image stream, into shape and motion. Thus, SVD is the fundamental core of 
our method, and is the computational counterpart to the rank principle proven in 
chapter 4. Thus, the relation with Tsai and Huang is only superficial. 

To summarize, our algorithm is general, in that it does not assume a priori 
knowledge of either shape or motion, and makes no assumptions on the latter. It 
assumes rigid shape, and an orthographic projection model. It requires features 
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to be extracted from images and tracked over time in the image stream. The 
algorithm produces motion and relative shape (the 3D coordinates of the tracked 
feature points relative to each other). 

The major contributions of our approach are two. One is the conceptual result 
of the rank principle, described in chapter 4, which captures precisely and simply 
the nature of the redundancy of an image stream. The other contribution is the 
computational efficiency and simplicity of our matrix factorization method, which 
is based on the well-behaved algorithm of Singular Value Decomposition [Golub 
andReinsch, 1971]. 
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Chapter 3 

The Measurement Matrix 

In this chapter we show how to transform an image stream into a matrix collecting 
the feature coordinates to be fed to the algorithm that computes shape and motion. 
This assumes the existence of a method for tracking features from frame to frame, 
which will be described in detail in report number 3 in our series. 

Suppose that we track P feature points over F frames in the image stream, re
sulting in a sequence of image coordinates {(w^, Vfp) \f = 1, . . . ,F, p = 1 , . . . ,P} . 

The horizontal coordinates u!fp of those features are written into anFxP matrix 
If: there is one row per frame, and one column per feature point. Similarly, an 
F x P matrix V is built from the vertical coordinates Vfp. 

The rows of the matrices If and V are then registered by subtracting from 
each entry the centroid of the entries in the same row: 

This produces two new F x P matrices U = [u/p] and V = [v/ p]. The matrix 

ufp »fp-»f (3.1) 

where 

W = U 
V 

6 



is called the measurement matrix. This is the input to our shape-and-motion 
algorithm. 

Some of the features disappear during tracking, because of occlusion. Some 
others change in appearance so much that they are discarded as unreliable. Only 
the features that survive from the first to the last frame are used in the shape and 
motion recovery stage. In the future, we plan to investigate how to modify our 
algorithm to deal with a variable number of feature points over the image stream. 
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Chapter 4 

The Rank of the Measurement 
Matrix 

This chapter introduces the fundamental principle on which our shape-and-motion 
algorithm is based: the 2F x P matrix W of the registered image coordinates of P 
points tracked through F frames is higly rank-deficient 

The orientation of the camera reference system corresponding to frame number 
/ is determined by a pair of unit vectors, i/and j/, pointing along the scanlines 
and the columns of the image respectively, and defined with respect to a world 
reference system with coordinates x, y, and z (see figure 7.1). Under orthography, 
all projection rays are then parallel to the cross product of if and j/: 

kf = if x \f 

The position of the camera reference system is determined by the position of 
the image center, defined as the point on the image plane with respect to which all 
image coordinates are measured 

The projection (i£ p, Vfp) of point sfp = 0£,y£, 2 p r onto frame/ is then given 
by the equations 

where t/is the vector from the world origin to the image center of frame/. 
We can now write expressions for the entries UfP and Vfp of the measurement 

matrix by substituting the projection equations above into the registration equations 
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(3.1). For the horizontal coordinates we have 

where 

is the centroid of the scene points in space. Thus, the fact that the projection of 
the centroid is the centroid of the projections allows us to remove translation from 
the projection equations. 

We can write a similar equation for the registered vertical image projection 
Vfp. To summarize, 

»fP - *f *P ( 4 A ) 

Vfp = if  SP > 

where sp = (xpyyp,zp) gathers the coordinates of scene point number p with 
respect to the centroid of all the points being tracked. 

Notice that, in our formulation, translation and rotation are referred to a world-
centered system of reference. This is different from the camera-centered reference 
system usually used for the perspective projection equations. Also, while camera 
rotation in a camera-centered system supplies no shape information under perspec
tive, translation (in either frame) is useless for shape recovery under orthography. 
This should come to no surprise: a set of images contains shape information only if 
the images are taken from different viewpoints, that is, when the center of projec
tion moves betwen images. Under perspective, motion of the center of projection 
means translation of the camera. Under orthography, the center of projection is at 
infinity, and moving the center of projection means changing the direction of the 
projection rays. 

