
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Mutual Exclusion for Uniprocessors

Brian N. Bershad

April 2, 1991

C M U - C S - 9 1 - 1 1 6 3

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A b s t r a c t

We discuss and evaluate four mutual exclusion primitives appropriate for uniprocessors: memory
interlocked instructions, software reservation, kernel emulation and restartable atomic sequences.
A restartable atomic sequence is a code fragment that, if interrupted, is resumed by software at
the beginning of the sequence, guaranteeing that the sequence is eventually executed to completion
atomically.

We describe two implementations of restartable atomic sequences for the Mach operating system,
and show that restartable atomic sequences perform significantly better than either kernel emulation
or software reservation, making them an attractive alternative for use on uniprocessors that do not
support atomic read-modify-write instructions. Further, on many processor architectures that do
support such instructions, we show that restartable atomic sequences can have better performance.
We show that improving the performance of low-level mutual exclusion mechanisms can have a
substantial effect on application performance.

UNIVERSITY LIBRARIES
CAR$«S32E MELLON UNJV-^:^
PITTSBURGH, PA 15213-38

This research was sponsored in part by The Defense Advanced Research Projects Agency, Information Science and
Technology Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by DARPA/CMO
under Contract MDA972-90-C-0035 and in part by the Open Software Foundation (OSF).

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA, OSF or the U.S. government.

K e y w o r d s : Operating Systems, Mutual Exclusion, Performance

1 Introduction
Multithreaded programs use mutual exclusion to guarantee consistency of shared data structures.
Even on a uniprocessor, mutual exclusion is necessary to protect shared data against an interleaved
thread schedule. Interleaving can occur when a thread is preempted, when an interrupt or excep­
tion occurs, or when a thread voluntarily relinquishes the processor. Programmers tend to think of
mutual exclusion in terms of high-level primitives such as P, V [Dijkstra 68a] and acquire jmutex, re-
leasejmutex [Birrell 89]. These primitives, however, must be implemented with low-level operations
that grant one of several threads mutually exclusive access to some data structure.

This paper discusses several mechanisms that may be used for mutual exclusion in multithreaded
programs on uniprocessors. We describe three mechanisms that are explicitly insulated against
interrupts during atomic operations, and a fourth mechanism, called a restartable atomic sequence.
The use of a restartable atomic sequence assumes that interrupts during atomic operations occur
infrequently, and that a simple recovery protocol can be used when untimely interrupts do occur.
Using programs running on the Mach operating system [Accetta et al. 86], we show that restartable
atomic sequences are significantly more efficient than other software techniques. We have measured
performance improvements of up to 50% for some applications on the MIPS R3000-based [Kane
87] DECstation 5000, which does not have hardware support for atomic operations. In addition, we
show that restartable atomic sequences can even outperform hardware mechanisms on processors
which do provide explicit support for atomic operations.

1.1 M o t i v a t i o n

Efficient mutual exclusion mechanisms are becoming increasingly important on uniprocessors for
two reasons. First, modern applications now use multiple threads as a program structuring device,
and as a way to manage I/O and server parallelism even when no true CPU parallelism is avail­
able. Second, many operating systems today are built using the "small-kernel" model in which
the kernel supports a few services such as thread scheduling, virtual memory and interprocess
communication [Mullender et al. 90, Cheriton 88, Rozier et al. 88, Accetta et al. 86, Thacker
et al. 88]. Other services such as the file system and networking are implemented as multithreaded
user-level applications. The small-kernel approach exposes the performance of a system's mutual
exclusion primitives because even single threaded programs rely on basic operating system services
that are implemented out of the kernel using multiple threads. The performance of all applications
is therefore ultimately influenced by the performance of the underlying mutual exclusion facilities.

The mechanisms that are generally used to implement atomic operations on a uniprocessor
(i.e., those described in every undergraduate operating systems textbook) can be characterized as
pessimistic. That is, they are designed with the assumption that atomicity can be violated at any
time (e.g., with an interrupt), and therefore guard against this potential violation. In so doing,
pessimistic mechanisms have a high overhead, and can have an adverse effect on the performance
of multithreaded programs.

In this paper, we introduce an optimistic approach for handling atomic operations on a unipro­
cessor. We assume that atomicity is rarely violated and use a fast solution for the common case
of uninterrupted execution during a code sequence that must be atomic. To ensure correctness,
though, in the cases when an interrupt does occur, we rely on a separate recovery mechanism to
take corrective action. As we show, the assumption that atomic operations on a uniprocessor are
almost never interrupted is a good one, since it is true, and since it allows us to implement atomic
operations with greater efficiency than is possible with pessimistic approaches.

In the next section we review several ways to provide atomic operations on a uniprocessor and

1

describe an optimistic approach based on restartable atomic sequences. In Section 3 we discuss
two implementations of restartable atomic sequences for the Mach operating system. In Section 4
we examine the effect that restartable atomic sequences have on the performance of multithreaded
programs and the operating system. In Section 5 we show that restartable atomic sequences can
outperform atomic hardware operations on several processor architectures. We discuss related work
in Section 6. Finally, in Section 7 we present our conclusions.

2 Implementing Atomic Operations on a Uniprocessor
This section describes four techniques for implementing atomic operations on a uniprocessor. Three
of the techniques, memory interlocked instructions, software reservation and kernel emulation,
are pessimistic. The fourth, restartable atomic sequences, is based on the optimistic approach.
Throughout this paper, we focus on an atomic Test-And-Set operation, although other atomic
operations such as Compare-Arid-Swap or Fetch-And-Add could be constructed using the techniques
we describe.

2 .1 M e m o r y I n t e r l o c k e d R e a d - M o d i f y - W r i t e I n s t r u c t i o n s

Memory interlocked instructions (or instruction sequences) require special hardware support from
the processor and bus to ensure that a given memory location can be read, modified and written
without interruption. Memory interlocked instructions are primarily intended to support multipro­
cessing, but can be used on uniprocessor systems as well.

