
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Semantics of Scheme Control-Flow Analysis

Olin Shivers
April 2, 1991

CMU-CS-91-119g

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

To appear at the First ACM S1GPIAN and IFIP Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, June 1991, Yale University, New Haven, Conn.

Abstract

This is a follow-on to my 1988 PLDI paper, "Control-Row Analysis in Scheme" [9]. I use the method of
abstract semantic interpretations to explicate the control-flow analysis technique presented in that paper.
I begin with a denotational semantics for CPS Scheme. I then present an alternate semantics that precisely
expresses the control-flow analysis problem. I abstract this semantics in a natural way, arriving at two dif
ferent semantic interpretations giving approximate solutions to the flow analysis problem, each computable
at compile time. The development of the final abstract semantics provides a clear, formal description of the
analysis technique presented in "Control-How Analysis in Scheme."

This research was supported in part by the Office of Naval Research and in part by the Defense Advanced Research
Projects Agency (DOD), monitored by the Office of Naval Research under Contract N00014-84-K-0415, ARPA Order
No. 5404.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of ONR, DARPA or the U.S. government.

Keywords: data-flow analysis, control-flow analysis, Scheme, Lisp, ML, CPS, higher-order
procedures, functional programming, optimising compilers, denotational semantics, non-standard
abstract semantic interpretations

The Semantics of Scheme Control-Flow Analysis

Olin Shivers

School of Computer Science
Carnegie Mellon

Pittsburgh, Pennsylvania 15213
Olin•ShiversQcs.emu.edu

Abstract

This is a follow-on to my 1988 PLDI paper, "Control-Flow Analysis
in Scheme" [9]. I use the method of abstract semantic interpretations
to explicate the control-flow analysis technique presented in that
paper.

I begin with a denotational semantics for CPS Scheme. I then
present an alternate semantics that precisely expresses the control-
flow analysis problem. I abstract this semantics in a natural way,
arriving at two different semantic interpretations giving approxi
mate solutions to the flow analysis problem, each computable at
compile time. The development of the final abstract semantics pro
vides a clear, formal description of the analysis technique presented
in "Control-Flow Analysis in Scheme."

1 Introduction

1.1 Control-flow analysis

Scheme control-flow analysis (CFA) is a useful technique for compile -
time analysis of the control-flow structure of Scheme programs (or,
more generally, programs written in languages allowing first-class
functions). In a previous paper [9], I introduced the technique, gave
an algorithm for it, and demonstrated two example optimisations
(induction-variable elimination and useless-variable elimination)
that could be achieved with the results of the analysis. Other use
ful applications of control-flow analysis are type recovery [11], and
copy, constantand lambda propagation [13]. The fundamental ideas
of control-flow analysis have also been utilised in other work on
functional programming languages [8 ,2] .

The basic technique for performing Scheme control-flow anal
ysis consists of translating the Scheme program into a simple inter
mediate representation: continuation-passing style (CPS) Scheme
with a primitive functional conditional operator and all side-effects
to variables converted into side-effects to data-structures. After
the CPS conversion, all transfers of control in the program — se
quencing, iteration, conditional transfers, procedure call/return —
are represented as tail-recursive procedure calls. Thus the problem
of determining the control-flow structure of the program reduces to
the problem of determining for each call site the set of all lambda
expressions in the program that could be branched to from that call
site.

In ? ^ ^ A5^ S I G P L A N a n d I F I P Symposium
on Partial Evaluation and Semantics-Based Program Manipu
lation une 1991. Yale University, New Haven' ConnJTo
available as Technical Report CMU-CS-91-119, CMU School
or Computer Science.

1.2 Non-standard abstract semantic interpretations

Non-standard abstract semantic interpretation is an elegant method
for formally describing program analyses. Suppose we have a
programming language L with a denotational semantics 5 , and we
wish to determine some property X at compile time. Our first step is
to develop an alternate semantics Sx for L that precisely expresses
property X. That is, whereas semantics S might say the meaning
of a program is a function "computing" the program's result value
given its inputs, semantics Sx would say the meaning of a program
is a function "computing" the property X on its corresponding
inputs.

Sx is a precise definition of the property we wish to determine,
but its precision typically implies that it cannot be computed at
compile time. It might be unconfutable; it might depend on the
runtime inputs. The second step, then, is to abstract Sx to a
new semantics, Sx which trades off accuracy for compile-time
computability. This sort of approximation is a typical program-
analysis tradeoff — the real answers we seek are unconfutable, so
we settle for computable, conservative approximations to them.

