
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PAS-II REFERENCE MANUAL

D. A. Waterman

Version 29, June 17, 1973

PAS-11 REFERENCE MANUAL
TABLE OF CONTENTS

TABLE OF CONTENTS

1. INTRODUCTION
1.1. Automatic Protocol Analysis
1.2. Goal of PAS-II
1.3. Running the System

2. SYSTEM ORGANIZATION
2.1. Modular Organization

2.1.1. Run vs Rule Modes
2.1.2. Auxiliary Modes
2.1.3. Mode Table

2.2. Functional Organization
2.2.1. Types of Functions
2.2.2. Executing Functions
2.2.3. Entering Data
2.2.4. Numbers as Arguments
2.2.5. Function Table

2.3. Processing Data
2.3.1. Response to OK? Question

3. MODES
3.1. Run Modes

3.1.1. Text Mode
3.1.2. Topic Mode
3.1.3. Linguisticl Mode
3.1.4. Linguistic2 Mode
3.1.5. Semanticl Mode
3.1.6. Semantic2 Mode
3.1.7. Semantic3 Mode
3.1.8. Graphicl Mode
3.1.9. Graphic2 Mode
3.1.10. Graphic3 Mode
3.1.11. Tracel Mode
3.1.12. Trace2 Mode
3.1.13. Trace3 Mode
3.1.14. Trace4 Mode

3.2. Rule Modes
3.2.1. Segmentation Mode
3.2.2. Extraction Mode
3.2.3. Space Mode
3.2.4. Grammar Mode
3.2.5. Integration Mode
3.2.6. Normalization Mode
3.2.7. Grouping Mode
3.2.8. Unknowns Mode
3.2.9. Origin Mode
3.2.18. Conflict Mode
3.2.11. PBG Mode

PAS-11 REFERENCE MANUAL
TABLE OF CONTENTS

3.2.12. PS Mode
3.2.13. Memory Mode

3.3. Auxiliary Modes
3.3.1. Association Mode
3.3.2. Control Mode
3.3.3. Information Mode
3.3.4. Save Mode
3.3.5. Scratch Mode

4. FUNCTIONS
4.1. Basic Functions

4.1.1. (mode name)
4.1.2. Core Function
4.1.3. Create Function
4.1.4. Display Function
4.1.5. Erase Function
4.I.B. Exi t Function
4.1.7. Help Function
4.1.8. Mode Function
4.1.9. Move Function
4.1.10. Next Function
4.1.11. Prior Function
4.1.12. Rule Function
4.1.13. Run Function

4.2. Edit Functions
4.2.1. Break Function
4.2.2. Connect Function
4.2.3. Define Function
4.2.4. Delete Function
4.2.5. Ed Function
4.2.G. Insert Function
4.2.7. Read Function
4.2.8. Renumber Function
4.2.9. Write Function

4.3. Flag Functions
4.3.1. Automatic Flag
4.3.2. Batch Flag
4.3.3. Comment Flag
4.3.4. Fast Flag
4.3.5. Hush Flag
4.3.8. Numbers Flag
4.3.7. Print Flag
4.3.8. Search Flag
4.3.9. Suppress Flag
4.3.10. Time Flag
4.3.11. Versionl Flag
4.3.12. Version2 Flag

4.4. Process Functions
4.4.1. Again Function
4.4.2. Apply Function

PAS-11 REFERENCE MANUAL
TABLE OF CONTENTS

4.4.3. Copy Function
4.4.3. Go Function
4.4.3. Recopy Function
4.4.3. Restart Function
4.4.3. Start Function

5. EVOLUTION
5.1. Changes to PAS-11
5.2. Old Versions of PAS-II

6. EMERGENCY PROCEDURES

7. REFERENCES

8. APPENDIX
8.1. State Vectors
8.2. PAS-II Rules
8.3. PAS-II Script

PAS-11 REFERENCE MANUAL
1. INTRODUCTION

5

1. INTRODUCTION

1.1. AUTOMATIC PROTOCOL ANALYSIS

Automatic protocol analysis is a joint effort by man and machine to
infer, from the verbalization of a subject solving a problem, the
underlying information processes occurring during solution (1). An
initial goal for automatic protocol analysis is to provide a
description of the subject's behavior. An intermediate goal is to
provide a model of the subject; one which can generate a description
of his problem solving behavior. A long-term goal is to automate the
analysis more completely, particularly the induction processes, such
as induction of the problem space from the verbal protocol, or
induction of the model from the description of the behavior of the
subject.

1.2. GOAL OF PAS-II

The PAS-II system (2) is an interactive, task-free version of an
earlier protocol analysis system, PAS-I (3, 4). At the current level
of development, the goal of PAS-II is behavior description. The
system is designed to analyze protocols and produce as output a
problem behavior graph (PBG) describing the subject's search through
a posited problem space. The input to PAS-II is a transcribed text of
the subject's verbal protocol, plus a number of rules defining the
problem space, grammar, and certain data transformation operations.
The program performs a linguistic analysis of the text, producing a
series of semantic elements. These elements are further processed to
provide tentative groupings, each containing one operator plus
knowledge representing the operator's inputs and outputs. The
operator groups are represented as nodes in the PBG. Thus the output
from PAS-II is a graph which defines the subject's knowledge state at
each point in time and the operators he applied to change that
knowledge.

1.3. RUNNING THE SYSTEM

PAS-II is currently running in LISP on the CMU PDP18A system. To load
PAS-II type R PAS to the monitor. Then type either (BEGIN) or (PAS)
to the LISP interpreter to actually enter PAS-II. To leave PAS-II
either type EXIT to return to the LISP interpreter, or (control)C to
return to the PDP-10 monitor.

PAS-II will run in Stanford LISP compiled, and either Stanford or
Irvine LISP interpreted. To obtain your own copy of the system you

PAS-II REFERENCE MANUAL
1. INTRODUCTION

6

need disk files PAS2.LAP(X320DW28) and PAS2P.LAP(X320DU28) (the
compiled functions) and PAS2.LSP(X320DW28) (the uncompiled
functions). You Mill need 85K of core and 43000 words of binary
program space to assemble the compiled functions and load the
uncompi led ones. The regular and special pushdown lists should be set
to 3000 words each, with full words set to 1000. To run PAS-II
interpreted simply load file PAS2(X320DW28) and run.

PAS-II REFERENCE MANUAL
2.1. MODULAR ORGANIZATION

7

2. SYSTEM ORGANIZATION

2.1. MODULAR ORGANIZATION

2.1.1. Run and Rule Modes

PAS-II is organized as a modular data analysis system. The basic unit
of organization is the mode: a processing state which has associated
with it a buffer capable of holding rules or data. This buffer can be
modified by the editing functions available in the command language.
There are three types of modes: run modes, which hold the data being
anallyzed, rule modes, which hold the processing rules, and auxiliary
modes, which hold task-free system-oriented rules.

The difference between run and rule modes is that in a run mode you
have two options: you can process the data in the previous run mode
by applying rules from a rule mode, or you can edit the data in the
current run mode. In a rule mode you have only one option: that of
editing the rules in that mode.

Every run mode, except text, tracel, and trace3 has one or more rule
modes associated with it. When a run mode is used to process data,
the processing always consists of applying the rules from the
associated rule modes to the data.

2.1.2. Auxiliary Modes

There are five auxiliary modes: save, control, association, scratch,
and information. The save mode contains rules which specify which
mode buffers are to be saved on (or read into from) a disk file when
the WRITE (or READ) command is executed. The control mode contains
rules which define the control cycle and control flow through the
system. The association mode contains rules which specify which rule
modes are associated with each run mode. The scratch mode is a
general purpose, temporary buffer used as the destination mode for
the apply function. The information mode, however, holds no rules and
processes no data. It is unique in that it contains no buffer and
recognizes none of the functions that constitute the command
language. This mode provides the user with general information about
PAS-II: its basic organization, purpose and techniques of operation.
This is to be contrasted with the HELP function, which provides the
user with specific, on-the-spot information about the mode he is in.

2.1.3. Mode Table

The PAS-II modes are listed below:

PAS-II REFERENCE MANUAL
2.1. MODULAR ORGANIZATION

8

Run Rule AuxiIiary

text
topi c
Iinguisticl
Iingui st ic2
semanticl
semantic2
semant ic3
graphicl
graphic2
graphic3
tracel
trace2
trace3
trace4 match

segmentation
extract i on
space, grammar
integration
normalization
grouping
unknowns
or i g i n
confIict, pbg

ps, memory

association
control
save
informat ion
scratch

2.2. FUNCTIONAL ORGANIZATION

2.2.1. Types of Functions

The basic functions are: core, create, display, erase, exit, help,
mode, move, next, prior, rule, run, and (mode name). They are
applicable in all run and rule modes. Note that every mode name is a
function, which when executed puts you into that mode. The most
important function for the novice is help; it provides information
about the use of all functions in every mode. Be sure to use help
after you leave the information mode.

The edit functions are: break, connect, define, delete, ed, insert,
read, renumber, and write. Most of them are applicable in all run and
rule modes, and are used to edit the data in the mode buffers. They
are applicable in the save mode but not in the information mode.

The flag functions are: automatic, batch, comment, fast, hush,
numbers, print, search, suppress, time, versionl, and version2. They
are applicable in all but the information mode, and are used to set
switches which control processing in the run modes.

The process functions are: again, apply, copy, go, recopy, restart,
and start. They are applicable in all run modes, and are used to
start the processing of data.

2.2.2. Executing Functions

Functions can be executed in all modes except the information mode:
to execute a function type its name or, if it has arguments, its name

PAS-II REFERENCE MANUAL
2.2. FUNCTIONAL ORGANIZATION

9

and the arguments in parentheses. For example, typing 'DISPLAY' or
'(DISPLAY)' or '(DISPLAY 3) ' will execute the display function. It Is
not necessary to type the entire function name: any unambiguous
initial substring of the function name will evoke execution, and if
the name ends in a digit, any initial substring followed by that
digit will evoke execution. For example, 'DISPLA*, 'DISPL', and
'DISP' will all execute the display function. 'GRAPHIC3', 'GRAPH3'
and 'G3' will all execute the graphic3 function. Note I: function
names used as arguments to the help function cannot be abbreviated.
Note 2: parentheses are needed only for disambiguation. Thus typing
'BREAK 1 2 RENUMBER DISPLAY' is equivalent to typing (BREAK 1 2)
RENUMBER DISPLAY'.

