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Abstract 

This is a follow-on to my 1988 PLDI paper, "Control-Flow Analysis 
in Scheme" [9]. I use the method of abstract semantic interpretations 
to explicate the control-flow analysis technique presented in that 
paper. 

I begin with a denotational semantics for CPS Scheme. I then 
present an alternate semantics that precisely expresses the control-
flow analysis problem. I abstract this semantics in a natural way, 
arriving at two different semantic interpretations giving approxi
mate solutions to the flow analysis problem, each computable at 
compile time. The development of the final abstract semantics pro
vides a clear, formal description of the analysis technique presented 
in "Control-Flow Analysis in Scheme." 

1 Introduction 

1.1 Control-flow analysis 

Scheme control-flow analysis (CFA) is a useful technique for compile -
time analysis of the control-flow structure of Scheme programs (or, 
more generally, programs written in languages allowing first-class 
functions). In a previous paper [9], I introduced the technique, gave 
an algorithm for it, and demonstrated two example optimisations 
(induction-variable elimination and useless-variable elimination) 
that could be achieved with the results of the analysis. Other use
ful applications of control-flow analysis are type recovery [11], and 
copy, constantand lambda propagation [13]. The fundamental ideas 
of control-flow analysis have also been utilised in other work on 
functional programming languages [8 ,2 ] . 

The basic technique for performing Scheme control-flow anal
ysis consists of translating the Scheme program into a simple inter
mediate representation: continuation-passing style (CPS) Scheme 
with a primitive functional conditional operator and all side-effects 
to variables converted into side-effects to data-structures. After 
the CPS conversion, all transfers of control in the program — se
quencing, iteration, conditional transfers, procedure call/return — 
are represented as tail-recursive procedure calls. Thus the problem 
of determining the control-flow structure of the program reduces to 
the problem of determining for each call site the set of all lambda 
expressions in the program that could be branched to from that call 
site. 

In ? ^ ^ A5^ S I G P L A N a n d I F I P Symposium 
on Partial Evaluation and Semantics-Based Program Manipu
lation une 1991. Yale University, New Haven' ConnJTo 
available as Technical Report CMU-CS-91-119, CMU School 
or Computer Science. 

1.2 Non-standard abstract semantic interpretations 

Non-standard abstract semantic interpretation is an elegant method 
for formally describing program analyses. Suppose we have a 
programming language L with a denotational semantics 5 , and we 
wish to determine some property X at compile time. Our first step is 
to develop an alternate semantics Sx for L that precisely expresses 
property X. That is, whereas semantics S might say the meaning 
of a program is a function "computing" the program's result value 
given its inputs, semantics Sx would say the meaning of a program 
is a function "computing" the property X on its corresponding 
inputs. 

Sx is a precise definition of the property we wish to determine, 
but its precision typically implies that it cannot be computed at 
compile time. It might be unconfutable; it might depend on the 
runtime inputs. The second step, then, is to abstract Sx to a 
new semantics, Sx which trades off accuracy for compile-time 
computability. This sort of approximation is a typical program-
analysis tradeoff — the real answers we seek are unconfutable, so 
we settle for computable, conservative approximations to them. 

For example, allow property X to be the set of all "useless vari
ables" in a program, where a useless variable is one referenced only 
to compute values bound to other useless variables. Such variables, 
and the computations referencing them, can then be eliminated from 
the program without altering its result. Our alternate semantics Sx 
would map a program P to a function that "computes" P's useless-
variable set. This semantics would probably be unconfutable, 
depending on perfect knowledge of the control-flow behavior of P. 
A useful, conservative abstraction Sx would be one that occasion
ally misses a truely useless variable, but never includes a useful 
variable in its result set. 

The method of non-standard abstract semantic interpretation 
has several benefits. Since the analysis is expressed in terms of a 
formal semantics, it is possible to prove important properties about 
the analysis. In particular, we can prove that the abstract semantics 
Sx is computable, and safe with respect to Sx- Further, due to its 
formal nature, and because of its relation to the standard semantics 
of a programming language, the simple expression of an analysis 
in terms of abstract semantic interpretations helps clarify it. The 
abstract semantic interpretation method of program analysis has 
been applied to an array of program analyses [3, 5, 12, 4, 11]. 

