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We discuss and evaluate four mutual exclusion primitives appropriate for uniprocessors: memory 
interlocked instructions, software reservation, kernel emulation and restartable atomic sequences. 
A restartable atomic sequence is a code fragment that, if interrupted, is resumed by software at 
the beginning of the sequence, guaranteeing that the sequence is eventually executed to completion 
atomically. 

We describe two implementations of restartable atomic sequences for the Mach operating system, 
and show that restartable atomic sequences perform significantly better than either kernel emulation 
or software reservation, making them an attractive alternative for use on uniprocessors that do not 
support atomic read-modify-write instructions. Further, on many processor architectures that do 
support such instructions, we show that restartable atomic sequences can have better performance. 
We show that improving the performance of low-level mutual exclusion mechanisms can have a 
substantial effect on application performance. 
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1 Introduction 
Multithreaded programs use mutual exclusion to guarantee consistency of shared data structures. 
Even on a uniprocessor, mutual exclusion is necessary to protect shared data against an interleaved 
thread schedule. Interleaving can occur when a thread is preempted, when an interrupt or excep­
tion occurs, or when a thread voluntarily relinquishes the processor. Programmers tend to think of 
mutual exclusion in terms of high-level primitives such as P, V [Dijkstra 68a] and acquire jmutex, re-
leasejmutex [Birrell 89]. These primitives, however, must be implemented with low-level operations 
that grant one of several threads mutually exclusive access to some data structure. 

This paper discusses several mechanisms that may be used for mutual exclusion in multithreaded 
programs on uniprocessors. We describe three mechanisms that are explicitly insulated against 
interrupts during atomic operations, and a fourth mechanism, called a restartable atomic sequence. 
The use of a restartable atomic sequence assumes that interrupts during atomic operations occur 
infrequently, and that a simple recovery protocol can be used when untimely interrupts do occur. 
Using programs running on the Mach operating system [Accetta et al. 86], we show that restartable 
atomic sequences are significantly more efficient than other software techniques. We have measured 
performance improvements of up to 50% for some applications on the MIPS R3000-based [Kane 
87] DECstation 5000, which does not have hardware support for atomic operations. In addition, we 
show that restartable atomic sequences can even outperform hardware mechanisms on processors 
which do provide explicit support for atomic operations. 

1.1 M o t i v a t i o n 

Efficient mutual exclusion mechanisms are becoming increasingly important on uniprocessors for 
two reasons. First, modern applications now use multiple threads as a program structuring device, 
and as a way to manage I/O and server parallelism even when no true CPU parallelism is avail­
able. Second, many operating systems today are built using the "small-kernel" model in which 
the kernel supports a few services such as thread scheduling, virtual memory and interprocess 
communication [Mullender et al. 90, Cheriton 88, Rozier et al. 88, Accetta et al. 86, Thacker 
et al. 88]. Other services such as the file system and networking are implemented as multithreaded 
user-level applications. The small-kernel approach exposes the performance of a system's mutual 
exclusion primitives because even single threaded programs rely on basic operating system services 
that are implemented out of the kernel using multiple threads. The performance of all applications 
is therefore ultimately influenced by the performance of the underlying mutual exclusion facilities. 

The mechanisms that are generally used to implement atomic operations on a uniprocessor 
(i.e., those described in every undergraduate operating systems textbook) can be characterized as 
pessimistic. That is, they are designed with the assumption that atomicity can be violated at any 
time (e.g., with an interrupt), and therefore guard against this potential violation. In so doing, 
pessimistic mechanisms have a high overhead, and can have an adverse effect on the performance 
of multithreaded programs. 

In this paper, we introduce an optimistic approach for handling atomic operations on a unipro­
cessor. We assume that atomicity is rarely violated and use a fast solution for the common case 
of uninterrupted execution during a code sequence that must be atomic. To ensure correctness, 
though, in the cases when an interrupt does occur, we rely on a separate recovery mechanism to 
take corrective action. As we show, the assumption that atomic operations on a uniprocessor are 
almost never interrupted is a good one, since it is true, and since it allows us to implement atomic 
operations with greater efficiency than is possible with pessimistic approaches. 

In the next section we review several ways to provide atomic operations on a uniprocessor and 
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describe an optimistic approach based on restartable atomic sequences. In Section 3 we discuss 
two implementations of restartable atomic sequences for the Mach operating system. In Section 4 
we examine the effect that restartable atomic sequences have on the performance of multithreaded 
programs and the operating system. In Section 5 we show that restartable atomic sequences can 
outperform atomic hardware operations on several processor architectures. We discuss related work 
in Section 6. Finally, in Section 7 we present our conclusions. 

2 Implementing Atomic Operations on a Uniprocessor 
This section describes four techniques for implementing atomic operations on a uniprocessor. Three 
of the techniques, memory interlocked instructions, software reservation and kernel emulation, 
are pessimistic. The fourth, restartable atomic sequences, is based on the optimistic approach. 
Throughout this paper, we focus on an atomic Test-And-Set operation, although other atomic 
operations such as Compare-Arid-Swap or Fetch-And-Add could be constructed using the techniques 
we describe. 