For example, allow property X to be the set of all "useless vari
ables" in a program, where a useless variable is one referenced only
to compute values bound to other useless variables. Such variables,
and the computations referencing them, can then be eliminated from
the program without altering its result. Our alternate semantics Sx
would map a program P to a function that "computes" P's useless-
variable set. This semantics would probably be unconfutable,
depending on perfect knowledge of the control-flow behavior of P.
A useful, conservative abstraction Sx would be one that occasion
ally misses a truely useless variable, but never includes a useful
variable in its result set.

The method of non-standard abstract semantic interpretation
has several benefits. Since the analysis is expressed in terms of a
formal semantics, it is possible to prove important properties about
the analysis. In particular, we can prove that the abstract semantics
Sx is computable, and safe with respect to Sx- Further, due to its
formal nature, and because of its relation to the standard semantics
of a programming language, the simple expression of an analysis
in terms of abstract semantic interpretations helps clarify it. The
abstract semantic interpretation method of program analysis has
been applied to an array of program analyses [3, 5, 12, 4, 11].

In this paper, I will explicate Scheme control-flow analysis
using this framework. I will show a series of semantics for CPS
Scheme, beginning with the standard semantics, evolving through
exact control analysis, and ending up with two different computable
abstractions (with different cost/precision tradeoffs).

2
CPA Scheme Semantics

PR ::= LAM
LAM ::= (A (vi...vn) c)

CALL ::= (/ a\ ... an)
(l e t r e c ((/ i / i) . . .) c)

ARG ::= LAM + VAR + CONST
FUN ::= LAM + VAR + PRIM
VAR ::= {x ,z , f o o , . . . }

CONST ::= { 3 , # f , . . . }
PRIM ::= { + , i f , . . . }

[vi € VAR, c £ CALL]
[/ € FUN, at e ARG]
[fi € VAR, h € LAM, c € CALL]

Figure 1: CPS Scheme Syntax

1.3 Notation

D* is used to indicate all vectors of finite length over the set D.
Functions are updated with brackets: e [a 6, c </] is the func
tion mapping a to b, c to d, and everywhere else identical to function
e. This notation is extended by talcing an update standing by itself
to imply an update to the appropriate bottom function _L; hence []
is equivalent to J_. Unused function variables are, by convention,
subscripted with z, e.g., ex. The power set of D is P(D). Vectors
are written (a p z). Lambda functions are sometimes written with
a vector-destructuring syntax: the function X (a b). exp takes a two
element vector as its single argument, binding a to the first element,
and b to the second. The ith element of vector v is written v[i.
Functions with power-set ranges can be joined with the U operator:
/ U g = Xx. (fx) U(g x) . The "predomain" operator -f is used to
construct the disjoint union of two sets: A + B. This operator does
not introduce a new bottom element, and so the result object is just
a set, not a domain; following Reynolds [7], I attempt to introduce
domains only where necessary in semantic constructions, avoiding
"spurious values."

2 C P S Scheme

The practice of converting programs into continuation-passing style
(CPS) as an intermediate representation for compilation has been
discussed in several papers [15, 6, 1]. CPS can be summarised
by stating that function calls are one-way transfers — they do not
return. So a function call can be viewed as a GOTO that passes values.
In this section, we will define a very simple language, called CPS
Scheme, for expressing programs in written in this style.

The syntax of CPS Scheme is shown in figure 1. A program
is a single lambda expression. Lambda expressions bind variables
v\... vn\ the body of a lambda expression must be a single call
expression. There are two kinds of call expressions. A simple
call expression is a function applied to a series of arguments. The
function expression may only be a variable, a lambda or a primitive
operation (primop). An argument expression may only be a vari
able, a lambda, or a constant. Notice that our syntax directly reflects
the "function calls never return" prohibition of CPS: it is impossi
ble to nest function calls, e.g., (+ (* c d) e) is not syntactically
legal, since (* c d) is not a legitimate argument expression in the
+ call. A l e t r e c call expression is special syntax for establishing
mutually recursive sets of functions. The lambda expressions /,
are evaluated, and the result functions bound to the corresponding
variables f. The U are closed in an environment that includes
the fi. The inner call expression c of the l e t r e c form is then
evaluated in this environment. This is simply a CPS version of the
Scheme l a b e l s or l e t r e c form. It would be possible to eliminate
the l e t r e c form by including the Y operator as a primop; this ap
proach has been adopted in other presentations [6, 9] . However, we

would like to limit the arguments we are willing to circularly close
to be lambda expressions. By elevating this restriction to the syn
tactic level, we will simplify the semantics equations, and sidestep
the Y operator. There is no syntax for assigning variables in this
language. If we wish to allow side effects, we can introduce ap
propriate primops to create and side-effect mutable data structures;
assignments to variables in the source language can be converted
into equivalent data structure side effects during the CPS conver
sion [6]. Finally, we'll assume that all variables are unique in a
program — that is, no identifier is bound by more than one lambda
expression.