Because of the two sets ofFxP equations (4.1), the measurement matrix W 
can be expressed in a matrix form: 

W = MS (4.2) 
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where 

(4.3) 

represents the camera motion, and 

5 - [ s i * ] (4.4) 

is the shape matrix. In fact, the rows of M represent the orientations of the 
horizontal and vertical camera reference axes throughout the sequence, while the 
columns of S are the coordinates of the P feature points with respect to their 
centroicL 

Since M is 2F x 3 and S is 3 x P, the matrix projection equation (4.2) implies 
the following fact. 

The Rank Principle 
Without noise, the measurement matrix W is at most of rank three. 

The rank principle expresses the simple fact that the 2F x P image measure
ments are highly redundant. Indeed, they could all be described concisely by 
giving F frame reference systems and P point coordinate vectors, if only these 
were known. 

Geometrically, the rank principle expresses an incidence property. In fact, we 
can view the projection of point p onto frame/ as the intersection of three planes: 
a "vertical" plane through sp and orthogonal to the unit vector i/, a "horizontal" 
plane through sp and orthogonal to the unit vector j/, and the image plane. The 
two projection equations (4.1) say that the "vertical" planes through point p belong 
to a star1 of planes, and so do the "horizontal" planes. 

In the next chapter, we show how to use the rank principle to determine the 
motion and shape matrices M and 5, given the measurement matrix W. 

1 A star of planes is the set of planes passing through a fixed point 

r IT i 

if 

Li? 
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Chapter 5 

The Factorization Method 

When noise corrupts the images, the measurement matrix W will not be exactly 
of rank 3. However, the rank principle can be extended to the case of noisy mea
surements in a well-defined manner. The next section introduces this extension, 
using the concept of Singular Value Decomposition [Golub and Reinsch, 1971] to 
introduce the notion of approximate rank. 

Section 5.2 then points out the properties of the motion matrix Af in the 
projection equation (4.2) that must be enforced to uniquely determine the shape 
and motion solution. Finally, section 5.3 outlines the complete shape-and-motion 
algorithm. 

5.1 Approximate Rank 
Assuming 1 that 2F > P, the matrix W can be decomposed [Golub and Reinsch, 
1971] into a 2F x P matrix L, a diagonal P x P matrix 27, and a P x P matrix /?, 

W = LER, (5.1) 

such that LTL = RTR = RRT = J, and cr\ > ...> crp. Here, J is the P x P identity 
matrix, and the singular values cru..., <JP are the diagonal entries of 27. This is 
the Singular Value Decomposition (S VD) of the matrix U. 

!This assumption is not crucial: if 2F < P, everything can be repeated for the transpose of W. 
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If we now partition the matrices L, E, and R as follows: 

E 

R 
II 

> * l 
L" ] }2F 

" E' 0 II 

0 
3 

E" }/»-3 

II 
' R! ' 

R" 

p 

}3 -3 ' 

we have 
LSR = L'E'R! +L"E"R!f. 

Let be the ideal measurement matrix, that is, the matrix we would obtain in 
the absence of noise. Because of the rank principle, the non-zero singular values 
of W* are at most three. Since the singular values in E are sorted in non-increasing 
order, 17 must contain all the singular values of W* that exceed the noise level. 
As a consequence, the term ¿"17"/?" must be due entirely to noise, and the product 
L'E'R! is the best possible rank-3 approximation to W*. 

We can now restate our key point. 

The Rank Principle for Noisy Measurements 
All the shape and motion information in W is contained in its three 
greatest singular values, together with the corresponding left and 
right eigenvectors. 

Thus, the best possible approximations to the ideal measurement matrix W is 
the product 

W = L'E'R! 
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where the primes refer to the partition (5.2). With the definitions 

M = L'[nl/2 

S = [E'}XI2R!, 

we can also write 
W = MS. (5.3) 

The two matrices M and S are of the same size as the desired motion and shape 
matrices M and 5: M is 2F x 3, and 5 is 3 x P. However, the decompositions (5.3) 
are not unique. In fact, if A is any invertible 3 x 3 matrix, the matrices MA and 
A"1 S are also a valid decomposition of W, since 

(MA)(A~lS) = M(AA~l)S = MS » W. 

Thus, M and 5 are in general different from M and 5. A striking fact, however, 
is that, except for noise, the matrix M is a linear transformation of the true motion 
matrix M, and the matrix 5 is a linear transformation of the true shape matrix 
5. In fact, in the absence of noise, M and M both span the column space of the 
measurement matrix W = W* = W. Since that column space is three-dimensional, 
because of the rank principle, M and M are different bases for the same space, and 
there must be a linear transformation between them. 