2 .1 M e m o r y I n t e r l o c k e d R e a d - M o d i f y - W r i t e I n s t r u c t i o n s 

Memory interlocked instructions (or instruction sequences) require special hardware support from 
the processor and bus to ensure that a given memory location can be read, modified and written 
without interruption. Memory interlocked instructions are primarily intended to support multipro­
cessing, but can be used on uniprocessor systems as well. 

Unfortunately, not all processors support memory interlocked instructions, and many that do, 
do so reluctantly; i.e., the cycle time for an interlocked access is several times greater than that for 
a non-interlocked access. The reasons for the higher cost are increased complexity [Intel860 89], 
an overly "rich" set of atomic operations [Leonard 87, Intel386 90], support for non-aligned atomic 
updates [Leonard 87], and the fact that atomic operations can bypass the on-chip cache [Motorola 
88100 88]. A good survey of atomic hardware operations, characteristics and implementations can 
be found in [Glew & Hwu 91]. 

2 .2 S o f t w a r e r e s e r v a t i o n 

Instead of using hardware directly, atomic operations can be constructed with software reservation 
algorithms, such as Dekker's [Dijkstra 68b], Peterson's [Peterson 81] or Lamport's [Lamport 87]. 
Roughly speaking, software reservation algorithms work by having a thread first register its intent 
to perform an atomic operation, then check if any other thread has registered a similar intent, and 
if not to then complete the operation. 

Although a large number of reservation-based mutual exclusion algorithms are described in 
the literature, we use Lamport's "fast mutual exclusion algorithm" [Lamport 87] to investigate 
software reservation schemes, since it has been proven correct and shown to be optimal. 1 In 
Lamport's algorithm, shown in Figure 1, each thread has a unique identifier, i, which is used to 
place reservations into the variable and to indicate ownership of the lock via the variable y. 
In the normal case (no contention, no collision), Lamport's algorithm requires two loads and five 
stores, executing in order the lines [1,2,3,9,19,21,22]. If a thread reaches line 3, though, and finds 

1If one is willing to put an upper bound on the length of the critical section, then it is possible to implement 
multiprocessor mutual exclusion with fewer instructions than required by Lamport's algorithm. Such a limitation, 
though, is generally not feasible on a multiprocessor, and would be nearly impossible on a uniprocessor. 
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start: 
1 <b[i] := true;> 
2 <x := i;> 
3 if < y <> 0 > then { Contention } 
4 < b[i] := false; > 
5 await < y = 0; > 
6 goto start; 
7 endif 
8 
9 < y := i; > 
10 if < x <> i > then { Collision } 
11 < b[i] := false; > 
12 for j := 1 to N do await < b[j] = false; > end; 
13 if <y <> i > then 
14 await <y = 0;> 
15 goto start; 
16 endif; 
17 endif 
18 
19 CRITICAL SECTION 
20 
21 < y := 0; > 
22 < b[i] := false; > 

Figure 1: Lamport's Fast Mutual Exclusion Algorithm 

that the lock is held by another thread, there is contention and the thread must wait until the lock 
is released. The array 6 is used to resolve collisions, which occur whenever two or more threads 
find that the lock is free at line 3 and proceed to line 9 simultaneously (or through an interleaved 
schedule on a uniprocessor). A collision by n threads will be detected at line 10 by n - 1 of 
them; those n — 1 will enter the loop at line 12 and wait until the collisions have settled out (lines 
12 through 15). The <await> used at lines 5, 12 and 14 is necessary when there is contention 
or collision, and can be implemented on a uniprocessor by having the awaiting thread yield its 
processor to the scheduler. 

Although reservation-based algorithms such as Lamport's are correct in principle, they are in 
practice unwieldy, having worst-case waiting times that are 0{n) and storage requirements that 
are 0(n x / ) , where n is the maximum number of threads that may be simultaneously active, and 
/ is the maximum number of synchronization objects. 

The space requirement can be reduced to 0(n) with a single "meta-atomic object" that is used 
to control access to all "regular atomic objects." In this case, the CRITICAL SECTION at line 19 
in Figure 1 becomes a code sequence to access the "regular atomic object." For example, we can 
bundle the reservation algorithm inside a Test-And-Set procedure (see Figure 2). 

Even though bundling reduces the space requirement for an atomic Test-And-Set variable to 
one bit (space for the meta variables x, and b can be counted as "constant" system over­
head), it increases the number of memory accesses to enter and exit a critical section to (at least) 
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function Meta-Atomic-Test-And-Set(var p: integer): integer; 
var result: integer; 
begin 

[ lines 1 through 18 from Lamport's algorithm ] 
if (p = 0) then 

result := 0; 

p - i; 
else 

result := 1; 
end; 

[ lines 21 through 22 from Lamport's algorithm ] 
return result; 

end AtomicTest-And-Set; 

procedure AtomicClear(var p: integer) 
begin 

p := 0; 
end AtomicCleax; 

Figure 2: Bundled Test-And-Set Using Lamport's Algorithm 

three loads and seven stores. Additionally, bundling serializes all atomic operations, even those 
for unrelated synchronization objects. On a uniprocessor, for example, preemption during the 
Meta-Atomic-Test-And-Set in Figure 2 operation would be disastrous to performance as it would 
prevent other threads from executing any other atomic operation. 