In this paper, I will explicate Scheme control-flow analysis 
using this framework. I will show a series of semantics for CPS 
Scheme, beginning with the standard semantics, evolving through 
exact control analysis, and ending up with two different computable 
abstractions (with different cost/precision tradeoffs). 
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PR ::= LAM 
LAM ::= (A (vi...vn) c) 

CALL ::= ( / a\ ... an) 
( l e t r e c ( ( / i / i ) . . . ) c) 

ARG ::= LAM + VAR + CONST 
FUN ::= LAM + VAR + PRIM 
VAR ::= {x ,z , f o o , . . . } 

CONST ::= { 3 , # f , . . . } 
PRIM ::= { + , i f , . . . } 

[vi € VAR, c £ CALL] 
[/ € FUN, at e ARG] 
[fi € VAR, h € LAM, c € CALL] 

Figure 1: CPS Scheme Syntax 

1.3 Notation 

D* is used to indicate all vectors of finite length over the set D. 
Functions are updated with brackets: e [a 6, c </] is the func
tion mapping a to b, c to d, and everywhere else identical to function 
e. This notation is extended by talcing an update standing by itself 
to imply an update to the appropriate bottom function _L; hence [ ] 
is equivalent to J_. Unused function variables are, by convention, 
subscripted with z, e.g., ex. The power set of D is P(D). Vectors 
are written (a p z). Lambda functions are sometimes written with 
a vector-destructuring syntax: the function X (a b). exp takes a two 
element vector as its single argument, binding a to the first element, 
and b to the second. The ith element of vector v is written v[i. 
Functions with power-set ranges can be joined with the U operator: 
/ U g = Xx. (fx) U(g x ) . The "predomain" operator -f is used to 
construct the disjoint union of two sets: A + B. This operator does 
not introduce a new bottom element, and so the result object is just 
a set, not a domain; following Reynolds [7], I attempt to introduce 
domains only where necessary in semantic constructions, avoiding 
"spurious values." 

2 C P S Scheme 

The practice of converting programs into continuation-passing style 
(CPS) as an intermediate representation for compilation has been 
discussed in several papers [15, 6, 1]. CPS can be summarised 
by stating that function calls are one-way transfers — they do not 
return. So a function call can be viewed as a GOTO that passes values. 
In this section, we will define a very simple language, called CPS 
Scheme, for expressing programs in written in this style. 

The syntax of CPS Scheme is shown in figure 1. A program 
is a single lambda expression. Lambda expressions bind variables 
v\... vn\ the body of a lambda expression must be a single call 
expression. There are two kinds of call expressions. A simple 
call expression is a function applied to a series of arguments. The 
function expression may only be a variable, a lambda or a primitive 
operation (primop). An argument expression may only be a vari
able, a lambda, or a constant. Notice that our syntax directly reflects 
the "function calls never return" prohibition of CPS: it is impossi
ble to nest function calls, e.g., (+ (* c d) e ) is not syntactically 
legal, since (* c d ) is not a legitimate argument expression in the 
+ call. A l e t r e c call expression is special syntax for establishing 
mutually recursive sets of functions. The lambda expressions /, 
are evaluated, and the result functions bound to the corresponding 
variables f. The U are closed in an environment that includes 
the fi. The inner call expression c of the l e t r e c form is then 
evaluated in this environment. This is simply a CPS version of the 
Scheme l a b e l s or l e t r e c form. It would be possible to eliminate 
the l e t r e c form by including the Y operator as a primop; this ap
proach has been adopted in other presentations [6, 9 ] . However, we 

would like to limit the arguments we are willing to circularly close 
to be lambda expressions. By elevating this restriction to the syn
tactic level, we will simplify the semantics equations, and sidestep 
the Y operator. There is no syntax for assigning variables in this 
language. If we wish to allow side effects, we can introduce ap
propriate primops to create and side-effect mutable data structures; 
assignments to variables in the source language can be converted 
into equivalent data structure side effects during the CPS conver
sion [6]. Finally, we'll assume that all variables are unique in a 
program — that is, no identifier is bound by more than one lambda 
expression. 