Whether the noise level is low enough that it can be ignored at this juncture 
depends also on the camera motion and on shape. Notice, however, that the 
singular value decomposition yields sufficient information to make this decision: 
the requirement is that the ratios between the third and the fourth largest singular 
values of W be sufficiently large. 

5.2 The Metric Constraints 
To summarize, the matrix M is a linear transformation of the true motion matrix M. 
Likewise, S is a linear transformation of the true shape matrix 5. More specifically, 
there exists a 3 x 3 matrix A such that 

M = MA 
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In order to find A it is sufficient to observe that the rows of the true motion 
matrix M are unit vectors, and that the first F are orthogonal to corresponding F 
in the second half. These metric constraints yield the over-constrained, quadratic 
system 

\f

TAAT\f = 1 
if

TAATif = 1 (5.5) 
\fTAATif = 0 

in the entries of A. This is a simple data fitting problem which, though non-linear, 
can be solved efficiently and reliably. 

A last ambiguity needs to be resolved: if A is a solution of the metric constraint 
problem, so is AR9 where R is any orthonormal matrix. In fact, 

if

T(AR)(RTAT)if = \f

TA{RRT)AT\f 
= \f

TAAT\f 

= 1, 
and likewise for the remaining two constraint equations. Geometrically, this 
corresponds to the fact that the solution is determined up to a rotation, since the 
orientation of, say, the first camera reference system with respect to the world 
reference system is arbitrary. This arbitrariness can be removed, if desired, by 
rotating the solution so that the first frame is represented by the identity matrix. 

5.3 Outline of the Complete Algorithm 
Based on the development in the previous sections, we now have a complete 
algorithm for the computation of shape and rotation from the measurement matrix 
W derived from a stream of images. To summarize, the motion matrix M and the 
shape matrix S defined in equations (4.3) and (4.4) can be computed as follows. 

1. Compute the singular-value decompositions of W: 

W = LSR. 

2. Define 
AT = L'd?') 1' 2 

S = ( I7 , ) 1 / 2 * / , 
where the primes refer to the block partitioning defined in (5.2). 
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3. Compute the matrix A in equations (5.4) by imposing the metric constraints 
(equations (5.5)). 

4. Compute the motion matrix M and the shape matrix S as 

M = MA 
S = A~lS. 

5. If desired, align the first camera reference system with the world reference 
system by finding the rotation matrix R' that minimizes the residue 

' 1 0 0 " 
0 1 0 
0 0 1 

where the columns of the identity matrix on the left represent the axis unit 
vectors of the world reference system, ii and ji are the first and F + 1-st row 
of M, and ki = ii x j 1 # This is an absolute orientation problem, and can be 
solved by the procedure described in [Horn et a/., 1988]. 
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Chapter 6 

Experiments 

This chapter describes experiments on the computation of shape and motion. 
First, the three-dimensional shape and motion computation is tested on simu

lations, in order to assess the ability of the algorithm to cope with varying levels 
of noise and with different numbers of frames and feature points. 

Second, experiments on real images are presented. The complete shape and 
motion computation is demonstrated with general camera motion, for which ac
curate ground truth was measured with a mechanical positioning platform. 

Simulations 
In our simulations, we generated points in space randomly within a cube, with 
uniform distribution for each coordinate. We simulated camera motion with 
the camera always keeping those points in the field of view. Because of the 
assumption of orthographic projection, the distance between the camera and the 
object cannot be computed by the algorithm. Instead, the algorithm computes the 
remaining components of translation, along the image plane, in the registration 
phase (equations (3.1)) and the rotation of the camera around the centroid of the 
feature points. As discussed in chapter 4, under orthography, only the rotation 
component contains shape information. Consequently, we ignore the translation. 
In the simulations, rotation is characterized by equal amounts of pitch, yaw and 
roll. We added Gaussian noise to the images with various standard deviations, in 
order to test the robustness of the algorithm. 

Figures 7.2 through 7.4 show the simulation results. In each pair of graphs, 
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the first shows the shape error and the second shows the rotation error. 
The shape error is defined as the root-mean-squared error on the computed 

point coordinates, averaged over all points, and divided by the sidelength of the 
cube. 

