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A Model and a System
for Machine Recognition
of Speech

D. RAJ REDDY, LEE D. ERMAN, and RICHARD B. NEELY

Abstract—This paper presents a model for machine recogni-
tion of connected speoch and the details of a specific imple-
mentation of the model, the HEARSAY system. The model
consists of a small set of coopetating independent parallel pro-
cesses that are capable of helping in the decoding of a spoken
utterance either individually or collectively. The processes use
the “hypothesize-and-test” paradigm. The structure of HEAR-
SAY is illustrated by considering its operation in a particular
task situation: voice-chess. The task is to recognize a spoken
move in a given board position. Procedures for determination
of parameters, segmentation, and phonetic descriptions are
outlined. The use of semantic, syntactic, lexical, and phono-
logieal sources of knowledge in the generation and verification
of hypotheses is described. Preliminary results of recognition
of some utterances are given.

Introduction

Most papers on speech recognition conclude by say-
ing that it is necessary to use higher level linguistic
cues to obtain acceptable recognition. The terms
context, syntax, semantics, and phonological rules are
used but attempts to utilize these sources of know!-
edge have not been successful because of the ill struc-
turedness of these concepts. This paper represents a
summary of several years of investigation to formu-
late an information processing model that would lead
to efficient recognition of speech and in which the
role of varicus sources of knowledge would be well
defined.

At the 1969 spring meeting of the Acoustical So-
ciety, we presented several papers on the structure of
a speech recognition system that was used to recog-
nize a list of 500 isolated words and a syntax-directed
connected speech-recognition system using a finite
state grammar and a 16-word vocabulary (Vicens
[371, Reddy [31], Neely [22]). Six amplitude and
zero-crossing parameters of the incoming utterance
were sampled every 10 ms and segmented. The seg-

Manuscript received April 30, 1972. This research was sup-
rted in part by the Advanced Research Projects Agency of
?l‘:e Department of Defense under Contract F44620-70-C-0107
and monitored by the Air Force Office of Scientific Research.
‘D. R. Reddy and L. D. Erman are with the Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, Pa.
15213.

R. B. Neely was with the Department, of Computer Science,
Carn 'e-MeIYon University, Pittsburgh, Pa. 15213. He is now
with the Xerox Palo Alto Research denter, Palo Alto, Calif.
94505.

229

mentis were labeled to specify the phonetic class; the
syntax was used for sentence analysis and word
boundary determination, and prelearned acoustic and
phonetic segmental descriptions of lexical items were
used for word recognition.

Several inherent limitations were apparent even as
we developed the system, First, the vocabulary had
to be reduced to 16 words because of word boundary
ambiguity problems. For example, the word “large”
had to be changed to “big” because of assimilation of
the reduced vowel of “the” into the semivowel /1f of
“large” in the utterance: “Pick up the large block.”

Second, we had to overcome the limitations of the
syntax-directed methods. One could not blindly
parse from left to right; rather, we had to locate an-
chor points from which parsing could proceed both
backwards and forwards. This was necessary to com-
pensate for machine errors in earlier stages and to
compensate for the idiosyncrasies in speaker perform-
ance such as introduction of spurious words, repeti-
tion of words, and inclusion of hmm- and ha-like
sounds.

Third, the simple hierarchical structure in which
output from one process forms the input to the next
was not adequate for the task. Errors introduced in
each process tend to have multiplicative effect, i.e., if
each of four processes introduced 10 percent errors,
the cumulative error would be 34 percent. Further,
the lack of feedback and feedforward of the simple
hierarchical model meant any errors that got through
were uncorrectable. The main virtue of the system
was that it was the first demonstrable system to use
syntactic and lexical constraints to recognize con-
nected speech sentences (such as: “Pick up the big
block at the bottom right comer™).

For the past four years the authors have been at-
tempting to develop a model and a system for con-
nected speech recognition that did not suffer from
the limitations mentioned previously, and that would
serve as a research tool for speech-recognition re-
search over a wide range of tasks. The following sec-
tions present the resulting model and an outline of
the system implemented. on a2 PDP-10 computer,

The Model

We were interested in developing a system capable
of- recognition of connected speech from several
speakers with graceful error recovery, in close to real
time, and easily generalizable to operate in several
different task domains. We started with several re-
quirements for the model.

1} Contributions of syntax, semantics, context,
and other sources of knowledge towards recognition
should be clearly evaluatable. Exactly what and how
much does each contribute towards improving the
performance of the system?

2) The absetice of one or more sources of knowl-
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edge should not have a crippling effect on the per-
formance of the model. That semantic context
should not be essential for perception is illustrated by
overheard conversations among strangers. That syn-
tactic or phonological context should not be essential
is illustrated by conversations among children. ‘That
lexical representation is not essential is illustrated by
our recognition of new words and nonsense syllables.

3) When more than one source of knowledge is
available, interactions between them should lead to a
greater improvement in performance than is possible
to attain by the use of any subset of sources of
knowledge.

4) Since the decoding process is errorful at every
stage, the model must permit graceful error recovery.

5) Increases in performance requirements, such as
the real time requirement, increase in vocabulary,
modifications to the syntax, or changes in semantic
interpretation, should not require major reformula-
tion of the model.

The model we have arrived at to satisfy these re-
quirements consists of a small set of cooperating inde-
pendent processes capable of helping in the decoding
process either individually or collectively and using
the “hypothesize-and-test” paradigm.

Each of the processes in our model is based on a
particular source of knowledge, e.g., syntactic, seman-
tic, or acoustic-phonetic rules. Each process uses its
own source of knowledge in conjunction with the
present context (i.e., the presently recognized sub-
parts of the utterance) in generating hypotheses
about the unrecognized portions of the utterance.
This mechanism provides a way for using (much
talked about but ravely used) context, syntax, and
semantics in the recognition process.

The notion of a set of independent parallel pro-
cesses, each of which is capable of generation and
verification of hypotheses, is needed to satisfy the
requirements 1) and 2) mentioned previously. In our
model, the absence of a source of knowledge implies
deactivating that process, and recognition proceeds
(albeit more slowly and with lower accuracy) using
the hypotheses generated by the remaining processes.
The independence of the processes permits us to de-
activate a source of knowledge and measure how and
by how much that source of knowledge improves the
system.

The need for parallel processes can be derived from
the real-time periormance requirement. If the system
is to ever approach human performance, it must be
able to answer trivial questions as soon as they are
uttered (some times even before they are completed).
This implies that various processes of the system
should be able to operate on the incoming data as
soon as they are able to do so without waiting for the
completion of the whole utterance (as in a simple
hierarchic model). The “coroutine” model, in which
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each process passes control to the next level when a
“chunk” is perceived and regains control when a
new chunk is needed, would be satisfactory. But this
organization can lead to irrevocable loss of data if a
higher level process does not return control in time to
process new chunks of incoming speech. Thus, there
must be at least two parallel processes, one of which
is continuously monitoring the input speech and the
other proceeding with recognition. This, in addition
to requirements 1) and 2), suggests a model with par-
allel processes.

An important aspect of the model is the nature of
cooperation between processes. The implication is
that, while each of the processes is independently
capable of decoding the incoming utterance, they are
also able to cooperate with each other to help recog-
nize the utterance faster and with greater accuracy.
Process “A™ can guide and/or reduce the hypothesis
generation phase of process “B’ by temporarily re-
‘stricting the parts of the lexicon that can be accessed
by B, or by restricting the syntax available to process
B, and 50 on. This assumes that process A has addi-
tional information that it can effectively use to pro-
vide such a restriction. For example, in a given syn-
tactic or semantic situation only a small subset of all
the words of a language may appear.

The need for a hypothesize-and-test paradigm arises
from 4). The “errorful” nature of speech processing
at every stage implies that every source of knowledge
has to be brought to bear to resolve ambiguities and
errors at every stage of processing. This implies rich
connectivity among various processes and involves
both feedforward and feedback. The hypothesize-
and-test paradigm represents an elegant way of ob-
taining this cooperation in a uniform manner.

The notion of hypothesize-and-test is not new. It
has been used in several artificial intelligence pro-
grams (Newell [25]). It is equivalent to analysis-by-
synthesis (Halle and Stevens [10]) if the “test”
consists of matching the incoming utterance with a
synthesized version of the hypothesis generated. In
most cases, however, the test is of a much simpler
form; for example, it is not necessary to generate the
whole formant trajectory when a simpler test of the
slope can provide the desired verification. This not
only has the effect of reducing the computational ef-
fort but also increases the differentiability between
phonemically ambiguous words.

Extendability and generalizability of the model is
mainly an issue of implementation. It requires that
representation of sources of knowledge be separate
from and independent of mechanisms that operate on
them. One way of achieving this is to represent the
knowledge in a form most suitable for modification
by the user and have a set of preprocessors that then
transform the knowledge into the representation re-
quired by the system.
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HEARSAY System

HEARSAY is a speech-recognition system that incor-
porates many of the ideas presented in the previous
section and is presently under development at Car-
negie-Mellon University. It is not restricted to any
particular recognition task. Given the syntax and the
vocabulary of a language and the semantics of a task,
‘HEARSAY will attempt recognition of utterances in
that language.

Fig. 1 gives an overview of the HEARsay system.
The ear module accepts speech input, extracts pa-
rameters, and performs some preliminary segmenta-
tion, feature extraction, and labeling, generating a
“partial symbolic utterance description.” The recog-
nition overlord (rover) controls the recognition pro-
cess and coordinates the hypothesis generation and
verification phases of various cooperating parallel pro-
cesses. The Task provides the interface between the
task being performed and the speech recognition and
generation (sPEAK-EAsY ) parts of the system. The sys-
tem overload (soL) provides the overall control for
the system. A more detailed, but earlier, description
of the goals and various components of this system
are given in Reddy et al. [33] and Reddy [32].

Here we will describe the operation of the HEARsAY
system by considering a specific task: voice-chess.
The task is to recognize a spoken move in a given
board position. In any given situation there are gen-
erally 20-30 legal moves and several thousand differ-
ent ways of expressing these moves. The syntax,
semantics, and vocabulary of the task are restricted,
but the system is designed to be easily generalizable
to larger tasks, which was not the case for our earlier
systems. Larger syntax (e.g., a subset of English) and
vocabularies (1000-5000 words) for a more complex
semantic task will make nearsay slower and less ac-
curate but are not likely to be crippling.

Fig. 2 shows the recognition process in greater de-
tail. At present, it contains three independent pro-
cesses: acoustic, syntactic, and semantic. We will give
a short description of how these processes cooperate
in recognizing ‘“king bishop pawn moves to bishop
four.” Let us assume that this is a legal move (other-
wise, at some stage of processing, the system will re-
ject it as semantically inconsistent).

Parametric Level Analysis

The speech from the input device (microphone,
telephone, or tape recorder) is passed through five
octave bandpass filters (spanning the range 200-6400
Hz) and an unfiltered band. Within each band the
maximurm intensity and the number of zero crossings
are measured for every 10-ms interval,

This resuits in a vector of 12 parameters every 10
ms. These parameters are smoothed and log trans-
formed and a subset of the parameters is chosen for
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Fig. 2. Detail of the recognition process.

further processing, Fig. 3 gives the parameters used,
at present, for part of the utterance “king bishop
pawn . . ..” Each column represents a 10-ms time
unit. Rows P1, P2, P3, and AU represent the log-
amplitude parameters in the frequency bands 200-
400, 400-800, 800-1600 Hz, and the unfiltered band,
respectively. The amplitudes are quantized to 32
levels and represented as a single character (blank,
0-9, A-U, and *, which represents a value greater than
31). Rows P4 and P5 represent values that are func-
tions of both amplitude and zero crossing in bands
1600-3200 and 3200-6400. Details of various oper-
ations on these parameters are given in Erman [6].

This vector of parameters (P1-P5 and AU/} are com-
pared with a standard set of parameter vectors to ob-
tain a minimum distance classification for each time
unit using a highly modified version of a procedure
proposed by Astrahan [1]. The row labeled PP gives
the classification for each 10-ms unit. The standard
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Fig. 3.
the phone-like name given to the segment.

Parameters and segmentation for “king bishop pawn - - -

' P1-P5 and AU (amplitude) are the input parameters. PP is

SP is the locally smoothed PP, VF is a segmentation based on the SP's: - unvoiced,

nonfricated; funvoiced, fricated; v voiced, nonfricated; and z voiced, fricated.

set of parameters is obtained by selecting cluster cen-
ters from a training set of utterances containing vari-
ous phonemes in neutral contexts. When a phoneme
is represented by several articulatory gestures, more
than one cluster center may be added to the standard
set. Speaker characteristics and the noise character-
istics of the environment or the transducer may be
reflected in the standard set of clusters by recording
the training set in that environment. Fig. 4 gives clus-
ter centers for several representative sounds. A com-
plete list of clusters used and the details of the
speaker normalization program are given in Erman
[6].

Remark 1: The labels in row PP of Fig. 3 are not to
be confused with phonetic transcription. Accurate
phonetic transeription, where possible, would require
modifying the labels taking into account segment and
sentence level context,

Remark 2: If one wanted to use formant frequen-
cies and amplitudes (assuming they can be deter-
mined without mislabeling) one would reanalyze the
training set for this parametric representation to de-
termine the new cluster centers. Representing the
parameters as a vector with a weighted distance met-
ric defined on the vector space is all that is needed to
use a new parametric representation in the HEARSAY
system. There are several disadvantages to this ap-
proach, e.g., errors in labels, inability to take advan-
tage of special features of a parametric representa-
tion, etc. However, this approach provides a
convenient way of obtaining the best first approxima-
tion to the phonetic representation. '

Remark 3: The tendency is to blame every error on
inadequate parametric representations. We have gone
from one set of amplitude and zero crossing param-
eters to three sets and now to five, Others divide the
frequency range into 12, 17, 24, 32, and 48 regions
or the full resolution given by FFT. The increase in
noisiness of the parameters with increasing resolution
makes it imperative that one transform the high reso-
jution data to a smaller number of robust parameters
such as the efforts by Li et al. [16] and Fols [28] in
dimensionality reduction of spectra.