2.2.3. Entering Data

A carriage return (CR) enters a line of data into the system. To
continue from one line to the next without terminating the previous
line use altmode instead of carriage return if you are on a tty. Use
underline if you are on a Date I or 2741. A carriage return in
response to a yes or no type question is interpreted as meaning no.
The only exception to this is OK? question which interprets a
carriage return as meaning yes.

The system indicates that it is ready to accept tty input by typing:
*, (digit)., N(digit), or (string) - .

2.2.4. Numbers as Arguments

Most of the edit functions take numbers or number-groups as
arguments. A number must be either an integer (1, 5, 58, etc.) or a
real (1.5, 17.82, 8.7, etc.) without a plus or minus sign. A number
group has the form: number-number or number+number. For example, 3-8
stands for 3, 4, 5, and 6. 12+3 stands for 12, 13, 14, and 15. An
asterisk (*) can be used to designate the last item in the buffer.
Thus if the buffer contained ten lines (1-18) then typing '(DISPLAY 1
4 *) ' would display lines 1, 4, and 18.

2.2.5. Function Table

The PAS-II functions are listed below:

Basic Edit Flag Process

aga in (mode name) break automatic
core connect batch apply
create define comment copy
display delete fast go

PAS-II REFERENCE MANUAL
2.2. FUNCTIONAL ORGANIZATION

IB

erase ed hush recopy
ex i t i nsert numbers restart
help read pr int start
mode renumber search
move wr i te suppress
next time
pr i or versionl
rule version2
run

2.3- PROCESSING DATA

2.3.1. Response to OK? Question

When the system finishes a processing step it will type a number or
number range (indicating the lines processed from the previous mode)
and lines of data (representing the lines of output to be added to
the current mode). If the system types:

4. D IS 5
T IS 0

this means that from line 4 of the previous mode the processing
produced the above two lines to be added to the end of the current
mode buffer. At this point (if batch » F) the system will ask 'OK?'.
Type just a carriage return to signify that the processing was ok and
you want to continue. Or you may respond as shown below:

? : means forget the last processing step, don't do it.
U: n : means consider that the input for the last

processing step was the first n lines in
the previous mode rather than what was used.

UR: n : means consider that both the input and the
output for the last processing step were
the first n lines in the previous mode's buffer.

R: string : means consider that the output for the last
processing step is the string including
everything between the R: and the next carriage
return. The string may contain the symbol & to
indicate that the output goes to different
(but adjacent) lines in the current mode buffer.

(function call) : means execute the function in the
normal way, but if it's a flag continue mode
processing. If it's not a flag, don't continue
mode processing.

Below are examples of combinations of responses and their effect:

OK? ? TIME : means don't do this last processing step
(from ?) , set time • T, and continue processing

PAS-II REFERENCE MANUAL
2.2. FUNCTIONAL ORGANIZATION

(since time is a flag). Thus the last
processing step will be repeated, this time
wi th t ime • T.

OK? ? TEXT : means don't do this last processing step,
and furthermore don't do it over (since text
isn't a flag), just go to text mode and return
control to the user.

OK? R? L IS 1 8 T IS 2 : means put 'L IS 1' into the
next line of the current mode buffer, and
'T IS 2' into the line after that, just as if
they were the result of the processing step.

OK? UR: 4 : means consider that the processing
consisted of taking the first 4 lines from the
previous mode buffer and putting them into the
end of the current buffer.

OK? U: 2 R: (EQ D 5) : means consider that the last
processing step used the first 2 lines from the
previous mode as input and produced as output
(EQ D 5) . Thus the 2 lines are deleted and
(EQ D 5) is added to the current mode buffer.

PAS-II REFERENCE MANUAL
3.1. RUN MODES

12

3. MODES

3.1. RUN MODES

3.1.1. Text Mode

The text mode is used simply as a storage buffer which provides data
for the topic mode to process. No processing is done in the text
mode.

In the text mode, the define function is used to type material into
the text buffer. Typically this material is a string of text
representing a subject's protocol.

Data in the text mode should consist of a string of text all stored
in one line of the text buffer. For example: 'EACH D IS 5 ; THEREFORE
T IS 0. I 'M CARRYING 1' would be typical for cryptarithmetic.

3.1.2. Topic Mode

The topic mode is used to process text data by applying the
segmentation rules and placing the resulting segmented text into the
topic buffer. These segments are called topic data.

In the topic mode, the define function is used to define topic
segments representing a subject's segmented protocol.

Data in the topic mode should consist of segments of text, where each
segment is in one line of the topic buffer and consists of basically
a single item or assertion. For example:

EACH D IS 5 ;
THEREFORE T IS 0 .

are two typical segments for cryptarithmetic.

3.1.3. Linguisticl Mode

The linguisticl mode is used to process topic data by applying the
extraction rules and placing the result, some subset of the topic
data, into the linguisticl buffer. This result is called Iinguisticl
data.

The extraction rules simply divide the contents of the topic buffer
into smaller, more easily handled groups. For example, if the topic
buffer contained 40 lines of data and the extraction rule were set to
10, then the data would be processed in 4 groups of 10 lines each,
with each group being completely processed (Iinguistic2 through
graphic3 modes) before processing starts for the next group.

PAS-II REFERENCE MANUAL
3.1. RUN MODES

13

In the linguisticl mode, the define function is used to define a
small set of topic segments representing an initial estimate of an
operator group.

Data in the linguisticl mode has exactly the same format as data in
the topic mode.

3.1.4. Linguistic2 Mode

The Iinguistic2 mode is used to process linguisticl data by applying
the space and grammar rules and placing the result, a set of semantic
elements, into the Iinguistic2 buffer. This result is called
Ii ngu i st i c2 data.

In the Iinguistic2 mode, the define function is used to define
semantic elements: operator, knowledge, and indicator elements.

Data in the Iinguistic2 mode should consist of sets of semantic
elements, with each line of the buffer containing a set of one or
more elements. For example:

(EQ D 5)
(THEREFORE) (EQ T 8)

are two sets for cryptar i thmet ic, the first containing one element,
the second containing two elements.

3.1.5. Semanticl Mode

The semanticl mode is used to process Iinguistic2 data by applying
the integration rules and placing the result, integrated semantic
elements, into the semanticl buffer. This result is called semanticl
data.

In the semanticl mode, the define function is used to define semantic
elements which have undergone integration processing.

Data in the semanticl mode has essentially the same format as data in
the Mnguistic2 mode.

3.I.S. Semantic2 Mode

The semantic2 mode is used to process semanticl data by applying the
normalization rules and placing the result, normalized semantic
elements, into the semantic2 buffer. This result is called semantic2
data.

In the semantic2 mode, the define function is used to define semantic

PAS-II REFERENCE MANUAL
3.1. RUN MOOES

14

elements which have undergone integration and normalization
processing.

Data in the semantic2 mode has essentially the same format as data in
the Iinguistic2 mode, except that the semantic elements 'BECAUSEOF',
'COND', and *0PI0* may also be present.

3.1.7. Semantic3 Mode

The semantic3 mode is used to process semantic2 data by applying the
grouping rules and placing the result, a protogroup, into the
semantic3 buffer. This result is called semantic3 data.

In the semantic3 mode, the define function is used to define a small
number of semantic elements which represent a reasonable estimate of
an operator group.

Data in the semantic3 mode has exactly the same format as data in the
semantic2 mode.

3.1.8. Graphicl Mode

The graph icl mode is used to process semantic3 data by applying the
unknowns rules and placing the result, elements without unknowns,
into the graphicl buffer. This result is called graphicl data.

In the graphicl mode, the define function is used to define semantic
elements which, in general, do not contain unknowns.

Data in the graphicl mode has exactly the same format as data in the
semantic2 mode.

3.1.9. Graphic2 Mode

The graphic2 mode is used to process graphicl data by applying the
origin rules and placing the result, an operator group, into the
graphic2 buffer. This result is called graphic2 data.

In graphic2 the system will query the user about the origins of the
elements in graphicl. For a knowledge element, the system will ask
the user for the operator that produced it, the operator's inputs,
the operators that produced the inputs, etc. For each operator
element it will ask for the operator (in case the user wants to
change notation) its inputs, outputs, etc. If there are multiple
operators in graphicl the system will ask if each is an occurance of
the others. For example, in cryptar i thmetic for DONALD+GERALD-ROBERT
(PLUS D D) can be considered an occurance of (PC 1), process column

PAS-II REFERENCE MANUAL
3.1. RUN MODES

15

1.

In the graphic2 mode, the define function is used to define operator
groups such that each group occupies one line of the graphic2 buffer.

Data in the graphic2 mode must have the following format;
(operator) (input list) (outputs)

For example; (PC 2) ((EQ D 5) (EQ CI 8)) (EQ T 8) (EQ C2 1)
represents a cryptar i thmet ic operator group with operator (PC 2) ,
inputs (EQ D 5) and (EQ CI 8), and outputs (EQ T 8) and (EQ C2 1) .

3.1.10. Graphic3 Mode

The graphic3 mode is used to process graphic2 data by applying the
conflict and pbg rules and placing the result, a pbg node, into the
graphic3 buffer. This result is called the graphic3 data or problem
behavior graph.

In the graphic3 mode, the define function is used to define PBG
nodes. The system prompts with a node number, even though define
takes line numbers as arguments.

Data for the graphic3 mode must have the following format:
(number) OP (operator) IN (knowledge) OUT (knowledge)

For example: 3 OP (PC 1) IN (EQ D 5) (EQ CI 0) OUT (EQ T 0) defines
a node which points back to node 3 and consists of the operator (PC
1) with inputs (EQ D 5) (EQ CI 0) and an output of (EQ T 0) . The
minimal legal format is: OP (operator).

3.1.11. Tracel Mode

The tracel mode is used to linearize the pbg stored in the graphic3
buffer. Executing 'GO' in the tracel mode puts a linear version of
the pbg into the tracel buffer. In the linear pbg, backups are
represented as nodes and the pbg itself is just an ordered set of
nodes.

In the tracel mode, the define function is used to define a linear
representation of the pbg that is stored in the graphic3 mode.