It bears emphasizing that this rather minimal language is a useful
intermediate representation for compiling higher-order languages
such as Scheme. Variants of CPS Scheme have been used in sev
eral Scheme and ML compilers. A full discussion of the many
advantages of CPS-based intermediate representations, however, is
beyond the scope of this paper [1 ,6 , 15].

CPS Scheme has a very simple semantics. The semantic do
mains and functions are given in figure 2. There is a set of basic
values, Bas, which consists of the integers and a special false value (I
will follow traditional Lisp practice in assuming no special boolean
type; anything not false is a true value). The value set D consists of
the basic values and CPS Scheme functions. CPS Scheme functions
are represented as functions from vectors of values to the answer set.
The domain of answers Ans is the value set D plus a special error
element denoting a run-time error, and a bottom element denoting
non-termination . An environment is a function from variables to
values.

Note that an environment only maps to values in D — it will
never map a variable to _L or error. This is one of the happy
consequences of CPS conversion. Also note the absence of a store
in this semantics. Side effects have been dropped completely from
this semantics to simplify the presentation; they are not difficult
to reinstate [10] once the basic methods outlined in this paper are
understood.

V1I maps a program to its result. It simply calls the A function
to close its lambda £ in the empty environment [] , and calls the result
function on a one-element argument vector, which contains the
terminal continuation. If the terminal continuation is ever applied
to a one-element argument vector av, that element av[\ is the result
of running the program. If at; doesn't contain exactly one element,
the program is aborted with a run-time error.

The A function evaluates function and argument expressions.
It is defined by cases. A variable v is simply looked up in the envi
ronment. A constant k is passed to the constant function /C* which
presumably maps numerals to their corresponding integers, and the

lThc bottom element also allows Ans and, hence, D* — Ans to be legitimate
domains, necessary for the Id tree expression to be well-defined. This sort of semantic
fine detail is beyond the scope of this paper, and will not concern us further

CFA Scheme Semantics
3

Bas = 2 + {false}

D = Bas + (D * — A n s)
Ans = (D + {error}).].
Env = VAR — D

PTie = At[]/Xav'lQngth(av) = 1

\ otherwise error

vn : PR — A n s
c : CALL — Env — Ans

A : : A R G u F U N —Env — D
CONST — D

V: PRIM — D

t l \

A[(\ (vi

A [v] e = e v
A[k]ex=Kk
A\p] ex = VP

. . t ' n) c)] e = Aav. length(ai;) = n
otherwise error

—• C c e[vi i - . a i / j i

C[(f « i . . . a n)] e = / ' £ B a s — / ' (a [. . . a ; >
otherwise error
w h e r e / ' = Af e, a't =Aate

C [(l e t r e c ((/i lx)...) c)J e = Q c e '

w h e r e r e c e ' = e [/ t — > t / , e ']

p [+] = A (a 6 c) . bad argument — • error
otherwise c (a + 6)

V [i f J = A (p c a) . 6a<i argument —> error
p ^ false — - c {)
otherwise a ()

Figure 2: Standard Semantics

false identifier to the false value. The precise definition of K will
not concern us further. A primop p is passed to the primop function
V- A lambda (A (v\...vn) c) is mapped by A to a function
that takes as its argument an argument vector av. If av contains
exactly as many elements as the lambda has formal parameters Vi,
then the lambda's call body c is evaluated in an environment which
is the closure environment e extended by mapping each m to the
ith element in the argument vector. If, however, av has too few
or too many elements to match up with the lambda's variables, the
program is aborted, with the error value for result.

Note that it is always possible to evaluate a function or argu
ment expression. Since function and argument expressions are so
simple — variables, lambdas, primops, and constants — they can
always be evaluated. This is why the range of A does not include
J_. Furthermore, the only possible case in which A might generate
an error value lies in referencing an unbound variable. However,
since CPS Scheme is lexically scoped, we can relegate this to syn
tax, and simply declare that programs containing unbound variable
references are not syntactically legal CPS Scheme programs. Thus
we can omit the error value as well from ,4 's range.

The C function evaluates a call expression in a given environ
ment. It is also defined by cases. In the simple function case, C
evaluates the function expression and each of the argument expres
sions in the current environment. The argument values are pack
aged into an argument vector, which is passed to the function value.

However, if the function expression evaluates to a non-function, the
program is aborted with the error value for result Given a l e t r e c
call expression, C establishes the inner environment by evaluating
the lambda expressions /, in the appropriate recursive environment
e', and then evaluates the inner call c in the result environment.

