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A M o d e l a n d a S y s t e m 
f o r M a c h i n e R e c o g n i t i o n 
o f S p e e c h 

D. RAJ REDDY, LEE D. ERMAN, and RICHARD B. NEELY 

Abstract—-This paper presents a model for machine recogni­
tion of connected speech and the details of a specific imple­
mentation of the model, the hearsay system. The model 
consists of a small set of cooperating independent parallel pro­
cesses that are capable of helping in the decoding of a spoken 
utterance either individually or collectively. The processes use 
the 4'hy pothesize-and-test'' paradigm. The structure of hear­
say is illustrated by considering its operation in a particular 
task situation: voice-chess. The task is to recognize a spoken 
move in a given board position. Procedures for determination 
of parameters, segmentation, and phonetic descriptions are 
outlined. The use of semantic, syntactic, lexical, and phono­
logical sources of knowledge in the generation and verification 
of hypotheses is described. Preliminary results of recognition 
of some utterances are given. 

Introduction 
Most papers on speech recognition conclude by say­

ing that it is necessary to use higher level linguistic 
cues to obtain acceptable recognition. The terms 
context, syntax, semantics, and phonological rules are 
used but attempts to utilize these sources of knowl­
edge have not been successful because of the ill struc-
turedness of these concepts. This paper represents a 
summary of several years of investigation to formu­
late an information processing model that would lead 
to efficient recognition of speech and in which the 
role of various sources of knowledge would be well 
defined. 

At the 1969 spring meeting of the Acoustical So­
ciety, we presented several papers on the structure of 
a speech recognition system that was used to recog­
nize a list of 500 isolated words and a syntax-directed 
connected speech-recognition system using a finite 
state grammar and a 16-word vocabulary (Vicens 
[37] , Reddy [31 ] , Neely [22]). Six amplitude and 
zero-crossing parameters of the incoming utterance 
were sampled every 10 ms and segmented. The seg-
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ments were labeled to specify the phonetic class; the 
syntax was used for sentence analysis and word 
boundary determination, and prelearned acoustic and 
phonetic segmental descriptions of lexical items were 
used for word recognition. 

Several inherent limitations were apparent even as 
we developed the system. First, the vocabulary had 
to be reduced to 16 words because of word boundary 
ambiguity problems. For example, the word "large" 
had to be changed to "big" because of assimilation of 
the reduced vowel of "the" into the semivowel /!/ of 
"large" in the utterance: "Pick up the large block." 

Second, we had to overcome the limitations of the 
syntax-directed methods. One could not blindly 
parse from left to right; rather, we had to locate an-
chor points from which parsing could proceed both 
backwards and forwards. This was necessary to com­
pensate for machine errors in earlier stages and to 
compensate for the idiosyncrasies in speaker perform­
ance such as introduction of spurious words, repeti­
tion of words, and inclusion of hmm- and ha-like 
sounds. 

Third, the simple hierarchical structure in which 
output from one process forms the input to the next 
was not adequate for the task. Errors introduced in 
each process tend to have multiplicative effect, i.e., if 
each of four processes introduced 10 percent errors, 
the cumulative error would be 34 percent. Further, 
the lack of feedback and feedforward of the simple 
hierarchical model meant any errors that got through 
were uncorrectable. The main virtue of the system 
was that it was the first demonstrable system to use 
syntactic and lexical constraints to recognize con­
nected speech sentences (such as: "Pick up the big 
block at the bottom right corner"). 

For the past four years the authors have been at­
tempting to develop a model and a system for con­
nected speech recognition that did not suffer from 
the limitations mentioned previously, and that would 
serve as a research tool for speech-recognition re­
search over a wide range of tasks. The following sec­
tions present the resulting model and an outline of 
the system implemented on a PDP-10 computer. 

The Model 

We were interested in developing a system capable 
of- recognition of connected speech from several 
speakers with graceful error recovery, in close to real 
time, and easily generalizable to operate in several 
different task domains. We started with several re­
quirements for the model. 

1) Contributions of syntax, semantics, context, 
and other sources of knowledge towards recognition 
should be clearly evaluatable. Exactly what and how 
much does each contribute towards improving the 
performance o | the system? 

2) The absence of one or more sources of knowl-
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edge should not have a crippling effect on the per­
formance of the model. That semantic context 
should not be essential for perception is illustrated by 
overheard conversations among strangers. That syn­
tactic or phonological context should not be essential 
is illustrated by conversations among children. That 
lexical representation is not essential is illustrated by 
our recognition of new words and nonsense syllables. 

3) When more than one source of knowledge is 
available, interactions between them should lead to a 
greater improvement in performance than is possible 
to attain by the use of any subset of sources of 
knowledge. 

4) Since the decoding process is errorful at every 
stage, the model must permit graceful error recovery. 

5) Increases in performance requirements, such as 
the real time requirement, increase in vocabulary, 
modifications to the syntax, or changes in semantic 
interpretation, should not require major reformula­
tion of the model. 

The model we have arrived at to satisfy these re­
quirements consists of a small set of cooperating inde­
pendent processes capable of helping in the decoding 
process either individually or collectively and using 
the "hypothesize-and-test" paradigm. 

Each of the processes in our model is based on a 
particular source of knowledge, e.g., syntactic, seman­
tic, or acoustic-phonetic rules. Each process uses its 
own source of knowledge in conjunction with the 
present context (i.e., the presently recognized sub­
parts of the utterance) in generating hypotheses 
about the unrecognized portions of the utterance. 
This mechanism provides a way for using (much 
talked about but rarely used) context, syntax, and 
semantics in the recognition process. 

The notion of a set of independent parallel pro­
cesses, each of which is capable of generation and 
verification of hypotheses, is needed to satisfy the 
requirements 1) and 2) mentioned previously. In our 
model, the absence of a source of knowledge implies 
deactivating that process, and recognition proceeds 
(albeit more slowly and with lower accuracy) using 
the hypotheses generated by the remaining processes. 
The independence of the processes permits us to de­
activate a source of knowledge and measure how and 
by how much that source of knowledge improves the 
system. 

The need for parallel processes can be derived from 
the real-time performance requirement. If the system 
is to ever approach human performance, it must be 
able to answer trivial questions as soon as they are 
uttered (some times even before they are completed). 
This implies that various processes of the system 
should be able to operate on the incoming data as 
soon as they are able to do so without waiting for the 
completion of the whole utterance (as in a simple 
hierarchic model). The "coroutine" model, in which 

each process passes control to the next level when a 
"chunk" is perceived and regains control when a 
new chunk is needed, would be satisfactory. But this 
organization can lead to irrevocable loss of data if a 
higher level process does not return control in time to 
process new chunks of incoming speech. Thus, there 
must be at least two parallel processes, one of which 
is continuously monitoring the input speech and the 
other proceeding with recognition. This, in addition 
to requirements 1) and 2), suggests a model with par­
allel processes. 

An important aspect of the model is the nature of 
cooperation between processes. The implication is 
that, while each of the processes is independently 
capable of decoding the incoming utterance, they are 
also able to cooperate with each other to help recog­
nize the utterance faster and with greater accuracy. 
Process "A" can guide and/or reduce the hypothesis 
generation phase of process "B" by temporarily re­
stricting the parts of the lexicon that can be accessed 
by By or by restricting the syntax available to process 
B, and so on. This assumes that process A has addi­
tional information that it can effectively use to pro­
vide such a restriction. For example, in a given syn­
tactic or semantic situation only a small subset of all 
the words of a language may appear. 

The need for a hypothesize-and-test paradigm arises 
from 4). The "errorful" nature of speech processing 
at every stage implies that every source of knowledge 
has to be brought to bear to resolve ambiguities and 
errors at every stage of processing. This implies rich 
connectivity among various processes and involves 
both feedforward and feedback. The hypothesize-
and-test paradigm represents an elegant way of ob­
taining this cooperation in a uniform manner. 

The notion of hypothesize-and-test is not new. It 
has been used in several artificial intelligence pro­
grams (Newell [25]). It is equivalent to analysis-by-
synthesis (Halle and Stevens [10]) if the "test" 
consists of matching the incoming utterance with a 
synthesized version of the hypothesis generated. In 
most cases, however, the test is of a much simpler 
form; for example, it is not necessary to generate the 
whole formant trajectory when a simpler test of the 
slope can provide the desired verification. This not 
only has the effect of reducing the computational ef­
fort but also increases the differentiability between 
phonemically ambiguous words. 

Extendability and generalizability of the model is 
mainly an issue of implementation. It requires that 
representation of sources of knowledge be separate 
from and independent of mechanisms that operate on 
them. One way of achieving this is to represent the 
knowledge in a form most suitable for modification 
by the user and have a set of preprocessors that then 
transform the knowledge into the representation re­
quired by the system. 
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hearsay System 

hearsay is a speech-recognition system that incor­
porates many of the ideas presented in the previous 
section and is presently under development at Car­
negie-Mellon University. It is not restricted to any 
particular recognition task. Given the syntax and the 
vocabulary of a language and the semantics of a task, 
hearsay will attempt recognition of utterances in 
that language. 

Fig. 1 gives an overview of the hearsay system. 
The ear module accepts speech input, extracts pa­
rameters, and performs some preliminary segmenta­
tion, feature extraction, and labeling, generating a 
"partial symbolic utterance description." The recog­
nition overlord (rover) controls the recognition pro­
cess and coordinates the hypothesis generation and 
verification phases of various cooperating parallel pro­
cesses. The task provides the interface between the 
task being performed and the speech recognition and 
generation (speak-easy ) parts of the system. The sys­
tem overload (sol) provides the overall control for 
the system. A more detailed, but earlier, description 
of the goals and various components of this system 
are given in Reddy et al. [33] and Reddy [32] . 

Here we will describe the operation of the hearsay 
system by considering a specific task: voice-chess. 
The task is to recognize a spoken move in a given 
board position. In any given situation there are gen­
erally 20-30 legal moves and several thousand differ­
ent ways of expressing these moves. The syntax, 
semantics, and vocabulary of the task are restricted, 
but the system is designed to be easily generalizable 
to larger tasks, which was not the case for our earlier 
systems. Larger syntax (e.g., a subset of English) and 
vocabularies (1000-5000 words) for a more complex 
semantic task will make hearsay slower and less ac­
curate but are not likely to be crippling. 

Fig. 2 shows the recognition process in greater de­
tail. At present, it contains three independent pro­
cesses: acoustic, syntactic, and semantic. We will give 
a short description of how these processes cooperate 
in recognizing "king bishop pawn moves to bishop 
four." Let us assume that this is a legal move (other­
wise, at some stage of processing, the system will re­
ject it as semantically inconsistent). 

Parametric Level Analysis 

The speech from the input device (microphone, 
telephone, or tape recorder) is passed through five 
octave bandpass filters (spanning the range 200-6400 
Hz) and an unfiltered band. Within each band the 
maximum intensity and the number of zero crossings 
are measured for every 10-ms interval. 

This results in a vector of 12 parameters every 10 
ms. These parameters are smoothed and log trans­
formed and a subset of the parameters is chosen for 
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Fig. 1. Overview of the HEARSAY system. 
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Fig. 2. Detail of the recognition process. 

further processing. Fig. 3 gives the parameters used, 
at present, for part of the utterance "king bishop 
pawn . . . ." Each column represents a 10-ms time 
unit. Rows PI , P2, P3, and AU represent the log-
amplitude parameters in the frequency bands 200-
400, 400-800,800-1600 Hz, and the unfiltered band, 
respectively. The amplitudes are quantized to 32 
levels and represented as a single character (blank, 
0-9, A-U, and *, which represents a value greater than 
31). Rows P4 and P5 represent values that are func­
tions of both amplitude and zero crossing in bands 
1600-3200 and 3200-6400. Details of various oper­
ations on these parameters are given in Erman [ 6 ] . 

This vector of parameters (P1-P5 and ACT) are com­
pared with a standard set of parameter vectors to ob­
tain a minimum distance classification for each time 
unit using a highly modified version of a procedure 
proposed by Astrahan [ 1 ] . The row labeled PP gives 
the classification for each 10-ms unit. The standard 

file:///UTTERPNCE


232 IEEE TRANSACTIONS ON AUDIO AND ELECTRO ACOUSTICS, JUNE 1973 

k I rj b I J 9 p 3 n 
PI BnLJJKKKJJJJJJJJJKKKKJCBEPSSTTTRPf100073288 LN0MG96311 8GGHIJJLLLr1NNNNnf1LICKKKKKF62 
P2 6FHHFEEED0000D0CB97622 OLLLLLJIEC72228 20JH0S1 88 BK0SRRRSRRQQRRRQQPPNHHFDC9731 
P3 122232223208 13331 1658 AFJKLHN0QQQPQRRRRQr1Hfl6631 
P4 8HFHNT******RKLinf1NroUHC J******PMLNPP0mU7DP0L2B 9CKLW1QSUUUUUTPP00Nr1r1LD22 
P5 9IJJC 2 2 B 269FGEGGFE6 21 
AU 2B825LNONPPPMLLttttLLLKJIHGF61BLQSSSSQLIE0EDCB9 2BLNID688 CNQQRRRSSSSTTUTSSQ0tttLLKJF84 
PP -FCCSSe 111 see INNNNNI NNNNYHMDdVN I eeeea 11111 $mSF+IN IU0+++++--++-daaaaaateeeeeeeefiAee4NN«UUdd+ 
SP -CCCSSI III1II INNNNNNNNNNNMMdddl Ieeeeel 111 I$$S$+++NNN++*+*+<—aaaaaaeeeeeeeeeeeeeNNNNUUdd* 
VF . f f f f f VV W V V V VVV VV V V V V VVV V VV-V V V VVV VVV WW f f f f . . . WV ... WW WW WVWVWVWVV WW vv. 

Fig. 3. Parameters and segmentation for "king bishop pawn • • • Pl-Pb and AU (amplitude) are the input parameters. PP is 
the phone-like name given to the segment. SP is the locally smoothed PP. VF is a segmentation based on the SP's: • unvoiced, 
nonfricated; /unvoiced, fricated; v voiced, nonfricated; and z voiced, fricated. 

set of parameters is obtained by selecting cluster cen­
ters from a training set of utterances containing vari­
ous phonemes in neutral contexts. When a phoneme 
is represented by several articulatory gestures, more 
than one cluster center may be added to the standard 
set. Speaker characteristics and the noise character­
istics of the environment or the transducer may be 
reflected in the standard set of clusters by recording 
the training set in that environment. Fig. 4 gives clus­
ter centers for several representative sounds. A com­
plete list of clusters used and the details of the 
speaker normalization program are given in Erman 
[ 6 ] . 