In the tracel mode each buffer line either represents the contents of
one pbg node or indicates a backup. For example:
1. (PC 1) ((EQ D 5)(EQ CI 0)) ((EQ C2 1))
2. (AV R) 0 ((AEQ R G))
3. (PC 2) ((EQ C2 1)) ((ODD R))
4. (BACKUP (PC 1))

would be typical for cryptar i thmet ic.

PAS-11 REFERENCE MANUAL
3.1. RUN MODES

16

3.1.12. Trace2 Mode

The trace2 mode is used to generate a trace of the production system
defined in the ps rule mode. The initial contents of the various
memories are defined in the memory rule mode.

In the trace2 mode, the define function is used to define a list of
problem space or production system operators. This list represents
the trace produced by the production system that was defined in the
ps rule mode.

Elements in the trace2 mode must have a format where each buffer line
contains just one problem space or production system operator. This
list represents the trace produced by a production system. Thus,

1. (PC 1)
2. (DEPOSIT (EQ T 8))
3. (DEPOSIT (EQ C2 D)
4. (PC 2)
5. (DEPOSIT (ODD R))
8. (REMOVE (EQ R 6))

would be a typical trace for cryptar i thmetic.

3.1.13. Trace3 Mode

The trace3 mode is used to standardize the trace currently in the
trace2 buffer by giving it the same general form as the pbg which is
stored in the tracel buffer.

In the trace3 mode the define function is used to define a list of
problem space or production system operators. This list represents a
standardized version of the trace currently in the trace2 mode
buf f er.

In the trace3 mode each buffer line represents either a problem space
operator with inputs and outputs or a production system operator. For
exampIe:
1. (PC 1) ((EQ D 5 X E Q CI 8)) ((EQ C2 1))
2. (AV R) 0 ((AEQ R 6))
3. (PC 2) ((EQ C2 1)) ((ODD R))
4. (REMOVE (AEQ R 8))

would be typical for cryptar i thmet ic.

3.1.14,. Trace4 Mode

The trace4 mode is used to find the best match between the pbg in
tracel and the trace in trace3. The problem is similar to that of
comparing two pbg's and trying to fine the best way to pair similar

PAS-II REFERENCE MANUAL
3.1. RUN MODES

17

nodes so a measure of how well one pbg matches the other can be
obtained.

In the trace4 mode the define function is used to define a
representation of the correspondence or best match between the pbg in
tracel and the trace in trace3.

Each buffer line in the trace4 mode must contain some representation
of either a pbg node, a trace node, or both. The pbg nodes are
denoted gl, g2, and the trace nodes tl, t2, For example:
1. Gl ((PC 1)((EQ D 5))((EQ T 0)))
2. G2 ((AV R) 0 ((AEQ R 7))) Tl ((AV R) 0 ((AEQ R 7)))
3. T2 ((PC 2) 0 0)
indicates that node G2 from the pbg in tracel and node Tl from the
trace in trace3 matched each other while none of the other nodes
matched.

3.2. RULE MODES

3.2.1. Segmentation Mode

In the segmentation mode, the define function is used to define
segmentation rules: rules for breaking the text into topic segments.
These rules are used by the topic mode to process text data.

Rules in the segmentation mode must have the following format:
(string) / (string), where a string is any sequence of words,
punctuation marks, or word classes, including the null sequence. For
example, . / means break the text after the occurrence of every
period, / AND SO means break the text just before the occurrence of
every 'AND SO' string, and <D> , / <D> means break the text after
every occurrence of a digit comma string which is followed by a
digit. (Assuming that <D> stands for a class of digits which is
already defined in the grammar mode before the class is mentioned in
the segmentation mode.)

3.2.2. Extraction Mode

In the extraction mode, the define function is used to define an
extraction rule: a rule specifying the minimum number of segments
which are likely to contain one entire operator group. These rules
are used by the linguisticl mode to process topic data.

Rules in the extraction mode must have the format: (number), and only
the rule in the first line of the buffer is used. For example, 6 in
line one means to extract 8 segments from the topic mode and use
these segments as an initial estimate of an operator group. If the

PAS-11 REFERENCE MANUAL
3-2. RULE MODES

first line of the extraction buffer does not consist of a number,
then segments are extracted 10 at a time.

3.2.3. Space Mode

In the space mode, the define function is used to define the problem
space in terms of semantic elements. These problem space rules are
used by the Iinguistic2 mode to help process linguisticl data.

Most rules in the space mode have the following format:
(semantic-element) (type)

where the semantic element has either word classes or other semantic
elements for arguments, and the type is either KN, OP, or IND,
depending on whether the element is a knowledge, operator, or
indicator element. For example,

(EQ <V> <D>) KN
(EQC (PLUS <U> <U>) <U>) OP
(NEG) IND

are space rules for cryptar i thmet ic. Note that all classes (<V>, <D>
and <U> above) must be defined in the grammar mode before the space
rules are applied to data.

In general, rules in the space mode must have the formats
(semantic-template) (type) .

The semantic-template is used to match the tree resulting from the
application of grammar rules, in order to construct a semantic
element containing specific entities from the particular linguistic
segment at hand. The left-most item in the template should be the
name of the grammar class to which the semantic element corresponds,
which will be the label of the entire tree being matched except that
here the name occurs without angle-brackets. The other items in the
template are names of grammar classes (this time with the
angle-brackets), names of spaset's, names of splabTs, or semantic
sub-temp I ates in parentheses which are then used to match particular
subtrees of the main tree which have labels (according to grammar
classes) which correspond to the left-most item in the sub-template
in much the same way as the label of the entire tree corresponds to
the left-most name in the semantic-template. Elements from the tree
are in general matched to elements in the template in left-to-right
order, with the exception that ordering of subtrees relative to the
other elements is insignificant, that is the subtrees are matched
independently of the other elements and in fact in some cases it wi I
be desirable to pick out a particular subtree (with a particular
label) no matter in which position it occurs relative to the other
elements since in some cases order can be reversed with the same
semantic meaning. For instance the semantic element

(EQC (PLUS B O A)
can be used to represent the meaning of: 'A IS B PLUS C9 and *B PLUS
C IS A \

PAS-II REFERENCE MANUAL
3.2. RULE MODES

19

The type part of the space rule is one of the words KN, OP, IND,
SPASET, or SPLABL. The first three denote respectively knowledge,
operator, and indicator elements. These three are used to specify
which grammar rules are to be applied to the linguistic segments, and
the order in which those rules are taken. SPASET and SPLABL have
nothing to do with the grammar rules, but deal with ways of using the
space rule templates for building semantic elements. Examples will
follow as each feature of the templates is discussed in more detail.
The most common element used in a template is a grammar class,
usually a class which defines terminal elements. If the class doesn't
define a terminal, a subtree of the parse tree is put into the
semantic element. For example, given grammar rules:

<EQC> =* (<SUM> IS <LETTER>) (<LETTER> IS <SUM>)
<EQ> * (<LETTER> IS <DIGIT>)
<SUM> = (<LETTER> PLUS <LETTER>)
<LETTER> « A B C
<DIGIT> « 3 5

and space rules:
(EQ <LETTER> <DIGIT>) KN
(EQC (SUM <LETTER> <LETTER>) <LETTER>) OP

we would get semantic elements as follows:
(EQ B 3) from 'B IS 3'
(EQC (SUM A B) C) from 'A PLUS B IS C

and (EQC (SUM B C) A) from 'A IS B PLUS C \

A space rule template can contain as little as the name. This is
common for indicator elements, for example * (AND) IND', '(THEREFORE)
IND'.

An alternative to the use of grammatical class names in the template
is to use the name of a spaset, which stands for the set of class
names which are listed after the name in the space rule. The semantic
element will then contain the terminal associated with whichever
class name in the spaset occurs in the parse tree. An important
restriction to note is that within any particular template (excluding
sub-templates) the spaset's must be disjoint, because the matcher
cannot decide which spaset a particular class belongs to in case of
conflict, and in fact will associate it with both spasets. As an
example of use of a spaset, we can generalize <EQC> as defined in the
above example to be:

<EQC> = (<SUM> IS <LETDIG>) (<LETDIG> IS <SUM>)
<LETDIG> = (<LETTER>) (<DIGIT>).

Then in space mode if we have:
(EQC (SUM LD LD) LD) OP
(LD <LETTER> <DIGIT>) SPASET

we get the semantic element
(EQC (SUM A B) 3) from 'A PLUS B IS 3'

and the results in the above example would be unaltered.

PAS-II REFERENCE MANUAL
3.2. RULE MODES

20

In some cases it is desirable to use a label of a subtree as an item
in a semantic element, instead of including more specific contents of
the subtree. In this case we use the splabl type of space rule to
give a name to that subtree from which we wish to extract the label
of a subordinate subtree. For instance, suppose we want to know the
type of an exclamation in a linguistic segment. If <EXCL> • (<HAPPY>)
(<NEUTRAL>) (<SAD>), where <HAPPY>, <NEUTRAL>, or <SAD> are further
defined to be specific sorts of utterances, then we could use

(EX <EXCL>) SPLABL
(EXCL EX) IND

to signal to the semantic matcher that it should return the name of
the subtree of <EXCL>. For instance we would get (EXCL <HAPPY>) from
'VERY GOOD !' and (EXCL <SAD>) from 'UH OH !\

Semantic templates can be recursive and refer to themselves as
illustrated by the following example. If we have in the grammar:
<SUM> = (<LETTER> PLUS <SUM>) (<LETTER> PLUS <LETTER>)

then we could have space rules
(SUM <LETTER> (SUM)) KN
(SUM <LETTER>) SPASET.

This will indicate that as long as there is a subtree with label
<SUM>, it will match (SUM <LETTER> (SUM)), and so on recursively
until a <SUM> is <LETTER> PLUS <LETTER>, in which case the template
used for matching will be (SUM <LETTER> <LETTER>). The (SUM) part of
the template is replaced by the element of the spaset for SUM. The
element of this particular kind of spaset can be a name of another
spaset, for instance:
(SUM U (SUM)) KN
(SUM U) SPASET
(U <LETTER> <DIGIT>) SPASET.

Spaset names in spaset's are otherwise invalid. For example we would
get the semantic element (SUM D (SUM G (SUM R B))) from 'D PLUS G
PLUS R PLUS B \

Sub-templates need not be specified in full if elsewhere there is a
space rule defined with the same name as used in the sub-template.
For instance if we have (SUM <LETTER> <LETTER>) KN then we can
shorten (EQC (SUM <LETTER> <LETTER>) <LETTER>) OP to (EQC (SUM)
<LETTER>). Each would return (EQC (SUM A B) C) from 'A PLUS B IS C*.