It bears emphasizing that this rather minimal language is a useful 
intermediate representation for compiling higher-order languages 
such as Scheme. Variants of CPS Scheme have been used in sev
eral Scheme and ML compilers. A full discussion of the many 
advantages of CPS-based intermediate representations, however, is 
beyond the scope of this paper [1 ,6 , 15]. 

CPS Scheme has a very simple semantics. The semantic do
mains and functions are given in figure 2. There is a set of basic 
values, Bas, which consists of the integers and a special false value (I 
will follow traditional Lisp practice in assuming no special boolean 
type; anything not false is a true value). The value set D consists of 
the basic values and CPS Scheme functions. CPS Scheme functions 
are represented as functions from vectors of values to the answer set. 
The domain of answers Ans is the value set D plus a special error 
element denoting a run-time error, and a bottom element denoting 
non-termination . An environment is a function from variables to 
values. 

Note that an environment only maps to values in D — it will 
never map a variable to _L or error. This is one of the happy 
consequences of CPS conversion. Also note the absence of a store 
in this semantics. Side effects have been dropped completely from 
this semantics to simplify the presentation; they are not difficult 
to reinstate [10] once the basic methods outlined in this paper are 
understood. 

V1I maps a program to its result. It simply calls the A function 
to close its lambda £ in the empty environment [ ] , and calls the result 
function on a one-element argument vector, which contains the 
terminal continuation. If the terminal continuation is ever applied 
to a one-element argument vector av, that element av[ \ is the result 
of running the program. If at; doesn't contain exactly one element, 
the program is aborted with a run-time error. 

The A function evaluates function and argument expressions. 
It is defined by cases. A variable v is simply looked up in the envi
ronment. A constant k is passed to the constant function /C* which 
presumably maps numerals to their corresponding integers, and the 

lThc bottom element also allows Ans and, hence, D* — Ans to be legitimate 
domains, necessary for the Id tree expression to be well-defined. This sort of semantic 
fine detail is beyond the scope of this paper, and will not concern us further 
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Bas = 2 + {false} 

D = Bas + ( D * — A n s ) 
Ans = ( D + {error}).]. 
Env = VAR — D 

PTie = At[]/Xav'lQngth(av) = 1 

\ otherwise error 

vn : PR — A n s 
c : CALL — Env — Ans 

A : : A R G u F U N —Env — D 
CONST — D 

V: PRIM — D 

t l \ 

A[(\ (vi 

A [v] e = e v 
A[k]ex=Kk 
A\p] ex = VP 

. . t ' n ) c ) ] e = Aav. length(ai;) = n 
otherwise error 

—• C c e[vi i - . a i / j i 

C[(f « i . . . a n ) ] e = / ' £ B a s — / ' ( a [ . . . a ; > 
otherwise error 
w h e r e / ' = Af e, a't =Aate 

C [ ( l e t r e c ((/i lx)...) c)J e = Q c e ' 

w h e r e r e c e ' = e [ / t — > t / , e ' ] 

p [+] = A (a 6 c ) . bad argument — • error 
otherwise c ( a + 6) 

V [ i f J = A (p c a ) . 6a<i argument —> error 
p ^ false — - c {) 
otherwise a () 

Figure 2: Standard Semantics 

false identifier to the false value. The precise definition of K will 
not concern us further. A primop p is passed to the primop function 
V- A lambda (A (v\...vn) c) is mapped by A to a function 
that takes as its argument an argument vector av. If av contains 
exactly as many elements as the lambda has formal parameters Vi, 
then the lambda's call body c is evaluated in an environment which 
is the closure environment e extended by mapping each m to the 
ith element in the argument vector. If, however, av has too few 
or too many elements to match up with the lambda's variables, the 
program is aborted, with the error value for result. 

Note that it is always possible to evaluate a function or argu
ment expression. Since function and argument expressions are so 
simple — variables, lambdas, primops, and constants — they can 
always be evaluated. This is why the range of A does not include 
J_. Furthermore, the only possible case in which A might generate 
an error value lies in referencing an unbound variable. However, 
since CPS Scheme is lexically scoped, we can relegate this to syn
tax, and simply declare that programs containing unbound variable 
references are not syntactically legal CPS Scheme programs. Thus 
we can omit the error value as well from ,4 's range. 

The C function evaluates a call expression in a given environ
ment. It is also defined by cases. In the simple function case, C 
evaluates the function expression and each of the argument expres
sions in the current environment. The argument values are pack
aged into an argument vector, which is passed to the function value. 