2 . 3 K e r n e l E m u l a t i o n 

Memory interlocked instructions and software reservation protocols work on uniprocessors and 
multiprocessors alike. A strictly uniprocessor solution with low space overhead and not requiring 
special hardware is to have the kernel export its own mutual exclusion mechanism to applications 
by means of a system call that does an atomic read-modify-write on a memory location in the 
caller's address space. In the kernel, processor interrupts must be disabled during the execution of 
the atomic operation. 

A particularly convenient implementation strategy is to define an unused opcode in a processor's 
instruction set to be a Test-And-Set pseudo-instruction; when a user-level program tries to execute 
the pseudo-instruction, a processor exception (invalid opcode) is raised and control transfers to the 
kernel's exception handler. There, the kernel determines the application's intentions, simulates 
the Test-And-Set with interrupts disabled (and therefore atomically), and returns to user-mode. 
Several versions of the Mach operating system for MlPS-based architectures implemented mutual 
exclusion in this way. 

Involving the kernel on each synchronization operation has two problems. First, it simply 
increases the latency to enter and exit a critical section by a large number of instructions [Anderson 
et al. 91]. Not only must the trap be fielded and dispatched by the kernel, but registers must be 
saved and restored as control transfers across the user-kernel boundary, and the kernel must check 

4 



to ensure that the application is specifying a valid memory location as the operand to the Test-
And-Set instruction. On the MIPS R3000, for example, emulating a Test-And-Set in the kernel 
takes about 100 instructions. 

The second problem with kernel emulation is that it can increase the perceived occupancy time 
of critical sections, thereby increasing the amount of time that a thread holds a shared resource. 
Specifically, with kernel emulation, the Test-And-Set lock is held not only during the actual critical 
section as coded by the programmer, but also during the time taken to emulate the instruction in 
the kernel. In a preemptive system, this can increase contention for critical sections, as it increases 
the likelihood that a thread is preempted while holding a lock. This, in turn, can increase the 
number of context switches that must occur during the execution of a multithreaded program; on a 
uniprocessor, the only reasonable action to take when a Test-And-Set fails is to voluntarily relinquish 
the processor in the hopes that the thread for which the Test-And-Set last succeeded will soon 
clear it. Preemptive scheduling policies have been shown to interact badly with synchronization 
mechanisms on shared memory multiprocessors [Zahorjan et al. 89]. In Section 4 we show that 
preemptive scheduling combined with inflated critical sections can also affect performance on a 
uniprocessor. 

2 .4 R e s t a r t a b l e A t o m i c S e q u e n c e s - O p t i m i s t i c A t o m i c O p e r a t i o n s 

The three mechanisms described so far are pessimistic. That is, they are designed to work in 
the face of untimely interrupts; a memory interlocked instruction implicitly delays interrupts until 
the instruction completes, a software reservation algorithm works in the presence of arbitrary 
interleaving, and kernel emulation explicitly disables interrupts during operations that must execute 
atomically. 

On a uniprocessor, an atomic read-modify-write operation can be performed optimistically. 
Instead of using a heavyweight mechanism that works even if a thread is interrupted, it is easier 
to assume that an interrupt won't occur, but to recognize when it does and to recover. For 
any read-modify-write sequence that performs only one memory write as its final instruction, the 
recovery process is straightforward: restart the sequence. In this way, when the sequence eventually 
completes, it will have completed without interruption, i.e., atomically. An atomic Test-And-Set 
operation is shown in Figure 3. As long as statements 3 through 7 execute without interruption on 
a uniprocessor, this code will atomically read and write the variable p. If an interrupt does occur 
that would allow another thread to possibly modify the variable p, then the interrupted thread 
must resume execution at line 3 when it is next scheduled. As long as simple memory accesses 
execute atomically, the corresponding atomic clear operation can simply store a zero into p. 

Restartable atomic sequences are attractive because they do not not require hardware support, 
have a short code path with one load and one store per atomic read-modify-write (in the common 
case of no interruptions), and do not involve the kernel on every atomic operation. Only when an 
atomic instruction sequence might not have executed atomically is it necessary to perform some 
"cleanup" action to ensure atomicity. 

3 Kernel Support for Restartable Atomic Sequences 
Restartable atomic sequences require a small amount of kernel support to ensure that a thread 
that is interrupted within an atomic sequence resumes at the beginning. This section describes two 
strategies for implementing restartable atomic sequences in the Mach operating system. The first 
strategy, and the simpler of the two, places the responsibility for detecting and recovering from an 
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function Test-And-Set(var p: integer): integer; 
var result: integer; 
begin 

1 result := 1; 
2 BEGIN RESTARTABLE ATOMIC SEQUENCE 
3 if p = 1 then 
4 result := 0; 
5 else 
6 p 1; 
7 end; 
8 END RESTARTABLE ATOMIC SEQUENCE 
9 return result; 

end; 

Figure 3: Test-And-Set using a Restartable Atomic Sequence 

interrupted atomic sequence with the kernel. The second strategy places the responsibility with 
the application itself. We describe the strategies in terms of the MIPS R3000-based DECstation 
5000, which does not have hardware support for memory-interlocked instructions. 