The left-most name in a sub-template may be a spaset name in which
case the rest of the sub-template is used to match against whichever
element in the spaset occurs in the actual parse tree. For instance,
if the grammar contains:

<EQC> = (<PLUSSUM> EQUAL <LETTER>)
<PLUSSUM> = (<PLUSTUO>) (<SUM>)
<PLUSTUO> = (TWO <LETTER> 'S)
<SUM> = (<LETTER> PLUS <LETTER>)

and the space rules contain:
(EQC (PLSM) <LETTER>) OP

PAS-II REFERENCE MANUAL
3.2. RULE MODES

21

(PLSM <PLUSTUO> <SUM>) SPASET
(PLUSTUO <LETTER>) KN
(SUM <LETTER> <LETTER>) KN

then we would get (EQC (PLUSTUO B) T) from 'TWO B 'S EQUAL T f and
(EQC (SUM B C) T) from 'B PLUS C EQUAL T \

As an example illustrating a slightly different use consider a
grammar containing:

<FIND> = (FIND * <LETTER>)
<NEED> = (NEED * <FIND>) (NEED * <IN>)
<IN> = (HAVE * <LETTER>)

and space rules containing:
(NEED (NEEDS <LETTER>)) OP
(NEEDS <FIND> <IN>) SPASET •

Then we get (NEED (NEEDS A)) from M NEED TO FIND AN A f and from M
NEED TO HAVE AN A'. Note that in this case the spaset name 'NEEDS'
appears in the semantic element because the sub-template of the space
rule had <LETTER> explicitly, while in the previous example, we only
had (PLSM) in the space rule, and 'PLSM' did not appear in the
semantic element, but either 'PLUSTUO' or 'SUM' did.

Any name, undefined elsewhere, used in any position in a space rule,
other than the leftmost position of the main template, will be
carried over I i tera I I y to the resulting semantic element. If an
otherwise-undefined name is used as a space rule name, this space
rule is disregarded entirely in the processing.

This section gives the complete definition of the SPACE MODE,
although not all of the features described from this point on are
currently implemented. The rules in the SPACE MODE determine what
grammatical analyses will be made of the text segments in an input
buffer (eg, the TOPIC MODE) to produce semantic elements in an output
buffer (eg, the LINGUISTIC2 MODE). All SPACE RULES are of the form:

RULE-BODY TYPE

The TYPE determines the interpretation of the RULE-BODY. For each
TYPE we exhibit below the form of its RULE-BODY. After all the forms
are presented, we give the interpretation.

Notation: In presenting the forms we use the following grammar-like
conventions:

Terms that contain - stand for classes of forms.
The definition for the class of forms named X-Y is given by:

X-Y :« (here is the def)

Alternative forms for X-Y are indicated by:

X-Y :- alternative! ! alternative2 ! ...

PAS-II REFERENCE MANUAL
3.2. RULE MODES

22

Form classes ending in NAME (eg, X-NAME) may be any symbol
if not defined further.

Form classes ending in LIST (eg, X-LIST) may be any list
of zero or more elements of form X.

SEMANTIC-TEMPLATE KN
SEMANTIC-TEMPLATE OP
SEMANTIC-TEMPLATE IND

SEMANTIC-TEMPLATE := (TEMPLATE-NAME TEMPLATE-ELM-LIST)
TEMPLATE-NAME := CLASS-NAME ! SPASET-NAME ! SPLABL-NAME
TEMPLATE-ELM := <CLASS-NAME> ! SPASET-NAME ! SPLABL-NAME !

PATH-NAME ! SYMBOL ! SUB-TEMPLATE ! (NOTE TEMPLATE-ELM)
SUB-TEMPLATE := (SUB-TEMPLATE-NAME TEMPLATE-ELM-LIST)
SUB-TEMPLATE-NAME := TEMPLATE-NAME ! PATH-NAME ! SYMBOL
NOTE := !V ! !0 ! !D ! !U ! !F

Note: (1) CLASS-NAME is the name of a grammar class with
the <>-brackets stripped off, eg, XX for <XX>.

(2) Temporarily TEMPLATE-NAMEs in SEMANTIC-
TEMPLATE s can only be CLASS-NAMEe.

(SPASET-NAME SPASET-ELM-LIST) SPASET

SPASET-ELM :- <CLASS-NAME> ! SPASET-NAME ! SPLABL-NAME <
PATH-NAME

(SPLABL-NAME <CLASS-NAME>-LIST) SPLABL

(PATH-NAME STEP-LIST FINAL-EXP) PATH

STEP := <CLASS-NAME> ! SPASET-NAME ! S • T !
POSITIVE-INTEGER ! NEGATIVE-INTEGER

FINAL-EXP := (nulI) ! C ! P ! L

(TERM-ELM-LIST) TERM

TERM-ELM :- <CLASS-NAME> ! SPASET-NAME

(STAR-NAME TERM-ELM-LIST) STAR

STAR-NAME :» ^SYMBOL

(TEMPLATE-NAME <CLASS-NAME> REPLACEMENT-NAME) RETAIN

Space rules specify the semantic elements that are to be built from
linguistic segments. The parser processes the Space rules of types
OP, IND, and KN in the order of occurrence in the SPACE buffer. For
each it searches for the corresponding grammar classes in the text

PAS-II REFERENCE MANUAL
3.2. RULE MODES

23

segment under consideration (the current line of the input buffer).
Space rules of types RETAIN and STAR are used to modify parsing
actions. After the parse tree is formed for a given rule, its
SEMANTIC-TEMPLATE specifies how to retrieve elements from the parse
tree to make up the actual semantic elements. Space rules of types
SPASET, SPLABL, PATH, and TERM are used in this construction process,
and their order in the buffer is irrelevant.

SEMANTIC-TEMPLATE: Each template produces a single semantic element
in the output buffer. All templates generated by a single line of
text in the input buffer produce semantic elements in the same output
line, and in the order in the SPACE buffer (ie, the order in which
they are considered). The TEMPLATE-NAME determines a grammar class.
This is <CLASS-NAME> if the TEMPLATE-NAME is CLASS-NAME; otherwise it
is the grammar class determined by SPASET or SPLABL as the case may
be (cf their definition). The specified grammar class is used to
search the text as it exists when input to the space rule (it may
have been modified by prior space rules, cf RETAIN). If the grammar
class is not defined in the GRAMMAR then the template is ignored. The
parse with <CLASS-NAME> determines a parse tree (a null one if the
parse is unsuccessful). All the TEMPLATE-ELMs in the template refer
to this parse tree, called the current parse tree, in determing their
own behavior. They select subtrees and classes from it, but are
limited to the analysis present in this orignal tree (ie, no further
parsi ngs occur).

TEMPLATE-ELM: Each element determines a single subelement of the
output sementic element, positioned in the same place as in the

template. The subelement produced depends on the type of the template
element (ie., whether <CLASS-NAME>, SPASET-NAME, ... etc.). The type

of the element is determined by its definition in a semantic rule
elsewhere in the SPACE buffer. In general each type of semantic rule
provides a means for obtaining some particular type of information
from the parse tree made available by the <CLASS-NAME> of the
SEMANTIC-TEMPLATE. SPASET, SPALABL and PATH are described below under
their own types; the rest are covered here.

<CLASS-NAME> as TEMPLATE-ELM: This produces the subtree of
the parse tree directly below <CLASS-NAME>. (This could be
a single word if a terminal, a sequence of words, or an
entire parse tree.)

SYMBOL as TEMPLATE-ELM: This produces a literal copy of
itself in the semantic element. (By a SYMBOL is meant a

PAS-11 REFERENCE MANUAL
3.2. RULE MODES

24

not-otherwise defined in the GRAMMAR or the SPACE RULES.)

SUB-TEMPLATE: This produces a subelement in the semantic
element that is the image of the subtemplate. The
SUB-TEMPLATE-NAME determines a new place in the parse tree,
and the TEMPLATE-ELMs in the subtemplate are taken relative
to this sub-parse-tree, ie, it becomes the current parse
tree. Uhat is written in the semantic element for the
SUB-TEMPLATE-NAME is determined by its type (eg, whether a
SPASET, etc). A CLASS-NAME or SYMBOL is reproduced
literally. If the SUB-TEMPLATE-NAME is a SYMBOL, then in
essence it selects the null parse tree. Hence the entire
SUB-TEMPLATE is copied over literally (since none of its
SUB-TEMPLATE-ELMs will be found it the null tree).

NOTES: Various options about the semantic element to be
produced are given by prefixing NOTES. The NOTE and the
element it refers to are enclosed in parenthesis, though
these parentheses do not show up in the final semantic
element. The NOTES are:

!0 OPTIONAL: If the element is not found in the parse
tree, then no element is to appear in the semantic
element.

!V VARIABLE: If the element is not found in the parse
tree, then it is to appear in the semantic element
as a literal (to be interpreted as a variable).

!D DUPLICATE: If the element is not found in the parse
tree, then a duplicate of the last semantic element
that was used for a similar element will occur in
semantic element.

[DO NOT UNDERSTAND]
!U UNBRACKET: The <CLASS-NAME> following is to be

produced in the semantic element without brackets,
eg, as CLASS-NAME.

(If the subelement following is not of
form <CLASS-NAME>, !U has no effect.)

!F FLATTEN: The parentheses are to be taken as
indicating structure (ie, a SUB-TEMPLATE) for the
purpose of forming the subelement, but the
parentheses are to be removed in the semantic
element (thus producing a set of sementic elements)

SPASET (SPACE ALTERNATIVE-SET): The occurrence of a SPASET-NAME in a
TEMPLATE or SUB-TEMPLATE is to be considered replaced (at that
occurrence) by the member of the SPASET (as defined in the SPASET
rule-body) that is found in the parse-tree (as defined at the point
of occurrence). Uhatever other interpretation is to be given to the
SPASET-NAME applies to the symbol that replaces it.