Remark 1: The labels in row PP of Fig. 3 are not to 
be confused with phonetic transcription. Accurate 
phonetic transcription, where possible, would require 
modifying the labels taking into account segment and 
sentence level context. 

Remark 2: If one wanted to use formant frequen­
cies and amplitudes (assuming they can be deter­
mined without mislabeling) one would reanalyze the 
training set for this parametric representation to de­
termine the new cluster centers. Representing the 
parameters as a vector with a weighted distance met­
ric defined on the vector space is all that is needed to 
use a new parametric representation in the hearsay 
system. There are several disadvantages to this ap­
proach, e.g., errors in labels, inability to take advan­
tage of special features of a parametric representa­
tion, etc. However, this approach provides a 
convenient way of obtaining the best first approxima­
tion to the phonetic representation. 

Remark 3: The tendency is to blame every error on 
inadequate parametric representations. We have gone 
from one set of amplitude and zero crossing param­
eters to three sets and now to five. Others divide the 
frequency range into 12, 17, 24, 32, and 48 regions 
or the full resolution given by FFT. The increase in 
noisiness of the parameters with increasing resolution 
makes it imperative that one transform the high reso­
lution data to a smaller number of robust parameters 
such as the efforts by Li et al [16] and Pols [28] in 
dimensionality reduction of spectra. 

Remark 4: The parameters we use represent a 
crude spectrum. A mixed strategy in which finer 
analysis is performed only when necessary (Reddy 
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Fig. 4. Several typical JPP-cluster centers. 

[30]) seems more appropriate for an efficient realiza­
tion of the system than obtaining every possible pa­
rameter at the start. 

Remark 5: Spectral representation appears to be 
more robust than formant representation because of 
the likelihood of mislabeling a formant. 

Remark 6: Parcor parameter representation (Ita-
kura and Saito [14]) has also been used successfully 
(Nakano et al [21]) and may have efficient machine 
realizations within the framework of the hearsay 
system. 

Remark 7: Zero-crossing measurements and form­
ant frequency measurements are more prone to error 
than energy measurements in a noisy environment. 
It appears more difficult to devise noise subtraction 
algorithms for frequency than for amplitude (Neely 
and Reddy [24]). 

Segmentation 
The purpose of segmentation is to divide the con­

tinuous parameter sequence into discrete phone-size 
chunks. This is usually based on an acoustic similar­
ity measure (Reddy and Vicens [34]). Labeling 
every 10-ms unit by a phone-like cluster name per­
mits the segmentation to be divided in terms of these 
labels. Fig. 3 shows two levels of segmentation for 
"king bishop pawn . . . . " The first level is derived by 
doing a local "smoothing*' of the PP names assigned 
to each of the 10-ms segments; this is displayed on 
the row labeled SP. A segment is defined to be a con­
tiguous run of a single PP, flanked by PP*s not the 
same as those in the run. This segmentation is ap­
proximately at the phoneme level but is, by itself, 
very unreliable. 

A second level of segmentation is derived by associ­
ating a voiced/unvoiced decision and a fricated/non-
fricated decision with each PP. These binary deci­
sions, when applied to the SP's (and modified with a 
few simple rules for smoothing and breaking of long 
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segments according to significant local amplitude 
peaks), segment the signal very reliably. The row in 
Fig. 3 labeled VF indicates this segmentation for the 
sample. 

Remark 1: It is now commonly agreed among all 
researchers that some form of segmentation of acous­
tic signals is necessary for connected speech recogni­
tion (see Fant and Lindblom [ 8 ] , Reddy [29] , Denes 
and von Keller [ 4 ] , Broad [ 2 ] , Medress [19] , Dixon 
and Tappert [ 5 ] , Klatt and Stevens [15 ] , Stalham-
mar and Karlsson [35] , Hemami and Lehiste [11]). 
No systematic evaluation has been made of these and 
other methods of segmentation that have been pro­
posed or implemented. Our present view is that al­
most any of the schemes, given enough careful tun­
ing, will work in a large majority of the cases; the 
more important question is then not how to segment, 
but rather how to use the segmentation without being 
crippled by the inevitable errors. 

Remark 2: This use of segmentation represents a 
trend away from segmentation-free recognition 
schemes (Halle and Stevens [10]). However, segmen­
tation-free recognition still seems to be a useful con­
cept if one is mainly interested in isolated word 
recognition (Hill [12] , White [39]). 

Acoustic Recognizer 
The role of the acoustic recognizer is to predict and 

verify syllables and words based on the features pres­
ent in the incoming utterance, the present context, 
and the lexicon. The structure and phonetic descrip­
tion of syllables and words in the lexicon is prespeci-
fied. An entry for a word in the lexicon contains the 
phonemic spelling(s) of the word and annotations 
that are used to describe expected anomalies that can­
not be predicted by rule from the phonemic spelling. 
A more detailed description of the lexicon and the 
preprocessing is given in Erman [ 6 ] . 

The acoustic recognizer has three sources of knowl­
edge available for the generation and verification of 
hypotheses: acoustic, phonological, and vocabulary 
restrictions. The acoustic knowledge appears in the 
form of expected parameters (or features) for a pho­
neme in a neutral context. The phonological knowl­
edge appears in the form of a coarticulation model 
that modifies the expected features based on context. 
The between-word coarticulation effects have to be 
determined wherever applicable through the use of 
the "currently accepted partially recognized utter­
ance" (Fig. 2), which provides the boundary pho­
nemes. The vocabulary restriction appears in the 
form of a valid subset of words in the lexicon that 
contain a given sequence of features. 

The acoustic recognizer uses these sources of knowl­
edge in two stages: the hypothesis and the verifica­
tion. The acoustic hypothesizer does not have any 
knowledge of the syntax or semantics of the situa­
tion, but can use the gross features (such as / / / of 

"bishop") in the "partial symbolic utterance descrip­
tion" (Fig. 2) to retrieve those words of the lexicon 
that are consistent within the features present. 

The task of a verifier is to determine whether a 
given hypothesis is consistent with the context pres­
ently available to it. For example, let us assume that 
alternative hypotheses of the words "king's," "pawn," 
"bishop," "queen's," and "knight" have been made 
in the context "king --- pawn • • •" (where "---" repre­
sents the hypothesized words) and that the word 
actually spoken was "bishop." Detailed verification, 
by the acoustic verifier, of every phoneme of wery 
option word is not necessary. All that is needed, in 
this example, are some simple tests that notice that 
there is a strong fricative indicated near the middle of 
the area of interest, which causes "pawn" and 
"knight" to be rejected, and some other simple tests 
on the vowel portion, e.g., duration, high/low, and 
front/back, which would indicate that both "queen's" 
and "king's" are unlikely, whereas "bishop" is highly 
likely. 

A more detailed matching of features and the use of 
coarticulation rules at the word boundaries may, of 
course, be needed for other cases. Detailed matching 
often implies generation of a test. For example, if the 
verification to be made is among "sit," "spit," and 
"split," the presence of /s/, /I/, /t/ and the transitions 
between /I/ and /t/ are irrelevant. What is needed is 
the test for the presence or absence of a stopgap and 
for the presence of /l/-like formant structure follow­
ing the stopgap. 

Remark: That some form of hypothesization and 
verification is needed seems to be recognized by 
many researchers at this point. Halle and Stevens 
[10] proposed synthesis and match as a means of 
verification in their analysis-by-synthesis model. Hy­
pothesis and verification for isolated word recogni­
tion was used in the Vicens-Reddy system (Vicens 
[38]). More recently, similar techniques have also 
been used by Klatt and Stevens [15] , Lindblom and 
Svensson [18] , Tappert et al. [36] , and Itahashi et 
al. [13] . 

Syntactic Recognizer 
The role of the syntactic recognizer is to predict 

phrases based on the syntactic structure of the lan­
guage to be recognized and the context. The pre­
dicted phrases induce (specify) words that might ap­
pear in that context. The grammar for the voice-chess 
language is context free. The voice-chess grammar, 
specified as a set of BNF productions, is given in Fig. 
5. For example, in this grammar, "<move>" is de­
fined to be either "<movel>" followed by "<check-
wore^ " or "<movel>." The total number of differ­
ent utterances permitted by this grammar is about 
five million. 

The role of the syntax hypothesizer is to use the 
syntactic source of knowledge to predict words. In 
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1. <move> : : -

2. <movel> : : -

3. <cast le> : : -

4. <regular-move> ; : -

5. <capture> : : • 

6. <cast le -uord> : : • 

7. <move-word> : : « 

8. <capture-uiord> : :• 

9. <check-uord> : : « 

18. <man-loc> : :• 

11. <man-spec> : :• 

12. <square> :;• 

13. <man> ::< 

14. <uni royal> ::• 

<movel> <check-word> I <Movel> 

<regular-»ove> I <capture> I <castle> 

<castle-word> ON <uniroyal> SIDE 
I <castle-uord> <uniroyal> SIDE 
I <castle-uord> 

> <»an-loc> <»ove-word> <square> 

• <»an-loc> <capture-word> PAUN EN-PASSENT 
I <man-loc> <capture-word> <*an-loc> 

. CASTLE I CASTLES 

- T O I MOVES-TO I GOES-TO 

. TAKES I CAPTURES 

. CHECK MATE I CHECK 

» <man-8pec> ON <square> I <man-9pec> 

• <uniroyal> <untpiece> PAUN 
I <uniroyal> <piece> I <uniroyal> pawn 
I <unipiece> pawn I <man> 

• <uniroyal> <piece> <rank> I <nopaun> <rank> 

- KING I QUEEN I BISHOP I KNIGHT I ROOK I PAUN 

- KING I QUEEN I KING'S I QUEEN'S -

15. <unipiece> 

I S . <nopaun> 

17. <piece> 

18. <rank> 

; : « BISHOP I KNIGHT I ROOK 

I BISHOP'S I KNIGHT'S I ROOK'S 

: : - KING I QUEEN I BISHOP I KNIGHT I ROOK 

: : - BISHOP I KNIGHT I ROOK 

: : - ONE I TUO I THREE I FOUR 
I FIVE I SIX I SEVEN I EIGHT 

Fig. 5. Voice-chess syntax. 

hypothesization the syntax recognizer uses only very 
local context to predict words. Predictions may be 
made either to the right or the left of already existing 
words. For example, if "— moves-to is given, 
then words may be hypothesized to the left of 
"moves-to" or to the right of "moves-to." Hypoth­
esization uses only inexpensive methods, and often 
generates words that would not fit in the complete 
context of the sentence. 

Traditional parsing schemes are not very useful in 
generating hypotheses. Further, the syntax recog­
nizer must be capable of processing errorful strings 
containing spurious words and repetition of words. 
This implies that it must be capable of working both 
forwards and backwards. This is achieved in HEAR­
SAY by the use of antiproductions. 

Antiproductions act as a concordance for the gram­
mar giving all the contexts for every symbol appear­
ing in the grammar. They are used to predict words 
that are likely to occur following or preceding a 
word using only limited context. Fig. 6 gives anti-
productions for productions 1-6 of the grammar of 
Fig. 5. These are produced automatically by a pre­
processing program. In this figure, the symbols in the 
column labeled CENTER are the entries in the concor­
dance. Each symbol in the subset of the grammar ap­
pears in this column once for each occurrence of it in 
the subset. The entries in the LEFT and RIGHT columns 
denote symbols that can appear to the left and right 
of the entry in the center column. When an t appears 

CENTER LEFT RIGHT HEAD 
CASTLE t t <castle-word> 
CASTLES t t <ca»t le -word> 
EN-PASSENT PAUN t <capture> 
ON <castle-word> <uniroyal> <caetle> 
PAUN <capture-nord> EN-PASSENT <capture> 
SIDE <uniroyal> t <castle> 
SIDE <uniroyal> t <castle> 
<movel> t <check-word> <move> 
<movel> t t <Move> 
<check-word> <Movel> t <move> 

<movsl> <regular-move> t t 
<move> 
<movsl> 

<capture> t t <Movel> 
<cast le> t t <«ovel> 
<cast le -word> t ON <castle> 
< c a e t l e - « o r d > t <uniroyal> <castle> 
<cast le -word> t t <castle> 
<un i roya l> ON SIDE <castle> 
<uni roya1> <cast le - «ord> SIDE <castle> 
< »an - loc> t <wove-word> <regu1ar-»ove> 
<man-1oc> t <capture-Mord> <capture> 
<man-1oc> t <capture-word> <capture> 
<man-1oc> <capture-word> t <capture> 
<move-word> <man-loc> <square> <regular-wove> 
<square> <Move-uord> t <regular-move> 
<capture-word> <man-1oc> PAUN <capture> 
<capture-word> <man-1oc> <man-1oc> <capture> 

Fig. 6. Antiproductions for a subset of the syntax of Fig. 5. 
(The subset consists of productions 1-6.) 

in the LEFT or RIGHT column, it indicates that the 
original production did not have an entry to the left 
or right of that symbol. 

When the LEFT (or RIGHT) context given in an anti-
production is satisfied, then the RIGHT (or LEFT) con­
text is hypothesized for recognition. If the hypoth­
esized symbol happens to be a nonterminal, then all 
the possible terminal symbols that can appear at the 
left of this nonterminal are hypothesized. Detailed 
descriptions of the structure and use of antiproduc­
tions will be given in Neely [23 ] . 

The role of the syntactic verifier is to accept or dis­
card hypotheses using syntactic consistency checks. 
This is usually a more expensive process than hypoth­
esization because it involves complete parsing of the 
partially recognized sentences. The verifier may work 
both on hypotheses that the syntactic hypothesizer 
has generated, as well as those generated by other 
hypothesizers. 

Semantic Recognizer 
The role of the semantic recognizer is to predict 

concepts based on the semantics of the task and se­
mantics of the preceding utterance. A predicted 
concept (a legal move for voice-chess) is used in con­
junction with the present context to predict a word 
that might appear in the utterance. The semantics of 
the task and the preceding utterances are captured 
for chess by the current board position. The board 
position for the utterance in discussion, "king bishop 
pawn moves to bishop four," is shown in Fig. 7. 

HEARSAY has, as a subpart, a chess program (Gil-
logly [9]) that generates an ordered list of moves that 
are possible in that situation. A partial list of legal 
moves with numbers representing the likelihood of 
occurrence is given in Fig. 8. 
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Fig. 7. Board position for utterance in discussion. 