Remark 4: The parameters we use represent a
crude spectrum. A mixed strategy in which finer
analysis is performed only when necessary (Reddy

PP Pl P2 P3 P4 PS AU
d 22 14 5 8 a 18
s a 2 ] 47 39 3
[ ] 38 18 2 2 8 33
u %3 38 11 7 -] 33
a 37 B2 44 38 a 59

Fig. 4. Several typical PP-cluster centers.

[301) seems more appropriate for an efficient realiza-
tion of the system than obtaining every possible pa-
rameter at the start.

Remark 5: Spectral representation appears to be
more robust than formant representation because of
the likelihood of mislabeling a formant.

Remark 6: Parcor parameter representation (Ita-
kura and Saito [14]) has also been used successfully
(Nakano et al. [21]) and may have efficient machine
realizations within the framework of the HEARrsay
system.

Remark 7: Zero-crossing measurements and form-
ant frequency measurements are more prone to error
than energy measurements in a noisy environment.
It appears more difficult to devise noise subtraction
algorithms for frequency than for amplitude (Neely
and Reddy [24]).

Segrnentation

The purpose of segmentation is to divide the con-
tinuous parameter sequence into discrete phone-size
chunks. This is usually based on an acoustic similar-
ity measure (Reddy and Vicens [34]). Labeling
every 10-ms unit by a phone-like cluster name per-
mits the segmentation to be divided in terms of these
labels. Fig. 3 shows two levels of segmentation for
“king bishop pawn . ...” The first level is derived by
doing a local “smoothing” of the PP names assigned
to each of the 10-ms segments; this is displayed on
the row labeled SP. A segment is defined to be a con-
tiguous run of a single PP, flanked by PP’s not the
same as those in the run. This segmentation is ap-
proximately at the phoneme level but is, by itself,
very unreliable.

A second level of segmentation is derived by associ-
ating a voiced/unvoiced decision and a fricated/non-
fricated decision with each PP. These binary deci-
sions, when applied to the SP’s (and modified with a
few simple rules for smoothing and breaking of long
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segments according to significant local amplitude
peaks), segment the signal very reliably. The row in
Fig. 3 labeled VF indicates this segmentation for the
sample.

Remark 1: It is now commonly agreed among all
researchers that some form of segmentation of acous-
tic signals is necessary for connected speech recogni-
tion (see Fant and Lindblom [8], Reddy [29], Denes
and von Keller [4], Broad {2], Medress [19], Dixon
and Tappert [6], Klatt and Stevens {15], Stalham-
mar and Karlsson [35], Hemami and Lehiste [11]).
No systematic evaluation has been made of these and
other methods of segmentation that have been pro-
posed or implemented. Our present view is that al-
most any of the schemes, given enough careful tun-
ing, will work in a large majority of the cases; the
more important question is then not how to segment,
but rather how to use the segmentation without being
crippled by the inevitable errors.

Remark 2: This use of segmentation represents a
trend away from segmentation-free recognition
schemes (Halle and Stevens {10]). However, segmen-
tation-free recognition still seems to be a useful con-
cept if one is mainly interested in isolated word
recognition (Hill [12], White {39]).

Acoustic Recognizer

The role of the acoustic recognizer is to predict and
verify syllables and words based on the features pres-
ent in the incoming utterance, the present context,
and the lexicon. The structure and phonetic descrip-
tion of syllables and words in the lexicon is prespeci-
fied. An entry for a word in the lexicon contains the
phonemic spelling(s) of the word and annotations
that are used to describe expected anomalies that can-
not be predicted by rule from the phonemic spelling.
A more detailed description of the lexicon and the
preprocessing is given in Erman {6].

The acoustic recognizer has three sources of knowl-
edge available for the generation and verification of
hypotheses: acoustic, phonological, and vocabulary
restrictions. The acoustic knowledge appears in the
form of expected parameters (or features) for a pho-
neme in a neutral context. The phonological knowl-
edge appears in the form of a coarticulation model
that modifies the expected features based on context.
The between-word coarticulation effects have to be
determined wherever applicable through the use of
the “currently accepted partially recognized utter-
ance” (Fig. 2), which provides the boundary pho-
nemes. The vocabulary restriction appears in the
form of a valid subset of words in the lexicon that
contain a given sequence of features,

The acoustic recognizer uses these sources of knowl-
edge in two stages: the hypothesis and the verifica-
tion. The acoustic hypothesizer does not have any
knowledge of the syntax or semantics of the situa-
tion, but can use the gross features (such as /f/ of
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“bishop™) in the “partial symbolic utterance descrip-
tion” (Fig. 2} to retrieve those words of the lexicon
that are consistent within the features present.

The task of a verifier is to determine whether a
given hypothesis is consistent with the context pres-
ently available to it. For example, let us assume that
alternative hypotheses of the words “king’s,” “pawn,”
“bishop,” ‘“‘queen’s,” and “knight” have been made
in the context “king --- pawn - - -” (where “---”’ repre-
sents the hypothesized words) and that the word
actually spoken was “bishop.” Detailed verification,
by the acoustic verifier, of every phoneme of every
option word is not necessary. All that is needed, in
this example, are some simple tests that notice that
there is a strong fricative indicated near the middle of
the area of interest, which causes “pawn’ and
“knight” to be rejected, and some other simple tests
on the vowel portion, e.g., duration, high/low, and
front/back, which would indicate that both “queen’s”
and “king’s” are unlikely, whereas “bishop” is highly
likely.

A more detailed matching of features and the use of
coarticulation rules at the word boundaries may, of
course, be needed for other cases. Detailed matching
often implies generation of a test. For example, if the
verification to be made is among “sit,” “spit,” and
“split,”” the presence of /s/, /I{, /t/ and the transitions
between I/ and [t/ are irrelevant. What is needed is
the test for the presence or absence of a stopgap and
for the presence of /1/-like formant structure follow-
ing the stopgap.

Remark: That some form of hypothesization and
verification is needed seems to be recognized by
many researchers at this point. Halle and Stevens
{10] proposed synthesis and match as 2 means of
verification in their analysis-by-synthesis model. Hy-
pothesis and verification for isolated word recogni-
tion was used in the Vicens-Reddy system (Vicens
[38]). More recently, similar techniques have also
been used by Klatt and Stevens [15], Lindblom and
Svensson [18], Tappert et al, [36], and Itahashi et
al. [13].

Syntactic Recognizer

The role of the syntactic recognizer is to predict
phrases based on the syntactic structure of the lan-
guage to be recognized and the context. The pre-
dicted phrases induce (specify) words that might ap-
pear in that context. The grammar for the voice-chess
language is context free. The voice-chess grammar,
specified as a set of BNF productions, is given in Fig,
5. For example, in this grammar, “<move>" is de-
fined to be either “<movel>" followed by ‘“<check-
word>"" or ‘‘movel>."” The total number of differ-
ent utterances permitted by this grammar is about
five million.

The role of the syntax hypothesizer is to use the
syntactic source of knowledge to predict words. In
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1. <movex sim <movel> <check-word> 1 <movel>

2. «<movel> i:m <ragular-move» | <capiure> | <castle>

3. ccastles 3:= <castle-word> ON <uniroyai> SIDE
1 <castle-word> <uniroyai> SIDE

| <castle-word>

4. «<regular-mover i1:= <man-lot> <Move-uord> <egquare>

n

<capturer t1w <man-loe> <capture-uord> PAMN EN-PASSENT

| <man-lpc» <capture-word> <Man-locs
<castle-uprd> tr= CASTLE | CASTLES
<move-word> 1:= TQ | HOYES-TO } GOES-TD

<capture-word> ;:e TAKES | CAPTURES

t.ucu_um

<eheck-uord»  s3n CHECK MATE i CHECK

16. <man-loc> ;1= <man-spec> DN <pgudre> | <man-spec>

11. <man-spec> rre <uniroyal> cunipisce> PAHN
| <uniroyal> <piece> | <uniroyals paun
| cunipiecer paun | <man>

12. <sguare> i1 <unircyal> <piece> <rank» | <nopawn> <rank»

13. <wan> r:m KING | OUEEN | BISHOP | KNIGHT | RODOK | PALN
14. <uniroyal> sim KING | CUEEN | KING'S | GUEEN'S -

st= BISHOP ) KNIGHT | ROOK
} BISHOP*S 1 KNIGHT'S | ROOK'S

15. <unipiecas

16. <ncpaun> t1= KING | QUEEN | BISHOP | KN]GHT | ROOK

17. <piece> 11~ BISHOP 1 KNIGHT | ROOK

tiw ONE | THD | THREE | FOUR
| FIVE | SiX | SBEVEN | EIGHT

18. <rank»

Fig. 5. Voice-chess syntax,

hypothesization the syntax recognizer uses only very
local context to predict words. Predictions may be
made either to the right or the left of already existing
words. For example, if “--- moves-to ---” is given,
then words may be hypothesized to the left of
“moves-to” or to the right of “moves-to.” Hypoth-
esization uses only inexpensive methods, and often
generates words that would not fit in the complete
context of the sentence.

Traditional parsing schemes are not very useful in
generating hypotheses. Further, the syntax recog-
nizer must be capable of processing errorful strings
containing spurious words and repetition of words.
This implies that it must be capable of working both
forwards and backwards. This is achieved in HEAR-
say by the use of antiproductions.

Antiproductions act as a concordance for the gram-
mar giving all the contexts for every symbol appear-
ing in the grammar. They are used to predict words
that are likely to occur following or preceding a
word using only limited context. Fig. 6 gives anti-
productions for productions 1-6 of the grammar of
Fig. 5. These are produced automatically by a pre-
processing program. In this figure, the symbols in the
column labeled center are the entries in the concor-
- dance. Each symbol in the subset of the grammar ap-
pears in this column once for each occurrence of it in
the subset. The entries in the LEFT and RIGHT columns
denote symbols that can appear to the left and right
of the entry in the center column. When an 4 appears
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CENTER LEFT RIGHT HEAD

CASTLE T L <cant|e-uard>
CASTLES * + <castla-word>
EN-PASSENT PALN + <capture>

ON <castig-uord> <uniroyal> <castlex>
PALIN <capture-word> EN-PASSENT <capture>
SIDE <uniroyal> + <caatle>

SIDE <uniroyal> + <castla>
<movel> <check-uord> <maver
<movel> L t <wover

<check -uord> <movel> t <MOVEr
<regular-move> + + <movel>
<capture> * + «movel>»
«<castle> * + <movel>
<cantle-ugrd> + ON <castie»
<cast |e-uord> * <uniroyal> <castle> .
<cast|e-uword> *+ * «<cast |e>
<uniroyals> ON SIDE <castle>
<uniroyals <castte-word> S1DE ccastle>
<man-|{oc> L <move-uords> <regular-maves
<man-— |l oe> + <capture-mpords> <capture>
<man-loc> * <capture-uord> <captura>
<man-loc» <capture-usrd> L <capture>

<move-uord> <man-loc» <goplarax <regular-move>
<square> <move-Hord> <ragular-move>
<capture-uords <m#n- loc> PAN <capture>
<capturea-words <man- |oc> <man- loc> <capture>

Fig. 6. Antiproductions for a subset of the syntax of Fig. 5.
{The subset consists of productions 1-6.)

in the LEFT or RiGHT column, it indicates that the
original production did not have an entry to the left
or right of that symbol.

When the Lefr (or riGET) context given in an anti-
production is satisfied, then the riGur (or LEFT) con-
text is hypothesized for recognition. If the hypoth-
esized symbol happens to be a nonterminal, then all
the possible ferminal symbols that can appear at the
left of this nonterminal are hypothesized. Detailed
descriptions of the structure and use of antiproduc-
tions will be given in Neely {23].

The role of the syntactic verifier is to accept or dis-
card hypotheses using syntactic consistency checks.
This is usually a more expensive process than hypoth-
esization because it involves complete parsing of the
partially recognized sentences. The verifier may work
both on hypotheses that the syntactic hypothesizer
has generated, as well as those generated by other
hypothesizers.

Semantic Recognizer

The role of the semantic recognizer is to predict
concepts based on the semantics of the task and se-
mantics of the preceding utterance. A predicted
concept (a legal move for voice-chess) is used in con-
junction with the present context to predict a word
that might appear in the utterance. The semantics of
the task and the preceding utterances are captured
for chess by the current board position. The board
position for the utterance in discussion, “king bishop
pawn moves to bishop four,” is shown in Fig. 7.

HEARSAY has, as a subpart, a chess program {Gil-
logly [9]) that generates an ordered list of moves that
are possible in that situation. A partial list of legal
moves with numbers representing the likelihood of
occurrence is given in Fig. 8.
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Fig. 7. Board position for utterance in discussion,

KBP/KB3XKP/K4 L]

0P/Q2-04 S8
ON/ONL -083 43
KB/KB1-0B4 48
KN/KN1-K2 47
oP/Q2-03 46
KB/KB1-K2 45
Q/01-K2 4%
QBP/0BZ-084 43
0BP/0B2-083 42
K/K1-KBZ 41
K/K1-K2 48
XRP/KR2-KR4 39
KNP/KN2-KNG 38
ONP/ON2-ONG 37
DORP/ORZ-0R% 36
KN/KN1-KR3 35
KNP/KN2-KN3 34
QNP /ONZ-ON3 33
KRP/KRZ-KR3 32
0RP/0RZ-0R3 31
ON/0N1-0R3 38
KB/KB1 -ONECH 25
KBP/KB3-KB4 24
KB/KB1-0RE 12
KB/KB1-03 &

Fig. 8. Ordered list of legal moves supplied by the chess-play-
ing program for the board position of Fig. 7.