The V function must map each primop in CPS Scheme to an
appropriate function. For expository purposes, I present its defini
tion for two values: the + function, to illustrate ordinary primitive
functions, and the i f function, to show a primitive function that
determines control-flow.

The + primop denotes a function whose argument is a triple
composed of two integers a and 6, and a continuation function c.
The integers are added, and the sum is packaged into a singleton
argument vector which is passed to c. If the + primop is called on
a "bad argument," the program is aborted with the error value for
result. For the purposes of +, an argument is bad if it contains fewer
than or more than three elements; if its first or second element is
not an integer; or if its third element is not a function.

The i f primop denotes a function whose argument is a triple
composed of some value p and two continuation functions c and
a. If the argument does not conform to this requirement, a runtime
error is returned. If the predicate p is true (/.*., anything but the
false value), the consequent continuation c is called with no argu
ments (i.e., the empty argument vector). Similarly, if p is false, the
alternate continuation a is called.

4
CFA Scheme Semantics

Bas = 2 + {false}
D = Bas + (D * — VEnv — Ans)

Ans = (D -f {error})x
CN Contours

BEnv = LAB — CN
VEnv = C N x VAR — D

nb : - * C N
V1I: PR —* Ans

C : CALL — BEnv ~ VEnv — Ans
A : ARG U FUN — BEnv — VEnv — D
K : CONST — D
V : PRIM — D

V1lC = AC[][](XavexAel^[av) = l — avil)[] 1 J 1 J \ otherwise error / 1 J

A [v] e e = e (e(binderv) v)
A[k] €X ex = /C*

A[p] €X ex = Vp
A[£: (A (- i / i . . . v n) c)] c c x = Xav e. iength(av) = n — C c e ' e '

otherwise error
where b — nb

e' = e[{b vx) •-— au j i]

a i . . . a „)] c e = / ' g B a s / ' (^ . . . a ^ e
otherwise error
w h e r e / ' = . 4 / c e , a ; = > t o t e e

(l e t r e c ((/ i / i) . . .) O] c e = C c e'
where b — nb

i'= e\(b fi) ~ Ah <' e] e

-p [+] = A (a 6 c) e. fowi argument — • error
otherwise c(a + b) e

V [i f] = A (p c a) e. fotti argument —> error
p ^ false — • c {) e
otherwise a () e

Figure 3: Factored Env Semantics

3 Factoring the environment

Before proceeding to the control-flow semantics, we must first de
velop a slight variant of our standard CPS Scheme semantics. This
will make it easier to eventually abstract the semantics.

In the new semantics, called the factored-env semantics, we
split the environment into two different structures: the contour
environment and a global, shared variable environment. A contour
environment e maps a syntactic binding construct — a lambda or
l e t r e c call — to a contour. A contour is just some token — an
integer will do — that serves to distinguish one binding instance
from another. The variable environment maps a contour/variable
pair (b v) to a value.

This model requires us to alter our syntax slightly, by requiring
that all our expressions have unique labels, e.g.,

(x y) (x 3 y))
has label L Labels are drawn from the syntactic set LAB. To avoid
cluttering our code, we'll suppress labels whenever convenient. We
define a syntactic function binderwhich maps a variable to the label
of its binding lambda or l e t r e c expression. Hence, in the example
above, b/nde/fx] = L

Our syntax augmented, we can now define our new semantics
(figure 3). The nb function creates new binding contours. We
assume that each call to n b produces a new, unused binding contour
from CN. In this respect, nb serves a "gensym" role, and is not
a properly defined function. It is clear, however, that we could
easily define nb properly by modifying all the other functions in
our factored-env semantics to pass around as an extra argument
the set of binding contours already allocated; this set would serve
as the argument to n b . Such modifications to the equations are
straightforward, tedious, and obfuscatory; we will pass them by.

Since the variable environment is supposed to model a global
table, all functions that could access or modify the environment must
pass it around as an extra argument. CPS Scheme functions, for
instance, are now represented by elements of D * —* VEnv —* Ans
— they are invoked with the current variable environment as a
second argument. It is a general feature of this semantics that as the
computation progresses forwards, the updated variable environment
is passed forwards in a tail-recursive fashion.