KBP/KB3XKP/K4 1B8 
QP/Q2-Q4 58 
QN/QN1-QB3 49 
KB/KB1-QB4 48 
KN/KN1-K2 47 
QP/Q2-Q3 4B 
KB/KB1-K2 45 
Q/Q1-K2 44 
QBP/QB2-QB4 43 
QBP/QB2-QB3 42 
K/K1-KB2 41 
K/K1-K2 48 
KRP/KR2-KR4 39 
KNP/KN2-KN4 38 
QNP/QN2-QN4 37 
QRP/QR2-QR4 3G 
KN/KN1-KR3 35 
KNP/KN2-KN3 34 
QNP/QN2-QN3 33 
KRP/KR2-KR3 32 
QRP/QR2-QR3 31 
QN/QN1-QR3 38 
KB/KB1-QNSCH 25 
KBP/K83-KB4 24 
KB/KB1-QR6 12 
KB/KB1-Q3 6 

Fig. 8. Ordered list of legal moves supplied by the chess-play­
ing program for the board position of Fig. 7. 

The semantic hypothesizer uses the ordered list of 
moves for hypothesis generation. In our example the 
hypothesizer would concentrate only on the "non-
capture" moves that start with the word "king." If 
there are none, then there is an inconsistency in the 
currently accepted partially recognized utterance. 
This may be due to an illegal statement or incorrect 
recognition. In the latter case, the partially recog-

b i shop 62 
knight G2 
bishop's 44 
rook 41 
on 41 
knight 's 38 

ds hypothesized by semantic hy 

Fig. 9. Words hypothesized by semantic hypothesizer. 

nized utterance is modified by replacing the weakest 
link by the second best choice for that position. 

Fig. 9 gives the words hypothesized by the semantic 
hypothesizer in the context of "king Associated 
with each hypothesis is a rating (ranging from 1 to 
100) indicating the semantic likelihood of the hy­
pothesis. This likelihood is derived from the likeli­
hoods of the projected legal moves from which the 
hypotheses are taken, and from intrasentence seman­
tic clues. The semantic hypothesizer uses word- and 
phrase-level semantic consistency checks to restrict 
hypothesization. The structure and the mechanism 
used by the semantic hypothesizer are described in 
Neely [23] . 

Control of the Processes 

Since the different recognizers are independent, the 
recognition overlord needs to synchronize the hy­
pothesis generation and verification phases of various 
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processes. Synchronization ensures that hypotheses 
generated by one process will be verified by all the 
other processes in the subsequent time slice. Several 
strategies are available for deciding which subset of 
the processes generates the hypotheses and which 
verify. At present this is done by polling the pro­
cesses to decide which process is most confident 
about generating the correct hypothesis. In voice-
chess, where the semantic source of knowledge is 
dominant, that module usually generates the hypoth­
eses. These are then verified by the syntactic and 
acoustic recognizers. However, when robust acoustic 
cues are present in the incoming utterance, the roles 
are reversed with the acoustic recognizer generating 
the hypotheses. 

The verification process continues until a hypothe­
sis is found that is acceptable to all the verifiers with 
a high enough level of confidence. All the unverified 
hypotheses are stored on a stack for the purpose of 
backtracking at a later stage. Given an acceptable hy­
pothesis, ROVER updates the currently accepted par­
tially recognized utterance and updates the partial 
symbolic utterance description with additional fea­
tures that were discovered during the process of hy­
pothesis generation and verification. If the utterance 
still has unrecognized portions of speech and if the 
interpretation of the utterance is still unclear, then all 
the active processes are reactivated to generate hy­
potheses in the new context. If there are no unrecog­
nized portions of speech in the utterance and the 
sentence is uninterpretable, the knowledge acquisition 
part of the system (unimplemented in the present 
system and not shown in Fig. 2) is activated to up­
date the lexicon and the acoustic, syntactic, and/or 
semantic rules. 

Preliminary Results 

The system described in the proceeding sections has 
been operational since June 1972. We view HEAR­
SAY as a continually evolving system that is expected 
to serve as a research tool for explorations in speech-
recognition research at Carnegie-Mellon University. 
Fig. 10 gives some preliminary results of recognition 
by the system. More comprehensive results contain­
ing time, accuracy, and error analyses will be given in 
Erman [6] and Neely [23] . 

Discussion 
Models of Speech Perception 

This paper presents a model of speech perception 
that has been arrived at not so much by conducting 
experiments on how humans perceive speech but in 
the process of constructing several speech-recognition 
systems using computers. The emphasis has been on 
developing efficient recognition algorithms, with little 
attention to modeling of known human perceptual 
behavior. The general framework (for a model) that 
evolved is different from some previously proposed 

S: A c t u a l l y spoken 
R: Recognized by HEARSAY 

1. S: PAUN TO KING FOUR 
R: PAUN TO QUEEN FOUR 

2. S: KNIGHT TO KING'S BISHOP THREE 
R: PAUN TO QUEEN'S BISHOP THREE 

3. S: BISHOP TO KNIGHT FIVE 
R: PAUN TO QUEEN THREE 

4. S: KNIGHT TO QUEEN BISHOP THREE 
R: KNIGHT TO QUEEN BISHOP THREE 

5. S: PAUN TO QUEEN FOUR 
R: PAUN TO QUEEN FOUR 

6. S: KNIGHT TAKES PAUN 
R: KNIGHT TAKES PAUN 

Fig. 10. Some preliminary results from one run. (Approxi­
mately 4-7 times real-time processing on a PDP-10 computer.) 

models by Liberman et a/., [17] and Halle and 
Stevens [10] , which imply that perception takes 
place through the active mediation of motor centers 
associated with speech production. Our results tend 
to support "sensory" theories advanced by Fant [ 7 ] , 
and others, in which speech decoding proceeds with­
out the active mediation of speech motor centers. 

If one eliminates the synthesis part of analysis-by-
synthesis, then our model is most similar to that of 
Halle and Stevens [10] . The important distinction to 
remember is that once a hypothesis is generated, say 
of the words "sit," "slit," and "split," one should 
never want to verify the hypotheses by generating 
formant trajectories for the word or phrase. That 
phonemes /s/, /I/, /t/ occur in the hypothesized words 
is no longer relevant. All that is needed is a verifica­
tion of the presence of stopgap and the /l/-like for­
mant transition preceding the vowel. Another limita­
tion of synthesis and match is that the noise might 
swamp the finer distinction required, i.e., the variabil­
ity in speaker performance of /s/, /I/, /t/ might over­
shadow the positive contributions of a /p/ or an /l/. 

Information-Processing Models 

The model proposed in this paper raises several is­
sues that may be of interest to speech scientists and 
cognitive psychologists interested in human speech 
perception. We would like to propose that, in addi­
tion to stimulus-response studies and neuro-physio-
logical models, speech scientists should also make 
extensive use of information-processing models in the 
study of speech perception. The notion of an infor­
mation-processing model reflects a current trend in 
cognitive psychology to view man as an information 
processor, i.e., that his behavior can be seen as the 
result of a system consisting of memories containing 
discrete symbols and symbolic expressions and pro­
cesses that manipulate these symbols (Newell [26]). 
The main advantage of this approach to speech per­
ception studies is that it permits a researcher to look 
at the total problem of speech perception at a higher 
functional and conceptual level than is possible with 
the other two approaches. (To attempt to study the 
total problem of speech perception by formulating a 
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neurophysiologies model would be like attempting 
to understand the workings of a TV set by looking at 
the flow of electrons through a transistor.) 

One question that arises in this context is the na­
ture of serial and parallel processing mechanisms used 
by humans. It is known that, at a higher problem-
solving level, a human being behaves essentially as a 
serial information processor (Newell and Simon 
[27]). It is also known that parallel processing occurs 
at the preprocessing levels of vision and speech. What 
is not known is whether there are several independent 
processes or a single sophisticated process at the per­
ceptual level that can use effectively all the available 
sources of knowledge. 

The second question is how various sources of 
knowledge cooperate with each other. There are 
experiments (Miller and Isard [20 ] , Collins and Quil-
lian [3]) that can be interpreted to show that percep­
tion is faster or more intelligible depending on the 
number of available sources of knowledge. Any 
model of speech perception must deal with the nature 
and structure of the interaction between various 
sources of knowledge. Earlier models tend to ignore 
this question. 

Summary and Conclusions 
A casual reader of this paper would probably only 

notice the superficial aspects of the system: that it 
accepts voice commands to play chess, uses crude pa­
rameters, and is not very smart at using the acoustic-
phonetic and other sources of knowledge. That is 
beside the point. The main contribution of this re­
search is to provide a model and a framework in 
which the role of phonology, syntax, semantics, and 
other sources of knowledge can be systematically 
studied and evaluated. It is no longer necessary for 
us to be content with vacuous statements about the 
importance of syntax or semantics. 

We chose voice-chess as a task not because it is im­
portant to play chess with a computer over tele­
phone, but because chess provides a good area to eval­
uate our ideas about the role of various sources of 
knowledge in speech perception. Chess plays the role 
in our system that the fruit fly plays in genetics. Just 
as the genetics of drotophila are studied not to 
breed better flies, but to learn the laws of heredity, 
so we choose chess as a task because the syntax, se­
mantics, and vocabulary of discourse are well defined 
and are amenable to systematic study. 

Similarly, the acoustic parameters and phonologi­
cal, syntactic, and semantic rules currently used by 
the HEARSAY system are not particularly important or 
interesting. What is important to note is that while 
each module is "stupid," the system still works and 
does do a creditable job in spite of its weaknesses. 
The interesting features are the interaction and coop­
eration among various modules and the correction of 
errors by various sources of knowledge. 

The system described in this paper was demon­

strated in June 1972, at a workshop on speech recog­
nition. It represents the first system to demonstrate 
live, connected speech recognition using nontrivial 
syntax and semantics. We expect to actively modify 
the system to greatly increase its performance, as well 
as use it as an experimental tool for studying speech 
understanding, recognition, and perception. 
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THE HEARSAY SPEECH UNDERSTANDING SYSTEM: 
An Example of the Recognition Process 
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ABSTRACT 
This paper describes the structure and operation of the Hearsay speech 

understanding system by the use of a specific example illustrating the various stages 
of recognition. The system consists of a set of cooperating independent processes, 
each representing a source of Knowledge. The Knowledge is used either to predict 
what may appear in a given context or to verify hypotheses resulting from a 
prediction. The structure of the system is illustrated by considering its operation in a 
particular task situation: Voice-Chess. The representation and use of various sources 
of knowledge are outlined. Preliminary results of the reduction in search resulting 
from the use of various sources of Knowledge are given. 

Keywords: speech recognition, understanding, hypothesize-and-test. 

INTRODUCTION 
The factors influencing the structure and operation of a 

speech understanding system are many and complex. The report 
of Newell et al. (1971) discusses these issues in detail. Our own 
goals and efforts in this area have been described in several 
earlier papers (Reddy et al., 1972). The goals for our present 
effort were outlined in Reddy, Erman, and Neely (1970). The 
initial structural description of the Hearsay system was given in 
Reddy (1971). The model and the system that evolved after 
several design iterations were described in Reddy, Erman, and 
Neely (1972a).* The main additions to the initial proposed 
system were in the specification of the interactions among 
various sources of Knowledge. In this paper, we describe the 
structure and operation of the Hearsay system from a different 
point of view, i.e., by considering a specific example to illustrate 
the various stages of the recognition process. 

Machine perception of speech differs from many other 
problems in artificial intelligence in that it is characterized by 
high data rates, large amounts of data, and the availability of 
many sources of Knowledge. Thus, the techniques that must be 

* The general framework that evolved for the model is different 
from some previously proposed models by Liberman et al. 
(1962) and Halle and Stevens (1962) which imply that 
perception takes place through the active mediation of motor 
centers. Our efforts tend to support "sensory- theories 
advanced by Fant (1964) and others. If one modifies the 
"synthesis" part of analysis-by-synthesis, then our model is 
most similar to that of Halle and Stevens. 

employed differ from other problem-solving systems in which 
weaker and weaker methods are used to solve a problem using 
less and less information about the actual task. In addition, there 
is a marked difference in the expectations for system 
performance. In tasks such as chess and theorem-proving, the 
human has sufficient trouble himself so as to make reasonably 
crude programs of interest. But humans perform effortlessly 
(and with only modest error) in speech or visual perception 
tasks, and they demand comparable performance from a machine. 
Thus, it is important that the structure and organization of a 
system be such that it is not a dead-end effort, i.e., it should be 
capable of approaching human performance without major 
reformulation of the problem solution. The Hearsay system effort 
represents an attempt to produce one such system. The main 
distinguishing characteristic of this system is that diverse sources 
of knowledge can be represented as cooperating independent 
parallel processes which help in the decoding of the utterances 
using the hypothesize-and-test paradigm. 

The system is designed for the recognition of connected 
speech, from several speakers, with graceful error recovery, 
performing the recognition in close to real-time. The structure 
and implementation of the system are to a large extent dictated 
by these concerns. One feature that characterizes a speech 
understanding system is the existence of errors at every level of 
analysis. The errorful nature of processing implies that every 
source of knowledge has to be invoked to resolve ambiguities 
and errors at every stage of the processing. One way to 
accomplish this is through the use of the hypothesize-and-test 
paradigm, where each source of knowledge can accept, reject, or 
re-order the hypotheses produced by other sources of 
Knowledge. For example, in the Voice-Chess tasK, if the word 
"captures" appears in a partially-recognized utterance, the 

* Present address: Xerox Palo Alto Research Center, Palo Alto, Ca. 94305. 

** This research was supported in part by the Advanced Research Projects Agency of 
the Department of Defense under contract no. F44620-70-C-0107 and monitored by 
the Air Force Office of Scientific Research. 
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semantic source of knowledge can reject all the hypotheses that 
do not lead to a capture move. 

The Hearsay system is not restricted to any particular 
recognition task. Given the syntax and the vocabulary of a 
language and the semantics of the task, it attempts recognition of 
utterances in that language. It is designed to serve as a 
research tool in which the contributions of various sources of 
knowledge towards recognition can be clearly evaluated. Since 
each source of knowledge is represented as an independent 
process, it can be removed without crippling the system. 

Figure 1 gives an overview of the Hearsay system. The EAR 
module accepts speech input, extracts parameters, and performs 
some preliminary segmentation, feature extraction and labeling, 
generating a "partial symbolic utterance description." ROVER 
(Recognition OVERIord) controls the recognition process and 
coordinates the hypothesis generation and verification (testing) 
phases of the various cooperating knowledge processes. The 
TASK provides the interface between the task being performed 
and the speech recognition and generation (SPEAK-EASY) parts 
of the system. SOL, the System OverLord, provides the message 
communication facilities for the system. 

FCHESS"PIAYLNGL I PROGRAM _ J 

SEMANTIC I [RECOGNIZER) 

Figure 1: Structure of the Hearsay system. 