The semantic hypothesizer uses the ordered list of
moves for hypothesis generation. In our example the
hypothesizer would concentrate only on the ‘“non-
capture” moves that start with the word “king.” If
there are none, then there is an inconsistency in the
currently accepted partially recognized utterance.
This may be due to an illegal statement or incorrect
recognition. In the latter case, the partially recog-

bishap 62
knight Lr4
bishop's 44
raok 41
on 41

knight'a 38

ds hypothesized by sesmantic hy

Fig. 9. Words hypothesized by semantic hypothesizer,

nized utterance is modified by replacing the weakest
link by the second best choice for that position.

Fig. 9 gives the words hypothesized by the semantic
hypothesizer in the context of “king ---." Associated
with each hypothesis is a rating (ranging from 1 to
100) indicating the semantic likelihood of the hy-
pothesis. This likelihood is derived from the likeli-
hoods of the projected legal moves from which the
hypotheses are taken, and from intrasentence seman-
tic clues. The semantic hypothesizer uses word- and
phrase-level semantic consistency checks to restrict
hypothesization. The structure and the mechanism
used by the semantic hypothesizer are described in
Neely [23].

Control of the Processes

Since the different recognizers are independent, the
recognition overlord needs to synchronize the hy-
pothesis generation and verification phases of various
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processes. Synchronization ensures that hypotheses
generated by one process will be verified by all the
other processes in the subsequent time slice. Several
strategies are available for deciding which subset of
the processes generates the hypotheses and which
verify. At present this is done by polling the pro-
cesses to decide which process is most confident
about generating the correct hypothesis. In voice-
chess, where the semantic source of knowledge is
dominant, that module usually generates the hypoth-
‘eses. These are then verified by the syntactic and
acoustic recognizers. However, when robust acoustic
cues are present in the incoming utterance, the roles
are reversed with the acoustic recognizer generating
the hypotheses. .

The verification process continues until a hypothe-
sis is found that is acceptable to all the verifiers with
a high enough level of confidence. All the unverified
hypotheses are stored on a stack for the purpose of
backtracking at a later stage. Given an acceptable hy-
pothesis, rRover updates the currently accepted par-
tially recognized utterance and updates the partial
symbolic utterance description with additional fea-
tures that were discovered during the process of hy-
pothesis generation and verification. If the utterance
still has unrecognized portions of speech and if the
interpretation of the utterance is still unclear, then all
the active processes are reactivated to generate hy-
potheses in the new context. If there are no unrecog-
nized portions of speech in the utterance and the
sentence is uninterpretable, the knowledge acquisition
part of the system (unimplemented in the present
system and not shown in Fig. 2) is activated to up-
date the lexicon and the acoustic, syntactic, and/or
semantic rules.

Preliminary Resuits

The system described in the preceeding sections has
been operational since June 1972. We view HEAR-
say as a continually evolving system that is expected
to serve as a research tool for explorations in speech-
recognition research at Carnegie-Mellon University.
Fig. 10 gives some preliminary results of recognition
by the system. More comprehensive results contain-
ing time, accuracy, and error analyses will be given in
Erman [6] and Neely [23].

Discussion

Models of Speech Perception

This paper presents a model of speech perception
that has been arrived at not so much by conducting
experiments on how humans perceive speech but in
the process of constructing several speech-recognition
systems using computers. The emphasis has been on
developing efficient recognition algorithms, with little
attention to modeling of known human perceptual
behavior. The general framework (for a model) that
evolved is different from some previously proposed

5: Actually spoken
Recognized by HEARSAY

1)

-
v

t PALN TO KING FOR
s PAUN TO OUEEN FOUR

1 KNIGHT TO KING'S BISHOP THREE
: PAUN  TO QUEEN'S BISHOP THREE

B15H0P TO KNIGHT FIVE
: PAUN TO QUEEN THREE

D¢ DWW DA

1 KNIGHT TO QUEEN BISHOP THREE
3 KNIGHT TO QUEEN BISHOP THREE
S. S§: PAUN TO QUEEN FOUR
+ PALN TO OUEEN FOUR

nw

6. S: KNEGHT TAKES PALN
R

: KNIGHT TAKES PALN

Fig. 10. Some preliminary results from one run. (Approxi-
mately 4-7 times real-time processing on a PDP-10 computer.)

models by Liberman et al.,, [17] and Halle and
Stevens [10], which imply that perception takes
place through the active mediation of motor centers
associated with speech production. Our results tend
to support “sensory” theories advanced by Fant [71,
and others, in which speech decoding proceeds with-
out the active mediation of speech motor centers.

If one eliminates the synthesis part of analysis-by-
synthesis, then our model is most similar to that of
Halle and Stevens [10]. The important distinction to
remember is that once a hypothesis is generated, say
of the words “sit,” “slit,” and “‘split,” one should
never want to verify the hypotheses by generating
formant trajectories for the word or phrase. That
phonemes /s/, /If, /t{ occur in the hypothesized words
is no longer relevant. All that is needed is a verifica-
tion of the presence of stopgap and the /1/-like for-
mant transition preceding the vowel. Another limita-
tion of synthesis and match is that the noise might
swamp the finer distinction required, i.e., the variahil-
ity in speaker performance of /s/, /1/, [t! might over-
shadow the positive contributions of a /p/ or an .

Information-Processing Models

The model proposed in this paper raises several is-
sues that may be of interest to speech scientists and
cognitive psychologists interested in human speech
perception. We would like to propose that, in addi-
tion to stimulus-response studies and neuro-physio-
logical models, speech scientists should also make
extensive use of information-processing models in the
study of speech perception. The notion of an infor-
mation-processing model reflects a current trend in
cognitive psychology to view man as an information
processor, i.e., that his behavior can be seen as the
result of a system consisting of memories containing
discrete symbols and symbolic expressions and pro-
cesses that manipulate these symbols (Newell 126]).
The main advantage of this approach to speech per-
ception studies is that it permits a researcher to look
at the total problem of speech perception at a higher
functional and conceptual level than is possible with
the other two approaches. (To attempt to study the
total problem of speech perception by formulating a
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neurophysiological model would be like attempting
to understand the workings of a TV set by looking at
the flow of electrons through a transistor.)

One question that arises in this context is the na-
ture of serial and parallel processing mechanisms used
by humans. It is known that, at a higher problem-
solving level, a human being behaves essentially as a
serial information processor (Newell and Simon
[27]). It is also known that parallel processing occurs
at the preprocessing levels of vision and speech. What
is not known is whether there are several independent
processes or a single sophisticated process at the per-
ceptual level that can use effectively all the available
sources of knowledge.

The second question is how various sources of
knowledge cooperate with each other. There are
experiments (Miller and Isard {20], Collins and Quil-
lian [3]) that can be interpreted to show that percep-
tion is faster or more intelligible depending on the
number of available sources of knowledge. Any
model of speech perception must deal with the nature
and structure of the interaction between various
sources of knowledge. Earlier models tend to ignore
this question,

Summary and Conclusions

A casual reader of this paper would probably only
notice the superficial aspects of the system: that it
accepts voice commands to play chess, uses crude pa-
rameters, and is not very smart at using the acoustic-
phonetic and other sources of knowledge. That is
beside the point. The main contribution of this re-
search is to provide a model and a framework in
which the role of phonology, syntax, semantics, and
other sources of knowledge can be systematically
studied and evaluated. It is no longer necessary for
us to be content with vacuous statements about the
importance of gyntax or semantics.

We chose voice-chess as a task not because it ic im- -

portant to play chest with a computer over tele-
phone, but because chess provides a good area to eval-
uate our ideas about the role of various sources of
knowledge in speech perception. Chess plays the role
in our system that the fruit fly plays in genetics. Just
as the genetics of drosophils are studied not to
breed better flies, but to learn the laws of heredity,
80 we choose chess as a task because the syntax, se-
mantics, and vocabulary of discourse are well defined
and are amenable to systematic study.

Bimilarly, the acoustic parameters and phonologi-
cal, syntactic, and semantic rules currently used by
the HEARSAY system are not particularly important or
interesting. What is important to note is that while
each module is “stupid,” the system still works and
does do a creditable job in spite of its weaknesses.
The interesting features are the interaction and coop-
eration among various modules and the correction of
errors by various sources of knowledge.

The system described in this paper was demon-
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strated in June 1972, at a workshop on speech recog-
nition. It represents the first system to demonstrate
live, connected speech recognition using nontrivial
syntax and semantics. We expect to actively modify
the system to greatly increase its performance, as well
as use it as an experimental tool for studying speech
understanding, recognition, and perception.
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THE HEARSAY SPEECH UNDERSTANDING SYSTEM:
An Example of the Recognition Process

DR Reddy, L.D. Erman, R.D. Fennell, and RB. Neelys

Computer Science Departmentas
Carnegie-Mellon University
Pittsburgh, Pa. 15213

ABSTRACT

This paper describes the structure and operation of the Hearsay speech
understanding system by the use of a specific example iliustrating the various stages
ot recognition. The system consists of a set of cooperating independent processes,
each representing a source of knowledge. The knowledge is used either to predict
what may appear in 2 given context or to verity hypotheses resulting from a
prediction. Tha structure of the system is iliustrated by considering its operation in a
particular task situation: Voice-Chess. The representation and use of various sources
of knowledge are outlined. Preliminary resulls of the reduction in sesrch rasulting
trom the use of various sources of knowledge are given.

Keywords: spssch recognition, understanding, hypothesize=and-test.

INTRODUCTION

The factors influencing the structure and operation of a
speech understanding system are many and complex. The report
of Newell et al. {1971) discusses these issues in detail. Our own
goals and efforts in this area have besn described in several
earlier papers (Reddy et al, 1972). The goals for our present
effort were outlined in Reddy, Erman, and Neely (1970). The
initial structural description of the Hearsay system was given in
‘Reddy (1971). The modei and the system that evoived after
several design iterations were described in Reddy, Erman, and
Nesty (1972a)s The main additions to the initial proposed
system were in the specification of the interactions among
various sources of knowledge. In this paper, we describe the
structure and operation of the Hearsay system from a different
point of view, i.e., by considering a specific example 1o illustrate
the various stages of the recognition process.

Machine perception of speech differs from many other
problems in artificial intelligence in that it is characterized by
high data rates, large amounts of data, and the availabilily of
many sources of knowledge. Thus, the techniques that must be

* The general framework that evolved for the model is different
from some previously proposed models by Liberman et al.
(1962) and Halle and Stevens {1962) which imply that
perception takes place through the active mediation of motor
centers.  Our efforts tend {o support “sensory™ theories
advanced by Fant (1964) and others. If one maodifies the
"synthesis™ part of analysis-by-synthesis, then our model is
most similar to that of Halle and Stevens.

employed differ from other problem-solving systems in which
weaker and weaker methods are used to solve a problem using
less and less infarmation about the actual task. In addition, there
is a marked difference in the expectations for system
performance. In tasks such as chess and theorem-proving, the
human has sufficient trouble himself so as to make reasonably
crude programs of interest. Bul humans perform effortlessly
(and with only modest error) in speech or visual perception
tasks, and they demand comparable performance from a machine.
Thus, it is important that the structure and organization of a
system be such that it is not a dead-end effort, i.e, it should be
capable of approaching human performance without major
reformuiation of the problem solution. The Hearsay system effort
represents an attempt to produce one such system. The main
distinguishing characteristic of this system is that diverse sources
of knowledge can be represented as cooperating independent
parallel processes which help in the decoding of the utierances
using the hypothesize-and-test paradigm.

The system is designed for the recognition of connected
speech, from several speakers, with graceful error recovery,
performing the recognition in close to real-time. The structure
and implementation of the system are to a iarge extent dictaled
by these concerns. One feature that characterizes a speech
understanding system is the existence of errors at every level of
analysis. The errorful nature of processing implies that every
source of knowledge has lo be invoked to resolve ambiguities
and errors at every stage of the processing. One way to
accomplish this is through the use of the hypothesize-and-test
paradigm, where each source of knowledge can accept, reject, or
re-order the hypotheses produced by other sources of
knowledge. For example, in the Voice-Chess task, if the word
“captures” appears in a partially-recognized utterance, the

» Present address: Xsrox Palo Alto Research Center, Palo Alto, Ca. 94305,

s This research was supported in part by the Advanced Research Projects Agency of
the Department of Defense under contract no. F44620-70-C-0107 and monitored by
the Air Force Office of Scientific Research.




semantic source of knowledge can reject all the hypotheses that
do not lead to a capture move.

The Hearsay system is not restricted to any particular
recognition task. Given the syntax and the vocabulary of a
language and the semantics of the task, it attempts recognition of
utterances in that language. It is designed o serve as a
research tool in which the contributions of various sources of
knowledge towards recognition can be clearly evaluated. Since
each source of knowledge is represented as an indspendent
process, it can be removed without crippling the system.

Figure 1 gives an overview of the Hearsay system. The EAR
moedule accepts speech inpul, extracts parameters, and performs
some preliminary segmentation, feature extraction and labeling,
generating a "partial symbolic ullerance description™ ROVER
(Recognition OVERlord) controls the racognition process and
coordinates the hypothesis generation and verification (testing)
phases of the various cooperating knowledge processss. The
TASK provides the interface between the task being performed
and the speech recognition and generation {SPEAK-EASY) parts
of the system. SOL, the System OverlLord, provides the message
communication facilities for the system.