3 . 1 E x p l i c i t R e g i s t r a t i o n 

With explicit registration, the kernel keeps track of each address space's restartable atomic se­
quence. Whenever the kernel resumes a thread that has been interrupted, it checks if the thread 
is being resumed within a restartable atomic sequence. If so, the thread is instead resumed at 
the top of the sequence. During program initialization, an application registers with the kernel 
the starting address of the sequence. The registration is done by the thread management system, 
which is automatically called at program startup. 

Implementing explicit registration in the Mach kernel was straightforward. We added a new 
kernel call so that an address space can notify the kernel of its restartable atomic sequence, added 
a word to the kernel's address space control block to record the start of the sequence, and added 
a few lines of code which examines a thread's next user-level PC at the point where threads block 
in the kernel. We also added about a dozen lines of code to CThreads [Cooper & Draves 88], the 
user-level thread management package, to perform the registration at program startup. 

An address space may register only one restartable atomic sequence at a time to simplify the 
kernel's task of checking if a thread had been interrupted within an atomic sequence. One sixteen 
byte sequence is sufficient for implementing a four cycle Test-And-Set function for the MIPS R3000. 
The assembly code for this function is shown in Figure 3.1. Line 1 loads the current value of the 
Test-And-Setlocation, passed in register aO, into the return value register, vO. Line 2 uses the load 
delay slot to load a temporary with the value 1. Line 3 transfers control back to the caller. Line 
4, which executes in the branch delay slot following the return, stores a 1 into the Test-And-Set 
location. Lines 1-4 form the restartable atomic sequence: when the store finally occurs at the end 
of line 4, no other thread will have executed since the storing thread's most recent load at line 1. 

There are two runtime costs associated with explicit registration. The first comes from the 
inability to inline atomic sequences. The kernel identifies restartable atomic sequences by a single 
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PC range, so the compiler cannot inline atomic sequences if an address space is to have more than 
one. The inability to inline slightly increases the overhead of atomic operations because of the cost 
of subroutine linkage. The second cost comes from having to check the return PC when a thread 
blocks. This test adds a few dozen cycles to a context-switch path that is already several hundred 
cycles long. As we show in the next section, blocks occur orders of magnitude less frequently 
than atomic operations. Consequently, we feel that it is worth spending a few extra cycles at 
context-switch time if we can significantly improve the performance of atomic operations. 

LEAF(Test-And-Set) 
# Test-And-Set location address in register aO 

1 lw vO, (aO) #v0 s contents of aO 
2 li tO, 1 #temporary tO gets 1 
3 j ra #return to caller, result in vO 
4 sw tO, (aO) #store 1 in Test-And-Set location 

END(Test-And-Set) 

Figure 4: Restartable Test-And-Set Using Explicit Registration 

3 .1 .1 Por tab i l i ty a n d Backward C omp at ib i l i t y 

A diverse computing environment may have both uniprocessors and multiprocessors based on the 
same processor architecture. For example, at CMU, Mach runs on laptops and several different 
shared memory multiprocessors, all of which are based on the Intel 386 microprocessor. On a mul­
tiprocessor, though, restartable atomic sequences cannot be used to implement mutual exclusion. 
Either memory-interlocked instructions or software reservation must be used. Nevertheless, binary 
compatibility between the systems is important from the standpoint of software development and 
system maintenance. 

One way to achieve portability would be to put a conditional at the beginning of each restartable 
atomic sequence: if running on a uniprocessor, use a restartable atomic sequence, otherwise use a 
technique that works on a multiprocessor. Unfortunately, the test would add several cycles to each 
atomic operation. 

A better approach, and the one we've taken, is to execute the conditional only once at pro­
gram initialization time. When a program's thread management system attempts to register its 
restartable atomic sequence with a kernel that does not support such sequences (for example, on 
a multiprocessor), the registration fails. In response to the failure, the thread management sys­
tem overwrites the restartable atomic sequence with code that uses a conventional mechanism. 
Overwriting is also done to ensure backward compatibility so that new programs can run on old 
kernels. 

3 . 2 U s e r - L e v e l R e s t a r t 

Explicit registration places the responsibility for the detection and correction of atomicity violations 
with the kernel. An alternative approach places that responsibility with the application itself: a 
thread that blocks in the kernel is returned to user level at a fixed location, whereby its "execution 
state" can be determined by code at that location. If the most recent instruction executed at user 
level by the just-resumed thread is part of an atomic sequence, then the user-level code branches 

7 



to the beginning of the sequence, otherwise it branches to the instruction where the thread left 
off. Figure 5 illustrates this control flow for two threads in the same address space; thread 1 is 
preempted during a restartable atomic sequence, whereas thread 2 is preempted while executing 
undistinguished code. On reschedule, each thread resumes at the fixed sequence in its address 
space; for thread 1, control returns to the beginning of its atomic sequence, for thread 2, control 
returns to where it left off. 

Thread 1 

Begin atomic sequence 

^ Preempt 

End atomic sequence 

restart at start 
of sequence 

Fixed Sequence 

Kernel 

Thread 2 

Preempt 

restart where 
left off 

Figure 5: User Level Support for Restartable Atomic Sequences 

Relative to explicit registration, user-level detection is attractive because the kernel provides 
only the mechanism to ensure atomicity; the policy determining what must be atomic is with the 
application. Since the kernel is not involved in either detection or correction, those processes can 
be made as rich as necessary to satisfy the atomicity constraints of any instruction sequence. For 
example, restartable atomic sequences can be inlined by having the fixed sequence at user level 
inspect the instruction stream to determine if a thread was interrupted within an atomic operation. 
User-level restart makes it possible to support a diverse set of synchronization mechanisms, such 
as those that manipulate wait-free data structures [Herlihy 91], as well as the more conventional 
Test-And-Set. 