Unfortunately, not all processors support memory interlocked instructions, and many that do,
do so reluctantly; i.e., the cycle time for an interlocked access is several times greater than that for
a non-interlocked access. The reasons for the higher cost are increased complexity [Intel860 89],
an overly "rich" set of atomic operations [Leonard 87, Intel386 90], support for non-aligned atomic
updates [Leonard 87], and the fact that atomic operations can bypass the on-chip cache [Motorola
88100 88]. A good survey of atomic hardware operations, characteristics and implementations can
be found in [Glew & Hwu 91].

2 .2 S o f t w a r e r e s e r v a t i o n

Instead of using hardware directly, atomic operations can be constructed with software reservation
algorithms, such as Dekker's [Dijkstra 68b], Peterson's [Peterson 81] or Lamport's [Lamport 87].
Roughly speaking, software reservation algorithms work by having a thread first register its intent
to perform an atomic operation, then check if any other thread has registered a similar intent, and
if not to then complete the operation.

Although a large number of reservation-based mutual exclusion algorithms are described in
the literature, we use Lamport's "fast mutual exclusion algorithm" [Lamport 87] to investigate
software reservation schemes, since it has been proven correct and shown to be optimal. 1 In
Lamport's algorithm, shown in Figure 1, each thread has a unique identifier, i, which is used to
place reservations into the variable and to indicate ownership of the lock via the variable y.
In the normal case (no contention, no collision), Lamport's algorithm requires two loads and five
stores, executing in order the lines [1,2,3,9,19,21,22]. If a thread reaches line 3, though, and finds

1If one is willing to put an upper bound on the length of the critical section, then it is possible to implement
multiprocessor mutual exclusion with fewer instructions than required by Lamport's algorithm. Such a limitation,
though, is generally not feasible on a multiprocessor, and would be nearly impossible on a uniprocessor.

2

start:
1 <b[i] := true;>
2 <x := i;>
3 if < y <> 0 > then { Contention }
4 < b[i] := false; >
5 await < y = 0; >
6 goto start;
7 endif
8
9 < y := i; >
10 if < x <> i > then { Collision }
11 < b[i] := false; >
12 for j := 1 to N do await < b[j] = false; > end;
13 if <y <> i > then
14 await <y = 0;>
15 goto start;
16 endif;
17 endif
18
19 CRITICAL SECTION
20
21 < y := 0; >
22 < b[i] := false; >

Figure 1: Lamport's Fast Mutual Exclusion Algorithm

that the lock is held by another thread, there is contention and the thread must wait until the lock
is released. The array 6 is used to resolve collisions, which occur whenever two or more threads
find that the lock is free at line 3 and proceed to line 9 simultaneously (or through an interleaved
schedule on a uniprocessor). A collision by n threads will be detected at line 10 by n - 1 of
them; those n — 1 will enter the loop at line 12 and wait until the collisions have settled out (lines
12 through 15). The <await> used at lines 5, 12 and 14 is necessary when there is contention
or collision, and can be implemented on a uniprocessor by having the awaiting thread yield its
processor to the scheduler.

Although reservation-based algorithms such as Lamport's are correct in principle, they are in
practice unwieldy, having worst-case waiting times that are 0{n) and storage requirements that
are 0(n x /) , where n is the maximum number of threads that may be simultaneously active, and
/ is the maximum number of synchronization objects.

The space requirement can be reduced to 0(n) with a single "meta-atomic object" that is used
to control access to all "regular atomic objects." In this case, the CRITICAL SECTION at line 19
in Figure 1 becomes a code sequence to access the "regular atomic object." For example, we can
bundle the reservation algorithm inside a Test-And-Set procedure (see Figure 2).

Even though bundling reduces the space requirement for an atomic Test-And-Set variable to
one bit (space for the meta variables x, and b can be counted as "constant" system over­
head), it increases the number of memory accesses to enter and exit a critical section to (at least)

3

function Meta-Atomic-Test-And-Set(var p: integer): integer;
var result: integer;
begin

[lines 1 through 18 from Lamport's algorithm]
if (p = 0) then

result := 0;

p - i;
else

result := 1;
end;

[lines 21 through 22 from Lamport's algorithm]
return result;

end AtomicTest-And-Set;

procedure AtomicClear(var p: integer)
begin

p := 0;
end AtomicCleax;

Figure 2: Bundled Test-And-Set Using Lamport's Algorithm

three loads and seven stores. Additionally, bundling serializes all atomic operations, even those
for unrelated synchronization objects. On a uniprocessor, for example, preemption during the
Meta-Atomic-Test-And-Set in Figure 2 operation would be disastrous to performance as it would
prevent other threads from executing any other atomic operation.

2 . 3 K e r n e l E m u l a t i o n

Memory interlocked instructions and software reservation protocols work on uniprocessors and
multiprocessors alike. A strictly uniprocessor solution with low space overhead and not requiring
special hardware is to have the kernel export its own mutual exclusion mechanism to applications
by means of a system call that does an atomic read-modify-write on a memory location in the
caller's address space. In the kernel, processor interrupts must be disabled during the execution of
the atomic operation.

A particularly convenient implementation strategy is to define an unused opcode in a processor's
instruction set to be a Test-And-Set pseudo-instruction; when a user-level program tries to execute
the pseudo-instruction, a processor exception (invalid opcode) is raised and control transfers to the
kernel's exception handler. There, the kernel determines the application's intentions, simulates
the Test-And-Set with interrupts disabled (and therefore atomically), and returns to user-mode.
Several versions of the Mach operating system for MlPS-based architectures implemented mutual
exclusion in this way.