{chas p1agingd
L _program _ |

Figure 1: Structure of the Hearsay system.

AN EXAMPLE OF RECOGNITION

Here we will iliustrate the operation of the Hearsay system
by considering in detail the recognition process of an utterance
within a specific task environment: Voice-Chess. The task is to
recognize a spoken chess move in a given board position and
respond with the counter-move.

Figure 2 gives the board position and a list of legal moves in
that position at the time the move is spoken. The speaker,
playing white, wishes to move his bishop on gueen’s- bishop one
to king knight five. This is one of 46 different legal moves.
These moves have besn ordered on the basis of their goodness
in the given board position. This judgment was based on a task-
dependent source of knowledge available fo the program
{Gillogly, 1972). Note that the move chosen by the speaker was
only the fourth best move in thal situation.

Having chosen the move, there are many possible ways of
uttering the move. The syntax of the language permiis many
variations, usually of the form <piece> <action> <position> The
piece can have gualifiers o indicate the location. The action may
be of the form: "to”, "moves-to", “goes-to”, "takes”, "taptures”,
and so on. The position can be of the form: "king three”, "king
bishop four”, or "queen's knight five”, and se on. The actual
move spoken in this context was "hishop moves-~to king knight
five". Note thal "queen bishop on gueen bishop one” can be
specified as just "bishop” because there is no ambiguity in this
case.

Figure 3 shows the speech waveform of the ulterance with
manual segmentation, showing the beginning and ending of each
word and each phoneme within  the word. (The manual
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Figure 2: The chess board position and the ordered list
of legal moves for White.

segmentation and labeling indicated in this and succeeding figures
is for our benefit only -- it is not available to the system while it
is attempling recognition.) The utterance was about 2 seconds in
duration and the waveform is displayed on ten consecutive rows,
each row containing 200 milliseconds of the utterance. The first
line of text under each row cantains the word being articulated.
The word label is repeated for the duration of the word. Thus,
the waord “bishop" was arliculated for 400 milliseconds and
occupies the first two rows of the waveform. The second line of
text under each row contains the intended phoneme being
articulated. The phoneme {represented in IPA notation) is
repeated for the duration of the phoneme.

Several interesting problems of speech recognilion arise in
the context of recognition of this utterance. The end of Row 2 of
Figure 3 shows the juncture between “bishop"™ and “moves™
Note that the ending /p/ in "bishop” and the beginning nasal fraf
in "moves” are homorganic, ie., they both have the same
articulatory position. This resulls in the absence of the release
and the aspiration thal normaily characterizes the sound /el
Row 6 of Figure 3 illustrates a word boundary problem. The
endirg nasal of "king” and the beginning nasal of "knight” tend to
be arliculated from the same tongue position even though in
isolation they would have been articulated from two difterent
positions. This results in a single segment representing two
different phonemes in two adjacent words, Further, it is
impossible tc speci’y the exact location of the word boundary. In
the manual segmentation, the boundary was placed at an
arbitrary position. Another type of juncture problem appears on
Row 8 of Figure 3 at the boundary of "knight five™. The release
and aspiration of the phoneme /t/ are assimilated into the [t} of
“five".

Esature Extraction and Segmentation

The speech input from the microphone is passed through five
band-pass filters (spanning the range 200-6400 Hz) and through
an unfiltered band. Within each band the maximum intensity is
measured for every 10 milliseconds (the zero crossings are also
measured in each of the bands but they do not play an important
role in the recognition process al present). This results in a
vector of 6 amplitude paramelers every 10 milliseconds. These
paramelers are smoothed and log-transformed. Figure 4 shows a
plat of these parameters as a function of time for part of the
utterance of Figure 3. The lop Line shows the utterance spoken.
The second line of text indicates where the word boundaries
were marked during the manual segmentation process (this will
permit manual verification of the accuracy of the machine
recognition process in the later stages).

This vector of parameters (labeled 1, 2, 3, 4, 5, and U in
Figure 4} is, for each centisecond, compared with a standard set
of parameter vectors to obtain a minimum distance classificalion

(X
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Figure 3: Waveform of the utterance with the "actual” word and phoneme boundaries.
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Figurs 4. Parametric representation of the utterance showing the
results of feature extraction and segmentation

using a modified nearest-neighbor classification technique. The
sursose of ‘his operation is 10 assign a {single character) label to
each ceniisecond of speech using a compact pseudo-phenetic
notaticn represanting the actual local characterisiics of the
sssach signai. vhe fine of text labeled P in Figure 4 gives ike
c.zss tication for every 10-millisecond unit.

Tha ciassification of jabe's for each centisecond obtained by
this march procegurs (row P in Figure 4} is then used to specily
a lis7 of features, such as voicing and frication, whichk are then
used in the segmeniaiion cf the utlerance, shown in Figure 4.
The . boundaries of segments are indicaled by wverlical lines
through the parameters, and the letter at the center of eacn
segment (foliowing the row P in Figure 4} indicates the type of
segment that is present. The "A" indicates a sonorant segment,
je., all the voiced unfricated segmenis; the "S" indicates a
fricated segment, and the period (") indicates a silence segmenrt.
The first use of an acoustic-phonetic source of knowledge can be
seen in the handling of the "king knight™ word boundary problem
mentioned earlier. A long sonorant segment is subdivided into
two segmants to indicate the presence of two different syiiables,
The syilabie iuncture is determined in this case by the presence
of & s:gnificant iocal minimum in an overai intensiiy pict (Line
labeied U on Figure 4).

Iha Racognition Process

The Hearsay system, at present, has three cacperating
independent processes which help in the decoding of the
utterances. These represent acoustic, syntactic, and semantic
sources of knowledge:

1. The azouslic-phonetic domain, which we refer to as
just acoustics, deals with the sounds of the language
and how thay reiate to the speech sighal produced
by ine speaker. This comain of knowledge has
traditionally been the only one used in most previous
attempts at speech recognition.

2. The syniax domain deais with the ordering of werds
in the utterance according to the grammar of the
input language.

3. The semantic doman considers the meaning of the
uiterances cf the language, in the context of the task.

The actual number and nature of these sources of knowledge is
somewhat arbitrary. What is important to notice is that there can
be several cooperating independent processes.

These processes cooperate by means of a hypothesize-and-
test paradigm. This paradigm consists of cne or more sources of
knowledge [ooking at the unrecogrizec portion of the utterance
and generating an ordered iist of hypotheses. These hypotheses
may then be verified by one or more of the sources of
knowledge; the verification may accept, reject, or re-order tr!e
hypotheses, The same source of knowledge may be usgd in

differant ways both ioc generate hypotheses and to verify (or
reject) hypotheses.

We win Husirate this recognition process by following
through various sisges of recognition for the utterance given in
Figures 3 and 4. Figures 5 !nrougn 12 illustrate several of these
stages of the recognition. In aach figure, we have four kinds of
information in addition o wha: was shown in Figure 4: the
currant sentence hypothesis {immediately below the P and
segmertation rows), the processas acting on the current sentence
kypothesis and their affect {(e.g., SYN HYPOTHESIZED., ACO

EJECTED..), the acceptabia opiion words with their ratings and
word boundaries {e.g, T..7 300 Rook’s), and the four best
sentence hypatheses which resuit by adding the possible option
words to the current best sentence hypothesis. When there are
more than eight option words, only the best eight are shown.
When there are more than four sentence hypotheses, only the
best four are shown. The symbol <UV> within the current
sentence hypothesis gives the location of the set of new words
being hypcthesized and verified. The "t..1" arrows indicate the
possible beginning and ending for each cption word.

Figure & shows ize first cycle of the recognition process. At
this point none of the words in the sentence have been
recognized and the srocessing begins left to right. The Syntax
module chooses to hypothesize and generates 13 possible words,
implying that the senlence can begin with .“rook’s", “rook”,
“queen’s”, etc. Of these, the Acoustics module absolutely rejects
the word “bishop’s™ as being severely inconsistent with the
acoustic-phonetic evidence, The Semantics module rejects
"castle™ and “castles" as being illegal in this board position. The
remaining 10 words are rated by each of the sources of
knowledge. The composite rating and the word beginning and
ending markers for the eight best words are shown in Figure 5.
The words “rook”, "rock’s", "gueen’s” and "queen” all get a rating
of 500. "Bishop”, ire correct ward, gets a rating of 513. These
words ara then ussc to form the beginning sentence hypotheses,
the top four of which are shown at the bottom of Figure 5.

Figure 6 shows the second cycle of the recognition process.
The top sentence hypothesis is “bishop —--". An atlempt is being
made tc recognize the word follawing “bishop™ Again Syntax
generaies the hypotheses. Given that “bishop” is the preceding
worc, the syntactic source cf knowledge proposes oniy 7 options
out of the -possible 31 words in the lexicon -- a reduction in
search space by a factor of 4. Of itnese possible 7 words,
Acoustics rejects “captures" arc Semantics rejects none. The
remaining six words are ratad by each of the sources of
knowledge and a composite rating along with word boundaries is
shown in Figure 6 for each of the acceptable words ("to” has a
rating of 443, etc.). The correct word, “moves-ta”, happens to
get the highest rating of 525. The new top sentence hypothesis
is "bishop meoves-to ---", with a composite sentence rating of
547.

Figure 7 shows the third cycle of the recognition process.
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Given the top sentence hypothesis "bishop moves-to ---", the
Syntax module hypothesizes 7 option words. None of these were
rejected by Acoustics or Semantics. "King” and "king’s™ both get
the highest score of 513. The first error in the recognition
process occurs at this point. As new sentence hypotheses are
created based on the ratings of individual words, both "bishop
moves-to king’s ---" and “bishop moves-to king ---" have the
same rating, with the former appearing at the top of the list. At
this point it is instructive to see why the arror was made in the
first place. The phonemic description of "king’s" causes a search
for a stop followed by a vowel-like segment followed by a stop
and fricative. This sequence of segments occurs in "king knight
five" as can be seen from Figure 4 (improvemsnts currently
being made 1o the system will resuil in "king’s" getting » much
lower score). Tha important thing 1o observe is how the system
recovers from errors of this type.

Figure 8 shows the system altempting to associate a
meaningful word to the unverified part of the utterance, ie., the
falv/ part of the word “five” in the original utterance. Syntax
proposes 3 possible option words (out of a possible 31, giving a
factor of 10 reduction). One is rejected and the other two get
very low ralings. The corresponding sentence hypotheses -aiso
get low compasite ratings and end up at the bottom of the stack
{not visible in Figure 8).

Now we see an interesting feature of the system. In the
preceding cycle (Figure 8} Syntax generated the hypotheses. If
is possible that that source of knowledge is incomplete and did
not generate the correct word as a possible hypothesis.

‘Therefore, in this cycle (Figure 9), the Semantic module is given a-

chance to hypothesize. It hypothesizes '8 option words (a
reduction of search by a factor of 3} all of which are rejected by
Syntax and Acoustics. When both attempts to make a meaningful
completion of the ulterance fail, this particular sentence
hypothesis, "bishop moves to king’s--", is removed from the
candidate list.

Now the top sentence hypothesis is "bishop moves-to king--"
{Figure 10). Syntax hypothesizes 11 option words. Acoustics
rejects six of them and Semantics rejects two. Of the remaining
words, the correct word, "knight®, gels the second best rating
after "bishop™. Again here is an errorful path, because the top
sentence hypothesis now happens to be "bishop moves-to king
bishop ---*. This sentence hypothesis is rejected immediately in
the next cycle because there is no more utferance to be
recognized and “bishop moves-to king bishap™ is not a legal
move. Note that the correct sentence hypothesis is not at the
top of the stack. Hs rating of 550 is noi as good as "bishop
moves-to king ---" {see Figure 10},

The processing in the next cycle is iliustrated in Figure 11.
Note that in Figure 10, this same sentence hypothesis was used
when the Syntax module hypothesized. Now Semantics is given
an option to hypothesize and proposes 3 words. Al of these are
rejected by Syntax and Acoustics.

Finally, the correct partial sentence hypothesis, “bishop
moves-to king knight ---", gets to the top (Figure 12). Syntax
hypothesizes 17 option words. Of these Semantics rejects 16 as
being incorrect, leaving only "five” as a possibility. This results
in the correct complete sentence hypothesis of "bishop moaves-to
king knight five”. But the composite rating for this senlence is
only 545 and there are other partial sentence hypotheses with
higher ratings. At this point, the system cycles sight more times
before rejecting all of them and accepling the correct sentence
hypothesis.

Figure 13 shows the accuracy of the syslem in recognizing
some typical sentences. An attempt was made 1o estimate the
effect of syntax and semantics. Using Syntex only, the average
number of words analyzed was reduced to 9.4 out of the possible

R &

31 words in the lexicon -- a reduction in search space by a
factor of 3. Using Semantics only, the reduction of search space
was about the same. Using both knowledge sources results in a
raduction in the search space by a factor of 5.

OKEN
/RECOGNIZED (i1 not compeletsly correct)
pawn to quessn four
pakn to queen bishop four
paun to king four
‘ knight to quasn bishep thrae
bishop takes pawn

quasn takes quesn on guaen four
{geve up after 48 msconds of computation)

bishop to queen knight threse

bishop to king thrae
bishop to xing five

cagties queen side
casties quesn’s gide {understood corrasctly)

pawn to bishop thres

paun takes knight

knight to quesn five

knight takes knight

bishop to king rock six

rook to gquesn three

knight to raok thres

rook on rook one to quasn ona

rook on 'qu--n one takes rook on gquesn thres
rook on quesh one to king rook one check

Knight's paun takes bishop

19 utterances trisd:
15 recognized correctly, 16 understood corrsctly. 1 conceded.
Mean computation time per uttarance: 10.1 sec. (PDPLE ~ KILD)

Figure 13: Examples of results for one run.