The user-level approach is not without problems, however. Transferring first to a fixed in­
struction sequence, and then to the actual return address involves slightly more overhead than the 
simple check made by the kernel in the explicit registration scheme. In addition to the extra level 
of indirection, the "real" return address has to be saved and restored on the thread's user-level 
stack; our user-level detection and restart code for the MIPS adds about 45 instructions to every 
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preemptive context switch. Finally, if user-level restart is used to inline, portability and backward 
compatibility become difficult to achieve. 2 

Although we have implemented the kernel mechanisms to support user-level detection and 
restart for Mach, it is only being supported experimentally. Backward compatibility and portabil­
ity are important aspects of Mach, the performance degradation due to not being able to inline 
code sequences is small, and the policy/mechanism separation is less attractive when there is only 
one policy to support (Mach's user-level thread management system uses only Test-And-Set inter­
nally). These points have caused us to concentrate on the explicit registration scheme. As we gain 
more experience with using restartable atomic sequences, diverse synchronization mechanisms, and 
inexpensive synchronization, we may choose to abandon explicit registration in favor of the more 
flexible user-level approach. 

We are using user-level restart in a preemptive coroutine package for Unix processes in which 
time-slicing is implemented with Unix signals. Within the user-level signal handler, we examine 
the interrupted PC and if it points to code within a Test-And-Set sequence, we roll the PC back 
up to the beginning of the sequence. This has proven especially valuable in the coroutine package, 
because it means that we do not have to disable and reenable Unix signals across each atomic 
operation. 

4 Comparing the Performance of Three Software Techniques 
In this section we compare the performance of restartable atomic sequences, kernel emulation 
and software reservation for the RISC-based DECstation 5000 (DS5000). The DS5000 has a 25 
Mhz MIPS R3000 processor, but does not support atomic read-modify-write memory accesses in 
hardware. 

We discuss performance at three levels. First, we examine the basic overhead of the three 
mechanisms. Next, we examine the effect that each has on the performance of common thread 
management operations. Finally, we take a system-wide perspective by looking at the effect that 
synchronization overhead has on the performance of several real applications. In brief, we show 
that: 

• Using restartable atomic sequences instead of kernel-emulation, the performance of multi­
threaded applications can be improved substantially. 

• Even single threaded applications, because they deal with multithreaded operating system 
servers, can benefit indirectly from inexpensive mutual exclusion. 

• Preemptive context switches occur much less frequently than atomic operations, justifying the 
small amount of extra work done during context switch in order to improve the performance 
of atomic operations. 

• Atomic operations, even when expanded out to multi-instruction atomic sequences, are almost 
never interrupted. It other words, restart is almost never required. 

• Short critical sections that become inflated when synchronization operations are costly can 
increase lock contention. This can degrade performance by increasing the frequency with 
which threads find locks held and must therefore block. 

u l™L^:t^rithig could be nsed for inUned code'u wou,d incur such a iarge surtu" °verhead 
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4 . 1 M i c r o b e n c h m a r k s 

We compare the performance of the three software-based mutual exclusion mechanisms with a 
test that enters a critical section using a Test-And-Set lock, increments a counter, and leaves 
the critical section by clearing the Test-And-Set lock. A single thread performs the test inside 
a loop a large number of times. The update to the counter is included so as to model a real 
critical section: interactions between the atomic operation, the code in the critical section, and the 
memory system must be considered when evaluating a mutual exclusion mechanism (e.g., a scheme 
requiring several writes will not work well on a memory system that has a write-through cache 
and a shallow write-bufFer). The test has only one thread passing through the critical section, 
so the Test-And-Set always succeeds. Consequently, we are not measuring the performance of 
the thread management system itself (context switching, scheduling, etc), but rather the basic 
processor architecture, memory system and mutual exclusion mechanism. 

The elapsed times to execute the three software-based mutual exclusion algorithms are shown in 
Table 1. The values in the table were determined by setting the loop limit to 1,000,000, computing 
the average elapsed time of each pass through the loop, and subtracting off the loop overhead. We 
ran the benchmarks several times on an unloaded system and observed little variance in the times. 

M e c h a n i s m T i m e (/xsecs) 
Restartable Atomic Sequences (branch) .64 
Restartable Atomic Sequences (inlined) .51 
Kernel Emulation 4.15 
Software-reservation (a) 1.51 
Software-reservation (b) 1.16 

Table 1: Microbenchmark results for the DS5000 

Software-reservation protocol (a) is an implementation of Lamport's fast mutual exclusion algo­
rithm in which each lock is represented by a data structure containing an owner and a reservation 
field (one word each), and an array of booleans indexed by a thread identifier. It is the most 
direct implementation of the algorithm, but suffers from the high storage requirements described 
in Section 2.2. Protocol (b) uses Lamport's algorithm to implement the u meta" mutual exclusion 
function shown in Figure 2. Protocol (b), despite an increase in the number of memory access 
over Protocol (a), executes more quickly on the DS5000 because of the cost of having to compute 
a thread's unique identifier and the address of its "busy" bit. In essence, with protocol (a), these 
have to be computed on entry and exit to a critical section, whereas with protocol (b), they need 
only be computed on entry. 