The A function has changed for the variable and lambda cases.
In the variable case, A looks up the binding contour b introduced by
the variable's binding lambda in the lexical contour environment.
Then the contour/variable pair (6 v) is used to fetch the appropriate

CFA Scheme Semantics

Bas = 2 + {false}
D = Bas + (D* — LAB — Ans)

Ans = LAB — P(LAB + PRIM)
Env = VAR — D

VII: P R - A n s
C : CALL — Env — Ans

A : ARG U FUN — Env — D
K : CONST
V : PRIM — D

PHi = At[](\avxec. [Cc^ {itap}])Ctap

A[v}e = e v
Alkjex = Kk
A\p\ex =

, 4 [£ (A (^ . . . v n) c)] e = A a v ^ c . [lc »— {£}] U length(av) = n
otherwise []

— - C c e[v t i-.. av[i

C[c: (/ a i . . . a „)] e = / , g Bas f'{a[...a'n)c
otherwise error
where / ' = A f e, a[= Aa>% t

C [(l e t r e c ((/ i / i) . . .) c)] e = C c e '
whererec e' = e [/j H - A U e'J

p [+] = A (a 6 c) * c . [te H - {+}] U bad argument []
otherwise c (a + b) i c 4 ^c

7>[i*J = A (7; c a) i c . [ic { i f }] U badargument —• []
p false —> c () i c l

i f i < c

otherwise a () ic^ f t c

Figure 4: Exact Control-Flow Semantics

value from the variable environment. Factoring the environment
means that A now closes a lambda expression in the current contour
environment. It produces a function, which, when called, creates a
new binding contour b with nb , augments the contour environment
€ with the new contour, and updates the variable environment e,
binding parameters v i . . . vn to the elements of argument vector av
in the new contour. Since b is a new contour, these bindings won't
collide with those made by other calls to this lambda.

Similarly, C introduces a new contour b into the binding en
vironment e whenever execution proceeds through a l e t r e c call,
and binds the lambda expressions /, in the new environment. It is
interesting to note in passing that this formulation removes the cir
cularity from the l e t r e c environment update (since /, is a lambda
expression, A ignores e).

4 Semantics of exact control-flow analysis

Now we may turn to control-flow analysis. To repeat an earlier
point, the point of using a CPS-based intermediate representation is
that all control transfers are represented with the same mechanism:
tail-recursive procedure call. So the control-flow analysis problem
for CPS Scheme is to find a function 7 : LAB — P (L A B + PRIM)
that given the label £ c of a call expression, will return y{tc), the
set of all lambdas and primops called from tc. We will call such a
function a call cache.

This is easy to cast as an alternate semantics: the meaning of a
program is its cache function. We can compute this cache function

by taking the standard semantics and "instrumenting" it to record all
the calls that happen during program execution. Instead of returning
the actual value computed by the program, the new, non-standard
semantics returns the cache constructed by the instrumentation.

Figure 4 presents the new, non-standard semantics. It is initially
developed as an unfactored-env semantics. The answer domain Ans
is the domain of cache functions; its bottom element 1_AM is simply
the function Ax. 0. CPS Scheme functions are now represented by
functions that take an extra argument: the label £ c of the site from
which they were called. The function augments the answer cache
by including its CPS Scheme lambda / in the set of lambdas called
from £ c . The meaning of call expressions is changed accordingly
to pass along to the called function / ' the call site c from which it
has been called.

The alterations to the primops are similarly straightforward.
The + primop updates the cache to indicate where it has been called
from, and passes to its continuation c a marker pseudo-label ic+tt

to indicate that the continuation was called from its internal call site.
The i f primop is similar, its main variation being the use of two
different internal call sites, one to mark consequent calls (ic\ttl)9

and one to mark alternate calls (ic\f ic).

The Vlt function starts the program by calling the top function,
passing it a designated call-site label c t o p to mark the top level call.
The top level continuation has a designated label ilap to indicate
calls to it; when it is called, it records the final call and stops the
program.

6
CFA Scheme Semantics

Ans = LAB — P (L A B + PRIM)
D = P (D) * — VEnv — LAB — Ans

CN Contours
BEnv = LAB — C N
VEnv = CN x VAR — P (D)

nb: — C N
V'Jl: PR — Ans

C : CALL — BEnv — VEnv — Ans
A : ARG U FUN — BEnv — VEnv — P (D)

V : PRIM — D

mi = f({ Xavxexic. [i c ^ {4*}] }) [k t o p
where {/} = ^ [] U

, 4 [* (A (vx...vn) c)] f f j = <{

A [v] f e = e (e(oinderv) u)

A [k] cxex = <d

AM o c , =
A a v c ^ c [£ c {£}] U length(au) = n -

otherwise []
where b = nb

e' = c[i<-+b]
e' = e U [(b Vi) a u | i]

Cce'e^

C[c:if a ! . . . a n)] e e = [J { / ' < a { . . . a^) e c | / ' € ,4 / e e}
where aj = 4 a, c e

(l e t r e c ((/ i / i) . . .) c)] f e = C c f ' e '
where b = nb

e' = e U [(6 / ,) ^ ^ / , f' e]

p [+] = A (a 6 c) e £c. [Cc — {+}] U todargument —• []
otherwise [J {c ' (0) e i c * ^ | c <= c}