AN EXAMPLE OF RECOGNITION 

Here we will illustrate the operation of the Hearsay system 
by considering in detail the recognition process of an utterance 
within a specific task environment: Voice-Chess. The task is to 
recognize a spoken chess move in a given board position and 
respond with the counter-move. 

Figure 2 gives the board position and a list of legal moves in 
that position at the time the move is spoken. The speaker, 
playing white, wishes to move his bishop on queen's- bishop one 
to king knight five. This is one of 46 different legal moves. 
These moves have been ordered on the basis of their goodness 
in the given board position. This judgment was based on a task-
dependent source of knowledge available to the program 
(Gillogly, 1972). Note that the move chosen by the speaker was 
only the fourth best move in that situation. 

Having chosen the move, there are many possible ways of 
uttering the move. The syntax of the language permits many 
variations, usually of the form <piece> <action> <position>. The 
piece can have qualifiers to indicate the location. The action may 
be of the form: "to", "moves-to", "goes-to", "takes", "captures", 
and so on. The position can be of the form: "king three", "king 
bishop four", or "queen's knight five", and so on. The actual 
move spoken in this context was "bishop moves-to king knight 
five". Note that "queen bishop on queen bishop one" can be 
specified as just "bishop" because there is no ambiguity in this 
case. 

Figure 3 shows the speech waveform of the utterance with 
manual segmentation, showing the beginning and ending of each 
word and each phoneme within the word. (The manual 
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I I M I i f a 

0-0 
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QN/0B3-0N1 
0B/QB1-02 
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Q/01-K2 
OB/OB1-KR6 
K/K1-Q2 
KN/04-KS 
KB/QNS-QR6 
Q/01-KN4 
a/ai-KRS 

Figure 2: The chess board position and the ordered list 
of legal moves for White. 

segmentation and labeling indicated in this and succeeding figures 
is for our benefit only — it is not available to the system while it 
is attempting recognition.) The utterance was about 2 seconds in 
duration and the waveform is displayed on ten consecutive rows, 
each row containing 200 milliseconds of the utterance. The first 
line of text under each row contains the word being articulated. 
The word label is repeated for the duration of the word. Thus, 
the word "bishop" was articulated for 400 milliseconds and 
occupies the first two rows of the waveform. The second line of 
text under each row contains the intended phoneme being 
articulated. The phoneme (represented in IPA notation) is 
repeated for the duration of the phoneme. 

Several interesting problems of speech recognition arise in 
the context of recognition of this utterance. The end of Row 2 of 
Figure 3 shows the juncture between "bishop" and "moves". 
Note that the ending /p/ in "bishop" and the beginning nasal /m/ 
in "moves" are homorganic, i.e., they both have the same 
articulatory position. This results in the absence of the release 
and the aspiration that normally characterizes the sound /p/. 
Row 6 of Figure 3 illustrates a word boundary problem. The 
ending nasal of "king" and the beginning nasal of "knight" tend to 
be articulated from the same tongue position even though in 
isolation they would have been articulated from two different 
positions. This results in a single segment representing two 
different phonemes in two adjacent words. Further, it is 
impossible tc specify the exact location of the word boundary. In 
the manual segmentation, the boundary was placed at an 
arbitrary position. Another type of juncture problem appears on 
Row 8 of Figure 3 at the boundary of "knight five". The release 
and aspiration of the phoneme /t/ are assimilated into the /f/ of 
"five". 

EGALUCA EXTRACTION AND SEGMENTATION 
The speech input from the microphone is passed through five 

band-pass filters (spanning the range 200-6400 Hz) and through 
an unfiltered band. Within each band the maximum intensity is 
measured for every 10 milliseconds (the zero crossings are also 
measured in each of the bands but they do not play an important 
role in the recognition process at present). This results in a 
vector of 6 amplitude parameters every 10 milliseconds. These 
parameters are smoothed and log-transformed. Figure 4 shows a 
plot of these parameters as a function of time for part of the 
utterance of Figure 3. The top line shows the utterance spoken. 
The second line of text indicates where the word boundaries 
were marked during the manual segmentation process (this will 
permit manual verification of the accuracy of the machine 
recognition process in the later stages). 

This vector of parameters (labeled 1, 2, 3, 4, 5, and U in 
Figure 4) is, for each centisecond, compared with a standard set 
of parameter vectors to obtain a minimum distance classification 
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Figure 3: Waveform of the utterance with the "actual- word and phoneme boundaries. 

R 3 



aim &KII6MT 7m 

Figure 4. Parametric representation of the utterance showing the 
results of feature extraction and segmentation 

using a modified nearest-neighbor classification technique. The 
purpose of this operation is to assign a (single character) label to 
each cenrisecond of speech using a compact pseudo-phonetic 
notation representing the actual local characteristics of the 
speech signaL The line of text labeled P in Figure 4 gives the 
classification for every 10-millisecond unit. 

The classification of labels for each centisecond obtained by 
this match procedure (row P ir. Figure 4) is then used to specify 
a lis: of features, such as voicing and frication, which are then 
used in the segmentation of the utterance, shown ir. Figure 4. 
The boundaries of segments are indicated by vertical lines 
through the parameters, and the letter at the center of each 
segment (following the row P in Figure 4) indicates the type of 
segment that is present. The "A" indicates a sonorant segment* 
i.e., ail the voiced unfricated segments; the "S" indicates a 
fricated segment, and the period (".") indicates a silence segment. 
The first use of an acoustic-phonetic source of knowledge can be 
seen in the handling of the "king knight" word boundary problem 
mentioned earlier. A long sonorant segment is subdivided into 
two segments to indicate the presence of two different syllables. 
The syllable Juncture is determined in this case by the presence 
of a significant local minimum in an overall intensity pict (line 
labeled U on Figure 4). 

Th» Recognition Process 

The Hearsay system, at present, has three cooperating 
independent processes which help in the decoding of the 
utterances. These represent acoustic, syntactic, and semantic 
sources of knowledge: 

1. The acoustic-phonetic domain, which we refer to as 
just acoustics, deals with the sounds of the language 
and how they relate to the speech signal produced 
by the speaker. This domain of knowledge has 
traditionally been the only one used in most previous 
attempts at speech recognition. 

2. The syntax domain deals with the ordering of words 
in the utterance according to the grammar of the 
input language. 

3. The semantic domain considers the meaning of the 
utterances of the language, in the context of the task. 

The actual number and nature of these sources of knowledge is 
somewhat arbitrary. What is important to notice is that there can 
be several cooperating independent processes. 

These processes cooperate by means of a hypothesize-and-
test paradigm. This paradigm consists of one or more sources of 
knowledge looking at the unrecognized portion of the utterance 
and generating an ordered list of hypotheses. These hypotheses 
may then be verified by one or more of the sources of 
knowledge; the verification may accept, reject, or re-order the 
hypotheses. The same source of knowledge may be used in 

different ways both to generate hypotheses and to verify (or 
reject) hypotheses. 

We wiil illustrate this recognition process by following 
through various stages of recognition for the utterance given in 
Figures 3 and 4. Figures 5 through 12 illustrate several of these 
stages of the recognition. In each figure, we have four kinds of 
information in addition to what was shown in Figure 4: the 
current sentence hypothesis (immediately below the P and 
segmentation rows), the processes acting on the current sentence 
hypothesis and their effect (e.g., SYN HYPOTHESIZED..., ACO 
REJECTED...), the acceptable option words with their ratings and 
word boundaries (e.g., T...T 500 Rook's), and the four best 
sentence hypotheses which result by adding the possible option 
words to the current best sentence hypothesis. When there are 
more than eight option words, only the best eight are shown. 
When there are more than four sentence hypotheses, only the 
best four are shown. The symbol <UV> within the current 
sentence hypothesis gives the location of the set of new words 
being hypothesized and verified. The "f~.f" arrows indicate the 
possible beginning and ending for each option word. 

Figure 5 shows the firs: cycle of the recognition process. At 
this point none of the words in the sentence have been 
recognized and the processing begins left to right. The Syntax 
module chooses to hypothesize and generates 13 possible words, 
implying that the sentence can begin with "rook's", "rook", 
"queen's", etc. Of these, the Acoustics module absolutely rejects 
the word "bishop's" as being severely inconsistent with the 
acoustic-phonetic evidence. The Semantics module rejects 
"castle" and "castles" as being illegal in this board position. The 
remaining 10 words are rated by each of the sources of 
knowledge. The composite rating and the word beginning and 
ending markers for the eight best words are shown in Figure 5. 
The words "rook", "rook's", "queen's" and "queen" all get a rating 
of 500. "Bishop", the correct word, gets a rating of 513. These 
words are then usee to form the beginning sentence hypotheses, 
the top four of which are shown at the bottom of Figure 5. 

Figure 6 shows the second cycle of the recognition process. 
The top sentence hypothesis is "bishop — " . An attempt is being 
made to recognize the word following "bishop". Again Syntax 
generates the hypotheses. Given that "bishop" is the preceding 
wore, the syntactic source cf knowledge proposes only 7 options 
out of the -possible 31 words in the lexicon ~ a reduction in 
search space by a factor of 4. Of these possible 7 words, 
Acoustics rejects "captures" and Semantics rejects none. The 
remaining six words are rated by each of the sources of 
knowledge and a composite rating along with word boundaries is 
shown in Figure 6 for each of the acceptable words ("to" has a 
rating of 443, etc.). The correct word, "moves-to", happens to 
get the highest rating of 525. The new top sentence hypothesis 
is "bishop moves-to — " , with a composite sentence rating of 
547. 

Figure 7 shows the third cycle of the recognition process. 
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Given the top sentence hypothesis "bishop moves-to — t h e 
Syntax module hypothesizes 7 option words. None of these were 
rejected by Acoustics or Semantics. "King" and "king's" both get 
the highest score of 513. The first error in the recognition 
process occurs at this point. As new sentence hypotheses are 
created based on the ratings of individual words, both "bishop 
moves-to king's — " and "bishop moves-to king — " have the 
same rating, with the former appearing at the top of the list. At 
this point it is instructive to see why the error was made in the 
first place. The phonemic description of "king's" causes a search 
for a stop followed by a vowel-like segment followed by a stop 
and fricative. This sequence of segments occurs in "king knight 
five" as can be seen from Figure 4 (improvements currently 
being made to the system will result in "king's" getting a much 
lower score). The important thing to observe is how the system 
recovers from errors of this type. 

Figure 8 shows the system attempting to associate a 
meaningful word to the unverified part of the utterance, i.e., the 
/alv/ part of the word "five" in the original utterance. Syntax 
proposes 3 possible option words (out of a possible 31, giving a 
factor of 10 reduction). One is rejected and the other two get 
very low ratings. The corresponding sentence hypotheses also 
get low composite ratings and end up at the bottom of the stack 
(not visible in Figure 8). 

Now we see an interesting feature of the system. In the 
preceding cycle (Figure 8) Syntax generated the hypotheses. It 
is possible that that source of knowledge is incomplete and did 
not generate the correct word as a possible hypothesis. 
Therefore, in this cycle (Figure 9), the Semantic module is given a 
chance to hypothesize. It hypothesizes 9 option words (a 
reduction of search by a factor of 3) all of which are rejected by 
Syntax and Acoustics. When both attempts to make a meaningful 
completion of the utterance fail, this particular sentence 
hypothesis, "bishop moves to king's—", is removed from the 
candidate list. 

Now the top sentence hypothesis is "bishop moves-to king—" 
(Figure 10). Syntax hypothesizes 11 option words. Acoustics 
rejects six of them and Semantics rejects two. Of the remaining 
words, the correct word, "knight", gets the second best rating 
after "bishop". Again there is an errorful path, because the top 
sentence hypothesis now happens to be "bishop moves-to king 
bishop — " . This sentence hypothesis is rejected immediately in 
the next cycle because there is no more utterance to be 
recognized and "bishop moves-to king bishop" is not a legal 
move. Note that the correct sentence hypothesis is not at the 
top of the stack. Its rating of 550 is not as good as "bishop 
moves-to king — " (see Figure 10). 

The processing in the next cycle is illustrated in Figure 11. 
Note that in Figure 10, this same sentence hypothesis was used 
when the Syntax module hypothesized. Now Semantics is given 
an option to hypothesize and proposes 3 words. All of these are 
rejected by Syntax and Acoustics. 

Finally, the correct partial sentence hypothesis, "bishop 
moves-to king knight — " , gets to the top (Figure 12). Syntax 
hypothesizes 17 option words. Of these Semantics rejects 16 as 
being incorrect, leaving only "five" as a possibility. This results 
in the correct complete sentence hypothesis of "bishop moves-to 
king knight five". But the composite rating for this sentence is 
only 545 and there are other partial sentence hypotheses with 
higher ratings. At this point, the system cycles eight more times 
before rejecting all of them and accepting the correct sentence 
hypothesis. 

Figure 13 shows the accuracy of the system in recognizing 
some typical sentences. An attempt was made to estimate the 
effect of syntax and semantics. Using Syntax only, the average 
number of words analyzed was reduced to 9.4 out of the possible 

31 words in the lexicon — a reduction in search space by a 
factor of 3. Using Semantics only, the reduction of search space 
was about the same. Using both knowledge sources results in a 
reduction in the search space by a factor of 5. 

SPOKEN 

/RECOGNIZED ( I f not cot ipolotaly c o r r e c t ) 

pawn to quoon four 

pawn to quoon b ishop four 

pawn to k i n g four 

k n i g h t to quoon bishop throo 

b i s h o p takos pawn 

quoon takos quoon on quoon four 
(gavo up a f t o r 48 soeonds of computation) 

b i s h o p to quoon kn ight throo 

b i s h o p to k ing throo 
b i s h o p to k ing f i v o 

c a s t Ios quoon s i d o 

c a s t Ios quoon's s ido (undorstood co r rec t I y ) 

pawn to b ishop throo 

pawn takos kn ight 

k n i g h t to quoon f i v o 

k n i g h t takos kn ight 

b i s h o p to k ing rook s i x 

rook to quoon throo 

k n i g h t to rook throo 

rook on rook ono to quoon ono 
rook on quoon ono takos rook on quoon throo 

rook on quoon ono to k ing rook ono chock 

k n i g h t ' s pawn takos bishop 

19 u t t o r a n c o s t r i a d : 
15 r o c o g n i z o d c o r r e c t l y , 16 undorstood c o r r e c t l y . 1 concodod. 
tloan computat ion t i s * por uttorancos 16.1 s o c (POP10 - Kilt) 

Figure 13: Examples of results for one run. 