Restartable atomic sequences were measured with out-of-line branches to an explicitly registered 
sequence, and also with inlined code. The performance difference between the two approaches is due 
to the subroutine linkage overhead on the MIPS. Kernel emulation and both reservation schemes 
use out-of-line calls to implement the atomic operations. For these mechanisms, the number of 
instructions executed is already sufficiently high that there is little to be gained by inlining. 

The table shows that kernel emulation is by far the most expensive approach; the trap and 
exception dispatch in the kernel are the main sources of overhead. Both software reservations 
schemes are faster than kernel emulation, but much slower than restartable atomic sequences due 
to the large number of instructions and memory accesses required. In contrast to the reservation 
protocols, a restartable atomic sequence involves very few instructions on the fast path. 
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4 . 2 T h e E f f e c t O n T h r e a d M a n a g e m e n t O v e r h e a d 

The Mach user-level thread management system, CThreads, like other thread management pack­
ages [Anderson et al. 89, Bershad et al. 88, Weiser et al. 89], relies heavily on simple atomic 
operations to implement high-level abstractions such as threads, locks and condition variables. To 
evaluate the effect that atomic operations have on the performance of the higher level facilities, we 
examine the performance of several benchmarks that stress different thread management functions 
in two different versions of CThreads: one uses kernel emulation for Test-And-Set and the other 
uses restartable atomic sequences. For the reasons mentioned earlier, our CThreads implementation 
relies on explicit registration rather than user-level detection, or software reservation, 

We selected four thread management benchmarks typical of the kinds of thread management 
operations found in many multithreaded programs. The benchmarks were: 

• Spinlock. Repeatedly acquire and release a spinlock. If the spinlock, which is implemented 
with a Test-And-Set lock, is held the acquire fails and is immediately retried. 

• Mutexlock. Repeatedly acquire and release a relinquishing mutex. If a thread attempts to 
acquire a held mutex, which is implemented with a Test-And-Set lock and a queue of waiting 
threads, the thread puts itself on the wait queue and relinquishes its processor. 

• Forktest. Recursively fork off a large number of threads; i.e., thread 1 forks thread 2 which 
forks thread 3, etc. After forking, a thread immediately terminates. 

• Pingpong. Two threads "pingpong" off one another in a tight loop, using a mutex and 
condition variable to execute in alternation. 

The performance of these benchmarks is shown in Table 2. Each entry in the table represents 
the elapsed time per operation (i.e, one spinlock acquire and release, one mutex lock and unlock, 
one fork and exit, one ping and pong). 

B e n c h m a r k T i m e (/ /sees) 
Emula t ion R . A . S 

Spinlock 4.3 .58 
MutexLock 4.6 .91 
ForkTest 43.7 23.8 
PingPong 230.8 115.2 

Table 2: Effect of Synchronization on Thread Management Overhead 

Table 2 shows that the performance of thread management operations depends heavily on the 
performance of the underlying synchronization mechanism. When using kernel emulation for Test-
And-Set^ thread management functions spend the majority of their time getting in and out of the 
kernel to access synchronization code. With restartable atomic sequences, though, synchronization 
overhead becomes negligible. Even PingPong, with its profligate synchronization (26 Test-And-Sets 
per cycle), spends less than 10% of the time synchronizing when using restartable atomic sequences. 

4 . 3 A p p l i c a t i o n P e r f o r m a n c e 

The microbenchmarks and thread management benchmarks indicate that restartable atomic se­
quences can have a large effect on individual operations. Ultimately, though, we are concerned 
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with performance system-wide. In this subsection we evaluate the overall performance improve­
ment that comes from using restartable atomic sequences as opposed to kernel emulation when 
running "typical" applications on the DS5000. We selected four applications: 

• text-format. Format this paper using I^TgX. 

• fs-bench. A script of file system intensive programs such as copy, compile and search, run 
using the Andrew File System [Satyanaranyanyan et al. 85]. 

• parthenon-n. A resolution-based theorem prover that uses n threads to exploit or-parallelism [Bose 
et al. 89]. 

• procon-64- A producer-consumer application in which one consumer thread coordinates with 
one producer thread to read data from a large file into a fixed-size buffer of size 64. 

Table 3 shows the behavior of the applications when run two under different versions of the 
operating system. The columns labeled "Emul" reflect runs using kernel emulation for the ap­
plication and for Mach's user-level Unix server which implements much of the operating system 
environment [Golub et al. 90]. The columns labeled "R.A.S." reflect runs using restartable atomic 
sequences for the applications and for the Unix server. Each program was run several times and 
the average values for measurements taken during the runs are given in the table. 