Involving the kernel on each synchronization operation has two problems. First, it simply
increases the latency to enter and exit a critical section by a large number of instructions [Anderson
et al. 91]. Not only must the trap be fielded and dispatched by the kernel, but registers must be
saved and restored as control transfers across the user-kernel boundary, and the kernel must check

4

to ensure that the application is specifying a valid memory location as the operand to the Test-
And-Set instruction. On the MIPS R3000, for example, emulating a Test-And-Set in the kernel
takes about 100 instructions.

The second problem with kernel emulation is that it can increase the perceived occupancy time
of critical sections, thereby increasing the amount of time that a thread holds a shared resource.
Specifically, with kernel emulation, the Test-And-Set lock is held not only during the actual critical
section as coded by the programmer, but also during the time taken to emulate the instruction in
the kernel. In a preemptive system, this can increase contention for critical sections, as it increases
the likelihood that a thread is preempted while holding a lock. This, in turn, can increase the
number of context switches that must occur during the execution of a multithreaded program; on a
uniprocessor, the only reasonable action to take when a Test-And-Set fails is to voluntarily relinquish
the processor in the hopes that the thread for which the Test-And-Set last succeeded will soon
clear it. Preemptive scheduling policies have been shown to interact badly with synchronization
mechanisms on shared memory multiprocessors [Zahorjan et al. 89]. In Section 4 we show that
preemptive scheduling combined with inflated critical sections can also affect performance on a
uniprocessor.

2 .4 R e s t a r t a b l e A t o m i c S e q u e n c e s - O p t i m i s t i c A t o m i c O p e r a t i o n s

The three mechanisms described so far are pessimistic. That is, they are designed to work in
the face of untimely interrupts; a memory interlocked instruction implicitly delays interrupts until
the instruction completes, a software reservation algorithm works in the presence of arbitrary
interleaving, and kernel emulation explicitly disables interrupts during operations that must execute
atomically.

On a uniprocessor, an atomic read-modify-write operation can be performed optimistically.
Instead of using a heavyweight mechanism that works even if a thread is interrupted, it is easier
to assume that an interrupt won't occur, but to recognize when it does and to recover. For
any read-modify-write sequence that performs only one memory write as its final instruction, the
recovery process is straightforward: restart the sequence. In this way, when the sequence eventually
completes, it will have completed without interruption, i.e., atomically. An atomic Test-And-Set
operation is shown in Figure 3. As long as statements 3 through 7 execute without interruption on
a uniprocessor, this code will atomically read and write the variable p. If an interrupt does occur
that would allow another thread to possibly modify the variable p, then the interrupted thread
must resume execution at line 3 when it is next scheduled. As long as simple memory accesses
execute atomically, the corresponding atomic clear operation can simply store a zero into p.

Restartable atomic sequences are attractive because they do not not require hardware support,
have a short code path with one load and one store per atomic read-modify-write (in the common
case of no interruptions), and do not involve the kernel on every atomic operation. Only when an
atomic instruction sequence might not have executed atomically is it necessary to perform some
"cleanup" action to ensure atomicity.

3 Kernel Support for Restartable Atomic Sequences
Restartable atomic sequences require a small amount of kernel support to ensure that a thread
that is interrupted within an atomic sequence resumes at the beginning. This section describes two
strategies for implementing restartable atomic sequences in the Mach operating system. The first
strategy, and the simpler of the two, places the responsibility for detecting and recovering from an

5

function Test-And-Set(var p: integer): integer;
var result: integer;
begin

1 result := 1;
2 BEGIN RESTARTABLE ATOMIC SEQUENCE
3 if p = 1 then
4 result := 0;
5 else
6 p 1;
7 end;
8 END RESTARTABLE ATOMIC SEQUENCE
9 return result;

end;

Figure 3: Test-And-Set using a Restartable Atomic Sequence

interrupted atomic sequence with the kernel. The second strategy places the responsibility with
the application itself. We describe the strategies in terms of the MIPS R3000-based DECstation
5000, which does not have hardware support for memory-interlocked instructions.

3 . 1 E x p l i c i t R e g i s t r a t i o n

With explicit registration, the kernel keeps track of each address space's restartable atomic se­
quence. Whenever the kernel resumes a thread that has been interrupted, it checks if the thread
is being resumed within a restartable atomic sequence. If so, the thread is instead resumed at
the top of the sequence. During program initialization, an application registers with the kernel
the starting address of the sequence. The registration is done by the thread management system,
which is automatically called at program startup.

Implementing explicit registration in the Mach kernel was straightforward. We added a new
kernel call so that an address space can notify the kernel of its restartable atomic sequence, added
a word to the kernel's address space control block to record the start of the sequence, and added
a few lines of code which examines a thread's next user-level PC at the point where threads block
in the kernel. We also added about a dozen lines of code to CThreads [Cooper & Draves 88], the
user-level thread management package, to perform the registration at program startup.

An address space may register only one restartable atomic sequence at a time to simplify the
kernel's task of checking if a thread had been interrupted within an atomic sequence. One sixteen
byte sequence is sufficient for implementing a four cycle Test-And-Set function for the MIPS R3000.
The assembly code for this function is shown in Figure 3.1. Line 1 loads the current value of the
Test-And-Setlocation, passed in register aO, into the return value register, vO. Line 2 uses the load
delay slot to load a temporary with the value 1. Line 3 transfers control back to the caller. Line
4, which executes in the branch delay slot following the return, stores a 1 into the Test-And-Set
location. Lines 1-4 form the restartable atomic sequence: when the store finally occurs at the end
of line 4, no other thread will have executed since the storing thread's most recent load at line 1.

There are two runtime costs associated with explicit registration. The first comes from the
inability to inline atomic sequences. The kernel identifies restartable atomic sequences by a single

6

PC range, so the compiler cannot inline atomic sequences if an address space is to have more than
one. The inability to inline slightly increases the overhead of atomic operations because of the cost
of subroutine linkage. The second cost comes from having to check the return PC when a thread
blocks. This test adds a few dozen cycles to a context-switch path that is already several hundred
cycles long. As we show in the next section, blocks occur orders of magnitude less frequently
than atomic operations. Consequently, we feel that it is worth spending a few extra cycles at
context-switch time if we can significantly improve the performance of atomic operations.