SOURCES OF KNOWLEDGE; 
Their Representation and Use in the Hearsay System 

Several sources of knowledge are used in the Hearsay 
system at present: speaker- and environment-dependent 
knowledge, acoustic-phonetic rules, vocabulary restrictions, and 
syntactic and semantic knowledge. The knowledge used at 
present represents only a small part of all the available 
knowledge. We expect to be adding to the knowledge base of 
the system for many years to come. The difficulties in 
representation and use of knowledge within the system are 
manifold. Even when rules exist which express pertinent 
knowledge, their applicability seems very limited and the effort 
involved to make effective use of them within the system is very 
large. Rules that exist are scattered in the literature. Many have 
not been written down and exist only in the heads of some 
scientists, and many are yet to be discovered. In this section, we 
will restrict ourselves to the discussion of the knowledge that is 
incorporated into the present Hearsay system. 

SPftff k« r m n A Environment Dependent Knowledge 

The characteristics of speech vary, depending on the 
speaker, age, sex, and physical condition. In addition, the 
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characteristics of the environment (such zs background noise) 
and the characteristics of the transducer (such as the frequency 
response characteristics of the microphone) also cause variability 
in speech characteristics. 

In the Hearsay system an attempt is made to correct for 
these variables through the use of a EE table. This table 
contains a standard set of parameters for various phones uttered 
by the speaker in a neutral phonetic context. This set of 
parameters also accounts for the characteristics of the room 
noise and the characteristics of the microphone in that the 
neutral phones were uttered in the very same environment. A 
complete list of the clusters used and the details of the speaker 
and environment normalization are given in Erman (1973). 

Acvustic-Phvngtic Knowledge 
This knowledge is used In several places within the system to 

perform different functions. Knowledge related to syllabic 
structure is used in the segmentation. For each segment, 
knowledge related to voicing, frication, and syllable junction (a 
local minimum of energy) is used to assign labels to each 
segment. An example of segmentation and labeling obtained by 
this type of knowledge is given in Figure 4. 

The acoustic-phonetic knowledge is used in the recognition 
process in two ways: to generate hypotheses about possible 
words that may be present in the incoming utterance; and to 
reject, accept, or re-order the hypotheses generated by other 
sources of knowledge. 

The hypothesization is based on the fact that certain sounds 
within an utterance, e.g., stressed vowels, sibilants, and unvoiced 
stops, can usually be uniquely recognized. These features of the 
incoming utterance can then be used as an acoustic-phonetic 
filter on the lexicon to hypothesize only those words that are 
appropriate in this acoustic context. 

When the acoustic-phonetic knowledge is used to verify 
hypotheses, it performs a more thorough analysis. Given a 
hypothesized word, its phonetic description is located in the 
lexicon. This description is used to guide the search for the 
word by means of phoneme procedures. That is, the expected 
characteristics of a given phoneme in various contexts are 
represented as a procedure; this procedure is activated to see if 
the expected features are present, and to provide a confidence 
rating based on the acoustic evidence. There are several 
increasingly more sophisticated verification procedures that can 
be used to verify proposed hypotheses. These sophisticated 
procedures are only invoked if word ambiguity exists at the 
preceding level. 

following or preceding a word using only a limited context. 
Examples of anti-productions and their use are given by Neely 
(1973). The role of the syntactic verifier is to accept or discard 
hypotheses by using syntactic consistency checks based on the 
partial parse of the utterance. While the knowledge used for 
hypothesization and verification are the same, the representation 
and the mechanisms used in the hypothesization and verification 
are different. Figures 5 and 6 give examples of constraints 
provided by the syntactic knowledge during hypothesizatidn. 
Figure 9 illustrates its use in verification. 

The semantic source of knowledge for Voice-Chess is based 
on the semantics of the task, the current board position, and the 
likelihood of »he move. This knowledge is used to predict likely 
legal moves; ihese moves are then used in conjunction with the 
partially-recognized utterance to predict a word that might 
appear in the utterance. The same knowledge is also used to 
verify hypotheses generated by other sources of knowledge. 
Figure 9 illustrates the use of semantic knowledge to generate 
hypotheses. In the context of "bishop moves-to king", Semantics 
hypothesizes nine possible words. It hypothesizes all the words 
that might appear in the utterance in positions allowed by the 
semantic knowledge, given the partial recognition. Figure 12 
shows the use of Semantics in the verification. Syntax 
hypothesizes 17 possible words. The semantic knowledge, given 
the partially recognized utterance "bishop moves to king knight", 
indicates that only "five" is legal in that context by rejecting all 
others. 

SUMMARY. 
This paper reports o/» research in progress on the Hearsay 

speech understanding system. The system has been operational 
since June, 1972. At present we are attempting to improve the 
accuracy and performance of the system by adding to and 
improving the knowledge base. This is being done by an analysis 
of errors made by the system on seven sets of data from five 
male speakers in four different task domains. This process of 
modification and improvement is expected to continue for several 
years, using increasingly complex vocabularies, syntax, and task 
environments. The Hearsay system will be used primarily as a 
research tool to evaluate the contributions of various sources of 
knowledge, as well as serving as an information processing model 
of speech perception. 
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Syntactic and Semantic Knowledge 

Conventional parsing techniques are not very useful to direct 
the search within a speech understanding system. The 
recognizer must be capable of processing errorful strings 
containing spurious and repeated words. This implies that the 
parser must be capable of starting in the middle of the utterance 
where a word might be recognized uniquely and parse both 
forwards and backwards. The goal of parsing is not so much to 
generate a parse tree, but to predict what terminal symbol might 
appear to the left or to the right of a given context. 

The predictive parsing for hypothesization is achieved in the 
Hearsay system by the use of anti-productions. Anti-productions 
act as a concordance for the grammar giving all the contexts for 
every symbol appearing in the grammar; they are generated from 
a BNF description of the language to be recognized. The anti-
productions are used to predict words that are likely to occur 
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ABSTRACT 

This paper considers various factors affecting system organization for speech 
understanding research. The structure of the Hearsay system based on a set of 
cooperating, independent processes using the hypothesize-and-test paradigm is 
presented. Design considerations for the effective use of multiprocessor and network 
architectures in speech understanding systems are presented: control of processes, 
interprocess communication and data sharing, resource allocation, and debugging are 
discussed. 

Keywords: speech recognition, speech understanding, system organization, networks, 
multiprocessors, parallel processing, real-time systems, hardware for Al, software for Al. 

INTRODUCTION 

System organizations for speech understanding systems must 
address many problems: effective use of multiple sources of 
knowledge, anticipation and goal-direction in the analysis of the 
incoming utterance, real-time response, continuous monitoring of 
input device(s), errorful nature of the recognition process, 
exponential increase of processing requirements with the 
increase of desired accuracy, and so on. A particular model of 
speech perception (Reddy et al., 1973) which attempts to solve 
the above problems involves the use of cooperating independent 
processes using a hypothesize-and-test paradigm. This paper 
examines the effect of the problem constraints and the model on 
system organizations, presents the structure of a system 
currently operational on a PDP-10 computer, and discusses the 
implications of multiprocessor and network architectures. 

Unlike many other problems in artificial intelligence, speech 
understanding systems are characterized by the availability of 
diverse sources of knowledge, e.g., acoustic-phonetic rules, 
phonological rules, articulatory models of speech production, 
vocabulary and syntactic constraints, semantics of the task 
domain, user models, and so on. A major problem, then, is to 
develop paradigms which can make use of all the available 
sources of knowledge in the problem solution. At the same time, 
absence of one or more sources of knowledge should not cripple 
the system. Suppose each source of knowledge is represented 
within the system as a process. In order to remove or add 
sources of knowledge, each process must be independent, i.e., it 
must not require the presence of other processes in the system. 
But at the same time each process must cooperate with the other 

processes, i.e., it must be able to effectively use the information 
gathered by them about the incoming utterance. Thus, a major 
design step is to establish what information is to be shared 
among processes and how this information is to be communicated 
so as to maintain the independence of individual processes while 
still allowing for necessary process cooperation. 

Knowledge available in the acoustic signal represents only 
one part of the total knowledge that is brought to bear in 
understanding a conversation. A good example of this is when 
one is interrupted by an appropriate response from the listener 
to a question that is as yet incomplete.. In general, a human 
listener can tolerate a great deal of sloppiness and variability in 
speech because his knowledge base permits him to eliminate most 
of the possibilities even as he hears the first few words of the 
utterance (if not before!). We feel that this notion of anticipation, 
prediction, and hypothesis generation is essential for machine 
perception systems as well. In general, we expect every source 
of knowledge to be able to generate hypotheses in a given 
context, or verify hypotheses generated by others using 
different representations of knowledge, if necessary. The 
implication is that knowledge processes be organized within the 
system so as to reduce the problem of recognition and 
understanding to one of prediction and verification. 

In tasks such as chess and theorem-proving, the human has 
sufficient trouble himself so as to make reasonably crude 
computer programs of interest. But, because humans seem to 
perform effortlessly (and with only modest error) in speech (and 
visual) perception tasks, similar performance is expected from 
machines, i.e., one expects an immediate response and will not 
tolerate any errors. To equal human performance, a speech 
understanding system must be able to understand trivial 

* This research was supported in part by the Advanced Research Projects Agency of 
the Department of Defense under contract no. F44620-70-C-0107 and monitored by 
the Air Force Office of Scientific Research. 



questions as soon as they are uttered. This implies that various 
processes within the system should be allowed to operate as 
soon as there is sufficient incoming data, without waiting for the 
completion of the whole utterance. If the processes within the 
system are independent and unaware of the existence of each 
other, then the system must provide facilities for activation, 
termination, and resource allocation for each of the processes. 
Further, if a process can be deactivated before it reaches a 
natural termination point, provision must be made to preserve the 
state of the process until it is reactivated. Also, it is necessary 
to provide interlocks on the data that are shared among many 
processes. 

This has several implications for system organization. The 
system must monitor the input device continuously to determine 
whether speech is present; this requires non-trivial processing. 
If the system is unable to process the incoming data, automatic 
buffering must be provided. If the system is to run on a time­
sharing system, provision must be made to ensure that no data is 
lost because the program is swapped out for a period of time. If 
the speech understanding system is to consist of a set of 
cooperating independent processes, it is further necessary that 
they be able to be interrupted at unpreprogrammed points — if 
the microphone monitoring program is not activated in time to 
process the incoming utterance, it could lead to irrevocable loss 
of data. These considerations lead to two additional requirements 
that are not commonly available on existing time-sharing systems, 
viz., process-generated interrupts of other processes and user 
servicing of interrupts. 

One of the characteristics of speech understanding systems is 
the presence of error at every level of analysis. To control such 
errors and permit recycling with improved definitions of the 
situation, one uses techniques such as feedforward, feedback, and 
probabaiistic backtracking. If such facilities dc not exist within 
the system, they have to be programmed explicitly. 

Speech, by its nature, appears to be computer intensive. A 
substantially unrestricted system capable of reliably 
understanding connected speech of many speakers using a large 
vocabulary is likeiy to require systems of the order of a 
proposed AI machine (Bel!, Freeman, et al., 1971a), i.e., processing 
power of 10 tc 100 million instructions per second and memory 
of 100 to 1000 million bits.* To obtain such processing power, it 
appears necessary to consider multiprocessor architectures. 
Decomposition of speech processing systems to effectively use 
distributed processing power requires careful consideration even 
with primitive systems. Our model of cooperating independent 
processes, each representing a source of knowledge, leads to a 
natural decomposition of the algorithms for such machine 
architectures. 

THE CURRENT Hearsay SYSTEM 

In this section we briefly describe the Hearsay speech 
understanding system as it now exists at C -MU. (More detailed 
descriptions of the system are given in Reddy et al., 1973,1973a 
(this volume); Erman, 1973; and Neely, 1973.) We shall stress 
those aspects of its organization which are responsive to the 
constraints and model outlined above. This system represents a 
first attempt to solve those problems; thus, some cf the 
constraints are only partially or poorly met, while others are 
satisfied in a more constricted way than necessary. We shall 
point out these limitations as they are described; later sections 
on closely-coupled and loosely-coupled processor network 
architectures describe possible corrections and improvements of 
the system. 

* Smaller and substantially cheaper systems can be built to 
perform useful but restricted speech understanding tasks. 

E 

The Hearsay system is implemented as a small number of 
parallel coroutines (see figure). Each coroutine (module) is 
realized as a separate job in the PDP-10 time-sharing system; 
thus the time-sharing monitor is the primary scheduler for the 
modules. In general, the modules may achieve a high degree of 
(pseudo-) parallel activity (through the use of shared memory 
and a flexible inter-process message system*), but, in practice, 
we limit the parallelism to a very modest amount. This limitation 
is imposed for two reasons: first, since the PDP-10 is a 
uniprocessor system, there is nothing to be gained (in the time 
domain) by increasing the parallelism; and, second, the greater 
the amount of parallelism, the more difficult it is to control and 
debug the programs within a time-sharing system that is not 
designed for cooperating processes (jobs). 
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Decomposition of processes in the current Hearsay system. 

The model of recognition specifies that there be separate 
processes, each representing a different domain of knowledge. 
We have chosen three major domains of knowledge: acoustic-
phonetics, syntax, and semantics: 

1. The acoustic-phonetic domain, which we refer to 
as just acoustics, deals with the sounds of the 
language and how they relate to the speech signal 
produced by the speaker. This domain of 
knowledge has traditionally been the only one 
used in most previous attempts at speech 
recognition. 

2. The syntax domain deals with the ordering of 
words in the utterance according to the grammar 
of the input language. 

3. The semantic domain considers the meaning of the 
utterances of the language, in the context of the 
task that is specified for the speech 
understanding system. 

These processes, according to the model, are to be 
independent and removable; therefore the functioning (and very 
existence) of each must not be necessary or crucial to the others. 
On the other hand, the model also requires that the processes 
cooperate and that the recognition should run efficiently and with 

• The facilities provided for inter-job control and communication 
are similar to those developed for the Stanford Hand-Eye 
system (Feldman and Sproull, 1971). 



good error recovery; these dictates imply that there be a great 
deal of interaction among the processes. Thus we seem to have 
opposing requirements for the system. These opposing 
requirements led to the design of the following structure: 

Each process interfaces externally in a uniform way 
that is identical across processes; no process Knows 
what or how many other recognition processes exist. 

A mediator, ROVER (Recognition OVERIord), handles the 
interface to each of the processes and thus serves as 
the linkage connecting the processes; the processes 
are called ROVER's "sons." 

The interface is implemented as a global data structure which 
is maintained by ROVER. Each of ROVER's sons puts information 
into this data structure in a uniform way. Each may access 
information submitted by its brothers, but in a manner which 
leaves the source of that information anonymous. This 
mechanism is analogous to a bulletin board on which messages 
can be left by several people and for which there is a monitor 
who accepts the message and arranges them in appropriate 
places on the board for others to react. 