SOURCES OF KNOWLEDGE:
Their Represantation and Use in the Hearsay System

Several sources of knowledge are used in the Hesarsay
system at preseni: speaker- and environment-dependent
knowledge, acoustic-phonetic rules, vocabulary restrictions, and
syntactic and semantic knowledge. The knowledge used at
present represents only a smsll part of ali the available
knowledge. We expect to be adding to the knowledge base of
the system for many years to come. The difficulties in
representation and use of knowledge within the system are
manitold. Even when rules exist which express pertinent
knowledge, their applicability seems very limitad and the effort
involved to mzke effective use of them within the system is very
large. Rules that exist are scattered in the iiterature. Many have
not been written down and exist only in the heads of some
scientists, and many are yet to be discovered. In this section, we
will restrict ourselves ta the discussion of the knowledge that is
incorporsted into the present Hearsay system.

Spaakar and Enviranmsnt Depandent Knowledga

The characteristics of speech vary, depending on the
spesker, age, sex, and physical condition. In addition, the
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Figure 11: Seventh stage of the recognition process. Figure 12: Eighth stage of the recoghition process.




characleristics of the ervironment {such &s uackground noise)
and the characteristics of the transducer {such as the frequency
response characteristics of the microphone) also cause variability
in speech characteristics.

In the Hearsay syslem an allempl is made to correct for
{hese variables through the use of a PP table. This table
contains a standard set of parameters for various phones uttered
by the speaker in a neutral phonelic context. This set of
parameters also accounts for the characteristics of the room
noise and the characteristics of the microphone in that the
neutral phones were vttered in the very same environment. A
complete list of the clustars used and the details of the spesaker
and environment normalization are given in Erman (1873).

Acoustic-Phonstic Knowladge

This knowledge is used in several placas within the system to
perform different functions. Knowledge related to syllabic
structure is used in the segmentalion. For each segment,
knowledge related to voicing, frication, and syllable junction {a
local minimum of energy) is used to assign lsbels to each
segment. An example of segmentation and labeling obtained by
this type of knowledge is given in Figure 4.

The acoustic-phonetic knowledge is used in the recognition
process in two ways: (o generate hypotheses about possible
words that may be present in the incoming utterance; and to
reject, accepl, or re-order the hypotheses generated by other
sources of knowledge.

The hypothesization is based on the fact that certain sounds
within an utterance, e.g., stressed vowels, sibilants, and unvoiced
stops, can usually be uniquely recognized. These features of the
incoming utterance can then be used as an acoustic-phonetic
filter on the lexicon to hypothesize only those words that are
appropriate in this acoustic context.

When the acoustic-phonelic knowledge is used to verify
hypotheses, it performs a more thorough analysis. Given 2
hypothesized word, its phonetic description is located in the
texicon. This descriplion is used to guide the search for the
word by means of phoneme procedures. That is, the expected
characteristics of a given phoneme in various contexts are
represented as a procedure; this procedure is activeted to see if
the expected features are present, and o provide a confidence
rating based on the acoustic evidence. There are sevaral
increasingly more sophisticated verification procedures that csn
be used te verify proposed hypotheses. These sophisticated
procedures are oniy invoked if word ambiguity exists at the
praceding level

Syntactic and Semantlc Knowledge

Conventianal parsing techniques ars not very useful to direct
the search within a speech understanding system. The
recognizer must be capesble of processing errorful strings
containing spurious and repsated words. This impliss that the
parssr must be capable of starting in the middie of the utterance
whers a word might be recognized unigquely and parse both_
forwards and backwards. The goal of parsing is not so much to
gonerats a parss tree, but to predict what lerminal symbol might
appear to the left or to the right of s given context.

The predictive parsing for hypothesization is achiaved in the
Hearsay system by the use of snti-productions. Anti-productions
act as a concordance for the grammar giving all the contexts for
every symbol appearing in the grammar; they are gensrated from
a BNF description of the language to be recognized. The anti-
productions are used to predict words that are likely to occur

following or preceding a word using only a limited context.
Examples of anti-productions and their use are given by Neely
(1973). The role of the syntactic verifier is to accept or discard
hypotheses by using syntactic consistency checks based on the
partial parse of the utterance. While the knowledge used for
hypaothesization and verification are the same, the representation
and the mechanisms used in the hypothesizalion and verification
are different. Figures 5 and 6 give examples of constraints
provided by the syntactic knowledge during hypothesizatidn.
Figure 9 illustrates its use in verification.

The semantic source of knowledge for Voice-Chess is based
on the semantics of the task, the current board position, and the
likelihood of the move. This knowledge is used to predict likely
legal moves; ‘hase moves are then used in conjunction with the
partially-recognized utterance to predict a word that might
appear in the utterance. The same knowledge is also used to
verify hypotheses generated by cther sources of knowledge.
Figure 9 illustrates the use of semantic knowledge 1o generate
hypotheses. In the conlext of “bishop moves-to king™, Semantics
hypothesizes nine possible words. It hypothesizes all the words
that might appear in the utterance in positions allowed by the
semantic knowledge, given the partial recognition, Figure 12
shows the uss of Semantics in the verification. Syntax
hypothesizes 17 possible words. The semantic knowledge, given
the partisily recognized utterance "bishop moves to king knight®,
indicates that only "five” is legal in that context by rejecting ait
others. ’

SUMMARY.

This paper reports 3. research in progress on the Hearsay
speech understanding system. The system has been operational
since June, 1972. At present we are attempting to improve the
accuracy and performance of the system by sdding to and
improving the knowledge base. This is being done by an analysis
of errors made by the system on seven ssts of data from tive
male speakers in four different task domains. This process of
modification and improvement is expected to continue for several

. years, using increasingly complex vocabularies, syntax, and task

environments. The Hearsay system willi be used primarily as a
resaarch loo! to evaluate the contributions of verious sources of
knowledge, as well as serving as an information processing model
of speech perception.
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ABSTRACT

This paper considers various factors affecting system organization for speech
understanding research. The structure of the Hearsay system based on a set of
cooperating, independent processes using the hypothesize-and-lest paradigm is
presented. Design considerations for the effective use of muitiprocessor and network
architectures in speech understanding systems are presented: control of processes,
interprocess communication and data sharing, resource allocation, and debugging are

discussed.

Keywords: spesch recognition, cpaech understanding, system organization, networks,
multiprocessors, parallel processing, resi-lime systems, hardware for Al, software for AL

INTRODUCTION

System organizations for speech understanding systems must
address many problems: effective use of multiple sources of
knowledge, anticipation and goal-direciion in the analysis of the
incoming utterance, real-time response, continuous menitoring of
input device(s), errorful nalure of the recognition process,
exponential increase of processing requirements with the
increase of desired accuracy, and so on. A particular model of
speech perception (Reddy et al, 1973) which attempis to scive
the above problems involves the use of cooperating independent
processes using a hypothesize-and-test paradigm. This paper
examines the effect of the problem constraints and the model on
system organizations, presents the structure of a system
currently operational on a PDP-10 compuler, and discusses the
implicetions of multiprocessor and network architectures.

Unlike many other problems in artificisl intslligencs, speech
undersianding systems are characterized by the availability of
diverse sources of knowledgs, e.g., acoustic-phonetic rules,
phonoclogical rules, srticulatory models of speech production,
vocabulary and syntactic consiraints, semantics of the task
domain, user models, and s0 on. A major problem, then, is to
develop paradigms which can make use of all the available
sources of knowledge in the problem solution. At the same time,
absence of one or more sources of knowledge should not cripple
the system. Suppose each source of knowledge is represented
within the system as a process. In order io remove or add
sources of knowledge, each process must be independent, i.e., it
must not require the presence of olher processes in the system.
But at the same time each process must cooperate with the other

processes, i.e, it must be able to effectively use the information
gathered by them about the incoming utterance. Thus, a major
design step is to establish what information is to be shared
among processes and how this information is to be communicated
so as to maintain the independence of individual processes while
still allowing for necessary process cooperation.

Knowledge available in the acoustic signal represents only
one part of the total knowledge that is brought to bear in
understanding a conversation, A good example of this is when
one is interrupted by an appropriate response from the listener
to a question that is as yet incomplete. In general, a human
listener can tolerate a great deai of sloppiness and variability in
speech because his knowledge base permits him to eliminate most
of the possibilities even as he hears the first law wards of the
utterance (if not before!). We feel that this notion of anticipation,
prediction, and hypothesis generation is essential for machine
perception systems as well. In general, we expect every source
of knowledge to be able to generate hypotheses in a given
context, or verify hypotheses generated by others using
different representations of knowledge, if necessary. The
implication is that knowledge processes be organized within the
system so as to reduce the problem of recognition and
understanding to one of prediction and verification.

In tasks such as chess and theorem-proving, the human has
sufficient trouble himself so as to make reasonably crude
computer programs of interest. But, because humans seem to
perfaorm effortlessly {and with only modast error) in speech (and
visual) perceplion tasks, similar performance is expected from
machines, ie, one expects an immediate response and will not
tolerate any errors. To equal human performance, a speech
understanding system must be able to understand trivial

* This research was supported in part by the Advanced Research Projects Agency of
the Department of Defense under coniract no. F44620-70-C-0107 and monitored by

the Air Force Office of Scisntific Ressarch.



questions as soon as they are uttered. This implies that various
processes within the system should be allowed to operate as
soon as there is sufficient incoming data, without waiting for the
completion of the whole utterance. If the processes within the
system are independent and unaware of the existence of each
other, then the system must provide facilities for activation,
termination, and resource allocation for each of the processes.
Further, if a process can be deactivated before it reaches a
natural termination poin!, provision must be made to preserve the
state of the process until it is reactivaied. Also, it is necessary
to provide interlocks on the data thal are shared among many
processes.

This has several implications for system organization. The
system mus! monitor the input device continuously to determine
whether speech is present; this requires non-trivial processing.
If the system is unable to process the incoming data, automatic
buffering must be provided. If the system is to run on a time-
sharing system, provision must be made to ensure that no data is
lost because the program is swapped out for a period of time. If
the speech understanding system is to consist of a set of
cooperating independent processes, it is further necessary that
they be able to be interrupted at unpreprogrammed points -- if
the microphone monitoring program is not activated in time to
process the incoming utierance, it could lead to irrevocable loss
of data. These considerations iead to wo additional requirements
that are not commonly available on existing time-sharing systems,
viz., process-generated interrupts of other processes and user
serviting of interrupts.

One of the characteristics of speech understanding systems is
the presence of error at every level of analysis. To control such
errors and permit recycling with improved definitions of the
situation, one uses techniques such as feedforward, feedback, and
probabalistic backiracking. If such fachities do not exist within
the system, they have to be programmed explicitly.

Speech, by i1s nature, appears to be computer intensive, A
substantially  unrestricted sysiem capable of reliably
understanding connected speech ot many speakers using a jarge
vocabulary is likely !o require systems of the order of a
proposed Al machine (Bel!, Freeman, et at, 1971a), i.e, processing
power of 10 {c 100 million instructions per secona and memory
of 100 to 1000 million bits.x+ To obtain such processing power, it
appears necessary fo consider multiprocessor architectures.
Decomposition of speech processing systems to effectively use
distributed processing power requires caretful consideration even
with primitive systems. Qur model of cooperating independent
processes, each representing a source of knowledge, leads 1o a
natural decomposition of the algorithms for sucth machine
architectures.

THE CURRENT Hearsay SYSTEM

In this section we briefly descrive the Hearsay speech
understanding system as it now exists at C-MU. (More detailed
descriptions of the system are given in Reddy et al, 1973,1973a
(this volume); Erman, 1973; and Neely, 1973) We shall stress
those aspects of its crganization which are responsive to the
constraints and modet outlined above. This system represents a
first attempt to soive thase problems; thus, some cf the
constraints are only partially or poorly met, while others are
satisfied in a more constricted way than necessary. We shalt
point out these limitations as they are described; later sections
on closely-coupled and loosely-coupied processor network
architectures describe possible corrections and improvements of
the sysiem.

* Smaller and substantially cheaper systems can be built to
perform useful but restricted speech understanding tasks.
E
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The Hearsay system is implemented as a small number of
paraliel coroutines (see figurs). Each coroutine (module) is
realized as a separate job in the PDP-10 time-sharing system;
thus the time-sharing monitor is the primary scheduler for the
modules. In general, the modules may achieve a high degree of
(pseudo-) parallel activity (through the use of shared memory
and a flexible inter-process message systems), but, in practice,
we limit the paratlelism to a very modest amount. This limitation
is imposed for two reasons: firsl, since the PDP-10 is a
uniprocessor system, there is nothing to be gained (in the time
domain) by increasing the parallelism; and, second, the greater
the amount of parallelism, the more difficult it is to controt and
debug the programs within a time-sharing system that is not
designed for cooperating processes {jobs).

flassaye Communication
and
Shared Memory

PRI S Y

Spasch
Output ter

Decomposition of processes in the current Hearsay system.

The model of recognition specifies that there be separate
processes, each representing a different domain of knowledge.
We have chosen three major domains of knowledge: acoustic-
phanetics, syntax, and semantics:

1. The acoustic-phonetic domain, which we refer to
as just acoustics, deals with the sounds of the
language and how they relste to the speech signal
produced by the speaker. This domain of
knowledge has traditionally been the only one
used in most previous attempts at speech
recognition.