(6aJ argument —• []
otherwise \J{c'()e ic\ftte \ c € c}

Figure 5: Control-Flow Semantics with ambiguous if and factored env

5 Abstracting the control-flow analysis semantics

Now that we 've defined our control-flow analysis semantics, we
have a formal description of the control-flow problem. The next step
is to abstract our semantics to a computable approximate semantics
that is useful but safe. Since we do not in general know at compile
time which way a conditional branch will go, we must abstract away
conditional dependencies. (Had we included i/o in our original
exact control-flow semantics, this would be the appropriate time
to remove those dependencies, as well.) While we are abstracting,
we'll go ahead and factor the environment as well, which will be
useful in the next section. The result ambiguous-if factored-env
semantics is presented in figure 5.

We have introduced three major changes into our new seman
tics. First, the environment has been factored. This is essentially
identical to the factoring performed upon the standard CPS Scheme
semantics in section 3. Second, the i f primop now "branches both
ways." That is, the caches arising from both the consequent and al
ternate continuations are computed; these are joined together to give

the result cache returned by the i f primop. Removing this data de
pendency has a further consequence: the semantics no longer needs
the basic value domain Bas. Since our semantics concerns itself
solely with control flow, the only values that need to be considered
are those representing CPS Scheme functions. The final change is
to arrange for argument and function expressions to evaluate to sets
of values, instead of simple values. This is actually an isomorphic
shift, since all the sets that result in the new formulation are sin
gleton sets. The extra machinery will come in useful in the next
approximation, however, since the semantics now tolerates ambi
guity in argument evaluation: if a function expression can only be
determined to lie in some set, the C function will find the call caches
resulting from calling all the functions / ' in that set, and join them
together to form the result cache. Also, note that because of the
shift to value sets, variable environment updates are now performed
with join operations, e.g., e' = e U [{b Vi) »-* a u j i] , with bottom
element -LvEnv = Ax. 0.

CFA Scheme Semantics

Ans = LAB — P(LAB + PRIM)
D = P (D) * — VEnv - LAB - Ans

VEnv = VAR — P (D)

VTl: PR - A n s

C C A L L —VEnv —Ans
A : ARG U FUN — VEnv — P (D)
V : PRIM — D

V'RC=f({\avxes£c. [fc {£top}} }) f] C [

where {/} = A£[]
top

A [v] e = e v
A [k] ex = 0
Alp]ex = {Vp}

{ Xavetc [ic {£}] U iength(av) = n —> Cce'y

otherwise []
where e' = e U [vt •— at/|.i] ,

C[c:(f al...an)]e=\J{f'{a[...af

n)ec\fteAfe}
where aj = A a, e

C[ft (l e t r e c «fx 1 0 . . .) c)\e=Cce'

where e' = e U [/, e]

7>I+] = A (a b c) e tc. [Cc {+}] U bad argument —• []

otherwise (J | c ' (0) e » c + i < c | c' 6 c}

(badargument —- []
otherwise • { c , () e i c l

l f ^ c | c' 6 c}
u U { « , 0 « ^ e l « , € a }

Figure 6: OCFA

6 Computable control-flow analysis semantics

The problem with the previous semantics, abstracted though it may
be, is that it is difficult to compute the fixed-point cache for a given
program because the environment structure is infinite. Consider the
following expression (written in full Scheme, not CPS Scheme, for
clarity):

(l e t r e c ((l o o p (A (f)
(l o o p (A (n) (* 2 (f n)))))))

(l o o p (A (m) 1)))

The variable f is bound to an infinite set of functions

{Ax. 2 l | i > 0 } .

So it is difficult for any propagation-based fixed-point algorithm to
know when to stop propagating.

There are only a finite number of lambda expressions in a given
program; the infinite sets of functions arise because we can close
these lambdas with an infinite set of environments. If we can
collapse our infinite set of environments down to a finite approx
imation, then we can successfully compute a control-flow cache
function.

If we examine the abstract semantics developed in the previous
section (figure 5), we can see that the infinite environment structure
is built with all the calls to the nb function in the C and A functions.
If we replaced each call b = nb with 6 = C, we would then fold
all contours created by a given lambda expression together, and our
infinite environment set would collapse into a finite, manageable set.

This is precisely OCFA, the Zeroth-Order Control-Flow Analysis
technique presented in my PLDI '88 paper. As a final figure, I
present the resultant OCFA semantics in figure 6 (note that this is
the degenerate contour environment case, and so this artifact has
disappeared entirely).