PAS-II REFERENCE MANUAL
3.2. RULE MODES

25

SPLABL (SPACE LABEL): A SPLABL is a special case of a SPASET, which
has a specific convention for what expression is to be written into
the semantic element. As in a SPASET, the first SPLABL-ELM which is
found in the in the current parse tree is used. (This ultimately is
a <CLASS-NAME>.) The expression produced in the semantic element is
the level in the parse tree immediately under this
<CLASS-NAME>.(Makes sense in a context in which the <CLASS-NAME>
names a set of alternative subclasses, so that it functions as a
variable. Uhat is produced in the semantic element is then the value
of the variable holding for the particular parse, ie, the the sub
grammar class.)

PATH (PATH EXPRESSION): The PATH provides a general scheme for
designating portions of the current parse tree to be produced in the
semantic element. A PATH specifies a search starting at the top of
the current parse tree. The PATH consists of a sequence of STEPs,
each being taken from the result of the prior STEP and making a
search in the parse tree relative to it. At the end of the path a
specific node in the parse tree has been determined. FINAL-EXP
determines what shall be produced in the semantic element: the label
of the node (C, for class name), the entire parse tree (P) or the
level one-be low (L, as in the SPLABL). If the FINAL-EXP is not
present the default convention determines it. The STEPS that can be
taken are:

<CLASS-NAME>: Find the first occurrence of the
<CLASS-NAME> in the current subtree.

SPASET-NAME: Find the first occurrence of whichever
element of the SPASET is defined in the current subtree.

T: Find the terminal elements of the current subtree.

S: Find the lowest point at which a single <CLASS-NAME>
(or terminal) comprehends the entire current subtree.

POSITIVE-INTEGER (N): Find the point N nodes further
down the current subtree (towards the terminal). This
cannot go below a terminal and a number greater than
that is taken to specify the terminal.

NEGATIVE-INTEGER (-N): Find the point N nodes further
back up the parse tree toward the top. This cannot go
above the top of the current parse tree and a number
greater than that is taken to specify the top.

TERM (TERMINAL DECLARATION): A TERM space rule declares that one or
more <CLASS-NAME>s will be treated as terminal elements in
determination of the semantic element from the TEMPLATE (and
SUB-TEMPLATEs) once the parse tree has been determined from the text

PAS-11 REFERENCE MANUAL
3.2. RULE MODES

28

segment. This holds for all operations, eg, use of T or searches in
PATHs. If a <CLASS-NAME> that is declared to be a terminal appears
explicitly in a PATH, then the search continues below it (ie, it is
not treated as a terminal for that search).

STAR (STAR-SYMBOL DECLARATION): A STAR space rule defines a new
star-symbol for use in the grammar. Its name must begin with >v. It
operates like Vr, skipping over words in the text, except that it will
not skip over any word that occurs in the definitions of the
<CLASS-NAME>s in its definition (ie, directly or indirectly in the
<CLASS-NAME>s, SPASETs or SPLABLs in TERM-LIST)

Note: Temporarily only terminals, <CLASS-NAME>s that
define terminal sets and SPASETS whose elements
are terminals or terminal classes can be used.

RETAIN: A RETAIN rule determines what happens to the text involved
in a specific parse. In the context of the parse for the
SEMANTIC-TEMPLATE with TEMPLATE-NAME, the terminals (words) for
<CLASS-NAME> will be replaced by the symbol specified by
REPLACEMENT-NAME. It occurs in the place of the first terminal of
<CLASS-NAME>. If no REPLACEMENT-NAME is given, then all the terminals
are left in the text.

[DOESN'T MAKE IT EASY TO KEEP ALL THE WORDS NOT DEALT
WITH AT THEN END OF THE PARSE ~ THE RESIDUAL]

3.2.4. Grammar Mode

In the grammar mode, the define function is used to define a grammar
which includes grammatical classes for every element defined by the
space rules. Both the space and grammar rules are used by the
Iinguistic2 mode to process linguisticl data.

Rules in the grammar mode must have the following format:
<class> • (item item ...) (item item ...) ...

where an item is either a class (denoted by angle brackets) or a
literal (such as a word, letter, or character). A # can be used at
the beginning or end of the string of items to indicate a segment
boundary, and a * can be used between two items to indicate a match
with any string of text.

For example, <EQ> * (<LETTER> * IS * <DIGIT>) defines the class EQ
as matching any string containing a member of the class LETTER,
followed (not necessarily immediately) by the literal M S ' , followed,
(not necessarily immediately) by a member of the class DIGIT. <DIGIT>
• (0) (1) (2) defines the class DIGIT as matching any string
containing 0 or 1 or 2. Any grammar rule which is a disjunction of
single literals can be written without parentheses, and defines what
is called a terminal class. Thus <DIGIT> = 0 1 2 is a terminal
class and is equivalent (even preferred) to the above form.

PAS-II REFERENCE MANUAL
3.2. RULE MODES

27

Classes may need to have extensions: thus if you have the rule <PLUS>
- (<LETTER.L2> AND <LETTER.L1>) and in the space buffer you have the
rule (PLUS <L> <L>) KN , then when 'D and G' is parsed D will be
substituted for the second occurrence of <L> in the space rule and G
for the first occurrence, giving (PLUS G D) as the resulting semantic
element. If the rule had instead been <PLUS> « (<LETTER.L2:L> and
<LETTER.L1>) then the result would have been (PLUS <L> D) . the class
name following the colon is used in place of the literal that matches
the class. NOTE: Extensions are only needed i f you are using the old
grammar, i.e., the flag VERSI0N1 « T. Extensions are not needed if
the flag VERSI0N2 - T when the grammar and space rules are defined
and used.

Restrictions on grammar rules: The grammar rules cannot be 'left
recursive', that is in the lists of items defining a grammar class,
the leftmost item cannot be the same as the grammar class being
defined. Any other item can be the same as the defined class,
however, giving in effect full recursive capabilities. For example,

<SUM> = (<LETTER> + <SUM>) (<LETTER>)
is all owed, but

<SUM> = (<SUM> + <LETTER>) (<LETTER>)
is not a I I owed.

Also it is worthwhile to note that if there are several lists of .
items defining a grammar class, these are examined in left-to-right
order to see if they exist in the current linguistic segment. It is
generally necessary to put short alternatives which are contained in
other longer ones after the others, so that the longest possible
match is attempted first, before a shorter match which would also
succeed.

The order in which grammar classes are matched against the linguistic
segments to check their presence is determined by the order of the
space rules defined in space mode.

3.2.5. Integration Mode

In the integration mode, the define function is used to define
replacement rules which integrate information within a set of
elements or between adjacent sets. These rules are used by the
semanticl mode to process Iinguistic2 data.

Rules in the integration mode must have the following format:
e . . . e / e . .. e / ... —> e... e / e . . . e / ...

where each e is a semantic element and the / indicates that the next
elements occur on the next line of the buffer. The elements may
contain variables, denoted by XI, X2, ... or by class names which
refer to terminal classes. A class name in the left side of an

PAS-11 REFERENCE MANUAL
3.2. RULE MODES

28

integration rule will match any word in that class, however, class
names in the data are not treated as variables. Consecutive strings
of elements in adjacent lines can be referred to by using the
variables SI, S2, ... Thus (DIGIT SI) refers to the list (DIGIT XI) /
(DIGIT X2) / ... , a sequence of indefinite length.

These rules are replacement rules which mean that an occurrence of
everything to the left of the arrow is replaced by everything to the
right of the arrow. For example,

(NEG) (EQ XI X2) =*> (NEQ XI X2)
means that if both (NEG) and the EQ element are found in the same set
of elements (i.e. on the same buffer line) in any order then the EQ
is changed to NEQ, and the (NEG) is deleted. Also,

(EQ XI X2) / (DIGIT X3) => (MEQ XI X2 X3)
means that if EQ is found in one set of elements and DIGIT is found
in the next adjacent set then they are transformed into the MEQ
eIement. Furthermore,

(EQ XI X2) / (DIGIT SI) => (MEQ XI X2 S1+)
means that if EQ is in one set and there are adjacent sets with DIGIT
in them then the EQ element and all the DIGIT elements are replaced
with (MEQ XI X2 S1+), where S1+ stands for the list of all arguments
of the DIGIT element. This rule would change:

(IF) (EQ R 1)
(DIGIT 3) into (IF) (MEQ R 1 3 7)
(DIGIT 7) (ODD R)
(ODD R)

A rule with (DIGIT SI) as the left side applied to the data shown
below:

1. (DIGIT 1)(EQ L 4)
2. (NEG)(DIGIT 3)
3. (EQ R 7)

would match the first two lines above. The (DIGIT SI) matches (DIGIT
1) (EQ L 3) / (NEG) (DIGIT 3) , that is, everything on both lines. The
SI matches 1 and 3, the arguments of DIGIT.

3.2.6. Normalization Mode

In the normalization mode, the define function is used to define
replacement rules that create elements like 'BECAUSEOF*, 'COND', and
OPIO which specify group relations existing between problem space
elements. These rules are used by the semantic2 mode to process
semanticl data.

Rules in the normalization mode must have the following format: e ...
e / e ••• e / ... » > e ... e / e ... e / ... as in the integration mode.
But here the variables Al, A2, ... can be used to stand for any
consecutive knowledge element sets connected by fAND*. i.e., Al would
match the consecutive sets (EQ D 5) / (AND) (EQ T 8) / (AND) (ODD R) .

PAS-II REFERENCE MANUAL
3.2. RULE MODES

29

Also, Kl, K2, ... can be used to stand for individual knowledge
elements. These K's will match the first non-indicator element in a
line, going from left to right. For example,

Al / (THEREFORE) A2 -> (BECAUSEOF Al A2)
would transform
(EQ D 5)
(AND) (EQ CI B) into (BECAUSEOF ((EQ D S) (EQ CI 0))
(THEREFORE) (EQ T B) ((EQ T 8) (EQ C2 1)))
(AND)(EQ C2 1)

A I so the ruIe
(IF) Kl / (THEN) K2 => (COND Kl K2)

would transform
(IF)(OR)(EQ R 7)
(YES) (THEN) (EQ C2 1) into (COND ((EQ R 7)) ((EQ C2 1)))

See the preliminary results paper (Waterman and Newell, 1972) pages
37-38 for examples of the use of A and K in normalization rules.

3.2.7. Grouping Mode

The grouping mode is currently non-operational. That is, the grouping
rules are built into PAS-II at a level which is not accessible to the
user. These rules operate on the data in the semantic2 mode, and
result in transferring from semantic2 to semantic3 the largest
consecutive sequence of element sets (starting from the element set
in the first line of the semantic2 buffer) containing no more than
one operator element.