2. The syntax domain deals with the ordering of

words in the utterance according to the grammar

of the input fanguage. .

The semantic domain considers the meaning of the

3.
utterances of the language, in the context of the
task that is specified for the spsech
understanding system,
These processes, according to ths model, are lo be

independent and removable; therefore the functioning (and very
existence) of each must not be necessary or cruciat to the others.
On the other hand, the model also requires that the processes
cooperate and that the recognition should run efficiently and with

+ The facilities provided for inter-job control and communication
are similar to those developed for the Stanford Hand-Eye
system {Feldman and Sproull, 1971).



good error recovery; these diclates imply that there be a great
deal of interaction among the processes. Thus we ssem to have
opposing requirements for the sysiem. Thease opposing
requirements led to the design of the following structure:

Each process interfaces externally in a uniform way
that is identical across processes; no process knows
what or how many other recognition processes exist.

A mediator, ROVER (Recognition OVERlord), handles the
interface to each of the processes and thus serves as
the linkage connecting the processes; the processes
are called ROVER's "sons.”

The interface is implemented as a global data structure which
is maintained by ROVER. Each of ROVER's sons puts information
into this data structure in a uniform way. Each may access
information submitted by its brothers, but in a manner which
leaves the source of that information anonymous. This
techanism is anaiogous to a bulletin board on which messages
can be left by several people and for which there is a monitor
who accepts the message and arranges them in appropriate
places on the board for others to react.

This anonymous interface structure is appropriate only if the
global data structure can be designed in such a way as to allow
the processes to communicate meaningfully; ie. there must be a
common language which allows them to transmit the kind of
information they need te help each other to work on the problem.

“We resolve this problem by using the word as the basic unit of
discourse among the processes.

The basic element of the globai data structure is the word
hypothesis which represents an assertion that a particular word
(of the input language lexicon} occurs in a specified position in
the spoken input. A sentence hypothesis is an ordered linear
sequence of word hypotheses; it represents an assertion that the
words occur in the sentence in the order that the word
hypotheses appear in the sentence hypothesis. In addition, the
unique "word™ FILLER may appsar as a word hypothesis; this is a
placeholder and represents the assertion that zero or more as
yet unspecified words occur in this position in the spoken
sentence. In general, there may be any number of sentence
hypotheses existing at any one time.

The interactions among the source-of-knowledge processes
are carried out using the hypothesize-and-test paradigm
prescribed by the model. In general, any process may make a
se! of hypotheses about the ulterance; all the processes
(including the hypothesizer) may then verity (i.e. reject, accept,
or re-order) these hypotheses. In particular, hypothesization
occurs when a recognition process (Acoustics, Syntax, or
Semantics) chooses a FILLER word from a senience kypothesis
and associates with it one or more option words, each of which it
asserts is a candidate to replace all or part of the FILLER.
Verification consists of each process examining the option words
and rating them in the context of the rest of the santence

" hypothesis,

Several restrictions have been placed on the implementation
of this general scheme. First, at any time only one part of the
shared, global data structure (ie, one sentence hypothesis) is
accessible to the processes for hypothesization and verification.
Second, the processes go through the hypothesization and
verification stages (and several other subsidiary stages) in a
synchronized and non-interruptable manner. Finally, only one
process is allowed to hypothesize at any one time. Again, these
restrictions were imposed both because parallelism on a
uniprocessor does not actomplish any throughput increase and
because the available programming and operating systems make a
more general impiementation difficult to specify, debug, and
instrument.  These restrictions are mitigated somawhat by
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carefully adjusting the time grain of ‘he processing so that each
non-interruptable phase is not “excessively large.”

Each sentence hypothesis has a confidence rating associated
with it which is an estimate of how well it describes the spoken
utterance. This rating is calculated by ROVER, based on
information supplied by the recognition processes. Errors in
processing become evident when the overall rating given o a
sentence hypothesis begins to drop; at that point, attention is
focused on some other sentence hypothesis with a higher rating.
This switching of focus is the mechanism that provides the error
recovery and backtracking that is necessary in any speech
understanding system.

CLOSELY-CQUPLED PROCESSOR SYSTEM ORGAMIZATIONS

As discussed in the introduction, in order to do real-time
speech understanding a substantial amount of computing power is
required. Recent trends in technology indicate that this
computing power can be economically obtainad through a closely~
coupled network of "simple” processors, where these processors
can be interconnected to communicate in a variely of ways (eg,
directly with each other through a highly multiplexed switch
connected to a large shared memory (Bell et al, 1971), or
through a regular or irreguiar network of busses (Bell st al.,
1973)). However, the major problem with this network approach
to generating computing power is finding algorithms which have
the appropriate control and data structures for exploiting the
parallelism available in the network. The model for a speech
understanding system as previously discussed, which is
decomposed into a se! of independent processes cooperating
through a hypothesize-and-test paradigm, represents a natural
strycture for exploiting this network parallelism.

There exist three major areas for exploitation of parallelism

in the structure of this speech understanding system:
preprocessing, hypothesization and verification, and the
processing specific to each source of knawiedge. The

preprocessing task involves the repetition of a sequence of simple
transformations on the acouslic data, eg., detection of the
beginning and end of speech, amplitude normalization, a simple
phoneme-like labeling, smoothing, ete. This sequence of
transformations can be structured as a pipeline computation in
which each transformation is a stage in the pipe. Thus, through
this pipeline decomposition of the preprocessing lask, a limited
amount (i.e., 4) of parallel activity is generated.

The hypothesize-and-test paradigm for sequencing the activity
of the different sources of knowledge can also be structured so
as to exhibit parallelism, but the amount of parallelism is
potentially much greater. This parallel activity is generated by
the simultaneous processing of multiple sentence hypotheses and
the simultaneous hypothesization and verification by all sources
of knowledge. The simultaneocus processing of multiple sentence
hypotheses, rather than processing just the currently most likely
candidate, can concepiually introduce unnecessary work. Bul in
practice, because of the errorful nature of the processing, there
may be a considerable amourt of necessary backtracking to find
the best matching sentence hypothesis. It is appropriate to
quote a conjecture of Minsky and Papert (1969, Section 12.7.6)
on this point:

[While for the exact match problem] relatively small
factors of redundancy in memory size yieid very farge
increases in speed, . . . [for the best match problem ].
.. tor large data sets with long word lengths there are
no practical alternatives to large searches that inspect
large parts of the memory.

Thus, the parallel activity generated by simultaneous processing
of more than one sentence hypothesis can result in a



proportional  speed-up of {he  recognaition  processs
Correspondingly, simultanecus hypothesization and verification
by all sources of knowledge aisoc resuits in a proportional speed-
up of the recognition process because sach source of knowladge
is independent and is designed so that its knowladge contirbution
is additive.

Finally, the verification algorithm of each source of knowledge
can be decomposed into a set of parallel processes in two ways:
The first kind of decomposition is based on tha fact that
verifications are performed on a set of option words rather than
a single word at a time. Thus, for each source of knowledge
there can be multiple instantiations of its verification process,
each operating on a different option word. The second kind of
decompasitlion involves the paralielizing of the verification
algorithms themseives; thus, each instantiation of a verification
process may itself be composed of a set of parallel processes.
However, this set of instantiations may not be totally independent
because the rating produced by the verification process may be
dependent on the particular set of option words to be verified
and also on the local data base which is common to all the
instantiations. For example, the acoustic verification process is a
hierarchical series of progressively more sophisticated tests.
The first few levels of testing look enly at the context of a single
option word, while the more sophisticated tests compare one
option word against another. Thus, only at the first few levels of
tests can the acoustic verification algorithm be paralietized in a
straightforward manner.

The parallelism generated by parallelizing the hypothesize-
and-test control structure and the verification processes are
multiplicative in their paraliel activity {i.e. performing in parallel
the updating of n sentence hypothesis where sach hypothesis
invokes m verification processes and each verification process
operates on o option words leads to a potential parallelism of
n¥m%0). This parallelism, together with the pipeline parallelism of
the preprocessing, leads to what appears to be a large amount of
potential parallelism to be exploited by a closely-coupled
network. However, it is still not clear just how much potential
parallel activity exists over the entire recognition system; nor is
it known how much of this potential will be dissipated because of
software and hardware overhead.

In.order to answer these questions, a parallel decomposition
of the Hearsay speech understanding system is now being
implemented on C.mmp, a closely-coupled network of PDP-11's
which communicate through a large shared memory (Bell et al,
1971). The C.mmp hardware configuration can contain up to 16
PDP-11"s; the highly multiplexed switch that connects procassors
to memory permits up to 16 simultaneous memory references if
these references are not to the same memory module. Thus, if
processors are referencing different memory modules, then each
processor can run at full speed. In addition, C.mmp can be
configured for a specific application (e.g., speech} by replacing a
processor by a special purpose hardware device which directly
accesses memory {e.g., a signal processor).

The HYDRA software operating system (Wulf, 1972), which is
sssociated with C.mmp, provides an appropriale kernet set of
facilities for implementing the parallel version of the speech
system. These facilities permit control of reai-time devices,
convenient building of a tree of processes, message queues and
shared data base communication among processes; user-defined
scheduling strategies, arbitrary interruption of running processes,
and dynamic creation of new processes. Building up trom this
base, a debugging system will be constructed which, in addition
to the normal fealures, will permit the recording of all
communication among processes, the tracing of all process

* Simulation studies are currently being carried out on evaluating
this speed-up factor. These studies are based on data
generated from the current version of the Hearsay system.

activity, and the monitoring of global variables (including a
recording of which processes have modified them). These
additional capabilities are crucial for isolating errors and
understanding the dynamic behavior patterns of the parallel
system, B

The major software problem to be investigated in this
parallel implementation of the Hearsay system is how {o
efficiently map virtual parallelism {process activily} inte actual
parallelism (processor activity). This mapping problem in turn
centars on three design issues, each of which relates to how
processes interact:

1. the design of the interlock structure for a shared
data base,

2. the choice of the smaliest computational grain at
which the system exhibits paraliel activity, and

3. the techniques for scheduling a farge number of
closely-coupled processes,

The first design issue is important because in a closely-
coupled process structure many processes may attempt to access
a shared data base at the same time. In a uniprocessor system,
the sequentialization of access 1o this shared data base does not
significantly affect performance because there is only one
process running at a time. In a multiprocessor system, however,
if the interlock structure for a shared data base is not properly
designed so as to permit as many non-interfering accesses as
possible, then access to the shared data base becomes a
significant bottleneck in the system’s performance (McCredie,
1972).

The second issue relates to how closely-coupled processes
can interact. If the grain of decomposition is such that the
overhead involved in process communication is significant in
relation to the amount of computation done by the process, then
the added virtual parallelism achieved by a finer decomposition
can decrease, rather than increase, the performarce of the
system. Thus, understanding the relationship between the grain
of decomposition and the overhead of communicstion is an
imporiant design parameter.

The third issue relates to a phenomenon called the “control
working set” (Lesser, 1972). This phenomenon predicts that the
execution of a closely-coupled process struclure on  a
multiprocessor may result in a significant amount of supervisory
overhead caused by a large number of process context switches.
The reason for this high number of process conlext switches is
analogous to the reason for “thrashing” within a data working set
{Denning, 1968). For example, in a uniprocessor system if two
parallel pracesses closely interact with each other, then each
time one process is waiting for a communication from the other it
would have to be context switched so as to allow the other
process to execule. If these two processes communicate often
then there would be a large number of context switches.
However, if there were two processors, each conlaining one of
the processes, then there would be no process switching.

The impiications of this phenomenon on constructing process
structures are the following:

1. Processes should be formed into clusters where
communication among cluster members is closely~
coupled whereas communicatior among clusters is
ioosety-coupled. This  process  structuring
paradigm has also been been suggested as a
madel for the operation of complex human and
natural systems (Simon, 1962).

2. The size of a process cluster cannot be chosen
independent of the particular  hardware
configuration that will be used to execute it. For
example, a cluster size of B may be appropriate
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for a hardware system contsining 16 processors
while being inappropriate for a system containing
6 processors.

3. The scheduler of & multiprocassor sysiem shouid
use a sirategy that schedules process clusiers
rather than single processes. (This is enslogous

. to the adventage of prelpading the data working
set rather than dynamically consiructing the
working set at sach context swap.)

The use of process structures to implement
inherently sequential, though complex, control
structures (e.g., coroutines, stc) may lead to
inefticient scheduling of process structures on a
muitiprocessor system (i, the scheduling
strategy should be asble to essily differentiate
those processes thst can go on in paralle! from
those that ars sequentiaiized).

3,

NETWORK ORGANIZATIONS

The multiprocessor type organizstion describad eerlier
implies a closely-coupled set of processes on » set of clossly-
coupied processors cooperating to accomplish the common goal of
utterance recognition. The key idea in such a system is that both
the processes and processors are clossly-coupled -- that is, the
cost of communication bstween proc or pr 5 is
relatively cheap with respect to the amount of computation to be
done by any individusl process. Indeed, in the muitiprocess
-system described earlier, much interprocess communication and
data sharing may be achieved by aclually having shared physical
address spaces. However, such a system usually aiso implies @
certain homogeneity or physical proximily of the processors and
memory. ’

Consider now the task of integrating the knowledge of many
different research groups in various widespread geographical
lecatizns, sach with its own computing fecitities and esch with its
own areas of specialization. In an attempt to avaid unnecessary
duplications of effort, one would desire a schems whereby each
group could deveiop pieces of a total recognriiion system (which
pieces might represent new sources of knowisdge, such as a new
snd improved vowel classitication algorithm} using !ccal computing
resources {ie., using an arbitrary machine corfiguration and
program structure). Those pieces of the system would then be
incorporated into a distributed "fotal recognition system™ by
appropriate (hopefully minimal) linkage and protocol conventions
and their contributions to the entire system evaluated. The
geographical constraints suggest the use of a computer network
facility as a means by which one might assemble this total
recognition system. We are currently undsriaking the task of
designing and implementing such a system for use on the ARPA
network of computing facilities (Roberts and Wessier, 1970). The
usefulness of such a nretwork organization for a speech
understanding system lies in its potential sbility to combine and

evaluate the various algerithms and scurces of knowledge of a

wide variety -of research groups. In particular, the objective of
the network organization is to create & research tool rather than
to produce a highly efficient racognition system.