However, if the function expression evaluates to a non-function, the 
program is aborted with the error value for result Given a l e t r e c 
call expression, C establishes the inner environment by evaluating 
the lambda expressions /, in the appropriate recursive environment 
e', and then evaluates the inner call c in the result environment. 

The V function must map each primop in CPS Scheme to an 
appropriate function. For expository purposes, I present its defini
tion for two values: the + function, to illustrate ordinary primitive 
functions, and the i f function, to show a primitive function that 
determines control-flow. 

The + primop denotes a function whose argument is a triple 
composed of two integers a and 6, and a continuation function c. 
The integers are added, and the sum is packaged into a singleton 
argument vector which is passed to c. If the + primop is called on 
a "bad argument," the program is aborted with the error value for 
result. For the purposes of +, an argument is bad if it contains fewer 
than or more than three elements; if its first or second element is 
not an integer; or if its third element is not a function. 

The i f primop denotes a function whose argument is a triple 
composed of some value p and two continuation functions c and 
a. If the argument does not conform to this requirement, a runtime 
error is returned. If the predicate p is true (/.*., anything but the 
false value), the consequent continuation c is called with no argu
ments (i.e., the empty argument vector). Similarly, if p is false, the 
alternate continuation a is called. 
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Bas = 2 + {false} 
D = Bas + ( D * — VEnv — Ans) 

Ans = (D -f {error} )x 
CN Contours 

BEnv = LAB — CN 
VEnv = C N x VAR — D 

nb : - * C N 
V1I: PR —* Ans 

C : CALL — BEnv ~ VEnv — Ans 
A : ARG U FUN — BEnv — VEnv — D 
K : CONST — D 
V : PRIM — D 

V1lC = AC[][](XavexAel^[av) = l — avil)[] 1 J 1 J \ otherwise error / 1 J 

A [v] e e = e (e(binderv) v) 
A[k] €X ex = /C* 

A[p] €X ex = Vp 
A[£: (A ( - i / i . . . v n ) c ) ] c c x = Xav e. iength(av) = n — C c e ' e ' 

otherwise error 
where b — nb 

e' = e[{b vx) •-— au j i ] 

a i . . . a „ ) ] c e = / ' g B a s / ' ( ^ . . . a ^ e 
otherwise error 
w h e r e / ' = . 4 / c e , a ; = > t o t e e 

( l e t r e c ( ( / i / i ) . . . ) O ] c e = C c e' 
where b — nb 

i'= e\(b fi) ~ Ah <' e ] e 

-p [+] = A (a 6 c) e. fowi argument — • error 
otherwise c(a + b) e 

V [ i f ] = A (p c a) e. fotti argument —> error 
p ^ false — • c {) e 
otherwise a () e 

Figure 3: Factored Env Semantics 

3 Factoring the environment 

Before proceeding to the control-flow semantics, we must first de
velop a slight variant of our standard CPS Scheme semantics. This 
will make it easier to eventually abstract the semantics. 

In the new semantics, called the factored-env semantics, we 
split the environment into two different structures: the contour 
environment and a global, shared variable environment. A contour 
environment e maps a syntactic binding construct — a lambda or 
l e t r e c call — to a contour. A contour is just some token — an 
integer will do — that serves to distinguish one binding instance 
from another. The variable environment maps a contour/variable 
pair (b v) to a value. 

This model requires us to alter our syntax slightly, by requiring 
that all our expressions have unique labels, e.g., 

(x y) (x 3 y ) ) 
has label L Labels are drawn from the syntactic set LAB. To avoid 
cluttering our code, we'll suppress labels whenever convenient. We 
define a syntactic function binderwhich maps a variable to the label 
of its binding lambda or l e t r e c expression. Hence, in the example 
above, b/nde/fx] = L 

Our syntax augmented, we can now define our new semantics 
(figure 3). The nb function creates new binding contours. We 
assume that each call to n b produces a new, unused binding contour 
from CN. In this respect, nb serves a "gensym" role, and is not 
a properly defined function. It is clear, however, that we could 
easily define nb properly by modifying all the other functions in 
our factored-env semantics to pass around as an extra argument 
the set of binding contours already allocated; this set would serve 
as the argument to n b . Such modifications to the equations are 
straightforward, tedious, and obfuscatory; we will pass them by. 