3.2.8. Unknowns Mode

The unknowns mode is currently non-operat i ona I. That is, the unknowns
rules are built into the system and are not accessible to the user.
These rules essentially fill in the values of variables in the
semantic elements located in the semantic3 mode. This is done by
comparing the element containing variables with all the elements
currently active in the PBG, i.e., the current context. Then, when a
match is found the appropriate values are filled in. A variable is
just a grammar class taken without its domain.

3.2.9. Origin Mode

The origin mode is currently non-operational. That is, the origin
rules are built into the system; they are not accessible to the user.
These rules define processing in graphic2 to be a joint man-machine
effort. The goal is to hypothesize for each knowledge element in
graphicl its origin, i.e., the operator and its inputs (and the
operators that produced those inputs, etc.) that produced that
knowledge element as output. The system queries the user asking for

PAS-11 REFERENCE MANUAL
3.2. RULE MODES

30

all operators and inputs that could have produced the element whose
origin we want. From this information the system grows an origin
tree, and hypothesizes which path through the tree represents the
actual origin of the element. The path is picked on the basis of the
agreement between the hypothesized inputs and the actual context
defined by the current PBG.

3.2.10. ConfIict Mode

In the conflict mode, the define function is used to define a state
vector and situation-action rules which are used to determine whether
or not two particular knowledge elements conflict. The first element
is always the output of a node in the pbg, the second is always an
output of the group that is currently being grown onto the pbg. These
rules are used by the graphic3 mode to help process graphic2 data.

Rules in the conflict mode use a state vector format.

The state vector variables currently available are:
(SAME N) : is T if the n* th arguments of both knowledge

elements of the conflict pair are identical, else is
F.

(ITEM n m) : is the n* th argument of the m' th element of
the confIict pair.

SIMILAR : is T if the group being grown onto the pbg is
similar to the node that produces the first element
of the conflict pair, else is F. By similar we mean
that the group inputs are a subset of the node
inputs and the operators are identical.

The actions currently available are:
SIM : the two knowledge elements are considered similar.
CON : the two knowledge elements are considered

confIicting.
NO-CON : the two knowledge elements are considered

unconfIi ct i ng.
ASK-IF-CON : the user is asked if the elements are

confIicting.

For example, if the conflict rules have the form:
SV = (SIMILAR (SAME 2) (ITEM 1 2))
(T * ft) => SIM
(ft F ft) => NO-CON
(ft ft EQ) => ASK-IF-CON

then if the two knowledge elements are outputs of different operators
and are (EQ D 5) and (EQ R 7), the evaluated SV is (F F T) and the
action taken is NO-CON. For (EQ D 5) and (EQ D 7) the SV is (F T T)
and the action taken is ASK-IF-CON. For (EQ D 5) and (EQ D 5) the SV
is (T T T) and the action taken is SIM. In general, if the conflict

PAS-II REFERENCE MANUAL
3.2. RULE MODES

31

rules produce SIM or CON this leads to a restructuring of the PBG as
the new node is grown.

3.2.11. PBG Mode

In the pbg mode, the define function is used to define a state vector
and situation-action rules which are used to determine how a
particular group should be incorporated into the pbg. These rules are
used by the graphic3 mode to help process graphic2 data.

Rules in the pbg mode use a state vector format.

The state vector variables currently available are:
TYPE : is SIM if a similarity is found, or CON if a

confIi ct i s found.
(ITEM n m) : is the n'th item of the m'th element of

the similarity or conflict pair.
INCLUDE : is T if all output elements of cnl are

included in those of cn2.

Also, the prefix 'NOT-' on a state vector variable is equivalent to
asking for the complement of the value of the variable.

The actions currently available are:
BLOCKREJ : restructure using block rejection.
GROW : add the group to end of pbg, no restructuring.

The action BLOCKREJ can have the following arguments:
COPY : copy cn2 during restructuring.
CHAIN-N : redefine cnl to be the earliest node which

produces an 'n' element used as input to the
original cnl node.

For example, if the pbg rules have the form:
SV = (TYPE (NOT-ITEM 1 2))
(CON EQ) => (BLOCKREJ COPY CHAINAEQ)
(CON *) BLOCKREJ

then if the two elements are (EQ D 5) and (EQ D 7) , the evaluated SV
is (CON (ODD EVEN AEQ)), assuming that EQ, AEQ, ODD, and EVEN are all
knowledge elements defined in the space rules. The action taken would
be BLOCKREJ. If the elements are (ODD R) and (EVEN R) the SV is (CON
(EQ AEQ ODD)) and the action taken is (BLOCKREJ COPY CHAINAEQ).

CN1 refers to the operator which produced the first knowledge element
of the similarity or conflict pair. CN2 refers to the operator which
produced the second knowledge element of the similarity or conflict
pa i r.

3.2.12. PS Mode

PAS-11 REFERENCE MANUAL
3.2. RULE MODES

32

In the ps mode, the define function is used to define an ordered set
of production rules which, taken together, form a production system.
Both the ps and memory rules are used by the trace2 mode to generate
a trace of the production system defined in the ps mode.

Rules in the ps mode must have the following format:
s s ... s = ̂ a a ... a

where s can be: k, -k, (k ,.. k m ... m), or
- (k ... k m ... m)
a can be: o or (o m ... m)

and k is any problem space element,
o is any operator
m is any memory.

The left side of a rule is true (and leads to the evocation of the
right side) when all k's in the left side are found to currently be
in at least one of the specified memories. Uhen the right side of a
rule is evoked, the operators are executed and the result put into
each of the specified memories.

The production system operators are
(DEPOSIT k) : puts k into the front of memory
(REMOVE k) : removes k from memory
(FIRE p) : fires production system p
(ASSIGN x v) : variable or class x is assigned value v
(DEASSIGN x) : variable or class x is made undefined
(REPLACE (b c d) (bl cl dl) n) : b c d in n' th element
of memory is replaced with bl cl dl. If n is missing,
it is assumed to be 1.

(NOTICE k) : if found, k is moved to front of memory
(FAIL) : the production rule execution is halted
(STOP) : the production system execution is halted.

Below are examples of legal rules: (where memory isn't specified the
default memory is assumed):
1. (EQ D 5) (EQ T 8) «> (PC 1)
2. (EQ <L> <D>) => (FC <L>) (PC <C0L>)
3. (EQ D 5 NEW) ((EQ T 8) LTM) => (PC 1)
4. ((EQ D 5) (EQ T 8) LTM) «> ((PC 1) LTM)
5. ((EQ D S) STM LTM) -> ((PC 1) STM LTM)
8. (EQ D 5 (NEU UNCLEAR)) »> (PC 1)
7. (EQ XI X2) - (ODD <L>) => ((DEPOSIT (PC 1)) STM)
8. (ft 5) => (NOTICE (DIGIT 5))
9. (ODD XI) (REPLACE (XI) (R))

Note that variables are denoted XI, X2, ... and classes are denoted
by angle brackets (<>). Consider rule 5 above, if (EQ D 5) is in
either STM or LTM then (PC 1) is put into both STM and LTM. The ft in
rule 8 above matches any string of words. Thus (ft 5) matches (EQ D
S) , (DIGIT 5) , and (NEQ R 5).

PAS-II REFERENCE MANUAL
3.2. RULE MODES

33

3.2.13. Memory Mode

In the memory mode, the define function is used to define and
initialize the various memories to be accessed by the productions in
the production system modes (such as the ps mode). Both the memory
and ps rules are used by the trace2 mode to create a trace of the
production system defined in the ps mode.

Rules in the memory mode must have the following format:
name « element element ... element

where 'name'is the name of the memory and 'element* is any problem
space element. The element list defines the contents of the memory,
and the memory defined by the first rule in the buffer is always made
the default memory. Any number of memories may be defined and
initialized, and they may have arbitrary names. For example, if the
memory buffer held:

1. KS = (EQ D 5)(EQ CI 0)(EQ C7 0)
2. STM = 0
3. LTM = (EQ D 5)

then the system would assume that 3 memories were available: KS with
three elements in it, STM with no elements (empty), and LTM with one
element in it. The default memory would be KS.

3.3. AUXILIARY MODES

3.3.1. Association Mode

The association mode contains rules which define the associations
between run and rule modes, i.e., which rule modes are associated
with each run mode. These associations, together with the control
rules, define both the control cycle, (i.e., the order in which modes
are accessed using the next function or automatic flag) and the
location of the data for the rules in each rule mode to process.

In the association mode, the define function is used to define rules
indicating which rule modes are associated with which run modes.

Rules in the association mode have the following format: M : M
where the M's stand for run or rule mode names. The M to the left of
the colon must be a run mode name, those to the right, rule mode
names. For example, the rule LINGUISTIC2 : SPACE GRAMMAR indicates
that the Iinguistic2 mode has two rule modes associated with it,
space and grammar. Thus processing in Iinguistic2 consists of
applying the space and grammar rules to the data in the previous run
mode (or the run mode indicated in the control rules). The default
association rules for PAS-II are shown below.

PAS-11 REFERENCE MANUAL
3.3. AUXILIARY MODES

34

1. TEXT :
2. TOPIC : SEGMENTATION
3. LINGUISTIC1 : EXTRACTION
4. LINGUISTIC2 : SPACE GRAMMAR
5. SEMANTIC1 : INTEGRATION
6. SEMANTIC2 : NORMALIZATION
7. SEMANTIC3 : GROUPING
8. GRAPHICl : UNKNOWNS
9. GRAPHIC2 : ORIGIN

18. GRAPHIC3 : CONFLICT PBG
11. TRACE1 :
12. TRACE2 : PS MEMORY
13. TRACE3 :
14. TRACE4 J MATCH

Note that some run modes have no associated rule modes.

3.3.2. Control Mode

The control mode contains rules which together define the control
cycle for the system.

In the control mode, the define function is used to define rules
specifying where a run mode obtains its input data and what the next
run mode is relative to the control cycle.