LEAF(Test-And-Set)
Test-And-Set location address in register aO

1 lw vO, (aO) #v0 s contents of aO
2 li tO, 1 #temporary tO gets 1
3 j ra #return to caller, result in vO
4 sw tO, (aO) #store 1 in Test-And-Set location

END(Test-And-Set)

Figure 4: Restartable Test-And-Set Using Explicit Registration

3 .1 .1 Por tab i l i ty a n d Backward C omp at ib i l i t y

A diverse computing environment may have both uniprocessors and multiprocessors based on the
same processor architecture. For example, at CMU, Mach runs on laptops and several different
shared memory multiprocessors, all of which are based on the Intel 386 microprocessor. On a mul­
tiprocessor, though, restartable atomic sequences cannot be used to implement mutual exclusion.
Either memory-interlocked instructions or software reservation must be used. Nevertheless, binary
compatibility between the systems is important from the standpoint of software development and
system maintenance.

One way to achieve portability would be to put a conditional at the beginning of each restartable
atomic sequence: if running on a uniprocessor, use a restartable atomic sequence, otherwise use a
technique that works on a multiprocessor. Unfortunately, the test would add several cycles to each
atomic operation.

A better approach, and the one we've taken, is to execute the conditional only once at pro­
gram initialization time. When a program's thread management system attempts to register its
restartable atomic sequence with a kernel that does not support such sequences (for example, on
a multiprocessor), the registration fails. In response to the failure, the thread management sys­
tem overwrites the restartable atomic sequence with code that uses a conventional mechanism.
Overwriting is also done to ensure backward compatibility so that new programs can run on old
kernels.

3 . 2 U s e r - L e v e l R e s t a r t

Explicit registration places the responsibility for the detection and correction of atomicity violations
with the kernel. An alternative approach places that responsibility with the application itself: a
thread that blocks in the kernel is returned to user level at a fixed location, whereby its "execution
state" can be determined by code at that location. If the most recent instruction executed at user
level by the just-resumed thread is part of an atomic sequence, then the user-level code branches

7

to the beginning of the sequence, otherwise it branches to the instruction where the thread left
off. Figure 5 illustrates this control flow for two threads in the same address space; thread 1 is
preempted during a restartable atomic sequence, whereas thread 2 is preempted while executing
undistinguished code. On reschedule, each thread resumes at the fixed sequence in its address
space; for thread 1, control returns to the beginning of its atomic sequence, for thread 2, control
returns to where it left off.

Thread 1

Begin atomic sequence

^ Preempt

End atomic sequence

restart at start
of sequence

Fixed Sequence

Kernel

Thread 2

Preempt

restart where
left off

Figure 5: User Level Support for Restartable Atomic Sequences

Relative to explicit registration, user-level detection is attractive because the kernel provides
only the mechanism to ensure atomicity; the policy determining what must be atomic is with the
application. Since the kernel is not involved in either detection or correction, those processes can
be made as rich as necessary to satisfy the atomicity constraints of any instruction sequence. For
example, restartable atomic sequences can be inlined by having the fixed sequence at user level
inspect the instruction stream to determine if a thread was interrupted within an atomic operation.
User-level restart makes it possible to support a diverse set of synchronization mechanisms, such
as those that manipulate wait-free data structures [Herlihy 91], as well as the more conventional
Test-And-Set.

The user-level approach is not without problems, however. Transferring first to a fixed in­
struction sequence, and then to the actual return address involves slightly more overhead than the
simple check made by the kernel in the explicit registration scheme. In addition to the extra level
of indirection, the "real" return address has to be saved and restored on the thread's user-level
stack; our user-level detection and restart code for the MIPS adds about 45 instructions to every

8

preemptive context switch. Finally, if user-level restart is used to inline, portability and backward
compatibility become difficult to achieve. 2

Although we have implemented the kernel mechanisms to support user-level detection and
restart for Mach, it is only being supported experimentally. Backward compatibility and portabil­
ity are important aspects of Mach, the performance degradation due to not being able to inline
code sequences is small, and the policy/mechanism separation is less attractive when there is only
one policy to support (Mach's user-level thread management system uses only Test-And-Set inter­
nally). These points have caused us to concentrate on the explicit registration scheme. As we gain
more experience with using restartable atomic sequences, diverse synchronization mechanisms, and
inexpensive synchronization, we may choose to abandon explicit registration in favor of the more
flexible user-level approach.

We are using user-level restart in a preemptive coroutine package for Unix processes in which
time-slicing is implemented with Unix signals. Within the user-level signal handler, we examine
the interrupted PC and if it points to code within a Test-And-Set sequence, we roll the PC back
up to the beginning of the sequence. This has proven especially valuable in the coroutine package,
because it means that we do not have to disable and reenable Unix signals across each atomic
operation.

4 Comparing the Performance of Three Software Techniques
In this section we compare the performance of restartable atomic sequences, kernel emulation
and software reservation for the RISC-based DECstation 5000 (DS5000). The DS5000 has a 25
Mhz MIPS R3000 processor, but does not support atomic read-modify-write memory accesses in
hardware.

We discuss performance at three levels. First, we examine the basic overhead of the three
mechanisms. Next, we examine the effect that each has on the performance of common thread
management operations. Finally, we take a system-wide perspective by looking at the effect that
synchronization overhead has on the performance of several real applications. In brief, we show
that:

• Using restartable atomic sequences instead of kernel-emulation, the performance of multi­
threaded applications can be improved substantially.

• Even single threaded applications, because they deal with multithreaded operating system
servers, can benefit indirectly from inexpensive mutual exclusion.