Since the variable environment is supposed to model a global 
table, all functions that could access or modify the environment must 
pass it around as an extra argument. CPS Scheme functions, for 
instance, are now represented by elements of D * —* VEnv —* Ans 
— they are invoked with the current variable environment as a 
second argument. It is a general feature of this semantics that as the 
computation progresses forwards, the updated variable environment 
is passed forwards in a tail-recursive fashion. 

The A function has changed for the variable and lambda cases. 
In the variable case, A looks up the binding contour b introduced by 
the variable's binding lambda in the lexical contour environment. 
Then the contour/variable pair (6 v) is used to fetch the appropriate 
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Bas = 2 + {false} 
D = Bas + (D* — LAB — Ans) 

Ans = LAB — P(LAB + PRIM) 
Env = VAR — D 

VII: P R - A n s 
C : CALL — Env — Ans 

A : ARG U FUN — Env — D 
K : CONST 
V : PRIM — D 

PHi = At[](\avxec. [Cc^ {itap}])Ctap 

A[v}e = e v 
Alkjex = Kk 
A\p\ex = 

, 4 [ £ ( A ( ^ . . . v n ) c ) ] e = A a v ^ c . [lc »— {£}] U length(av) = n 
otherwise [ ] 

— - C c e[v t i-.. av[i 

C[c: ( / a i . . . a „ ) ] e = / , g Bas f'{a[...a'n)c 
otherwise error 
where / ' = A f e, a[ = Aa>% t 

C [ ( l e t r e c ( ( / i / i ) . . . ) c ) ] e = C c e ' 
whererec e' = e [/j H - A U e'J 

p [ + ] = A (a 6 c) * c . [te H - {+}] U bad argument [] 
otherwise c (a + b) i c 4 ^c 

7>[i*J = A (7; c a) i c . [ic { i f } ] U badargument —• [] 
p false —> c () i c l

i f i < c 

otherwise a () ic^ f t c 

Figure 4: Exact Control-Flow Semantics 

value from the variable environment. Factoring the environment 
means that A now closes a lambda expression in the current contour 
environment. It produces a function, which, when called, creates a 
new binding contour b with nb , augments the contour environment 
€ with the new contour, and updates the variable environment e, 
binding parameters v i . . . vn to the elements of argument vector av 
in the new contour. Since b is a new contour, these bindings won't 
collide with those made by other calls to this lambda. 

Similarly, C introduces a new contour b into the binding en
vironment e whenever execution proceeds through a l e t r e c call, 
and binds the lambda expressions /, in the new environment. It is 
interesting to note in passing that this formulation removes the cir
cularity from the l e t r e c environment update (since /, is a lambda 
expression, A ignores e). 

4 Semantics of exact control-flow analysis 

Now we may turn to control-flow analysis. To repeat an earlier 
point, the point of using a CPS-based intermediate representation is 
that all control transfers are represented with the same mechanism: 
tail-recursive procedure call. So the control-flow analysis problem 
for CPS Scheme is to find a function 7 : LAB — P ( L A B + PRIM) 
that given the label £ c of a call expression, will return y{tc), the 
set of all lambdas and primops called from tc. We will call such a 
function a call cache. 

This is easy to cast as an alternate semantics: the meaning of a 
program is its cache function. We can compute this cache function 

by taking the standard semantics and "instrumenting" it to record all 
the calls that happen during program execution. Instead of returning 
the actual value computed by the program, the new, non-standard 
semantics returns the cache constructed by the instrumentation. 

Figure 4 presents the new, non-standard semantics. It is initially 
developed as an unfactored-env semantics. The answer domain Ans 
is the domain of cache functions; its bottom element 1_AM is simply 
the function Ax. 0. CPS Scheme functions are now represented by 
functions that take an extra argument: the label £ c of the site from 
which they were called. The function augments the answer cache 
by including its CPS Scheme lambda / in the set of lambdas called 
from £ c . The meaning of call expressions is changed accordingly 
to pass along to the called function / ' the call site c from which it 
has been called. 