P r o g r a m T i m e Emula t ion R e s t a r t s T h r e a d 
( s e c o n d s ) Faults B l o c k s 

Emul . R . A . S . E m u l . R . A . S . 
text-format 10.1 9.8 57305 0 295 317 
fs-bench 239.4 231.1 2191276 42 8856 9876 
parthenon-1 25.8 18.5 1395534 4 412 354 
parthenon-10 26.1 18.6 1576714 7 610 499 
procon-64 30.4 15.7 2738168 4 91494 106969 

Table 3: Effect of Synchronization Overhead on Application Performance 

Restartable atomic sequences have the greatest effect on applications that use threads explic­
itly, such as parthenon with 1 or 10 threads and procon-64 which improve by about 30% and 50% 
respectively. Single-threaded "vanilla Unix" applications also benefit (indirectly) through the im­
proved performance of the out-of-kernel multithreaded operating system services. For example, 
the performance of the file system benchmark, which itself uses only single threaded programs but 
relies on the multithreaded Unix server, improves by a little over 3%. The text formatter benefits 
the least of all the benchmark applications because Mach uses file mapping to reduce the frequency 
of server interaction for the file system operations performed most commonly by the text formatter 
- simple reads and writes to small files. 

The column labeled "Emulation Faults" is a count of the number of kernel emulations that 
occurred during the running of each benchmark when Test-And-Set was implemented in the kernel. 
The column labeled "Restarts" shows the average number of atomic sequence restarts that had to 
be performed during the running of each program when Test-And-Set was implemented at user level 
with explicit registration. The restart count demonstrates that the likelihood of a thread being 
preempted during a restartable atomic sequence is extremely small. More than anything else, this 
column highlights the tremendous degree of pessimism present in the traditional mechanisms used 
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for mutual exclusion on uniprocessors. The optimistic approach instead represents the point of 
view that one should never have to pay to avoid something that almost never happens. 

The number of emulation faults can be used to account for a large part of the performance 
difference between the two versions of the system. For example, we would expect parthenon-10, 
with its 1.57 million kernel emulations, to improve by about 1.57 million x 3.7 //sees, or about 
5.8 seconds. The actual improvement is slightly greater than this for two reasons. First, the 
correlation between elapsed time and number of emulation faults, even for the emulation based 
kernel, is neither strictly negative nor strictly positive. Hence, the number of emulation faults is 
only a good, but not exact, predictor of execution time. Second, some of the remaining performance 
improvement is due to the reduction in scheduling overhead that comes with a decrease in critical 
section service time. 

For even very short critical sections (10 to 20 instructions) restartable atomic sequences add 
little extra overhead, and much of that overhead comes before the critical section has actually been 
entered. Consequently, a short critical section remains short, and the likelihood of the section 
being preempted is small. With kernel emulation, though, as mentioned earlier, each Test-And-Set 
takes about 100 instructions, and nearly all are executed with processor interrupts disabled. When 
control returns out of the kernel after an atomic operation has completed, interrupts are reenabled 
and any pending interrupts are delivered. If the delivered interrupt causes a preemption, then the 
thread that just performed the atomic operation will be descheduled and another thread will run. 
If that thread attempts to enter the same critical section, it will find the Test-And-Set variable 
already set and will be forced to relinquish its processor to CThread's user-level scheduler. As a 
result, the program pays the additional cost of descheduling and then rescheduling the unsatisfied 
thread. 

We looked more closely at parthenon-10 to determine the influence of inflated critical sections on 
program behavior. The program synchronizes often, but most synchronizations operations guard 
short critical sections that simply increment a counter, or dequeue an item from a linked list. In 
running the program, we counted the number of times that a thread was unable to enter a critical 
section because of a lock held by another (preempted) thread. When using kernel emulation in 
parthenon-10, a thread found a Test-And-Set lock held on average 603 times out of about 1.6 million 
attempts. In contrast, with restartable atomic sequence, only 387 times did a thread try to acquire 
a lock that was held. The only difference between the two runs was the lock holding time imposed 
by the synchronization mechanisms. 

The last two columns show the number of times that a thread trapped into the kernel to block. 
For restartable atomic sequences, it indicates how many times a thread's execution state had to be 
checked to ensure that atomic operations eventually execute atomically. Comparing this column 
to the number of emulation faults justifies the small amount of extra work required by the restart 
strategies whenever a thread is rescheduled. The most compelling justification, of course, is the 
reduced execution time for all the applications. 

5 Software vs. Hardware Support for Mutual Exclusion 
We have so far used the lack of hardware support for atomic operations as motivation for in­
vestigating efficient software solutions. Many processors however do support some type of atomic 
read-modify-write instruction. Table 4 compares the overhead to acquire and release a Test-And-Set 
variable using memory-interlocked instructions and restartable atomic sequences on eight processor 
architectures. The table shows that restartable atomic sequences can be more efficient than mem­
ory interlocked instructions for the DEC CVAX, the Intel 486, the Motorola 88000, and Hewlett 
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Packard's Precision 9000. 
For the interlocked cases, the Test-And-Set and subsequent release instructions were executed 

inline. In the restartable cases, only the release was inlined (implemented with a single clear memory 
instruction). The Test-And-Set code was called using a RISC-style linkage protocol: the address of 
the Test-And-Set variable, the return PC, and the result were passed in registers. The final column 
of Table 4 gives the number of /xsecs required to transfer to the out-of-line restartable atomic 
sequence. The transfer is necessary when using explicit registration. If we were to instead rely 
on user-level detection, which would allow us to inline restartable atomic sequences, the software 
approach would outperform the hardware in nearly all cases (subtract the linkage overhead from 
the restartable atomic sequence overhead). 