An alternative approximation, only briefly mentioned as 1CFA
in the earlier paper, is to distinguish contours created by calling a
lambda from different call sites. Suppose, for example, that some
lambda (A (x) . . .) is called from two different call sites c\ and
C2. In 1CFA, the values bound to x by calls from ci are kept distinct
from the values bound to x by calls from cz. This yields a tighter,
higher-precision analysis.

We are now in a position to precisely express this approximation:
replace the call to in A with £ c , the call site from which the
lambda was called: b = £c. Since there are only a finite number of
call sites, the environment structure this engenders is still finite in
size, and hence our caches are still computable. However, the finer
granularity (or increased environment structure size) will cause the
cache to be more expensive to compute.

Thus, OCFA and 1CFA allow us to trade off compile-time effi
ciency for compile-time precision of analysis.

Now that we've abstracted the control-flow analysis, the rea
son for factoring the environment should be clear. Factoring the
environment exposed the binding mechanisms that gave rise to the
infinite environment structure. Abstracting the contours and merg
ing bindings was the critical step that allowed us to reduce this
infinite structure to a finite, computable one.

8
CFA Scheme Semantics

7 Implementation

I have written a prototype implementation of 1CFA; it is a straight
forward translation of the semantics into Scheme code. The re
cursions in the semantics equations are terminated with a variant
of Young and Hudak's memoised pending analysis [16]. The type
recovery analysis mentioned in section 1 is built on top of this im
plementation. The prototype implementation uses a modified copy
of the ORBIT compiler's front end to produce CPS Scheme code
from programs written in full Scheme. The implemented 1CFA
semantics extends the semantics presented in this paper to include
side effects, external procedures and external calls. In addition, it
statically separates user procedures from continuations introduced
by the CPS conversion. This last point is worth briefly discussing.

CPS Scheme is an intermediate representation for full Scheme.
In full Scheme, the user cannot write CPS-level continuations: all
continuations, all variables bound to continuations, and all calls to
continuations (i.e\, returns) are introduced by the CPS converter.
This divides the procedural world into two halves: user procedures
and continuations introduced by the CPS converter. It is easy for
the CPS converter to mark these continuation lambdas, variables
and call sites as it introduces them into the program. This parti
tion is a powerful constraint on the sets propagated around by the
analysis: a given call site either only calls user procedures, or only
calls continuations; a given variable is either bound to only user
procedures, or bound to only continuations. This partition holds
throughout all details of the CFA semantics; exploiting it produces
a much tighter analysis.

Running interpreted, the 1CFA implementation is able to anal
yse small examples (such as f a c t or d e l q) in about a half second
on a DECstation 3100 PMAX. This is quick enough that I have not
bothered to either compile the code or tune the simple algorithm
and data structures.

Type recovery is a particularly interesting optimisation from
the semantics point of view. I managed to implement induction-
variable elimination and useless-variable elimination using an early
ad hoc control-flow analysis algorithm [9], before I cast CFA into
the non-standard abstract semantic interpretations framework pre
sented in this paper. I could not have done so with type recov
ery analysis. Due to its dependence on sophisticated environment
analysis, its design depended on the guidance of the semantics
presented in this paper. The semantic definition of control-flow
analysis has proved to be a valuable engineering tool for delivering
useful Scheme program optimisations.

Detailed discussion of the CFA implementations and the opti
misations built on them is beyond the scope of this paper; they are
treated elsewhere [10, 11, 13, 14].

8 Discussion

A note on OCFA that may be of interest to those who have read
the PLDI '88 paper: The algorithm I presented in that paper was
fundamentally different from the semantics presented in this paper
in one important respect. In this paper, the environment informa
tion is propagated along paths through the control structure of the
program. That is, when we determine that some lambda's variable
v can be bound to some new function, we pass that information
along to the lambda's call body, who passes it to the functions it
calls, and so forth. Eventually, this information may propagate to a
reference to v, where it will used.

In the algorithm presented in the early paper, the information
propagates along paths through the environment structure of the
program. That is, once we determine that v can be bound to some
new function, we jump straight to all references to v, and propagate

from there. This, of course, saves time, and allows for simpler
convergence tests.

While this approach is correct, it does not generalise. In 1CFA,
we allow multiple distinct contours over a single lambda. So we
can't just propagate forward from all references to v — the envi
ronment structure determining propagations must be established by
following the control-flow paths.

This difficulty arises from the power of lambda: it provides
both environment and control structure. In OCFA, the environment
structure collapses into the degenerate case exploited by the early
algorithm.

9 Conclusion

My chief purpose in writing this paper is to show a formal descrip
tion of the Scheme control-flow analysis problem. This description
is useful for several reasons:

• It leads us to useful computable approximations.