• Preemptive context switches occur much less frequently than atomic operations, justifying the
small amount of extra work done during context switch in order to improve the performance
of atomic operations.

• Atomic operations, even when expanded out to multi-instruction atomic sequences, are almost
never interrupted. It other words, restart is almost never required.

• Short critical sections that become inflated when synchronization operations are costly can
increase lock contention. This can degrade performance by increasing the frequency with
which threads find locks held and must therefore block.

u l™L^:t^rithig could be nsed for inUned code'u wou,d incur such a iarge surtu" °verhead

9

4 . 1 M i c r o b e n c h m a r k s

We compare the performance of the three software-based mutual exclusion mechanisms with a
test that enters a critical section using a Test-And-Set lock, increments a counter, and leaves
the critical section by clearing the Test-And-Set lock. A single thread performs the test inside
a loop a large number of times. The update to the counter is included so as to model a real
critical section: interactions between the atomic operation, the code in the critical section, and the
memory system must be considered when evaluating a mutual exclusion mechanism (e.g., a scheme
requiring several writes will not work well on a memory system that has a write-through cache
and a shallow write-bufFer). The test has only one thread passing through the critical section,
so the Test-And-Set always succeeds. Consequently, we are not measuring the performance of
the thread management system itself (context switching, scheduling, etc), but rather the basic
processor architecture, memory system and mutual exclusion mechanism.

The elapsed times to execute the three software-based mutual exclusion algorithms are shown in
Table 1. The values in the table were determined by setting the loop limit to 1,000,000, computing
the average elapsed time of each pass through the loop, and subtracting off the loop overhead. We
ran the benchmarks several times on an unloaded system and observed little variance in the times.

M e c h a n i s m T i m e (/xsecs)
Restartable Atomic Sequences (branch) .64
Restartable Atomic Sequences (inlined) .51
Kernel Emulation 4.15
Software-reservation (a) 1.51
Software-reservation (b) 1.16

Table 1: Microbenchmark results for the DS5000

Software-reservation protocol (a) is an implementation of Lamport's fast mutual exclusion algo­
rithm in which each lock is represented by a data structure containing an owner and a reservation
field (one word each), and an array of booleans indexed by a thread identifier. It is the most
direct implementation of the algorithm, but suffers from the high storage requirements described
in Section 2.2. Protocol (b) uses Lamport's algorithm to implement the u meta" mutual exclusion
function shown in Figure 2. Protocol (b), despite an increase in the number of memory access
over Protocol (a), executes more quickly on the DS5000 because of the cost of having to compute
a thread's unique identifier and the address of its "busy" bit. In essence, with protocol (a), these
have to be computed on entry and exit to a critical section, whereas with protocol (b), they need
only be computed on entry.

Restartable atomic sequences were measured with out-of-line branches to an explicitly registered
sequence, and also with inlined code. The performance difference between the two approaches is due
to the subroutine linkage overhead on the MIPS. Kernel emulation and both reservation schemes
use out-of-line calls to implement the atomic operations. For these mechanisms, the number of
instructions executed is already sufficiently high that there is little to be gained by inlining.

The table shows that kernel emulation is by far the most expensive approach; the trap and
exception dispatch in the kernel are the main sources of overhead. Both software reservations
schemes are faster than kernel emulation, but much slower than restartable atomic sequences due
to the large number of instructions and memory accesses required. In contrast to the reservation
protocols, a restartable atomic sequence involves very few instructions on the fast path.

10

4 . 2 T h e E f f e c t O n T h r e a d M a n a g e m e n t O v e r h e a d

The Mach user-level thread management system, CThreads, like other thread management pack­
ages [Anderson et al. 89, Bershad et al. 88, Weiser et al. 89], relies heavily on simple atomic
operations to implement high-level abstractions such as threads, locks and condition variables. To
evaluate the effect that atomic operations have on the performance of the higher level facilities, we
examine the performance of several benchmarks that stress different thread management functions
in two different versions of CThreads: one uses kernel emulation for Test-And-Set and the other
uses restartable atomic sequences. For the reasons mentioned earlier, our CThreads implementation
relies on explicit registration rather than user-level detection, or software reservation,

We selected four thread management benchmarks typical of the kinds of thread management
operations found in many multithreaded programs. The benchmarks were:

• Spinlock. Repeatedly acquire and release a spinlock. If the spinlock, which is implemented
with a Test-And-Set lock, is held the acquire fails and is immediately retried.

• Mutexlock. Repeatedly acquire and release a relinquishing mutex. If a thread attempts to
acquire a held mutex, which is implemented with a Test-And-Set lock and a queue of waiting
threads, the thread puts itself on the wait queue and relinquishes its processor.

• Forktest. Recursively fork off a large number of threads; i.e., thread 1 forks thread 2 which
forks thread 3, etc. After forking, a thread immediately terminates.

• Pingpong. Two threads "pingpong" off one another in a tight loop, using a mutex and
condition variable to execute in alternation.

The performance of these benchmarks is shown in Table 2. Each entry in the table represents
the elapsed time per operation (i.e, one spinlock acquire and release, one mutex lock and unlock,
one fork and exit, one ping and pong).

B e n c h m a r k T i m e (/ /sees)
Emula t ion R . A . S

Spinlock 4.3 .58
MutexLock 4.6 .91
ForkTest 43.7 23.8
PingPong 230.8 115.2

Table 2: Effect of Synchronization on Thread Management Overhead

Table 2 shows that the performance of thread management operations depends heavily on the
performance of the underlying synchronization mechanism. When using kernel emulation for Test-
And-Set^ thread management functions spend the majority of their time getting in and out of the
kernel to access synchronization code. With restartable atomic sequences, though, synchronization
overhead becomes negligible. Even PingPong, with its profligate synchronization (26 Test-And-Sets
per cycle), spends less than 10% of the time synchronizing when using restartable atomic sequences.