P r o c e s s o r Inter locked R e s t a r t a b l e Linkage T i m e 
Test-And-Set Test-And-Set fxsecs 

DEC CVAX 2.8 2.2 .6 
Motorola 68030 1.1 2.0 .8 
Intel 386 1.0 1.6 .7 
Intel 486 .7 .6 .3 
Intel 860 .3 .4 .2 
Motorola 88000 .9 .3 .1 
Sun SPARC .8 1.0 
HP Precision 9000/835 5.5 2.1 .5 

Table 4: Hardware and Software Costs of Atomic Operations 

6 Related Work 
We are aware of several other systems that use restartability to implement atomic operations on a 
uniprocessor. In the software arena, researchers at DEC SRC are using an approach in which the 
kernel detects preemptions that occur during inlined atomic sequences [Redell 90]. Their kernel 
"knows" the instruction sequences that implement the mutual exclusion operations P and V, and 
looks for these sequences whenever a thread is rescheduled. This approach combines the advantages 
of explicit registration (rapid kernel-level check) with user-level detection (atomic sequences can be 
inlined). 

DEC SRC's approach requires a strong alliance between the compiler and the operating system, 
and requires that changes in the way that one handles synchronization be reflected in the other. 
In the DEC SRC environment, this is probably not a major concern, since the people who write 
the compilers work down the hall from those who build the kernels. They also have a system 
modelling technology that allows them to easily "remake" their entire installed software base when 
necessary. Finally, their intention to support only one language (Modula-2+ and its descendant 
Modula-3) makes it reasonable to embed information in the kernel about how the language runtime 
environment handle a small set of synchronization operations. In our environment, which is less 
cohesive than SRC's, it is not feasible for us to create such an alliance between the compiler and the 
operating system kernel because i) we import our compilers, ii) we have no real system modelling 
technology, and iii) we must support many different programming languages on top of Mach, each 
with its own calling convention and runtime environment. 

The Synthesis kernel [Massalin & Pu 89] relies on a flavor of optimistic atomic operations that 
differs from ours. Synthesis' internal critical sections are implemented with Herlihy's wait-free 
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model of synchronization. Using Compare-And-Swap to update shared data structures, a thread 
can detect when it has been preempted within its critical section, and can restart the critical section 
on its own. This approach reduces lock contention and ensures that a thread that is preempted 
while updating a shared data structure does not prevent other threads from updating the same 
data structure. Nevertheless, the Synthesis kernel remains pessimistic ensuring atomicity with the 
processor's Compare-And-Swap instruction. Our count of the number of restarts required during 
scheduling-intensive applications indicates that a system like Synthesis would be able to use a 
lighter-weight, optimistic implementation of Compare-And-Swap on a uniprocessor. 3 

The Intel 860 processor [Intel860 89] has hardware support for restartable sequences. A thread 
begins a multi-instruction atomic sequence with a special instruction that sets a bit in the pro­
cessor status word, disables interrupts, and locks the bus. The bit is cleared and the bus lock 
is automatically released on the next write through to memory, or after 32 cycles have elapsed, 
or if a processor exception occurs. The release on write covers the common case of a successful 
read-modify-write sequence; the release after 32 cycles ensures that a processor can't block out in­
terrupts and lock out the bus indefinitely; the release in case of an exception ensures that program 
faults can be dealt with. On every path out of the kernel to user space after any type of exception, 
the kernel must check the bit in the processor status word and, if set, back the thread up to the 
point where it executed the special instruction. 4 Despite the 860's hardware support for restartable 
sequences (the bit in the processor status word subsumes the need to perform explicit registration 
or instruction stream inspection after a context switch), it offers relatively little advantage over 
software restart on a uniprocessor (see Table 4). 

User-level detection and restart is similar to the approach taken in [Anderson et al. 90] to 
support user-level thread management on shared memory multiprocessors. In that system, when 
a thread is preempted inside a critical section, it is immediately resumed not where it left off, but 
within code that gives the thread management system the opportunity to "clean up" from the 
unexpected preemption. The machinery described for implementing the clean up is sufficient for 
implementing restartable atomic sequences on a uniprocessor. 

7 Conclusions 

Restartable atomic sequences represent a "common case" approach to mutual exclusion on a unipro­
cessor. In the common case, an atomic operation runs uninterrupted. The uncommon case can 
be detected after it occurs and can be handled by means of a simple recovery process, either in 
the kernel or at user level. As such, restartable atomic sequences are appropriate for uniprocessors 
that do not support memory interlocked atomic instructions. Moreover, on processors that do have 
hardware support for synchronization, better performance may be possible with restartable atomic 
sequences. 

3Synthesis runs only on 680x0-based systems, which support reasonably fast atomic instructions (see Table 4. 
Consequently, there's no reason to believe that the performance of the system on that processor architecture could 
be significantly improved by using restartable atomic sequences. 

4In practice, this extra check doesn't add much to the cost of getting in and out of the kernel, since managing the 
exposed pipeline already takes several hundred machine instructions [Anderson et al. 91]. 
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