The alterations to the primops are similarly straightforward. 
The + primop updates the cache to indicate where it has been called 
from, and passes to its continuation c a marker pseudo-label ic+tt 

to indicate that the continuation was called from its internal call site. 
The i f primop is similar, its main variation being the use of two 
different internal call sites, one to mark consequent calls (ic\ttl )9 

and one to mark alternate calls (ic\f ic). 

The Vlt function starts the program by calling the top function, 
passing it a designated call-site label c t o p to mark the top level call. 
The top level continuation has a designated label ilap to indicate 
calls to it; when it is called, it records the final call and stops the 
program. 
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Ans = LAB — P ( L A B + PRIM) 
D = P ( D ) * — VEnv — LAB — Ans 

CN Contours 
BEnv = LAB — C N 
VEnv = CN x VAR — P ( D ) 

nb: — C N 
V'Jl: PR — Ans 

C : CALL — BEnv — VEnv — Ans 
A : ARG U FUN — BEnv — VEnv — P ( D ) 

V : PRIM — D 

mi = f({ Xavxexic. [ i c ^ {4*} ] } ) [ k t o p 
where {/} = ^ [ ] U 

, 4 [ * (A (vx...vn) c ) ] f f j = <{ 

A [v] f e = e (e(oinderv) u) 

A [k] cxex = <d 

AM o c , = 
A a v c ^ c [ £ c {£}] U length(au) = n -

otherwise [ ] 
where b = nb 

e' = c[i<-+b] 
e' = e U [(b Vi) a u | i ] 

Cce'e^ 

C[c:if a ! . . . a n ) ] e e = [ J { / ' < a { . . . a^) e c | / ' € ,4 / e e} 
where aj = 4 a, c e 

( l e t r e c ( ( / i / i ) . . . ) c ) ] f e = C c f ' e ' 
where b = nb 

e' = e U [ ( 6 / , ) ^ ^ / , f' e] 

p [+] = A (a 6 c) e £c. [Cc — {+}] U todargument —• [ ] 
otherwise [ J {c ' ( 0 ) e i c * ^ | c <= c} 

(6aJ argument —• [ ] 
otherwise \J{c'()e ic\ftte \ c € c} 

Figure 5: Control-Flow Semantics with ambiguous if and factored env 

5 Abstracting the control-flow analysis semantics 

Now that we 've defined our control-flow analysis semantics, we 
have a formal description of the control-flow problem. The next step 
is to abstract our semantics to a computable approximate semantics 
that is useful but safe. Since we do not in general know at compile 
time which way a conditional branch will go, we must abstract away 
conditional dependencies. (Had we included i/o in our original 
exact control-flow semantics, this would be the appropriate time 
to remove those dependencies, as well.) While we are abstracting, 
we'll go ahead and factor the environment as well, which will be 
useful in the next section. The result ambiguous-if factored-env 
semantics is presented in figure 5. 

We have introduced three major changes into our new seman
tics. First, the environment has been factored. This is essentially 
identical to the factoring performed upon the standard CPS Scheme 
semantics in section 3. Second, the i f primop now "branches both 
ways." That is, the caches arising from both the consequent and al
ternate continuations are computed; these are joined together to give 

the result cache returned by the i f primop. Removing this data de
pendency has a further consequence: the semantics no longer needs 
the basic value domain Bas. Since our semantics concerns itself 
solely with control flow, the only values that need to be considered 
are those representing CPS Scheme functions. The final change is 
to arrange for argument and function expressions to evaluate to sets 
of values, instead of simple values. This is actually an isomorphic 
shift, since all the sets that result in the new formulation are sin
gleton sets. The extra machinery will come in useful in the next 
approximation, however, since the semantics now tolerates ambi
guity in argument evaluation: if a function expression can only be 
determined to lie in some set, the C function will find the call caches 
resulting from calling all the functions / ' in that set, and join them 
together to form the result cache. Also, note that because of the 
shift to value sets, variable environment updates are now performed 
with join operations, e.g., e' = e U [{b Vi) »-* a u j i ] , with bottom 
element -LvEnv = Ax. 0. 
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Ans = LAB — P(LAB + PRIM) 
D = P ( D ) * — VEnv - LAB - Ans 

VEnv = VAR — P ( D ) 