This anonymous interface structure is appropriate only if the 
global data structure can be designed in such a way as to allow 
the processes to communicate meaningfully; i.e. there must be a 
common language which allows them to transmit the kind of 
information they need to help each other to work on the problem. 
We resolve this problem by using the word as the basic unit of 
discourse among the processes. 

The basic element of the global data structure is the word 
hypothesis which represents an assertion that a particular word 
(of the input language lexicon) occurs in a specified position in 
the spoken input. A sentence hypothesis is an ordered linear 
sequence of word hypotheses; it represents an assertion that the 
words occur in the sentence in the order that the word 
hypotheses appear in the sentence hypothesis. In addition, the 
unique "word" FILLER may appear as a word hypothesis; this is a 
placeholder and represents the assertion that zero or more as 
yet unspecified words occur in this position in the spoken 
sentence. In general, there may be any number of sentence 
hypotheses existing at any one time. 

The interactions among the source-of-knowledge processes 
are carried out using the hypothesize-and-test paradigm 
prescribed by the model. In general, any process may make a 
set of hypotheses about the utterance; all the processes 
(including the hypothesizer) may then verify (i.e. reject, accept, 
or re-order) these hypotheses. In particular, hypothesization 
occurs when a recognition process (Acoustics, Syntax, or 
Semantics) chooses a FILLER word from a sentence hypothesis 
and associates with it one or more option words, each of which it 
asserts is a candidate to replace all or part of the FILLER. 
Verification consists of each process examining the option words 
and rating them in the context of the rest of the sentence 
hypothesis. 

Several restrictions have been placed on the implementation 
of this general scheme. First, at any time only one part of the 
shared, global data structure (i.e., one sentence hypothesis) is 
accessible to the processes for hypothesization and verification. 
Second, the processes go through the hypothesization and 
verification stages (and several other subsidiary stages) in a 
synchronized and non-interruptable manner. Finally, only one 
process is allowed to hypothesize at any one time. Again, these 
restrictions were imposed both because parallelism on a 
uniprocessor does not accomplish any throughput increase and 
because the available programming and operating systems make a 
more general implementation difficult to specify, debug, and 
instrument. These restrictions are mitigated somewhat by 
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carefully adjusting the time grain of the processing so that each 
non-interruptable phase is not "excessively large." 

Each sentence hypothesis has a confidence rating associated 
with it which is an estimate of how well it describes the spoken 
utterance. This rating is calculated by ROVER, based on 
information supplied by the recognition processes. Errors in 
processing become evident when the overall rating given to a 
sentence hypothesis begins to drop; at that point, attention is 
focused on some other sentence hypothesis with a higher rating. 
This switching of focus is the mechanism that provides the error 
recovery and backtracking that is necessary in any speech 
understanding system. 

CLOSELY-COUPLED PROCESSOR SYSTEM ORGANIZATIONS 

As discussed in the introduction, in order to do real-time 
speech understanding a substantial amount of computing power is 
required. Recent trends in technology indicate that this 
computing power can be economically obtained through a closely-
coupled network of "simple" processors, where these processors 
can be interconnected to communicate in a variety of ways (e.g., 
directly with each other through a highly multiplexed switch 
connected to a large shared memory (Bell et al., 1971), or 
through a regular or irregular network of busses (Bell et al., 
1973)). However, the major problem with this network approach 
to generating computing power is finding algorithms which have 
the appropriate control and data structures for exploiting the 
parallelism available in the network. The model for a speech 
understanding system as previously discussed, which is 
decomposed into a set of independent processes cooperating 
through a hypothesize-and-test paradigm, represents a natural 
structure for exploiting this network parallelism. 

There exist three major areas for exploitation of parallelism 
in the structure of this speech understanding system: 
preprocessing, hypothesization and verification, and the 
processing specific to each source of knowledge. The 
preprocessing task involves the repetition of a sequence of simple 
transformations on the acoustic data, e.g., detection of the 
beginning and end of speech, amplitude normalization, a simple 
phoneme-like labeling, smoothing, etc. This sequence of 
transformations can be structured as a pipeline computation in 
which each transformation is a stage in the pipe. Thus, through 
this pipeline decomposition of the preprocessing task, a limited 
amount (i.e., 4) of parallel activity is generated. 

The hypothesize-and-test paradigm for sequencing the activity 
of the different sources of knowledge can also be structured so 
as to exhibit parallelism, but the amount of parallelism is 
potentially much greater. This parallel activity is generated by 
the simultaneous processing of multiple sentence hypotheses and 
the simultaneous hypoihesization and verification by all sources 
of knowledge. The simultaneous processing of multiple sentence 
hypotheses, rather than processing just the currently most likely 
candidate, can conceptually introduce unnecessary work. But in 
practice, because of the errorfuS nature of the processing, there 
may be a considerable amount of necessary backtracking to find 
the best matching sentence hypothesis. It is appropriate to 
quote a conjecture of Minsky and Papert (1969, Section 12.7.6) 
on this point: 

[While for the exact match problem] relatively small 
factors of redundancy in memory size yieid very large 
increases in speed, . . . [for the best match probiem ] . 
. . for large data sets with long word lengths there are 
no practical alternatives to large searches that inspect 
large parts of the memory. 

Thus, the parallel activity generated by simultaneous processing 
of more than one sentence hypothesis can result in a 



proportional speed-up of the recognition process.* 
Correspondingly, simultaneous hypothesization and verification 
by all sources of Knowledge also results in a proportional speed­
up of the recognition process because each source of Knowledge 
is independent and is designed so that its Knowledge contirbution 
is additive. 

Finally, the verification algorithm of each source of Knowledge 
can be decomposed into a set of parallel processes in two ways: 
The first Kind of decomposition is based on the fact that 
verifications are performed on a set of option words rather than 
a single word at a time. Thus, for each source of Knowledge 
there can be multiple instantiations of its verification process, 
each operating on a different option word. The second Kind of 
decomposition involves the parallelizing of the verification 
algorithms themselves; thus, each instantiation of a verification 
process may itself be composed of a set of parallel processes. 
However, this set of instantiations may not be totally independent 
because the rating produced by the verification process may be 
dependent on the particular set of option words to be verified 
and also on the local data base which is common to all the 
instantiations. For example, the acoustic verification process is a 
hierarchical series of progressively more sophisticated tests. 
The first few levels of testing looK only at the context of a single 
option word, while the more sophisticated tests compare one 
option word against another. Thus, only at the first few levels of 
tests can the acoustic verification algorithm be parallelized in a 
straightforward manner. 

The parallelism generated by parallelizing the hypothesize-
and-test control structure and the verification processes are 
multiplicative in their parallel activity (i.e. performing in parallel 
the updating of n sentence hypothesis where each hypothesis 
invokes m verification processes and each verification process 
operates on o option words leads to a potential parallelism of 
n*m*o). This parallelism, together with the pipeline parallelism of 
the preprocessing, leads to what appears to be a large amount of 
potential parallelism to be exploited by a closely-coupled 
network. However, it is still not clear just how much potential 
parallel activity exists over the entire recognition system; nor is 
it Known how much of this potential will be dissipated because of 
software and hardware overhead. 

In order to answer these questions, a parallel decomposition 
of the Hearsay speech understanding system is now being 
implemented on Cmmp, a closely-coupled networK of PDP- l l ' s 
which communicate through a large shared memory (Bell et al., 
1971). The Cmmp hardware configuration can contain up to 16 
PDP- i r s ; the highly multiplexed switch that connects processors 
to memory permits up to 16 simultaneous memory references if 
these references are not to the same memory module. Thus, if 
processors are referencing different memory modules, then each 
processor can run at full speed. In addition, Cmmp can be 
configured for a specific application (e.g., speech) by replacing a 
processor by a special purpose hardware device which directly 
accesses memory (e.g., a signal processor). 

The HYDRA software operating system (Wulf, 1972), which is 
associated with Cmmp, provides an appropriate Kernel set of 
facilities for implementing the parallel version of the speech 
system. These facilities permit control of real-time devices, 
convenient building of a tree of processes, message queues and 
shared data base communication among processes,* user-defined 
scheduling strategies, arbitrary interruption of running processes, 
and dynamic creation of new processes. Building up from this 
base, a debugging system will be constructed which, in addition 
to the normal features, will permit the recording of all 
communication among processes, the tracing of ail process 

* Simulation studies are currently being carried out on evaluating 
this speed-up factor. These studies are based on data 
generated from the current version of the Hearsay system. 

activity, and the monitoring of global variables (including a 
recording of which processes have modified them). These 
additional capabilities are crucial for isolating errors and 
understanding the dynamic behavior patterns of the parallel 
system. 

The major software problem to be investigated in this 
parallel implementation of the Hearsay system is how to 
efficiently map virtual parallelism (process activity) into actual 
parallelism (processor activity). This mapping problem in turn 
centers on three design issues, each of which relates to how 
processes interact: 

1. the design of the interlock structure for a shared 
data base, 

2. the choice of the smallest computational grain at 
which the system exhibits parallel activity, and 

3. the techniques for scheduling a large number of 
closely-coupled processes. 

The first design issue is important because in a closely-
coupled process structure many processes may attempt to access 
a shared data base at the same time. In a uniprocessor system, 
the sequentialization of access to this shared data base does not 
significantly affect performance because there is only one 
process running at a time. In a multiprocessor system, however, 
if the interlock structure for a shared data base is not proper\y 
designed so as to permit as many non-interfering accesses as 
possible, then access to the snared data base becomes a 
significant bottlenecK in the system's performance (McCredie, 
1972). 

The second issue relates to how closely-coupled processes 
can interact. If the grain of decomposition is such that the 
overhead involved in process communication is significant in 
relation to the amount of computation done by the process, then 
the added virtual parallelism achieved by a finer decomposition 
can decrease, rather than increase, the performance of the 
system. Thus, understanding the relationship between the grain 
of decomposition and the overhead of communication is an 
important design parameter. 

The third issue relates to a phenomenon called the "control 
worKing set" (Lesser, 1972). This phenomenon predicts that the 
execution of a closely-coupled process structure on a 
multiprocessor may result in a significant amount of supervisory 
overhead caused by a large number of process context switches. 
The reason for this high number of process context switches is 
analogous to the reason for "thrashing" within a data worKing set 
(Denning, 1968). For example, in a uniprocessor system if two 
parallel processes closely interact with each other, then each 
time one process is waiting for a communication from the other it 
would have to be context switched so as to allow the other 
process to execute. If these two processes communicate often 
then there would be a large number of context switches. 
However, if there were two processors, each containing one of 
the processes, then there would be no process switching. 

The implications of this phenomenon on constructing process 
structures are the following: 

1. Processes should be formed into clusters where 
communication among cluster members is closely-
coupled whereas communication among clusters is 
loosely-coupled. This process structuring 
paradigm has also been been suggested as a 
model for the operation of complex human and 
natural systems (Simon, 1962). 

2. The size of a process cluster cannot be chosen 
independent of the particular hardware 
configuration that will be used to execute it. For 
example, a cluster size of 8 may be appropriate 
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for a hardware system containing 16 processors 
while being inappropriate for a system containing 
6 processors. 

3. The scheduler of a multiprocessor system should 
use a strategy that schedules process clusters 
rather than single processes. (This is analogous 
to the advantage of preloading the data working 
set rather than dynamically constructing the 
working set at each context swap.) 

4. The use of process structures to implement 
inherently sequential, though complex, control 
structures (e.g., coroutines, etc.) may lead to 
inefficient scheduling of process structures on a 
multiprocessor system (i.eM the scheduling 
strategy should be able to easily differentiate 
those processes that can go on in parallel from 
those that are sequentialized). 

ORGANIZATIONS 

The multiprocessor type organization described earlier 
implies a closely-coupled set of processes on a set of closely-
coupled processors cooperating to accomplish the common goal of 
utterance recognition. The key idea in such a system is that both 
the processes and processors are closely-coupled — that is, the 
cost of communication between processes or processors is 
relatively cheap with respect to the amount of computation to be 
done by any individual process. Indeed, in the multiprocess 
system described earlier, much interprocess communication and 
data sharing may be achieved by actually having shared physical 
address spaces. However, such a system usually also implies a 
certain homogeneity or physical proximity of the processors and 
memory. 

Consider now the task of integrating the knowledge of many 
different research groups in various widespread geographical 
locations, each with its own computing facilities ar?d esch with its 
own areas of specialization. In an attempt to avoid unnecessary 
duplications of effort, one would desire a scheme whereby each 
group could develop pieces of a total recognition system (which 
pieces might represent new sources of knowledge, such as a new 
and improved vowel classification algorithm) using local computing 
resources (i.e., using an arbitrary machine configuration and 
program structure). Those pieces of the system would then be 
incorporated into a distributed "total recognition system" by 
appropriate (hopefully minimal) linkage and protocol conventions 
and their contributions to the entire system evaluated. The 
geographical constraints suggest the use of a computer network 
facility as a means by which one might assemble this total 
recognition system. We are currently undertaking the task of 
designing and implementing such a system for use on the ARPA 
network of computing facilities (Roberts and Wessler, 1970). The 
usefulness of such a network organization for a speech 
understanding system lies in its potential ability to combine and 
evaluate the various algorithms and sources of knowledge of a. 
wide variety of research groups. In particular, the objective of 
the network organization is to create a research tool rather than 
to produce a highly efficient recognition system. 

As an example, suppose a group wishes to add a new source 
of knowledge (a new vowel classification algorithm, for instance) 
to the network system. This knowledge-source is provided in the 
form of a process (or a set of processes) running on a local 
computer connected to the ARPA network. System integration is 
then achieved by adding linking instructions to the process 
(perhaps interactively) for notifying a centralized controlling 
process of the set of pre-conditions (e.g., conditions relating to 
the incoming speech wave or the current state of the 
recognition) that must be met in order to activate this process 
(Adams, 1968), as well as the required inputs and created outputs 
(and their formats). The central controller is then responsible for 

activating the new knowledge source at appropriate times, 
supplying the requested inputs, and updating a global data base 
to reflect the results of the activated process. Knowledge source 
processes may communicate with one another via a message 
service facility provided by the central controller. The marked 
increase of indirection with respect to communication and data 
sharing as compared with a closely-coupled multiprocessor 
approach is a result of the goal to serve a wide geographic 
region of users and to allow cooperation between essentially 
autonomous knowledge sources. 