We measured the angle distance between true and computed rotation as the 
smallest angle necessary to make the two rotations coincide. The rotation error 
is then defined as the root-mean-squared angle distance error, averaged over all 
frames, and divided by the total rotation angle. 

The effect of image noise is shown in figure 7.2 for three different point-set 
sizes. For the curves in these two figures, the camera motion was 30 degrees. For 
the noise levels in the abscissas we assume a 512 x 512 image. Similar diagrams 
are shown in figure 7.3, but for varying stream lengths. The total camera rotation 
was kept at 30 degrees, so shorter streams correspond to greater motions between 
frames. 

Figure 7.4 shows the effects of the total angle of rotation. Both the number 
of points and the number of frames were set to 50, and plots are given for a few 
different image noise levels. 

Qualitatively, the diagrams show what we would expect: errors increase with 
more image noise, fewer points or frames, and a smaller range of viewing angles. 

Quantitatively, we observe that even for noise values as high as three pixels 
standard deviation the shape and motion errors are less than one half of one percent. 
This is demonstrated again in the next section, which describes experiments on 
real image streams. 

The noise we found in practice with real streams is on the order of a tenth 
of a pixel. The simulations show that for those noise levels we can expect good 
performance even with as few as ten points and viewing angles of five degrees. 

Real Image Streams 

In this section we describe an experiment on a real stream of images of a small 
plastic model of a building. The camera is a Sony CCD camera with a 200 mm 
lens, and is moved by means of a high-precision positioning platform. Figure 7.5 
shows the setup. The motion of the camera is such as to keep the building withing 
the field of view throughout the stream. Some frames in the stream are shown in 
figure 7.6. Camera pitch, yaw, and roll around the model are all varied as shown 
by the dashed curves in figures 7.12 through 7.11. 
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Figure 7.7 shows the trajectories left by a subset of 50 features tracked through 
150 frames. For feature tracking, we extended the method described in [Lucas and 
Kanade, 1981] to allow also for the automatic selection of image features. We will 
describe the method in report number 3 in our series. The entire set of 430 features 
is displayed in figure 7.8, overlayed on the first frame of the stream. Of these 
features, 42 were abandoned during tracking because their appearance changed 
too much. The remaining 388 features are displayed in figure 7.9, superimposed 
on the last frame of the sequence. 

The solid curves in figures 7.10, 7.11, and 7.12 compare the rotation com
ponents computed by the algorithm with the values measured mechanically from 
the mobile platform. In each figure, the top diagram shows the computed and the 
measured rotation components, superimposed, while the bottom diagram shows 
the difference between the two. 

The errors are everywhere less than 0.4 degrees. The computed motion follows 
closely also rotations with curved profiles, such as the roll profile between frames 
1 and 20 (figure 7.11), and faithfully preserves all discontinuities in the rotational 
velocities. This is a consequence of the fact that no assumption was made on 
the camera motion: the algorithm does not smooth the results. If the rows of the 
measurement matrix were permuted, thus simulating a camera jumping back and 
forth, the computed yaw, roll, and pitch values would be permuted correspondingly, 
yielding discontinuous plots. 

Between frames 60 and 80, yaw and pitch are nearly constant. This means 
that the image stream contains almost no shape information along the optical axis 
during that subsequence, since the camera is merely rotating about its optical axis. 
This demonstrates that it is sufficient for the stream as a whole to be taken during 
non-degenerate motion. The algorithm can deal without difficulty with streams 
that contain degenerate subsequences, because the information in the stream is 
used all at once in our method. 

We are not yet able to account for the residue error of about 0.3 degrees in 
the yaw and pitch components. This might be due to lens distortion, errors in 
the determination of the camera's aspect ratio, poor calibration of the mechanical 
measurements of motion, or errors due to our algorithm. 

The shape results are shown qualitatively in figure 7.13, which shows the 
computed shape viewed from above. The view in figure 7.13 is similar to that in 
figure 7.14, included for visual comparison. Notice that the walls, the windows 
on the roof, and the chimneys are recovered in their correct positions. 