VTl: PR - A n s 

C C A L L —VEnv —Ans 
A : ARG U FUN — VEnv — P ( D ) 
V : PRIM — D 

V'RC=f({\avxes£c. [fc {£top}} } ) f ] C [ 

where {/} = A£[] 
top 

A [v] e = e v 
A [k] ex = 0 
Alp]ex = {Vp} 

{ Xavetc [ic {£}] U iength(av) = n —> Cce'y 

otherwise [ ] 
where e' = e U [vt •— at/|.i] , 

C[c:(f al...an)]e=\J{f'{a[...af

n)ec\fteAfe} 
where aj = A a, e 

C[ft ( l e t r e c «fx 1 0 . . . ) c)\e=Cce' 

where e' = e U [/, e] 

7>I+] = A (a b c) e tc. [Cc {+}] U bad argument —• [] 

otherwise ( J | c ' (0) e » c + i < c | c' 6 c} 

( badargument —- [] 
otherwise • { c , ( ) e i c l

l f ^ c | c' 6 c} 
u U { « , 0 « ^ e l « , € a } 

Figure 6: OCFA 

6 Computable control-flow analysis semantics 

The problem with the previous semantics, abstracted though it may 
be, is that it is difficult to compute the fixed-point cache for a given 
program because the environment structure is infinite. Consider the 
following expression (written in full Scheme, not CPS Scheme, for 
clarity): 

( l e t r e c ( ( l o o p (A ( f ) 
( l o o p (A (n) (* 2 (f n ) ) ) ) ) ) ) 

( l o o p (A (m) 1 ) ) ) 

The variable f is bound to an infinite set of functions 

{Ax. 2 l | i > 0 } . 

So it is difficult for any propagation-based fixed-point algorithm to 
know when to stop propagating. 

There are only a finite number of lambda expressions in a given 
program; the infinite sets of functions arise because we can close 
these lambdas with an infinite set of environments. If we can 
collapse our infinite set of environments down to a finite approx
imation, then we can successfully compute a control-flow cache 
function. 

If we examine the abstract semantics developed in the previous 
section (figure 5), we can see that the infinite environment structure 
is built with all the calls to the nb function in the C and A functions. 
If we replaced each call b = nb with 6 = C, we would then fold 
all contours created by a given lambda expression together, and our 
infinite environment set would collapse into a finite, manageable set. 

This is precisely OCFA, the Zeroth-Order Control-Flow Analysis 
technique presented in my PLDI '88 paper. As a final figure, I 
present the resultant OCFA semantics in figure 6 (note that this is 
the degenerate contour environment case, and so this artifact has 
disappeared entirely). 

An alternative approximation, only briefly mentioned as 1CFA 
in the earlier paper, is to distinguish contours created by calling a 
lambda from different call sites. Suppose, for example, that some 
lambda (A (x) . . . ) is called from two different call sites c\ and 
C2. In 1CFA, the values bound to x by calls from ci are kept distinct 
from the values bound to x by calls from cz. This yields a tighter, 
higher-precision analysis. 

We are now in a position to precisely express this approximation: 
replace the call to in A with £ c , the call site from which the 
lambda was called: b = £c. Since there are only a finite number of 
call sites, the environment structure this engenders is still finite in 
size, and hence our caches are still computable. However, the finer 
granularity (or increased environment structure size) will cause the 
cache to be more expensive to compute. 

Thus, OCFA and 1CFA allow us to trade off compile-time effi
ciency for compile-time precision of analysis. 

Now that we've abstracted the control-flow analysis, the rea
son for factoring the environment should be clear. Factoring the 
environment exposed the binding mechanisms that gave rise to the 
infinite environment structure. Abstracting the contours and merg
ing bindings was the critical step that allowed us to reduce this 
infinite structure to a finite, computable one. 
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7 Implementation 

I have written a prototype implementation of 1CFA; it is a straight
forward translation of the semantics into Scheme code. The re
cursions in the semantics equations are terminated with a variant 
of Young and Hudak's memoised pending analysis [16]. The type 
recovery analysis mentioned in section 1 is built on top of this im
plementation. The prototype implementation uses a modified copy 
of the ORBIT compiler's front end to produce CPS Scheme code 
from programs written in full Scheme. The implemented 1CFA 
semantics extends the semantics presented in this paper to include 
side effects, external procedures and external calls. In addition, it 
statically separates user procedures from continuations introduced 
by the CPS conversion. This last point is worth briefly discussing. 