• The semantic description should give the reader a detailed,
rigorous understanding of the Scheme control-flow analysis
problem and its approximate solutions.

• Because it is a formal description, grounded in the semantics
of Scheme, it can serve as a basis for proving formal proper
ties of the analysis, its connection to the standard Scheme se
mantics, and the correctness of program optimisations based
on it. We would like to prove that the semantics are all
well-defined; that the approximate CFA semantics is a con
servative approximation of the exact CFA semantics; and that
the approximate semantics is computable. Such proofs are
beyond the scope of this paper, but they can be found in my
dissertation [10].

• It is a description which helps the Scheme compiler writer to
develop and implement useful program optimisations, such
as type recovery. Hopefully, compiler writers can use this
description to design and implement their own optimisations.

Control-flow analysis is an important tool for developing anal
yses and optimisations for higher-order programming languages
such as Scheme. As such, it is too important to exist without a solid
theoretical foundation. The aim of this paper is to sketch out the
structure of that foundation.

10 Acknowledgments

Refereeing conference papers is a tedious job. The PEPM referees
gave my extended abstract a careful reading and provided many
thoughtful suggestions that improved the final paper. I am grateful
for their efforts. John Reynolds steered me through the (forthcom
ing) proofs of semantic correctness. Dana Scott helped me with
a difficult domain construction. My advisor, Peter Lee, substan
tially improved an early draft of this paper. Olivier Danvy supplied
several useful references and his usual infectious enthusiasm.

References

[1] Andrew Appel and Trevor Jim. Continuation-passing, closure-
passing style. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages,
pages 293-302, January 1989.

CFA Scheme Semantics

[2] Anders Bondorf. Automatic autoprojection of higher order
recursive equations. ESOP '90, Neil Jones (editor). Springer-
Verlag, May 1990.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by con
struction or approximation of fixpoints. In Conference Record
of the Fourth Annual Symposium on Principles of Program
ming Languages, pages 238-252. Association of Computing
Machinery, 1977.

[4] Paul Hudak. A semantic model of reference counting and its
abstraction. In Proceedings of the 1986 ACM Conference on
Lisp and Functional Programming, August 1986.

[5] Paul Hudak and Adrienne Bloss. Variations on strictness anal
ysis. In Proceedings of the 1986 ACM Conference on LISP
and Functional Programming, August 1986.

[6] David Kranz, et al. ORBIT: An optimizing compiler for
Scheme. In Proceedings of the S1GPLAN '86 Symposium on
Compiler Construction, published as S1GPLAN Notices 21 (7),
pages 219-233. Association for Computing Machinery, July
1986.

[7] John Reynolds, School of Computer Science, CMU. Personal
communication.

[8] Peter Sestoft. Replacing function parameters by global vari
ables. Master's Thesis, University of Copenhagen, 1988. Stu
dent report 88-7-2, DIKU. A conference-length version of
this thesis appears in the FPCA '89 Conference Proceedings,
pages 39-53 , September 1989.

[9] Olin Shivers. Control-flow analysis in Scheme. In Proceed-
ings of the SIGPLAN '88 Conference on Programming Lan
guage Design and Implementation, June 1988. Also available
as Technical Report ERGO-88-60, CMU School of Computer
Science, Pittsburgh, Penn.

[10] Olin Shivers. Control-Flow Analysis of Higher-Order Lan
guages. Ph.D. Dissertation, CMU. (Forthcoming)

[11] Olin Shivers. Data-flow analysis and type recovery in Scheme.
Technical Report CMU-CS-90-115. CMU School of Com
puter Science, Pittsburgh, Penn., March 1990. Also to appear
in Topics in Advanced Language Implementation, Peter Lee
(editor), MIT Press.

[12] Olin Shivers. The semantics of Scheme control-flow analysis.
In Proceedings of the First ACM SIGPLAN and IFIP Sym
posium on Partial Evaluation and Semantics-Based Program
Manipulation, June 1991. To appear in SIGPLAN Notices.
Also available as Technical Report CMU-CS-91-119, CMU
School of Computer Science, Pittsburgh, Penn. An early ver
sion was available as Technical Report ERGO-90-090.

[13] Olin Shivers. Super-/?: Copy, constant, and lambda propaga
tion in Scheme. Working note #3, May 1990.

[14] Olin Shivers. Useless-variable elimination. Working note #2,
April 1990.

[15] Guy L. Steele Jr. RABBIT: A Compiler for SCHEME. Tech
nical Report 474, MIT AI Lab, May 1978.

[16] Jonathan Young and Paul Hudak. Finding fixpoints on func
tion spaces. Research Report 505, Yale University, Depart
ment of Computer Science. December 1986.