The problems that occur in this network concept are of a 
nature different from that of those occurring in the 
multiprocessor structure described previously. The many 
sources of knowledge are no longer necessarily closely-coupled. 
In fact, we might term such a network organization to be 
"loosely-coupled" in the sense that process communication and 
data base sharing must be achieved by some form of message 
switching scheme since the system is now operating on an 
indefinite number of (nonhomogeneous) computers. In particular, 
there is no longer the ability for all processes to share data and 
communicate by sharing physical address spaces. The problems 
of data base sharing and shipping now abound: one would like 
not to have multiple copies of a given data structure due to 
updating synchronization problems, but the message switching 
involved in maintaining and updating a single, centralized data 
structure may be overwhelmingly inefficient. 

It is intended that, besides serving as a research tool for 
testing various recognition algorithms and combinations thereof, 
such a network organization will become an interesting 
experiment in its own right. There remains much investigation to 
be conducted regarding the tradeoffs involved in passing and 
sharing data through channels having low communication rates, as 
well as investigating the means of coordination of many 
autonomous knowledge sources. Points of interest for systems 
design also exist in creating the appropriate interfaces between 
any given group's knowledge source process and the central 
controlling process. Specification for data base requirements and 
formats (for both input and output) and specifications for 
determining the pre-conditions upon which a process should be 
activated must be easily specified for each new process to be 
added. In particular, the new process should not need to know 
the details of the global data structures it may need to access — 
the linkage interface should take care of such details (Parnas, 
1971,1971a). 

Issues of user control over the entire system and the human 
interface in general are considered vital, demanding much 
investigation for any system organization which intends to run as 
a set of parallel cooperating (whether closely- or loosely-
coupled) processes. The user must have the ultimate control 
over halting the entire recognition system or some subset of 
processes involved therein and interrogating (and perhaps 
altering) the instantaneous state of any given process. Protocols 
for debugging and controlling any knowledge source process 
should be provided via the interface linkage setup. Systems 
allowing the amount of user control that might be desired are not 
easily achievable given the current state of the art, primarily due 
to a general lack of experience in multiprocess environments 
(however, see Swinehart, 1973). Given a well-defined problem 
environment such as the speech understanding task, which lends 
itself readily to a multiple-process decomposition, investigation 
into the realms of multiprocess debugging and control might now 
be given more definite aims. Indeed, the problems involved in 
controlling a set of independent parallel processes that are 
cooperating to solve a single problem reach beyond the issues 
raised in the development of present multiprogramming systems 
(e.g., monitoring and controlling the interactions involving shared 
data structures and process intercommunications demand that 
new debugging systems and strategies be formulated). 



SUMMARY 

The main focus of this paper has been to illustrate the issues 
of system organization that arise when one attempts to build a 
general speech understanding system which can equal human 
performance. In practice, however, one can finesse a large 
number G f t h ^ ^ 

Feldman, J.A. and R.F. Sproull (1971), "System Support for the 
Stanford Hand-Eye System", Second Inter. Joint Conf. on 
Artificial Intelligence, 183-189. 

relaxing other requirements, such as real-time response. 
However, unless the system is organized with the eventual goals 
firmly in mind, one is likely to end up with dead-end systems, 
necessitating a complete reformulation of the problem solution. 
The complexity of the hardware and software problems raised by 
real-time requirements explains why there are very few systems 
which can accept or attempt recognition of live connected 
speech. 

Usually the term "parallel processing" is used as if it will 
resolve all of one's problems. The intent here is mainly to 
indicate that speech understanding systems naturally decompose 
into a set of cooperating, independent processes. Whether one 
uses a single processor (as we now do) or many processors (as 
we propose to do), the program structure and organization tends 
to be similar. The main question, then, is how much computational 
power is available on the system to attempt real-time recognition 
of connected speech. The multiprocessor and network 
organizations provide an opportunity to study and evaluate 
relative merits of various computer architectures in this context. 

Finally, we believe that the issues of system organization 
raised here are relevant to a large class of current problems in 
Al , e.g., vision, robotics, chess, chemistry, etc., where 
performance is the main criterion for acceptability and where 
many sources of knowledge are available. In particular, the 
notions of hypothesize-and-test and cooperating independent 
processes seem equally applicable to these areas as well. 
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This paper' concerns the application of a new time-domain technique to the 

analysis of complex acoustic signals such as human speech. The chief 

advantage of this method is its precise temporal resolution allowing exact 

timing of" articulatory events within a sample of speech; that is, no bandwidth limitation 

is present. This temporal resolution is most significant for characterizing 

fast transitional regions such as occur at vowel-consonant and consonant-vowel 

boundaries and within stop consonants. We generate visual displays 

of waveform up-crossings in time, derived directly from the acoustic waveform itself. 

The impetus for our work comes from two sources: DFirst are the studies by 

Licklider and his colleagues who 25 years ago demonstrated the intelligibility of 

infinitely clipped speech. This showed that sufficient acoustic speech information 

is encoded in the zero-crossings of the waveform itself. Given the redundancy 

of speech such information is most probably encoded by other aspects of the waveform. 

As it happens though, zero-crossings or up-crossings are easy to see and extract from the 

waveform. 2)The second motivation for this work comes from neurophysiological research 

on the auditory information processing of the ear itself. Basically the ear processes 

an incoming signal in at least two widely recognized manners. The first is 

analysis in the frequency-domain and is analgous to a kind of filter bank 

where different neurons along the basilar membrane respond to different frequency 

ranges; that is, a given neuron fires if it detects a signal of sufficient intensity 

within a particular frequency range. Neurons also code information in the time-domain 

in a manner known as phase-locking. Given a waveform, a phase-locking neuron 

responds by firing once, phase consistently, for each cycle or integer number 

pf cycles within the waveform. The technique we W e using is directly analagous 

to this latter time-domain coding technique. 

We generate our visual displays as follows: A zero-axis is drawn horizontally 

through the center of the acoustic waveform. We note the exact time when the 

waveform crosses this axis in an upward direction. In actuality, we usually record 

only those up-crossings which exceed some threshold amplitude, epsilon, 

set slightly above the horizontal zero-axis. This threshold tends to preclude low 

amplitude background noise. We measure each interval between successive up-crossings 

and plot these as a function of time in our displays. Therefore each up-crossing 
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in the acoustic waveform is represented by a discrete dot in our displays. 

In fact, we actually plot on a log scale, the inverse of the interval 

between successive up-crossings along the vertical Y-axis and time along the horizontal 

X-axis. This yields a display which superficially resembles a kind of spectrographic 

display. (N.B. For those readers familiar with neurophysiological studies 

of single unit responses, this display is directly analagous to an "instantaneous frequency" 

plot and functionally analagous to a phase-locking phenomenon.) We also display a 

rough intensity measure by means of a Z-axis modulation. That is, the 

size of a dot representing a given cycle is proportionate to the log of the greatest 

intensity achieved during that cycle. This dot size intensity measure in our 

up-crossing displays is analagous to the intensity measure expressed in spectrograms. 
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The idea of looking at zero-crossing measures per se is not in itself concep­

tually new. However, in contrast to most other investigators who have used zero-crossing 

measures to analyze speech, we do not average our up-crossings over a fixed interval of 

time. Reasons for this will be discussed shortly. First of all it is important to be 

aware that the chief motivation for many zero-crossing studies has been in searching for 

an inexpensive way to find frequency domain acoustic features, such as formants. 

This method avoids the computations required for Fourier transforms, for example. In 

order to decrease the expense and variability in examining individual cycles,it was easy to 

to compute an average cycle length by simply counting the number of zero-crossings occur­

ring during a given time interval. This procedure has two major consequences: l)the perfect 

time resolution inherent in the time-domain is lost when crossings are averaged; that is, 

a bandwidth limitation is introduced, 2) the conventional acoustic features extracted 

are usually less precise and more variable than the same acoustic features 

extracted directly with a frequency-domain analysis. Our reason for not averaging 

up-crossings is that in the speech waveform itself there are significant acoustic features 

which only last for one or a few cycles in duration. If cycles are averaged, this 

information is irrevocably lost. Such transient events frequently occur at vowel -

consonant and consonant-vowel boundaries as well as between other acoustically 

distinct regions, within stop consonants for example. In the waveform shown here of 

the nonsense word Ma tat' a" (stress on the second syllable), some of these short 

duration features can be seen. For example, one such feature often occurs at the 

transition from a stop or fricative to a following vowel. We find there exists a relatively 

long and intense cycle between the consonant and vowel. Sometimes there are several 

such cycles before the vowel. On our displays this phenomenon appears as a relatively 

low frequency large dot, or sometimes several, immediately preceding the vowel. The 

occurrence of this transition cycle(s) coincides with the upswing in energy 

from the consonant to the vowel. In our up-crossing display of the same 

utterance we have circled these transition cycles and labeled them "tr". 
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Another area where consistent time-domain features can be seen is during the 

course of stop consonants. Both "t's" shown in this example consist of three distinct 

regions: the initial pause, a release, and aspiration. The pause is characterized 

in the waveform as a region of very low energy, irregular activity which is terminated 

abruptly by the release characterized by many greater amplitude, high frequency cycles. 

In the up-crossing displays, the initial pause appears as either one or a few outstandingly 

low frequency dots immediately preceding the release activity. In our display, these 

dots are circled and labeled "p", for "pause dot". The precise duration of any 

unusual cycle or sequence thereof may be trivially determined by noting the cor ­

responding dot's(s') height(s) on the vertical axis. We have seen these pause and transition 

dots in literally thousands of our displays o\ utterances spoken by both men and women. 

In the up-crossing display here, there is also an example of an automatic boundary 

segmentation as evidenced by the vertical lines drawn through the display*. These vertical 

segmentation lines were drawn automatically solely on the basis of discontinuities in 

the signal intensity functions. These intensity functions were computed pitch-synchronously 

and are represented by the line graph at the base of the plot. As easily seen, 

although the dot features and vertical line segmentation were independently 

derived, the times at which they occurred were rather close. 

Another finding with this unaveraged up-crossing analysis is the presence of visually 

easily distinguishable patterns for fricatives and stops, e.g."p", T ' , and "k" distinctions. 

We performed the following experiment with 10 people, most of whom had no experience 

with spectrograms or other speech research. First of all, we had a stack of 

photographs of our displays (with no segmentation lines or even any vertical or 

horizontal axis markings). The photographs showed displays of nonsense words all 

in the form of d C V C (stress on the CVC syllable), spoken by both male and female speakers. 

In a typical experiment, we would give a subject three model pictures, each of a 

nonsense word containing "p", "t", and ' V in the initial consonant position respectively. 

We would then show him where in the pictures these consonants were located. Next we 

handed him a stack of unsorted pictures and instructed him to sort these into four piles, 

one each for those that contained "p", M f ' f or "k" in the same position as in the 

model pictures, and one pile for those pictures that did not look like any of the model 

•(automatic segmentation algorithm and implementation done by James K. Baker) 
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pictures. Despite speaker, allophone, and vowel differences between the model pictures 

and those sorted, subjects were able to distinguish "pV\ T s " , and "k's" from 

each other about 807, correctly on a first try, regardless of the subject's familiarity 

with speech research. Additional practice improved scores. 

At this point two issues arise. First is the issue that the ability of 

humans to distinguish these phoneme patterns does not guarantee that an automatic speech 

recognizer can be programmed to do as well. The dot pattern itself is complex and it 

is not clear exactly which visual features subjects use in making their decisions. 

Although we do have some specific ideas about which acoustic features are most reliable 

for these discriminations, we have not yet subjected a large sample of data 

to an automatic testing program to determine which features are most .reliable 

and when. This brings us to the second major issue, the problem of allophones and 

coarticulation effects. Different allophones of the same phoneme often are acoustically 

very different. An extreme example of this phenomenon appears in the following 

pictures (spectrograms and up-crossing displays) of the connected speech utterances 

"Pawn to king four" and "Pawn to queen four". The V in "king" differs radically from the 

"k" in "queen". The most obvious difference is the lower frequency components in the n k M 

of "queen", probably due to the lips' rounding, effectively lengthening the vocal tract. 

\ 
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Therefore we are starting an extensive investigation examining time-domain acoustic 

features of all the allophones of the stops and fricatives common in English. We will 

examine in detail a large sample of these utterances, about 500 each from seven or 

eight male and female speakers to determine the most reliable cues for stop and fricative 

discriminations and ascertain which allophones and coarticulation effects must 

be dealt with explicitly. This kind of basic research is essential for the development of 

automatic speech recognition systems. 

In summary, we find that, due to its precise temporal resolution, this up-crossing 

analysis (and presumably other related time-domain analyses) is particularly wel l -

suited to examining fast transitional regions of acoustic signals. In our displays 

we often find, particularly for traditionally difficult stop and fricative discriminations, 

visually distinct patterns, consistent across male and female speakers. 

In addition, this technique is generalizable to any waveform and is particu­

larly applicable to complex waveforms characterized by rapid frequency changes. 

On the basis of both theoretical considerations and the empirical results of our studies, 

in conjunction with other studies in speech analysis, we feel that future automatic 

speech recognition systems may be more successful by incorporating both time and 

frequency domain analyses, rather than either separately. Although there is a great 

deal of redundancy in terms of the information yielded by both domains, frequency-domain 

analyses will generally be more powerful for steady or quasi-steady state phenomena, e.g. 

stressed vowels, while time-domain analyses will usually be most effective for studying fast 

transient phenomena, e.g. stop consonants. 
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Th is paper presents preliminary resu l ts of a p ro jec t for 

machine-aided segmentation and labeling of connected speech. The 

segmentation and labeling problem is reformulated as a problem of 

searching for a minimum cost path in a network. Such abstract 

fo rmulat ion permits the construction of a system which avoids the 

c o m p l e x i t i e s of a system b u i l t by ad hoc methods from the acoust ic 

and phonological propert ies of speech. That such a simple abst ract 

model is adequate for th is problem is demonstrated by a funct ion ing 

program which is described by the pair of simple formulas ( IB) and 

(11) . A program which uses more sophisticated acoustic observat ions 

and more complicated matching procedures is under development* but i t 

i s a l so an implementation of the same abstract model. 