CPS Scheme is an intermediate representation for full Scheme. 
In full Scheme, the user cannot write CPS-level continuations: all 
continuations, all variables bound to continuations, and all calls to 
continuations (i.e\, returns) are introduced by the CPS converter. 
This divides the procedural world into two halves: user procedures 
and continuations introduced by the CPS converter. It is easy for 
the CPS converter to mark these continuation lambdas, variables 
and call sites as it introduces them into the program. This parti
tion is a powerful constraint on the sets propagated around by the 
analysis: a given call site either only calls user procedures, or only 
calls continuations; a given variable is either bound to only user 
procedures, or bound to only continuations. This partition holds 
throughout all details of the CFA semantics; exploiting it produces 
a much tighter analysis. 

Running interpreted, the 1CFA implementation is able to anal
yse small examples (such as f a c t or d e l q ) in about a half second 
on a DECstation 3100 PMAX. This is quick enough that I have not 
bothered to either compile the code or tune the simple algorithm 
and data structures. 

Type recovery is a particularly interesting optimisation from 
the semantics point of view. I managed to implement induction-
variable elimination and useless-variable elimination using an early 
ad hoc control-flow analysis algorithm [9], before I cast CFA into 
the non-standard abstract semantic interpretations framework pre
sented in this paper. I could not have done so with type recov
ery analysis. Due to its dependence on sophisticated environment 
analysis, its design depended on the guidance of the semantics 
presented in this paper. The semantic definition of control-flow 
analysis has proved to be a valuable engineering tool for delivering 
useful Scheme program optimisations. 

Detailed discussion of the CFA implementations and the opti
misations built on them is beyond the scope of this paper; they are 
treated elsewhere [10, 11, 13, 14]. 

8 Discussion 

A note on OCFA that may be of interest to those who have read 
the PLDI '88 paper: The algorithm I presented in that paper was 
fundamentally different from the semantics presented in this paper 
in one important respect. In this paper, the environment informa
tion is propagated along paths through the control structure of the 
program. That is, when we determine that some lambda's variable 
v can be bound to some new function, we pass that information 
along to the lambda's call body, who passes it to the functions it 
calls, and so forth. Eventually, this information may propagate to a 
reference to v, where it will used. 

In the algorithm presented in the early paper, the information 
propagates along paths through the environment structure of the 
program. That is, once we determine that v can be bound to some 
new function, we jump straight to all references to v, and propagate 

from there. This, of course, saves time, and allows for simpler 
convergence tests. 

While this approach is correct, it does not generalise. In 1CFA, 
we allow multiple distinct contours over a single lambda. So we 
can't just propagate forward from all references to v — the envi
ronment structure determining propagations must be established by 
following the control-flow paths. 

This difficulty arises from the power of lambda: it provides 
both environment and control structure. In OCFA, the environment 
structure collapses into the degenerate case exploited by the early 
algorithm. 

9 Conclusion 

My chief purpose in writing this paper is to show a formal descrip
tion of the Scheme control-flow analysis problem. This description 
is useful for several reasons: 

• It leads us to useful computable approximations. 

• The semantic description should give the reader a detailed, 
rigorous understanding of the Scheme control-flow analysis 
problem and its approximate solutions. 

• Because it is a formal description, grounded in the semantics 
of Scheme, it can serve as a basis for proving formal proper
ties of the analysis, its connection to the standard Scheme se
mantics, and the correctness of program optimisations based 
on it. We would like to prove that the semantics are all 
well-defined; that the approximate CFA semantics is a con
servative approximation of the exact CFA semantics; and that 
the approximate semantics is computable. Such proofs are 
beyond the scope of this paper, but they can be found in my 
dissertation [10]. 

• It is a description which helps the Scheme compiler writer to 
develop and implement useful program optimisations, such 
as type recovery. Hopefully, compiler writers can use this 
description to design and implement their own optimisations. 

Control-flow analysis is an important tool for developing anal
yses and optimisations for higher-order programming languages 
such as Scheme. As such, it is too important to exist without a solid 
theoretical foundation. The aim of this paper is to sketch out the 
structure of that foundation. 
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