4 . 3 A p p l i c a t i o n P e r f o r m a n c e

The microbenchmarks and thread management benchmarks indicate that restartable atomic se­
quences can have a large effect on individual operations. Ultimately, though, we are concerned

11

with performance system-wide. In this subsection we evaluate the overall performance improve­
ment that comes from using restartable atomic sequences as opposed to kernel emulation when
running "typical" applications on the DS5000. We selected four applications:

• text-format. Format this paper using I^TgX.

• fs-bench. A script of file system intensive programs such as copy, compile and search, run
using the Andrew File System [Satyanaranyanyan et al. 85].

• parthenon-n. A resolution-based theorem prover that uses n threads to exploit or-parallelism [Bose
et al. 89].

• procon-64- A producer-consumer application in which one consumer thread coordinates with
one producer thread to read data from a large file into a fixed-size buffer of size 64.

Table 3 shows the behavior of the applications when run two under different versions of the
operating system. The columns labeled "Emul" reflect runs using kernel emulation for the ap­
plication and for Mach's user-level Unix server which implements much of the operating system
environment [Golub et al. 90]. The columns labeled "R.A.S." reflect runs using restartable atomic
sequences for the applications and for the Unix server. Each program was run several times and
the average values for measurements taken during the runs are given in the table.

P r o g r a m T i m e Emula t ion R e s t a r t s T h r e a d
(s e c o n d s) Faults B l o c k s

Emul . R . A . S . E m u l . R . A . S .
text-format 10.1 9.8 57305 0 295 317
fs-bench 239.4 231.1 2191276 42 8856 9876
parthenon-1 25.8 18.5 1395534 4 412 354
parthenon-10 26.1 18.6 1576714 7 610 499
procon-64 30.4 15.7 2738168 4 91494 106969

Table 3: Effect of Synchronization Overhead on Application Performance

Restartable atomic sequences have the greatest effect on applications that use threads explic­
itly, such as parthenon with 1 or 10 threads and procon-64 which improve by about 30% and 50%
respectively. Single-threaded "vanilla Unix" applications also benefit (indirectly) through the im­
proved performance of the out-of-kernel multithreaded operating system services. For example,
the performance of the file system benchmark, which itself uses only single threaded programs but
relies on the multithreaded Unix server, improves by a little over 3%. The text formatter benefits
the least of all the benchmark applications because Mach uses file mapping to reduce the frequency
of server interaction for the file system operations performed most commonly by the text formatter
- simple reads and writes to small files.

The column labeled "Emulation Faults" is a count of the number of kernel emulations that
occurred during the running of each benchmark when Test-And-Set was implemented in the kernel.
The column labeled "Restarts" shows the average number of atomic sequence restarts that had to
be performed during the running of each program when Test-And-Set was implemented at user level
with explicit registration. The restart count demonstrates that the likelihood of a thread being
preempted during a restartable atomic sequence is extremely small. More than anything else, this
column highlights the tremendous degree of pessimism present in the traditional mechanisms used

12

for mutual exclusion on uniprocessors. The optimistic approach instead represents the point of
view that one should never have to pay to avoid something that almost never happens.

The number of emulation faults can be used to account for a large part of the performance
difference between the two versions of the system. For example, we would expect parthenon-10,
with its 1.57 million kernel emulations, to improve by about 1.57 million x 3.7 //sees, or about
5.8 seconds. The actual improvement is slightly greater than this for two reasons. First, the
correlation between elapsed time and number of emulation faults, even for the emulation based
kernel, is neither strictly negative nor strictly positive. Hence, the number of emulation faults is
only a good, but not exact, predictor of execution time. Second, some of the remaining performance
improvement is due to the reduction in scheduling overhead that comes with a decrease in critical
section service time.

For even very short critical sections (10 to 20 instructions) restartable atomic sequences add
little extra overhead, and much of that overhead comes before the critical section has actually been
entered. Consequently, a short critical section remains short, and the likelihood of the section
being preempted is small. With kernel emulation, though, as mentioned earlier, each Test-And-Set
takes about 100 instructions, and nearly all are executed with processor interrupts disabled. When
control returns out of the kernel after an atomic operation has completed, interrupts are reenabled
and any pending interrupts are delivered. If the delivered interrupt causes a preemption, then the
thread that just performed the atomic operation will be descheduled and another thread will run.
If that thread attempts to enter the same critical section, it will find the Test-And-Set variable
already set and will be forced to relinquish its processor to CThread's user-level scheduler. As a
result, the program pays the additional cost of descheduling and then rescheduling the unsatisfied
thread.

We looked more closely at parthenon-10 to determine the influence of inflated critical sections on
program behavior. The program synchronizes often, but most synchronizations operations guard
short critical sections that simply increment a counter, or dequeue an item from a linked list. In
running the program, we counted the number of times that a thread was unable to enter a critical
section because of a lock held by another (preempted) thread. When using kernel emulation in
parthenon-10, a thread found a Test-And-Set lock held on average 603 times out of about 1.6 million
attempts. In contrast, with restartable atomic sequence, only 387 times did a thread try to acquire
a lock that was held. The only difference between the two runs was the lock holding time imposed
by the synchronization mechanisms.

The last two columns show the number of times that a thread trapped into the kernel to block.
For restartable atomic sequences, it indicates how many times a thread's execution state had to be
checked to ensure that atomic operations eventually execute atomically. Comparing this column
to the number of emulation faults justifies the small amount of extra work required by the restart
strategies whenever a thread is rescheduled. The most compelling justification, of course, is the
reduced execution time for all the applications.