For research in the acoustic propert ies of speech i t i s 

imperat ive to have a large data base of speech utterances which have 

been r e l i a b l y segmented and labeled. Each important event must be 

found and labeled as to time of occurrence. L e t ' s r e s t r i c t our 

a t t e n t i o n to f ind ing the beginning and ending time of each phone in a 

g i v e n ut terance . A r e l i a b l e method to do th is label ing is to 

generate an appropriate display of the acoustic parameters and then 

have a t ra ined person label the phone segments. But for a large data 



base of thousands of utterances, such hand labeling can be very time 

consuming. The goal of th is project is a program which can 

automat ica l l y assign the labels to a connected speech utterance w i th 

the need for human intervent ion only on special problem cases* 

Assigning labels to a speech utterance to be used in a data 

base i s a very d i f f e r e n t problem from segmentation and label ing for 

automatic recogn i t ion because the utterance is known* The program i s 

g i v e n e i t h e r a phonetic t ranscr ip t ion or can approximate one from an 

o r thograph ic t r a n s c r i p t i o n plus a phonemic d ic t ionary . On the other 

hand, the label ing must be as complete and r e l i a b l e as poss ib le 

whereas a general recognit ion system should be able to t o l e r a t e 

incomplete label ing or even e r ro rs . 

A second goal of th is project is the exp lorat ion of the 

a p p l i c a t i o n of stochast ic models to automatic speech a n a l y s i s . A 

general technique has been developed for combining information from 

severa l sources when each source alone would resu l t in a s i g n i f i c a n t 

number of e r r o r s . C lear l y there are many problems in speech 

r e c o g n i t i o n which f i t th is general framework. The un i fy ing p r i n c i p l e 

i s a generat ive stochast ic model for f i t t i n g a sequence of states to 

e r r o r f u l data from several sources. Machine-aided segmentation and 

l a b e l i n g has been approached as a spec i f ic appl icat ion of t h i s 

genera I techn i que. 

To r e l a t e the phones to the acoustic observations requ i res 

knowledge of the acoustic phenomena which are expected wi th each 
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phone. In l ine with the p robab i l i s t i c approach, each phone i s 

assumed to be associated with a stochastic process which produces 

a c o u s t i c parameter values for any instance of the phone. The 

s t a t i s t i c a l p roper t ies of the stochastic process associated w i t h any 

p a r t i c u l a r phone are to be estimated from the occurrences of the 

phone in the part of the data base which have already been segmented 

and labe led . Thus a non-negl ig ib le data base must f i r s t be analyzed 

by hand before the machine-aided system can be star ted. 

Each acoust ic observation is to take a value from a f i n i t e set 

D. Assume that for each phone P there is a p o s i t i v e - i n t e g e r - v a l u e d 

random v a r i a b l e Z and a family of random var iables X (1 ) , X (2 ) , 
P P P 

. . . , X (Z ) with values in D. Let f be the condi t ional 
P P P,n 

p r o b a b i l i t y funct ion 

(1) f (x , x , . . . , x ) 
P,n 1 2 n 

« PR0B(X ( l ) = x , X (2)=x X (n)»x I Z «n) 
P I P 2 P n P 

Let g (n) * Prob(Z =n). The interpretat ion is to be that Z is the 
P P P 

d u r a t i o n of an instance of phone P and X (1) , X (2) , . . . . X (Z ) 

P P P P 

are the acoust ic observations made during that instance of P. 

Let V ( l ) , V ( 2 ) , V (3 ) , . . . , V(T) be the sequence of 

observat ions made for the utterance being analyzed. Let P ( l ) , P ( 2 ) f 
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• * MR) he the secp>virF* o f P H O N E S in the utterance. Use r.rw: 

no ta t ron V [ 11:t2] A S A N A B B R E V I A T I O N for the sequence V ( t l ) , V ( t l + 1 ) , 

. . . , V ( t 2 - 1 ) , V ( t 2 ) . L E T U ( l ) , U(2) U(R) be a sequence O F 

p u t a t i v e s t a r t i n g times F O R T H E phones. That i s . U ( l ) < U(2) < . . . < 

U(R) and for E A C H k, P ( k ) is supposed to last from observat ion 

. V ( lMk) ) to observation V ( U ( k + l ) - l ) . Suppose a set of observat ions 

V [ 1 : T ] and times U [ 1 : R ] A R E P R O D U C E D by applying in succession the 

s t o c h a s t i c processes F O R E A C H O F T H E phones P ( l ) through P(R) A N D 

concatenat ing the O B S E R V A T I O N S , T H E individual processes B E I N G 

independent. Then T H E P R O B A B I L I T Y of producing the observed sequence 

i s 

(2) PROB ( V t l : t ] , U t l : r ] ) 
P t l : R ] 

- 7 T ( f (V [U(k) : l t (k+l ) - l ] )g (U(k+1)-U(k)) 
^ V P ( k ) , U ( k + l ) - U ( k ) P(k) 

The segmentation A N D L A B E L I N G problem consists of f ind ing T H E 

c o r r e c t s e t of V A L U E S F O R T H E S E Q U E N C E U t l : R ] . Ue shal l use A 

maximum l i k e l i h o o d E S T I M A T I O N S C H E M E . Pick for U t l :R ] that S E Q U E N C E 

that maximizes P r o b ( V [ l : T ] , U T L : R ] ) for the given observations 

V [ 1 : T 3 . T h e problem O F F I N D I N G U L L : R ] I S E Q U I V A L E N T T O F I N D I N G the 

best path through a B I N A R Y D E C I S I O N T R E E where each node A T I E V E ^ t 

represents a decis ion O F W H E T H E R O R not there is a phone boundary A T 

time t . Subject to T H E C O N S T R A I N T T H A T there are R phones, there A R E 
T - l \ ( T - l ) ! 

I R - l ( R - l ) ! ( T - R ) ! 
(3) 



paths through this tree. This number is prohibit ively large ( i f an 

observation is made every centisecond and the utterance lasts two 

seconds* then T-288), so some reduction is necessary. 

Note that our model is such that given k and IKksRl we can 

evaluate 

11 )g (U(J+ l ) -U ( j ) ) 
P(j) • [;;••[•: 

that is , the probabil ity does not depend on Utltk-11. Also note that 

(5) PROB ( V l l t T ) , Utl»Rl ) 
PtltR] 

- PROB ( V t l t U ( k ) - l ] , U(l»kJ)PR0B (VCU(k)tT3, Ulk:R3) 
Pt l iR l P[1:R] 

Therefore i f at any node of the tree corresponding to a particular k 

and U(k) we have evaluated Prob(V[ l :U (k - l ) l , U t l :k ) ) then the 

subsequent analysis depends only on k and U(k). That is , for the 

purpose of analyzing VtU(k):T] and UtktR] we can identify a l l nodes 

of the tree which correspond to the same pair k and U(k). Since we 

are only interested in the bestUUtRJ , we associate with this 

combination node the maximum of Prob(V[ l iU(k+l ) - l ] , U l l ikJ ) over a l l 

the nodes which are combined. This identification reduces the tree 

to a network whose nodes correspond to the two-dimensional set of 

(4) PROB ( V[U(k) tT] , IHkiRl ) 
PtltR] 

- T T ( f (VtU( j ) tU(J+D-
jH P<J.).U(J+1)-U(J) 
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va lues (k, U ( k ) ) , where 1 < k < R, 1 < U(k) < T. Procedures for 

f i n d i n g the best path through such a network have been e x t e n s i v e l y 

i n v e s t i g a t e d . A simple, computationally e f f i c i e n t , procedure i s 

dynamic programming. 

To f a c i l i t a t e dynamic programming, introduce the funct ion 

(6) A (k , t) « Max IPR0B(V[1. t - l ] . U f l . k ] ) } 
Utlsk] 
IHKNt 

That i s , A ( k . t ) i s the p robab i l i t y along the best path leading MP to 

the ( k , t ) node. A may be calculated by 

(7) A (k , t ) =* Max{ A(k-1, t - j ) f (VCt - J i t - U ) g ( j ) } 
j P ( k ) , j P ( k - l ) 

Let J ( k , t ) be the value for which th is maximum is achieved. Then 

a f t e r A and J have been calculated for the whole network, the best 

path through the network is obtained by 

(8) U(k) * U(k+1) - J(k+1, U(k+U) . 

I f we are w i l l i n g to assume that X ( l ) t X (2) , . . . f X (Z ) are 
P P P P 

independent and i d e n t i c a l l y d is t r ibuted and that 

n 
(9) g (n) - ( l - a ) a , for some a independent of P f 

6 



then an even simpler computation is possible. I t is not claimed that 

these add i t iona l assumptions are r e a l i s t i c . However, some examples 

w i l l be g iven to show that even with these assumptions and very crude 

a c o u s t i c observat ions the model can produce reasonable segmentation 

and I abeI i ng. 

The ex t ra assumptions allow us to ignore the durations of the 

phones by fac tor ing out a factor which is the same for a l l paths 

through the network. Reformulate the network, ignoring durat ion 

in fo rmat ion . Let the node (k , t ) correspond to the event U(k) £ t < 

U(k+1) wi th U(k) ^otherwise unrest r ic ted . Let B ( k . t ) be the 

p r o b a b i l i t y along the best path leading to ( k , t ) . Then B may be 

c a l c u l a t e d by 

(18) B (k , t) = ( Maxt B(k-1, t - 1 ) , B(k, t -1) ) )PR0B(X » V ( t ) ) 
P(k) 

Then the sequence U f l : R ] may be calculated by 

(11) U(k) - I1ax{ t I t<U(k+l) and B(k~l , t - l ) > B ( k , t -1) ) 

Since some of the simpl i fy ing assumptions are admittedly 

u n r e a l i s t i c , the model must be tested in actual use. F i r s t we must 

f i n d some measurable parameter to use as the sequence of acoust ic 

observat ions V t l . T I . The better the parametric representat ion 

d i s t i n g u i s h e s the phones, the more the condit ional p r o b a b i l i t y 

7 



f u n c t i o n f w i l l be concentrated in d i f fe rent regions for 
P.n 

d i f f e r e n t phones, and the better the system w i l l work. For f i n a l 

p roduct ion runs the best parametric representation ava i lab le should 

be used. For prel iminary test ing, however, there is an advantage to 

us ing a less prec ise parametric representation. I f the system is to 

be of s i g n i f i c a n t value i t must be robust. I t must be able to 

operate in environments in which the d i rect acoustic observations do 

not wel l character i ze the underlying phones. Besides, i f the system 

works w i th a crude parameterization, i t can be used to help assemble 

the data base needed for f inding and test ing a more r e f i n e d 

parameter i za t ion . 

The parameter which has been used is the output of a crude 

loca l -pat te rn -match phonetic recognizer. The output of the 

recogn i ze r is a label which is intended only to be an approximation 

to the associated phone. The conditional p r o b a b i l i t i e s are g iven in 

Table 1 . Each row corresponds to a given phone, and the columns are 

the poss ib le labels that the recognizer might assign. Th is 

r e c o g n i z e r f requent ly confuses phones within a c lass , but i t can 

g e n e r a l l y d i s t i n g u i s h among broad classes. 

The output of the system is shown for three chess ut terances. 

The s i x l i ne graphs in each f igure are the s ix parameters that are 

input to the pattern recognizer . They are intens i ty measures of the 

s igna l passed through each of f i ve octave-wide band-pass f i l t e r s and 

of the u n f i l t e r e d s igna l . The l ine immediately be I OH th? graphs is 
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the sequence of labels assigned by the recognizer. This is the 

sequence V [1 :T3 . There is one label for each centisecond. The 

phones as segmented and labeled by a program using formulas ( IB) and 

(11) are d isp layed on the second l ine . Each phone is p r in ted at the 

p o s i t i o n that indicates the time at which the phone begins. The hand 

segmentation data is given on the th i rd l ine and the orthographic 

t r a n s c r i p t i o n on the fourth . The phone sequence for the program is 

d e r i v e d from a phonemic d ic t ionary , so i t d i f f e r s in places from the 

hand labeled sequence. 

In evaluat ing a system of this type i t is important to note the 

d i f f e r e n t kinds of e r rors and their e f fec ts . There are three 

important kinds of e r ro rs : (1) The sequence of phonetic labels may 

d i f f e r from the correct sequence. (2) A boundary pos i t ion may be 

s h i f t e d between two phones which are otherwise co r rec t l y placed. (3) 

A phone may be so misplaced that i t s machine-labeled segment does not 

i n t e r s e c t the cor rect segment. The d i f fe rent kinds of e r r o r s have 

v a r i o u s e f f e c t s in a total man-machine system. 

The f i r s t type of error resu l ts from an inadequately spec i f i ed 

phonet ic input . Problems may resul t especia l ly when the input 

sequence is der ived by ru le from a phonemic d i c t ionary . The 

a lgor i thm is not permitted to a l ter the nominal phonetic sequence 

which i t i s g iven . To reduce errors of th is kind more sophis t icated 

phonological r u l e s must be combined with the phonemic d i c t i o n a r y , or 

the ut terance must be transcribed by hand. Note, however, that for 

9 



the purpose of c o l l e c t i n g s t a t i s t i c s for machine recogni t ion pat tern 

matching algor i thms, the best labeling may in fact be that which is 

d e r i v e d from a d i c t ion a ry . Then the s t a t i s t i c s are grouped according 

to the d i c t i o n a r y phonemic label , which is just what is needed for 

p a t t e r n matching s t a t i s t i c s . 

Some e r r o r s of misaligned boundaries are inev i tab le . In f a c t , 

the format of the output has some error b u i l t in since i t assumes 

that the phones can be occupy non-overlapping time segments. I t i s 

e s p e c i a l l y hard for the program to accurately place the boundaries 

between vowels and semi-vowels or nasals. More accurate and d e t a i l e d 

acous t i c observations may help, but the output must s t i l l be checked 

and cor rec ted by hand. 

The t h i r d type of error is the most serious. I t implies that 

severa l boundaries are misplaced and that the underlying sequence of 

s t a t e s in the path through the network is not fol lowing the actual 

sequence of phones at a l l . Such errors are easy for a human checker 

to d e t e c t , but to correct them may require that the whole utterance 

be hand labeled. Unless the number of errors of th is type is smal l , 

the machine-aided system is not successful. 

No systematic performance evaluation has been attempted, s ince 

the program is s t i l l in a preliminary vers ion. A f i l e of hand 

segmented data must be b u i l t up to establ ish s t a t i s t i c s for 

est imat ing the condit ional p robabi l i t y d i s t r ibu t ions of the X *s. 
P 

I t may be necessary to use the more complete model given by formulas 
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(7) and ( 8 ) . Duration information is a valuable tool for prevent ing 

the t ype -3 e r r o r s (which s t i l l occur under cer ta in c o n d i t i o n s ) . 

Other parametric representations of speech must be exp lored , 

e s p e c i a l l y i f the system is to work without tuning to ind iv idua l 

speakers. The pre-processor which is being used present ly i s tuned 

to the extent of having the speaker produce one prototype vers ion of 

each phone. When th is crude tuning is omitted the q u a l i t y of the 

a c o u s t i c obsevations is degraded s u f f i c i e n t l y to introduce type -3 

e r r o r s in many utterances. 
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