To evaluate the shape performance quantitatively, we measured some distances 
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on the actual house model with a ruler, and compared them with the distances 
computed from the point coordinates in the shape results. Figure 7.15 shows the 
selected features superimposed on the first frame of the sequence, with the number 
assigned to them by our feature detection algorithm. The diagram in figure 7.16 
shows the distances between pairs of features, both as measured on the actual 
model and as computed from the results of our algorithm. The results of the 
algorithm were scaled so as to make the computed distance between feature 117 
and 282 equal to the distance measured on the model. Lengths are in millimeters. 
The mesured distances between the steps along the right side of the roof (7.2 mm) 
were obtained by measuring five steps and dividing the total distance (36 mm) by 
five. The differences between computed and measured results are of the order of 
the resolution of our ruler measurements (one millimeter). 
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Chapter 7 

Conclusion 

In this report, we extended our factorization method for the recovery of shape and 
motion from a stream of images to unrestricted camera motion. 

We were initially surprised to observe that the algorithm performs better in 
three dimensions than in two, in the sense that its performance degrades more 
gracefully as the number of frames and/or feature points decreases, or as the range 
of viewing directions becomes smaller. 

A posteriori, however, this fact is easy to explain. If the camera motion 
contains both pitch and yaw, then shape can be recovered from either the horizontal 
or the vertical image coordinates. Computing shape and motion from both sets of 
measurements at once is an additional source of redundancy, which improves the 
performance. In other words, the measurement matrix is of rank three, but only 
half of it is necessary in principle. In a related context, the learning of shapes from 
images, Poggio says it succintly: "1.5 snapshots are sufficient" [Poggio, 1990] to 
recover the structure. 

In practice, going from two to three dimensions, the additional difficulties in 
the method are two. First of all, one has to know the aspect ratio of the camera 
pixels in order to write the measurement matrix. Of course, this was not necessary 
in the planar case. However, this is a simple calibration to perform. 

Secondly, and much more importantly, features are harder to track in a full 
image than in a single scanline. Our tracking method, based on previous work 
by Lucas and Kanade [Lucas and Kanade, 1981] yielded accurate displacement 
measurements. Although there may be situations where the algorithm can fail, we 
did not encounter any in our experiments. We will discuss the features selection 
and tracking method in report number 3 of our series. 
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Figure 7.2: Relative shape and rotation error versus image noise for three different 
point-set sizes. Gaussian noise standard deviation figures assume a512 x 512 
image. 
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shape error vs. image noise (50 points) 
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Figure 7.3: Relative shape and rotation error versus image noise for three different 
stream lengths. Gaussian noise standard deviation figures assume a 512 x 512 
image. Shorter streams correspond to greater motions between frames. See text 
for details. 
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shape error vs. rotation angle 
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Figure 7.4: Relative shape and rotation error versus total camera rotation angle for 
various noise levels. Gaussian noise standard deviation figures assume a512x512 
image. See text for details. 
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Figure 7.7: Tracks of 50 randomly selected features, from frame 1 to frame 151 
of a real stream. 
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Figure 7.8: The 430 features selected by the automatic detection method, shown 
superimposed on the first frame of the stream. 
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Figure 7.9: The 388 features surviving tracking through 150 frames, shown 
perimposed on the last frame of the stream. 
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Figure 7.10: Results for the camera yaw. The top graph shows true and computed 
camera yaw, superimposed, versus the frame number. The bottom graph is a blow
up of the difference between the two plots. The rotation is around the centroid of 
the feature points. 
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Figure 7.1 : Results for the camera roll. The top graph shows true and computed 
camera roll, superimposed, versus the frame number. The bottom graph is a blow
up of the difference between the two plots. The rotation is around the centroid of 
the feature points. 
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Figure 7.12: Results for the camera pitch. The top graph shows true and computed 
camera pitch, superimposed, versus the frame number. The bottom graph is a blow
up of the difference between the two plots. The rotation is around the centroid of 
the feature points. 
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Figure 7.13: A view of the computed shape from approximately above the building 
(compare wxth figure 7.14). Notice the correct location of the walls, the wttiows 
on the roof, and the chimneys. o w s 

37 



Figure 7.14: A real picture from above the building, similar to figure 7.13. Th 
figure and figure 7.13 were not precisely aligned, but are intended for qualitatr 
comparison. 
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Figure 7.15: For a quantitative evaluation, distances between the features show in 
the picture were measured on the actual model, and compared with the computed 
results. The comparison is shown in figure 7.16. 
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Figure 7.16: Comparison between measured and computed distances for the 
features in figure 7.15. The number before the slash is the measured distance, 
the one after is the computed distance. Lengths are in millimeters. Computed 
distances were scaled so that the computed distance between features 117 and 282 
is the same as the measured distance. 
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