5 Software vs. Hardware Support for Mutual Exclusion
We have so far used the lack of hardware support for atomic operations as motivation for in­
vestigating efficient software solutions. Many processors however do support some type of atomic
read-modify-write instruction. Table 4 compares the overhead to acquire and release a Test-And-Set
variable using memory-interlocked instructions and restartable atomic sequences on eight processor
architectures. The table shows that restartable atomic sequences can be more efficient than mem­
ory interlocked instructions for the DEC CVAX, the Intel 486, the Motorola 88000, and Hewlett

13

Packard's Precision 9000.
For the interlocked cases, the Test-And-Set and subsequent release instructions were executed

inline. In the restartable cases, only the release was inlined (implemented with a single clear memory
instruction). The Test-And-Set code was called using a RISC-style linkage protocol: the address of
the Test-And-Set variable, the return PC, and the result were passed in registers. The final column
of Table 4 gives the number of /xsecs required to transfer to the out-of-line restartable atomic
sequence. The transfer is necessary when using explicit registration. If we were to instead rely
on user-level detection, which would allow us to inline restartable atomic sequences, the software
approach would outperform the hardware in nearly all cases (subtract the linkage overhead from
the restartable atomic sequence overhead).

P r o c e s s o r Inter locked R e s t a r t a b l e Linkage T i m e
Test-And-Set Test-And-Set fxsecs

DEC CVAX 2.8 2.2 .6
Motorola 68030 1.1 2.0 .8
Intel 386 1.0 1.6 .7
Intel 486 .7 .6 .3
Intel 860 .3 .4 .2
Motorola 88000 .9 .3 .1
Sun SPARC .8 1.0
HP Precision 9000/835 5.5 2.1 .5

Table 4: Hardware and Software Costs of Atomic Operations

6 Related Work
We are aware of several other systems that use restartability to implement atomic operations on a
uniprocessor. In the software arena, researchers at DEC SRC are using an approach in which the
kernel detects preemptions that occur during inlined atomic sequences [Redell 90]. Their kernel
"knows" the instruction sequences that implement the mutual exclusion operations P and V, and
looks for these sequences whenever a thread is rescheduled. This approach combines the advantages
of explicit registration (rapid kernel-level check) with user-level detection (atomic sequences can be
inlined).

DEC SRC's approach requires a strong alliance between the compiler and the operating system,
and requires that changes in the way that one handles synchronization be reflected in the other.
In the DEC SRC environment, this is probably not a major concern, since the people who write
the compilers work down the hall from those who build the kernels. They also have a system
modelling technology that allows them to easily "remake" their entire installed software base when
necessary. Finally, their intention to support only one language (Modula-2+ and its descendant
Modula-3) makes it reasonable to embed information in the kernel about how the language runtime
environment handle a small set of synchronization operations. In our environment, which is less
cohesive than SRC's, it is not feasible for us to create such an alliance between the compiler and the
operating system kernel because i) we import our compilers, ii) we have no real system modelling
technology, and iii) we must support many different programming languages on top of Mach, each
with its own calling convention and runtime environment.

The Synthesis kernel [Massalin & Pu 89] relies on a flavor of optimistic atomic operations that
differs from ours. Synthesis' internal critical sections are implemented with Herlihy's wait-free

14

model of synchronization. Using Compare-And-Swap to update shared data structures, a thread
can detect when it has been preempted within its critical section, and can restart the critical section
on its own. This approach reduces lock contention and ensures that a thread that is preempted
while updating a shared data structure does not prevent other threads from updating the same
data structure. Nevertheless, the Synthesis kernel remains pessimistic ensuring atomicity with the
processor's Compare-And-Swap instruction. Our count of the number of restarts required during
scheduling-intensive applications indicates that a system like Synthesis would be able to use a
lighter-weight, optimistic implementation of Compare-And-Swap on a uniprocessor. 3

The Intel 860 processor [Intel860 89] has hardware support for restartable sequences. A thread
begins a multi-instruction atomic sequence with a special instruction that sets a bit in the pro­
cessor status word, disables interrupts, and locks the bus. The bit is cleared and the bus lock
is automatically released on the next write through to memory, or after 32 cycles have elapsed,
or if a processor exception occurs. The release on write covers the common case of a successful
read-modify-write sequence; the release after 32 cycles ensures that a processor can't block out in­
terrupts and lock out the bus indefinitely; the release in case of an exception ensures that program
faults can be dealt with. On every path out of the kernel to user space after any type of exception,
the kernel must check the bit in the processor status word and, if set, back the thread up to the
point where it executed the special instruction. 4 Despite the 860's hardware support for restartable
sequences (the bit in the processor status word subsumes the need to perform explicit registration
or instruction stream inspection after a context switch), it offers relatively little advantage over
software restart on a uniprocessor (see Table 4).

User-level detection and restart is similar to the approach taken in [Anderson et al. 90] to
support user-level thread management on shared memory multiprocessors. In that system, when
a thread is preempted inside a critical section, it is immediately resumed not where it left off, but
within code that gives the thread management system the opportunity to "clean up" from the
unexpected preemption. The machinery described for implementing the clean up is sufficient for
implementing restartable atomic sequences on a uniprocessor.

7 Conclusions

Restartable atomic sequences represent a "common case" approach to mutual exclusion on a unipro­
cessor. In the common case, an atomic operation runs uninterrupted. The uncommon case can
be detected after it occurs and can be handled by means of a simple recovery process, either in
the kernel or at user level. As such, restartable atomic sequences are appropriate for uniprocessors
that do not support memory interlocked atomic instructions. Moreover, on processors that do have
hardware support for synchronization, better performance may be possible with restartable atomic
sequences.

3Synthesis runs only on 680x0-based systems, which support reasonably fast atomic instructions (see Table 4.
Consequently, there's no reason to believe that the performance of the system on that processor architecture could
be significantly improved by using restartable atomic sequences.

4In practice, this extra check doesn't add much to the cost of getting in and out of the kernel, since managing the
exposed pipeline already takes several hundred machine instructions [Anderson et al. 91].