Rules in the control mode have the following format:
M (M ... M) => M M

where M stands for any mode name. The modes in parentheses indicate
where the mode at the left obtains its input for processing. The
modes to the right of the arrow indicate where control passes after
processing is finished in the mode at the left. For example, the rule

LINGUISTIC1 (TOPIC) => LINGUISTIC2 TRACE1
indicates that in the linguisticl mode data from the topic mode is
processed and then the next mode in the control cycle is either
Iinguistic2 or tracel. Uhen processing is started in linguisticl if
topic is empty then processing cannot occur (no data to process) and
the next mode entered is tracel, the second mode name to the right of
the arrow in the rule above. If topic is not empty processing occurs
in linguisticl, and the next mode entered is Iinguistic2, the first
mode name to the right of the arrow.

The default control rules for PAS-II are shown below:

1. TEXT () => TOPIC TOPIC
2. TOPIC (TEXT) => LINGUISTIC1 LINGUISTIC1
3. LINGUISTICl (TOPIC) => LINGUISTIC2 TRACE1
4. LINGUISTIC2 (LINGUISTICl) => SEMANTIC1 SEMANTICl
5. SEMANTICl (LINGUISTIC2) -> SEMANTIC2 SEMANTIC2

PAS-II REFERENCE MANUAL
3.3. AUXILIARY MODES

35

8. SEMANTIC2 (SEMANTIC1) SEMANTIC3 SEMANTIC3
7. SEMANTIC3 (SEMANTIC2) => GRAPHIC1 LINGUISTIC1
8. GRAPHIC1 (SEMANTIC3) => GRAPHIC2 GRAPHIC2
9. GRAPHIC2 (GRAPHI CI) => GRAPHIC3 SEMANTIC3

IB. GRAPHIC3 (GRAPHIC2) => GRAPHIC2 GRAPHIC2
11. TRACE1 (GRAPHIC3) => TRACE2 TRACE2
12. TRACE2 0 => TRACE3 TRACE3
13. TRACES (TRACE2) => TRACE4 TRACE4
14. TRACE4 (TRACE3 TRACED TRACE4 TRACE4

3.3.3. Information Mode

The information mode is totally unlike all other modes in the system.
It recognizes only index words or key words (like ' INDEX' and
'PROMPT'), and cannot execute functions. In all the other modes,
however, there is no knowledge of index or key words; these modes
expect all tty input, except for data, to consist of functions:
non-functions will elicit error messages. Currently 'HELP' is the

only keyword available.

The index words and their descriptions are listed below:
DEF : definition of a mode.
DIF : difference between run and rule modes.
INF : information about the information mode.
ASSOC : run modes and associated rule modes.
BASIC : description of basic functions.
EDIT : description of edit functions.
FLAG : description of flag functions.
PROCESS : description of process functions.
EXECUTE : how functions are executed (and abbreviated).
PROMPT : ways the system may prompt you for input.
CR : use of the carriage return.

3.3.4. Save Mode

In the save mode, the define function is used to define rules for
specifying which mode buffers are to be saved when 'WRITE' is
executed.

Rules in the save mode are simply sets of mode names. For example,
line 1 in the save buffer contains (as a default condition) all the
run mode names. Line 2 contains (as a default condition) all the rule
mode names.

In the save mode, the read function lets you read a disk file into
the run and rule mode buffers, thus establishing a context that was
previously saved by using 'WRITE' in the save mode. The file being
read should not have line numbers (sos line numbers are ok) unless

PAS-11 REFERENCE MANUAL
3.3. AUXILIARY MODES

36

the flag NUMBERS * T, but it may have an extension. If you type
f (READ SAVED* then file SAVE1 is read, a different part of it going
into each run and rule mode buffer. The file being read must consist
of sequences of the form:

mode name
rules or data
bIank Ii ne

Thus a file of the form:

TEXT
L IS 3 , AND D
IS S .

TOPIC
L IS 3 ,
AND D IS 5 .

SEGMENTATION
J

would be read into the text, topic, and segmentation buffers,
replacing the old information in these buffers. The information in
the other buffers (all except text, topic, and segmentation) is left
unchanged. The mode ordering in the file (text before topic, etc.)
can be arbitrarily chosen.

In the save mode, the write function lets you write the contents of
all run and rule mode buffers onto a disk file when given one
argument, the name of the file to be read. This file may have an
extension, if desired. If you type * (WRITE SAVE2)* then the current
context (all buffers) are saved on a disk file named SAVE2.

To save certain selected buffers, give as the 2nd, 3rd, etc.
arguments to the write function either mode names or numbers
referring to save mode buffer lines which contain mode names. Then
only the buffers named will be saved. Initially, line 1 of the save
buffer contains all the run mode names, line 2 all the rule mode
names. Thus to save the contents of all rule mode buffers on file
SAVE3 type ' (WRITE SAVE3 2) \ To save just the contents of the space
and grammar mode buffers on file SAVE3 type ' (WRITE SAVE3 SPACE
GRAMMAR)'.

3.3.5. Scratch Mode

In the scratch mode, the define function is used to type material
into the scratch buffer. This material may consist of any rules or
data.

The scratch mode is used as a temporary storage buffer for any type

PAS-II REFERENCE MANUAL
3.3. AUXILIARY MODES

of rules or data. In particular, the apply function puts the result
of its processing into the end of this buffer. Thus the user may
apply a rule to a line of data and see the result without changing
the current status of the run modes.

Rules or data stored in the scratch buffer need not have any
particular format.

PAS-II REFERENCE MANUAL
4.1. BASIC FUNCTIONS

38

4. FUNCTIONS

4.1. BASIC FUNCTIONS

4.1.1. Mode Name

The name of each mode in PAS-II is interpreted as a function which
puts the user into that particular mode. For example, to go to the
topic mode the user simply types 'TOPIC*, and the system responds by
typing back 'TOPIC MODE' to indicate that the user is now in that
mode.

4.1.2. Core Function

The core function tells you how many words of free storage you have
left in core. This free storage is used by PAS-II as temporary
working storage during processing. If the number of words in free
storage is small the system spends too much time garbage collecting
(returning unneeded words to free storage) and the response at your
terminal will be quite slow. You can increase free storage by
expanding core (see PANIC: emergency procedures). When core is
expanded, roughly three-fourths of all additional core is allocated
as free storage.

4.1.3. Create Function

The create function lets you create a new rule mode. This mode will
be of the same type as the mode you are currently in. It takes one
argument, the name you wish the new mode to have. Thus, if you type
' (CREATE PS5)' while in the PS mode, then a PS5 buffer is created,
you are automatically put into PS5 mode, and the rules defined in the
newly created mode must have the format described for rules in the PS
mode. Currently create is not defined in the save, association,
control, memory, text, trace2, and segmentation modes.

4.1.4. Display Function

The display function displays the data present in the mode buffer,
including buffer line numbers. It takes any number of arguments,
which should be either numbers or number-groups. In the grammar mode,
DISPLAY can also take class names as arguments. If you type
'DISPLAY', all non-empty lines of the buffer will be displayed. If
you type '(DISPLAY 6) ' , then only line B will be displayed. '(DISPLAY
1 3 10-12)' gives you lines 1, 3, 10, 11, and 12.

PAS-11 REFERENCE MANUAL
4.1. BASIC FUNCTIONS

39

4.1.5. Erase Function

The erase function lets you erase (uncreate) any mode you have
created using the create function. It takes one argument, the name of
the mode to be erased. If you erase the mode you are currently in,
you are put into the text mode.

4.1.6. Exit Function

The exit function takes you out of PAS-II and leaves you talking to
the Lisp interpreter. If you're not familiar with Lisp, don't use
EXIT. To return to PAS-II after using EXIT type 9 (BEGIN) 9.

4.1.7. Help Function

The legal arguments for the help function are:
(function name) : tells how to use the function in the

current mode,
(mode name) : gives information about the mode,
(index word) : gives general information about PAS-II.
INDEX : describes and lists the index words.
HELP : describes the legal arguments for the help function.
ARGS : lists the legal arguments for the help function.
FORMAT : gives data or rule formats for the current mode*
FUNCTIONS : lists all functions.
MODES : lists all run modes and associated rule modes.
NUMBER : describes numbers and number-groups.
STATE-VECTOR : describes state vector rules and their

operat i on.
CHANGES : describes all the recent changes to the PAS-II

system.
COMMENTS : describes the use of comments in buffer lines.
PROTOCOL : gives general info about automatic protocol

ana Iysi s.
PANIC : describes emergency procedures.
LOAD : tells how to load and run PAS-II.
OLD : tells how to run earlier versions of PAS-II.
AUX : describes the auxiliary modes.
REF : lists protocol analysis referenes.
PAS : gives a general description of PAS-II operation.
DEM : tells how to obtain a PAS-II demonstration listing.
CN : defines the terms cnl and cn2.
OK? : describes the responses that should be used to 'ok?'.

4.1.8. Mode Function

The mode function tells you what mode you are currently in.

PAS-II REFERENCE MANUAL
4.1. BASIC FUNCTIONS

48

4.1.9. Move Func t i on

The move function moves lines of data or rules from one buffer to
another. It has the general form:

(MOVE linesl model TO Iines2 mode2)
where linesl and model are the source lines and mode, and Mnes2 and
mode2 are the destination. The move function must be given at least
one argument. It fills in missing arguments according to the default
values shown below.

The number of lines specified by the argument linesl must be equal to
the number specified by Iines2. Move deletes the source lines from
the buffer and redefines the destination lines.

Examples of the use of the move function are shown below. He will
assume that the current mode is TEXT.
(MOVE 1-3 SCRATCH TO 9 10 15 TOPIC) : 1, 2, and 3 in scratch

are moved to 9, 10, and 15 in topic
(MOVE 6 10 TO 8-9 SCRATCH) : B and 10 in text are moved to

8 and 9 in scratch.
(MOVE 4 TO SCRATCH) : 4 in text is moved to end of scratch.
(MOVE 9 11 SPACE) : 9,11 in space are moved to end of text.
(MOVE TO SCRATCH) : all text is moved to end of scratch.
(MOVE 4 TO 12) : 4 in text is moved to 12 in text.
(MOVE S) : 6 in text is moved to end of text.
(MOVE SCRATCH) : all scratch moved to end of text.

Note that (MOVE) or (MOVE TO) are not legal function calls.

4.1.10. Next Function

The next function changes the current mode to the next appropriate
run mode as defined by the control cycle. Thus you can go to the next
appropriate run mode and process data there by typing 'NEXT GO* •
fNEXT f changes the mode, 'GO' starts the processing.