As an example, suppose a group wishes to add & new source
of knowledge {a new vowsl classificalion slgorithm, for instance)
to the network system. This knowledge-source is provided in the
form of a process {or a set of processes} running on a local
computer connected to the ARPA petwork. System integration is
then achieved by adding linking instructions to the process
{perhaps interactively) for nolifying a centralized controlling
process of the set of pre-conditions (s.g., conditions relating to
the incoming spesch wave or the current state of the
recognition) that must be mst in order to activate this process
(Adams, 1968), as weil as the required inputs and created outputs
(and their tormals). The central controlier is then responsible for

activating the new knowledge source at appropriate times,
supplying the requested inputs, and updating a global data base
to reflect the resulls of the activated process. Knowledge source
processes may communicate with one another via a message
service facility provided by the central controller, The marked
increase of indirection with respect o communication and dala
sharing as compeared with a closely-coupled multiprocessor
sapproach is & result of the goal to serve a wide geographic
region of users and to aliow cooperation between essentially
autonomous knowledge sources.

The problems that occur in this network concept are of a
nature different from that of those occurring in  the
multiprocessor structure described praviously. The many
sources of knowledge are no longer necessarily clossly-coupled.
In fact, we might term such a network organization to be
“loosely-coupled” in the sense that process communication and
data base sharing must be achieved by some form of message
switching scheme since the system is now operating on an
indefinite number of (nonhomogeneous) computers. In particular,
there is no longer the ability for all processes to share data and
communicate by sharing physical address spaces. The problems
of data base shering and shipping now abound: one would like
not to have multiple copies of a given data structure due to
updating synchronization problems, but the message switching
involved in maintaining and updating a single, centralized data
structure may be overwheimingly inefficient,

It is intended that, besides serving as a research tool for
testing various recognition algorithms and combinations thereof,
such a network organization will become an interesting
axperiment in its own right, There remains much investigation to
be conducted regarding the tradeoifs involved in passing and
sharing data through channels having low communication rates, as
well as investigating the means of coordination of many
autonomous knowledge sources. Points of interest for systems
design also exist in créating the appropriate interfaces between
any given group’s knowledge source process and the central
controlling process. Specification for data base requirements and
formats (for both input and output) and specifications for
determining the pre-conditions upon which a process should be
activated must be easily specified for each new process to be
added. In particular, the new process should not need to know
the details of the global data structures it may need to access —-
the linkage interface should take care of such details {Parnas,
1971,1971a).

issues of user control over the enlira system and the human
interface in general are considered vital, demanding much
investigation for any system organization which intends to run as
a set of paralle! cooperating (whether closely- or loosely-
coupled) processes. The user must have the ultimate control
over halting the entire recognition system or some subset of
procasses involved therein and interrogating (and perhaps
sltering) the instantaneous state of any given process. Protocols
for debugging and controlling any knowledge source process
should be provided via the interface linkage setup. Systems
sllowing the amount of user conirol that might be desired are not
easily achievable given the current state of the art, primarily due -
to a general lack of experience in multiprocess environments
(however, see Swinehart, 1973). Given a weli-defined problem
environment such as the speach understanding task, which lends
itseit readily to a multiple-process decomposition, investigation
into the realms of multiprocess debugging and control might now
be given more definite aims. Indeed, the problems involved in
controlling a set of indepsndent parallsl processes thal are
cooperating to solve a single problem reach beyond the issues
raised in the deveiopment of present multiprogramming systems
{e.g., monitoring and controlling the interactions involving shared
data structures and process intercommunications demand that
new debugging systems and strategies be formulated).



SUMIMARY

The main focus of this paper has been to illustrate the issues
of system organization that arise when one attempts 1o build a
general speech understanding system which can equal human
performance. In practice, however, one can finesse a large

number of these Tssliss by Workldy With Bré-Fetorusy St i ind =" tessir; "R {

relaxing other requirements, such as real-time response.
However, unless the system is organized with the eventual goals
firmly in mind, one is likely to end up with dead-end systems,
necessitaling a complete reformulation of the problem solution.
The complexity of the hardware and software problems raised by
real-time requirements explains why there ars very few systems
which can accept or altempt recognition of live connected
speech.

Usually the term "parallel processing” is used as if it will
resclve all of one’s problems. The intent here is mainly to
indicate that speech understanding systems naturally decompose
into a set of cooperating, independent processes. Whether one
uses a single processor {as we now do) or many processors (as
we propose to do), the program structure and organization tends
to be similar. The main question, then, is how much computational
power is available on the system to attempt real-time recognition
of connected speech. The multiprocessor and network
organizations provide an opportunity to study and evaluate
relative merits of various computer architectures in this context.

Finally, we believe that the issues of system organization
raised here are relevant to a large class of current problems in
Al, e.g., vision, robolics, chess, chemistry, etc, where
performance is the main criterion for acceptability and whers
many sources of knowledge are available. In particular, the
notions of hypothesize-and-test and cooperating independent
processes seem equally applicable to these areas as well.
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This papet concerns lthe application of a new time-domain technique to the
analysis of complex lacoustic signals such as human speech. The chief
advantage of this method is its precise temporal resolution allowing exact
timing of articulatory events within a sample of speech; that is, no bandwidth limitation
is present. This temporal resolution is most significan!‘ for characterizing
- fast transitional regions such as occur at vowel-consonant and consonant-vowel
boundaries and  within stop consonants, We generate visual displays
of waveform up-crossings in time, derived directly from the acoustic waveform itself.

The impetus for our work comes from two sources: 1)First are the studies by
Licklider and his colleagues who 25 years ago demonstrated the intelligibility of
infinitely _clipped speech. This showed that sufficient acoustic speech information
is encodéd in the zero-crossings of the waveform itself. Given the redundancy
of speech such information is most probably encoded by other aspects of the waveform.
As it happens though, zero-crossings or up-crossings are easy to see and extract from the
waveform. 2)The second motivation for this work comes from neurophysiological research
on the auditory information processing of the ear itself. Basically the ear processes
an incoming signal in at least two widely recognized manners.  The firs{ is
analysis in the frequency-domain and s analgous. to a kind of filter bank
where differenf neurons along the basilar membrane respond to different frequency
ranges; that is, a given neuron fires if it detects a signal of sufficient intensity
within a particular frequency range. Neurons also code information in the time-domain
in a manner known as phase-locking. Given a waveform, a phase-locking neuron
responds by firing once, phase consistently, for each cycle or integer number
of cycles within the waveform. The technique we ‘are using is directly analagous
to this latter time-domain coding technique.

We genéra’te our visual displays as follows: A zero-axis is drawn ho-rizontally
through the center of the acoustic waveform. We note the exact time when the
waveform crosses this axis in an upward direction. In actuality, we usually‘ record
only those up-crossings which exceed some threshold amplitude, epsilon,
set slightly above the horizontal zero-axis. This threshold tends to preclude low
amptitude background noise. We measure each interval between successive Up-crossings

and plot these as a funclion of time in our displays. Therefore each up-crossing
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in the acoustic waveform is represenled by a discrete dot in our disgiays.
in  fact, we actuatly plot on a log scale, the inverse of the interval
between successive up-crossings along the verticél Y-axis and time along the horizantal
X~axis. This yields a disptay which superficially resembles a kind of spectrographic
display, (NB. For those readers familiar with neurophysiological studies
of single unit responses, this display is directly analagous to an "instantaneous frequency”
plot and functionally analagous o a phase-locking phenomenon.) We also display a

rough- intensity measure by means of a Z-axis modulation. That is, the
size of a dot representing a given cycle is proportionate to the log of the greatest
intensity achieved during that cycle. This dot size intensity measure in our

up-crossing displays is analagous to lhe intensity measure expressed in spectrograms.
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The idea of looking at zero-crossing measures per se is not in itself concep-
tually new. However, in contrast lo most other investigators who have used zero-crossing
measures to analyze speech, we do nol average our up-crossings over a fixed interval of
time. Reasons for this will be discussed shortly. First of all it is important to be
aware that the chief motivation for many zero-crossing studies has been in searching for
an inexpensive way to find frequency domain acoustic fealures, such as formants.
This method avoids the computations required for Fourier transforms, for exam;;_le. n
order to decrease the expense and variability in examining individual cycles,it was easy to
to compute an average cycle length by simply counling the number of zero—crossings occur-
ring during a given time interval. This procedure has two major consequences: 1)the perfect
time resolution inherent in the time-domain is lost when crossings are averaged; that is, .
a ban’dwi;ith limitation is introduced, 2) the conventional acoustic features extracted
are usually less precise and more variable than the same acoustic features
extracted directly with a frequency-domain analysis. Our reason for not averaging
up-crossings is that in the speech waveform itself there are significant acoustic features
which .only last for one or a few cycles in duration. If cycles are averaged, this
information is irrevocably lost. guch transient events frequently occur at vowel-
consonant and consonant-vowel boundaries as well ‘as between other acoustically
distinct regions, within stop consonants for example. In the waveform shown here of
the nonsense word "3 tat® a" (stress on the second syilable), some of these short
duration features can be seen. For example, one such feature often occurs at the
transition from a stop or fricative to a following vowel. We find there exists a relatively
long and intense cycle between the consonant and vowel. Sometimes there are several
such cycles before the vowel. On our displays this phenomenon appears as a relatively
low frequenby large dot, or sometimes several, immediately preceding the vowel. The
occurrence of this fransition cycle(s} coincides with the upswing in energy-
from the consonant to the vowel In our up-crossing disptay of the same

utterance we have circled these lransition c¢ycles and labeled them "ir".
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Another area where consistent fime-domain fealures can be seen is during the
course of stop consonants. Both “{’s” shown in this example consist of three distinct
regions: the inilial pause, a release, and aspiration. The pause is characterized
in the waveform as a region of very low energy, irregular activity which is terminated
abruptly by the release characterized by many greater amplitude, high frequency cycles.
In the up-crossing displays, the initial pause appears as either one or a few outsténding'ly
low frequency dots immediately preceding the rellease activity., In our display, these
dots are circled and labeled "p", for "pause dot". The precise duration of any
unusual cycle or sequence thereof may be trivially determined by noting the cor-
responding dot’s(s’) height{s) on the vertical axis. We have seen these pause and transition
dots in literally thousands of our displays o1 utterances spoken by both men and women.

In the up-crossing display here, there is also an example of an automatic boundary
segmentation as evidenced by the vertical lines drawn through the display*. These vertical
segmentation lines were drawn aulomatically solely an the basis of discontinuities in
the signal intensity functions. These intensity functions were computed pitch-synchronously
and are represented by the line graph at the base of the plot. As easily seen,
altlhough the dot features and vertical line segmentation were indepéndently
derived, the times at which they occurred were rather close.

Another finding with this unaveraged up-crossing analysis is the presence of visually
easily distinguishable patterns for fricalives and stops, e.g."p", “t", and "k" distinctions.
We performed the following experiment wilth 10 people, most of whom had no experience
with speetrograms or other speech research. First of all, we had a stack of
photographs of our displays {with no segmentation lines or even any vertical or
horizontal axis markings). The photographs showed :displays of nonsense words all

in the form of & CVC’ (stress on the CVC syllable), spoken by both male and female speakers.
“In a typical experiment, we would give a subject three model pictures, each of a
nonsense word containing "p", "t", and "k" in the initial consonant position respectively.
We would then sho-v-v him where in the pictures these consonants were located. Next we
handed him a stack of unsorted pictures and instructed him to sort these into four piles,

one each for those that contained "p", “t*, or "K" in the same position as in the

model pictures, and one pile for those pictures that did not look like any of the model

*#(automatic segmentation algorithm and implementation done by James K. Baker)
' JMB - 7
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pictures. Despile speaker, allophone, and vowel differences hetween the model pictures
and those sorted, subjects were able o distinguish "p's", "’s", and "k's" from
each other about 807 correctly on a first Iry, regardless of the subject’s famitiarity
with speech research. Additional practice improved scores.