15

Acknowledgements
Richard Draves, Hank Levy, and Dan Stodolsky provided valuable feedback on earlier drafts of
this paper. David Redell and John Ellis of DEC SRC suggested the idea of restartable sequences
with kernel-level registration after hearing me complain about the deficiencies of a certain RISC
processor. Both were helpful in evaluating the tradeoffs between the different approaches and in
understanding Taos's mutual exclusion mechanism.

References
[Accetta et al. 86] Accetta, M. J., Baron, R. V., Bolosky, W., Golub, D. B., Rashid, R. F., Teva-

nian, Jr., A., and Young, M. W. Mach: A New Kernel Foundation for UNIX Development.
In Proceedings of the Summer 1986 USENIX Conference, pages 93-113, July 1986.

[Anderson et al. 89] Anderson, T., Lazowska, E., and Levy, H. The Performance Implications of
Thread Management Alternatives for Shared-Memory Multiprocessors. IEEE Transac­
tions on Computers, 38(12):1631-1644, December 1989.

[Anderson et al. 90] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy., H. M. Scheduler
Activations: Effective Kernel Support for the User-Level Management of Parallelism.
Technical Report 90-04-02, University of Washington, Department of Computer Science
and Engineering, April 1990. Submitted for publication.

[Anderson et al, 91] Anderson, T., Levy, H., Bershad, B., and Lazowska, E. The Interaction of
Architecture and Operating System Design. In Proceedings of the Fourth Symposium on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
April 1991.

[Bershad et al. 88] Bershad, B. N., Lazowska, E. D., and Levy, H. M. PRESTO: A System for
Object-Oriented Parallel Programming. Software: Practice and Experience, 18(8):713-
732, August 1988.

[Birrell 89] Birrell, A. An Introduction to Programming with Threads. Technical Report # 3 5 ,
Digital Equipment Corporation's Systems Research Center, January 1989.

[Bose et al. 89] Bose, S., Clarke, E., Long, D., and Michaylov, S. Parthenon: A Parallel Theorem
Prover for Non-Horn Clauses. In Proceedings of the Fourth Annual Symposium on Logic
in Computer Science, 1989.

[Cheriton 88] Cheriton, D. R. The V Distributed System. Communications of the ACM, 31(3):314-
333, March 1988.

[Cooper & Draves 88] Cooper, E. C. and Draves, R. P. C threads. Technical Report CMU-CS-88-
54, School of Computer Science, Carnegie Mellon University, February 1988.

[Dijkstra 68a] Dijkstra, E. W. The Structure of the "THE" Multiprogramming System. Commu­
nications of the ACM, 11(5), May 1968.

[Dijkstra 68b] Dijkstra, E. W. Cooperating Sequential Processes, pages 43-112. Academic Press,
New York, 1968.

[Glew & Hwu 91] Glew, A. and Hwu, W. A Feature Taxonomy and Survey and Synchronization
Primitives Implementations. Technical Report UILU-ENG-91-2211, Center for Reliable
and High-Performance Computing, University of Illinois at Urbana-Champaign, February
1991.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an Application Program.
In Proceedings of the Summer 1990 USENIX Conference, pages 87-95, June 1990.

16

[Herlihy 91] Herlihy, M. Wait-free Synchronization. ACM Transactions on Programming Lan­
guages, 13(1), January 1991.

[Intel386 90] 386 Programmer's Reference Manual Intel, Mt. Prospect, IL, 1990.

[Intel860 89] i860 64-bit Microprocessor Programmer's Reference Manual 1989.

[Kane 87] Kane, G. MIPS R2000 RISC Architecture. Prentice Hall, Englewood Cliffs, N.J., 1987.

[Lamport 87] Lamport, L. A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer
Systems, 5(1):1—11, February 1987.

[Leonard 87] Leonard, T. VAX Architecture Reference Manual. Digital Equipment Corporation, 1987.

[Massalin & Pu 89] Massalin, H. and Pu, C. Threads and Input/Output in the Synthesis Kernel.
In Proceedings of the 12th ACM Symposium on Operating Systems Principles, pages 191—
201, December 1989.

[Motorola 88100 88] MCS 88100 RISC Microprocessor User's Manual. Phoenix, AZ, 1988.

[Mullender et al. 90] Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van Renesse, R., and van
Staveren, H. Amoeba: A Distributed Operating System for the 1990s. IEEE Computer
Magazine, 23(5):44-54, May 1990.

[Peterson 81] Peterson, G. Myths About the Mutual Exclusion Problem. Information Processing
Letters, 12(1), June 1981.

[Redell 90] Redell, D. Personal Communication, December 1990.

[Rozier et al. 88] Rozier, M., Abrossimov, V., Armand, F., Boule, I., Giend, M., Guillemont, M.,
Herrmann, F., Leonard, P., Langlois, S., and Neuhauser, W. The Chorus Distributed
Operating System. Computing Systems, 1(4), 1988.

[Satyanaranyanyan et al. 85] Satyanaranyanyan, M., Howard, J., Nichols, D., Sidebotham, R., and
Spector, A. The ITC Distributed File System: Principles and Design. In Proceedings
of the 10th ACM Symposium on Operating Systems Principles, pages 35-50, December
1985.

[Thacker et al. 88] Thacker, C. P., Stewart, L. C , and Satterthwaite, Jr., E. H. Firefly: A Multi­
processor Workstation. IEEE Transactions on Computers, 37(8):909-920, August 1988.

[Weiser et al. 89] Weiser, M., Demers, A., and Hauser, C. The Portable Common Runtime Ap­
proach to Interoperability. In Proceedings of the 12th ACM Symposium on Operating
Systems Principles, pages 114-122, December 1989.

[Zahorjan et al. 89] Zahorjan, J., Lazowska, E., and Eager, D. The Effect of Scheduling Discipline
on Spin Overhead for Shared Memory Parallel Processors. Technical Report 89-07-03,
University of Washington, Department of Computer Science and Engineering, July 1989.
To appear in IEEE Transactions on Parallel and Distributed Systems.

17