At this point two issues arise, First is the issue that the ability of
humans to distinguish these phoneme patlerns does not guarantee that an auvtomatic speech
recognizer can be programmed lo do as well. The dot pattern itself is complex and it
is not clear exactly which visual features subjects use in making their decisions.
Although we do have some specific ideas about which acoustic features are most reliable
for these discriminations, we have not yet subjected a large sample of data
to an automatic lesting program to determine which features are most .reliable
and when'.A This brings us to the second major issue, the problem of allophones and
coarticutation effects. Different allophones of the same phoneme often are acoustically
very different. An extreme example of this phenomenon appears in the following
pictures (spectrograms and up-crossing displays) of the connected speech utterances
"Pawn to king four” and "Pawn to queen four”. The “K" in "king" differs radically from the
"k" in "queen”. The most obvious difference is the lower frequency components in the "k"

of “"queen”, probably due to the lips’ rounding, effectivety lengthening the voca! tract.
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Therefore we are slarting an extensive investigation examining time-domain accustic
features of all the allophones of the stops and fricatives common in English. We will
examine in detail a large sample of these utterances, about 500 each from seven or
eight male and female speakers {o determine the most reliable cues for stop and fricative
discriminations and ascertain  which allophones and coarticulation effects must
be dealt with explicitly. This kind of basic research is essential for the development of
automatic speech recognition systems,

In summary, we find that, due to ils precise temporal resolution, this up-crossing
analysis {(and presumably other related time-domain analyses) is particularly well-
suited to examining fast transitional regions of acoustic signals. In our displays
we often‘_find, particularly for traditionally difficult stop and fricative discriminations,
visually  distinct  patterns, consistent across male and female speakers.
In addition, this technique is generalizable to any waveform and is particu~
larly applicable to complex waveforms characterized by rapid frequency changes.
On the basis of both theoretical considerations and the empirical results of our studies,
in ;:onjunction with other studies in speech analysis, we feel that future automatic
speech recognition systems may be more successful by incorporating both time and
frequency domain analyses, rather than either separétély. Although there is a great
deal of redundancy in terms of the information yielded by both domains, frequency-domain
analyses will generally be more powerful for steady or quasi-steady state phenomena, e.g.
stressed vowels, while time-domain analyses will usually be most effective for studying fast

transient phenomena, e.g. stop consonants.
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MACHINE-AIDED LABELING OF CONNECTED SPEECH
James Baker
Computer Science Department
Carnegie-Mel lon University
April, 1373

This paper presents preliminary results of a project for
machine-aided segmentation and labeling of connected speech. The
segmentatibn and labeling problem is reformulated as a problem of
searching for a minimum cost path in 2 netuork. Such abstract
formulation permits the construction of a system which avoids the
complexities of a system built by ad hoc methods from the acoustic
and phonological properties of speech. That such a simple abstract
mode! is adequate for this problem is demonstrated by a functioning
program which is described by the pair of simple formulas (18} and
{11). A program which uses more sophisticated acous{ic observations
and more complicated matching procedures is under development, but it
is also ah implementation of the same abstract model.

For research in the acoustic properties of speech it is
imperative to have a large data base of speech utterances which have
been reliably segmented and labeled. Each important event must be
found and labeled as to time of occurfence. Let's restrict our
attention to finding the beginning and ending time of each phone_in a
given utterance. A reliable method to do this labeling is to
gerierate an appropriate display of the acoustic parameters and then

have a trained person labei the phone segments. But for a large data



base of thousands of utterances, such hand labeling can be very time
consuming. The goal of this project is a program which can
automatically assign the labels to a connected speech utterance with
the need for human intervention only on special probleﬁ cases,

Assigning labels to a speech utterance to be used in a déta
base is a very different problem from segmentation and - labeling for
automatic recognition because the utterance is knoun, The program is
given either a phonatic transcription or can'approx¥mate one from an
orthographic transcription plus a phonemic dictionary. On the other
hand, the labeling must be as complete and reliable as possible
whereas a general recognition system should be able to tolerate
incomplete labeling or even errors.

A second goal of this project is the exploration of the
application of stochastic modeis ta automatic speech analysis. A
general technique has been developed for combining information from
several sources uhen each source aione would result in a significant
‘number of errors, Clearly there are many problems Iin speech
. recognition which fit this general framework. The unifying principle
is a generative stochastic model for fitting a sequence of states to
errorful data from several sources. Machine-aided segmentation and
label ing ‘has been approached as a specific application of this

general technique.

To relate the phones to the acoustic observations requires

knowledge of the acoustic phenomena wuhich are expected ‘Hith each



phone, In 1line wuWith the probabilistic approach, each phone is
assumed to be associated wWith 8 stochastic process which produces
acoustic parameter values for any instance of the phone. The
statistical properties of the stochastic process associated uith any
particular phone are to be estimated from the occurrences of the -
phone in the part of the data base which have already been segmented
and labeled. Thus a non-negligible data base must first be analyzed
by hand before the machine-aided system can be started.

Each acoustic observation is to take a value from a finite set
D. Assume that for each phone P there is a positive-integer-valued

random variable Z and a family of random variables X (1), X (2},
P : P P

ces o X (Z) with values in D. Let f be the conditional
P P P,n

.probability function
(1) ¢ {x , ¥, «ov , x)
P,n 1 2 n

= PROB(X (1)=x , X (2)=x , ... , X (nlex | Z =n)
P 1-P P4 P n P

Let g (n} = Prob(Z =n). The interpretation is to be that Z is the
P ' p P

duration of an instance of phone P and X 1), X (2}, ... , X (Z}
P P P P

are the acoustic observations made during that instance of P.
Let V(1), V{2), V{3, ... , V(T) be the sequence of

observations made for the utterance being analyzed. Let P(1), P(2),



(4 ve the ceguenr s of phones in the utterance. Use

notation VItl:t2] as an abbreviation for the sequence Y(tl), V(tl+l},

s Y(12-1), VIt2). Let UlL), U2}, ... , U(R) be a sequence nf
putative starting times for the phones. That is, Ull} < U2} < ... <
U(R) and for each k, Pik} s supposed to last from observation
VIUK)) to ohservation V(Ulksl}-1). Suppose a set of observations
VI1:T] and times UI1:R] are produced by applying in succession the
stochastic processes for each of the phones P(1) through P{R} and
concatenating the observations, the individual processes being

independent. Then the probability of producing the ohserved sequence

is
(2) PROB ( VI1:t1, Ull:r) )
PIl1:R)
R
=T ¢ (VU (k) :Utk+1) - g (Ulk+1)-U(k))
ke Pik),Ulk+1)-Ufk) Pk}

The segmentation and labeling problem consists of finding the

correct set of wvalues for the sequence U[L1:R], We shall use a

maximum |ikelihood estimation scheme. Pick for U{1:R] that sequence
that maximizes ProbiVI(l:7], UIL:RI} for the given observations
VI1:Tl. The problem of finding Ul1:Rl is equivalent ta finding th
best path through a binary decision tree where each node at leve: {
represents a decision of whether or not there is a phone boundary at

time t. OSubject to the constraint that there are R phones, there are

T-1 (T-1) !
(3) ( - —
R-1 {R~1) 1 (T-R) !



paths through this tree. This number is prﬁhibitiveiu large (if an
obsérvatlon is made avérg centisecond and the utterance lasts tuo
ssconds, then T=288), so some reduction is ﬁaceaoafg.
Note that our model is such that given k and UlksR] we can
evaluate | |
(4) PROB { VIUtk}:T), Ulk:R) )
PI1:R)

=TT - (VIUGIUG+)-11)g WO U0
ek PRGOSV ' ey

that is, the probabliitg does not depend on Ullik-1], Also note that
(5) PROB  (VI1:T), ULL:RI )
PLi:R]

= PROB (VI1:Utk}-11, Ull:k])PROB (VIU(k):T], Ulk:R))
P[1:R] PE1:R] o

Thersfore |f at any node of the tree corresponding to a barticular %
and U(k} we have evaluated Prob(V(l:U(k-1}1, U[1:kl} then the
subsequent analysis depends oniy on k and Ulk}. That'ls, for the
Purpose of analyzing VIU(K):T) and Uk:R] e can identify all nodes
of the tree which correspond to the same pair k and U(k). Since we
ars nnlgl interested In the best UlliR], wuwe associate xith this
combination node the maximum of Prob(V(liU{k+¢1}-1], U[1:k]) over alt
the nodes which are combined. This Identification reduces the tree

"to a network whose nodes correspond to the two-dimensional set of



values (k, U(k)}, wherel sk <R, 1

1A

Ulk) £ T. Procedures for
finding -the best path through such a netuork have been extensively
investigated. A simple, computationally efflcient, procedure is

dynamic programming.

To facilitate dynamic programming, introduce the function

(6) Afk, t} = HMax {PROB(VI1:t-1),UlLlsk))}
Ufl:k]
Ulk) =t

That is, Alk,t) is the probability along the best path leading up to
the (k,t) node. A may be calculated by

(7) ALk, t) = Max{ Alk-1, t-j)f (VIt-j:t-1))g (jh
j Plk), } , Plk-1)

Let J{k,t) be the value for which this maximum is achieved. Then

after A and J have been calculated for the whole network, the best

path through the netuwork is obtained hy

(8) Utlk) = Ulk+1) - Jlk+l, Ulk+1)) ,

1f we are willing to assume that X (1y,X (2, «v. X (Z2) are
: , : P P P P

independent and identically distributed and that

n
(9) g (n) = (l-ala , for some a independent of P,



then an even simpler computation is possible. It is not claimed that
these additiona! assumptions are realistic., However, some examples
will be given to show that even with these assumptions and very crude
acoustic observations the model can praduce reasonable segmentation
and labeling.

The extra assumptions allow us to ignore the durations of the
phones by factoring out a factor which is the same for ali paths
through the network, Reformulate the netuork, ignoring duration
information. Let the node (k,t) correspond to the event Ulk} s t <
Ufk+l} with U{k) ., otheruwise unrestricted. Let Bilk,t) be the
probability along the best path leading to (k,t). Then B may be
caiculated by

(18) Bk, t) = ( Max{ B{k-1, t-1}, B(k, t-1) } JIPROB(X = V(t))
P (k)

Then the sequence U[1:R} may be calculated by

(11) Uk) = Max{ t | t<U{k+1) and Bik-1, t-1)>Bik, t-1} }

Since some of the simplifying assumptions are admittedly
unrealistic, the model must be tested in actual use. First wue must
find some measurable parameter to use as the sequence of acoustic
observations YI1:T]1. The better the parametric representation

distinguishes the phones, the more the conditional probability



function f Wwill be concentrated in different reglons for
P,n

different phones, and the better the system will work, For final
production runs the best parametric representation available should
be used. For preiiminary testing, however, there is an advantage to
using a less precise parametric representation. If the system is to
be of significant value it must be robust, [t must be able to
operate in environments in which the direct acoustic observations do
not well characterize the underlying phones. Besides, if the system
Works with a crude parameterization, it can be used to help assemble
the data base needed for finding and testing a more refined
parameterization.

. The parameter which has been used is the output of a crude
local-pattern-match phonetic recognizer. The output of the
recognizer is a label uwhich is intended only to be an approximation
to the associated phone. The conditional probabilities are given in
Table 1. Each row corresponds to a given phane, and the columns are
the possible labels that the recognizer might assign. This
recognizer frequently confuses phones within a class, but it can
generally distinguish among broad classes.

The output of the system is shoun for three chess utterances.
The six line graphs in each figure are the six parameters that are
input to the pattern recognizer, They are intensity measures of the
signal passed through each of five octave-uide band-pass filters and

of the unfiltered signal. The line immediately below the graphs is



the sequence of labels assigned by the recognizer. This is the
sequence VI[1:T). There is one label for each centisecond. The
phones as segmented and labeled by a program using formulas (18) and
(11} are displayed on the second line, Each phone is printed at the
position that indicates the time at which the phone begins. The hand
segmentation data -is given on the third line and the orthographic
transcription on the fourth, The phone sequence for the program is
derived from a phonemic dictionarg; so it differs in places from the
hand !abeled sequence.

In evaluating a system of thi§ type it is important to note the
different kinde of errors and their effects. There are three
iﬁportant kinds of errors: {1} The sequence of phonetic labels may
differ from the correct sequence. (2) A boundary position may be
shifted between tuwo phones which are otheruise correctly placed. (3)
A phone may be so misplaced that its machine-labeled segment does not
intersect the correct segment. The different kinds of errors have
var ious effects in a total man-machine sustem.

The first type of error results from an inadequately specified
phonetic input. Problems may result especially when the input
sequence is derived by rule from a phonemic dictionarg. The
algorithm is not permitted to alter the nominal phonetic sequence
which it is given. To reduce errors of this kind more sophisticated
phonological rules must be combined uith the phonemic dictionary, or

the utterance must be transcribed by hand. Note, however, that for



the purpose of colfecting statistics for machine recognition pattern
matching algorithms, the best labeling may in fact be that which is
derived from a dictionary. Then the statistics are grouped according
to the dictionary phonemic label, which is just what is needed for
pattern matching statistics.

Some errors of misaligned boundaries are inevitable, In fact,
the format of the output has some error built in since it assumes
that the phones can be occupy non-overlapping time segments. It is
especially hard for the program to accurately place the boundaries
betueen vouels and semi-vouels or nasals. More accurate and detailed
acoustic observations may help, but the output must still be checked
and corrected by hand,

The third type of error is the most serious. [t implies that
several boundaries are misplaced and that the underlying sequence of
states in the path through the network is not following the actual
sequence of phohes at all, BSuch errors are easy for a human checker
to detect, but to correct them may require that the wuwhole utterance
be hand labeled. Unless the number of errors of this type is small,
the machine-aided system is not successful,

No systematic performance evaluation has heen attempted, since
the program is still in a preliminary version, A file of hand
segmented data must be built up to establish _statistics for

’

estimating the conditional probabitity distributions of the X ’s.
p

It may be necessary to use the more complete model given by formulas

i@



(7} and (8)., Duration information is a valuable tool for preventing
the type-3 errors (which still occur under certain conditions),
Other parametric representations of speech must be explored,
especially if the system is to work without tuning to individual
speakers. The pre-processor which is being used presentiy le tuned -
to the extent of having the speaker produce one prototype version of
sach phong. WUhen this crude tuning is omitted the quality of the
acoustic obsevations is degraded sufficiently to introduce type-3

errors in many utterances.

11
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