4.1.11. Prior Function

The prior function changes the current run mode to the previous run
mode as defined by the control cycle. This previous or prior run mode

ARGUMENT DEFAULT VALUE

Ii nesl
model
Ii nes2
mode2

all lines in model buffer
current mode
empty lines at end of mode2 buffer
current mode

PAS-II REFERENCE MANUAL
4.1. BASIC FUNCTIONS

41

is the one that supplies data for the current mode to process.

4.1.12. Rule Function

The rule function is used to go from a run mode to the rule mode
associated with that run mode. If you type 'RULE' while in the topic
mode, you will be put into the segmentation mode.

4.1.13. Run Function

The run function is used to go from a rule mode to the run mode
associated with that rule mode. If you type 'RUN* while in the
segmentation mode, you will be put into the topic mode.

4.2. EDIT FUNCTIONS

4.2.1. Break Function

The break function breaks a line in the mode buffer into two or more
shorter lines. I f you type ' (BREAK 4 . IS (6 ,))', line 4 will be
broken after the first occurrence of '.', after the next occurrence
of M S ' , and after the next occurrence of the string '6 ,'. the old
line 4 will be replaced by lines 4.1, 4.2, 4.3, and 4.4.

If you are using a tty, you can type '(BREAK 4) ' . The system will
prompt you with '4.' and will then expect to read either altmode (to
print the next word in the line), line feed (to break the line after
the last word printed), space (to back up in the list of words
printed), or carriage return (to break the line after the last word
printed and leave the break function).

4.2.2. Connect Function

The connect function connects together two or more lines in the mode
buffer. It takes two or more arguments, which should be numbers or
number-groups. If you type '(CONNECT 2 3 4) ' , lines 2, 3, and 4 wi I I
be joined together and redefined as line 2; lines 3 and 4 wi I I be
deIeted.

In the graphic3 mode, the connect function is used to connect two pbg
nodes together, thus effecting a restructuring. It takes two numbers
as arguments, each of which should represent an active node in the
pbg. If you type '(CONNECT 1 5)' then node 5 wi I I be made to point
back to node 1 in the pbg.

PAS-II REFERENCE MANUAL
4.2. EDIT FUNCTIONS

42

4.2.3. Define Function

The define function permits you to enter data into the mode buffer.
It takes any number of arguments, which should be either numbers or
number-groups. If you type 'DEFINE*, you will enter data into the
buffer starting with the line after the last nonempty line. '(DEFINE
G 9) ' will enter data into line 6, destroying old data, if any, and
then after the first carriage return will enter data into line 9.
Enter data after the system prompts you with the line number. To stop
entering data, type a carriage return immediately after the system
prompts you with the line number.

4.2.4. Delete Function

The delete function deletes data present in the mode buffer. It takes
one or more arguments, which should be either numbers or
number-groups. For example, if you type '(DELETE G 8 10-12)', then
buffer lines G, 8, 10, 11, and 12 will be deleted.

4.2.5. ED Function

To edit the current buffer type 'ED', to edit a particular line (say
line 4) type '(ED 4) ' . Then type 'GET' to load the buffer data into
Alvine, the Lisp editor. Do the editing, and then type 'PUT' to put
the revised data back into the buffer. Then type t to leave the
editor. Warning: do not attempt to use ED unless you are familiar
with the Lisp editor!!! (see the Stanford Lisp 1.6 manual for a
description of Alvine).

4.2.G. Insert Function

The insert function inserts data after a line in the mode buffer. It
takes any number of arguments, which should be either numbers or
number-groups. For example, if you type '(INSERT G) ' and both lines 6
and 7 are empty then the command is exactly like typing '(DEFINE G) ' .
If line G is full but 7 is empty it is like typing '(DEFINE 7) . If
both G and 7 are full it is like typing '(DEFINE G . 5) \

4.2.7. Read Function

The read function lets you read a disk file into the mode buffer. It
takes any number of arguments, which should be names of current disk
files. The file being read should not have line numbers (although sos
line numbers are OK) unless the flag NUMBERS « T, and the first word
of the first line must be the name of the mode buffer the file is

PAS-II REFERENCE MANUAL
4.2. EDIT FUNCTIONS

43

being read into. The rules or data should start on the second line of
the file. If you type '(READ FILED' then the contents of FILE1 on
the disk will be read into the buffer, starting with the line
immediately after the last non-empty buffer line. Note that read in a
run or rule mode does not delete or write over the original contents
of the buffers, while read in the save mode zeros each mode buffer
being read into before actually reading from the disk file.

In the save mode, the read function lets you read a disk file into
the run and rule mode buffers, thus establishing a context that was
previously saved by using 'WRITE' in the save mode. The file being
read should not have line numbers (sos line numbers are ok) unless
the flag NUMBERS = T, but it may have an extension. If you type
'(READ SAVED' then file SAVE1 is read, a different part of it going
into each run and rule mode buffer. The file being read must consist
of sequences of the form:

mode name
rules or data
bIank Ii ne

Thus a file of the form:

TEXT
L IS 3 , AND D
IS 5 .

TOPIC
L IS 3 ,
AND D I S S .

SEGMENTATION
,/

would be read into the text, topic, and segmentation buffers,
replacing the old information in these buffers. The information in
the other buffers (all except text, topic, and segmentation) is left
unchanged. The mode ordering in the file (text before topic, etc.)
can be arbitrarily chosen.

4.2.8. Renumber Function

The renumber function lets you renumber all lines in the mode buffer,
starting with 1 in increments of 1. It takes no arguments. If the
buffer contains lines 4, 7, 8.G, and 12 and you type 'RENUMBER*, the
buffer will then contain lines 1, 2, 3, and 4.

4.2.9. Write Function

The write function lets you write everything in the mode buffer onto

PAS-II REFERENCE MANUAL
4.2. EDIT FUNCTIONS

44

a disk file. It takes one argument, the name of the file to be read.
If you type 9 (WRITE FILE2)* everything in the buffer will be written
on a disk file named FILE2.

In the save mode, the write function lets you write the contents of
al I run and rule mode buffers onto a disk file when given one
argument, the name of the file to be read. This file may have an
extension, if desired. If you type ' (WRITE SAVE2) f then the current
context (all buffers) are saved on a disk file named SAVE2.

To save certain selected buffers, give as the 2nd, 3rd, etc.
arguments to the write function either mode names or numbers
referring to save mode buffer lines which contain mode names. Then
only the buffers named will be saved. Initially, line 1 of the save
buffer contains all the run mode names, line 2 all the rule mode
names. Thus to save the contents of all rule mode buffers on file
SAVE3 type ' (WRITE SAVE3 2) \ To save just the contents of the space
and grammar mode buffers on file SAVE3 type 9 (WRITE SAVE3 SPACE
GRAMMAR) 9.

4.3. FLAG FUNCTIONS

A flag is a function which sets the value of the flag variable to
either T (true) or F (false). The flags currently available are:
automatic, batch, comment, fast, hush, numbers, print, search,

suppress, time, versionl, and version2. Thus the flag hush can be set
to T by typing 'HUSH', or 9 (HUSH T)'. It can be set to F by typing
'(HUSH F) ' . To determine the current value of any flag give it the
argument 9 ? 9 . Thus (HUSH ?) will give you the current value of the
hush flag.

4.3.1. Automatic Flag

If automatic = T then during mode processing the system will
automatically change to the next appropriate run mode and execute
'GO' whenever the current processing is completed. If automatic - F
(the default condition) this will not happen.

4.3.2. Batch Flag

If batch * T then during mode processing the system will not ask the
user to confirm each step of the processing. If batch - F (the
default condition) the user will be asked to confirm each step.

PAS-II REFERENCE MANUAL
4.3. FLAG FUNCTIONS

45

4.3.3. Comment Flag

If comment « T (the default condition) then when buffers are
displayed all comments will be printed. If comment - F the comments
will be suppressed.

Comments may be added to the end of any buffer line without affecting
the operation of the system. A comment is defined to be everything
between the comment marker (initially a double colon, ::) and the end
of the buffer line. Lines containing nothing but comments are
a I I owed.

The comment flag may be used to merely insert comments into your
console display, since the flag isn't changed unless the first
argument is either T or F. Thus typing

(COMMENT : THIS IS A COMMENT)
records this line on your terminal without changing the value of the
comment flag.

To change the comment marker type 'EXIT', followed by the string
' (SETQ CHAR! @x)' where x is the new comment marker. Then type
f (BEGIN)' to return to PAS-II. The marker can be any string that
starts with a letter and is followed by letters or digits; where the
following are considered letters: * = > < ; : % ? , . - + / ® Note:
the last six characters above must be preceded by a slash (/) when
setting CHAR!

4.3.4. Fast Flag

If FAST • T then when files are read from the disk no format checking
takes place, speeding up the reading process. If FAST - F (the
default condition) format checking takes place and reading is rather
slow.

4.3.5. Hush Flag

If hush - T then error messages are abbreviated, if hush - F (the
default condition) they are not abbreviated.

4.3.G. Numbers Flag

If numbers - T, then when a file is written on the disk the buffer
line numbers will be included as part of the file. When a file is
read from the disk, the system assumes that all lines begin with a
buffer line number. If numbers « F (the default condition), files are
written without line numbers, and are read under the assumption that
no lines begin with line numbers.

PAS-II REFERENCE MANUAL
4.3. FLAG FUNCTIONS

46

4.3.7. Print Flag

If print • T, then all the interaction at your terminal will be
written on a disk file. When print is first set to T the system will
ask for the file name. If the file already exists, its old contents
will be lost. If print - F (the default condition) the interaction
will not be saved. Note 1: the file is not saved on the disk until
print is set back to F. Do not forget to set print back to F before
you leave PAS-II! Note 2: do not execute the write function while
print • T!

4.3.8. Search Flag

The value of the search flag affects the processing in semanticl and
semantic 2 as follows: the integration (or normalization) rules will
be applied to the data starting with line 1 until no further
applications are possible. Then the rules are applied starting with
line 2 until no further applications are possible. This continues
until the rules have all been applied to the last line of data. Now
if search « F (the default condition) processing stops. However, if
search = T the processing starts over again from line 1 and this
cycle continues until no rules are applicable to any lines of data.

4.3.9. Suppress Flag

In the Iinguistic2 mode, if suppress • T then during processing the
parse tree is not printed. If suppress • F (the default condition)
the tree is printed.

In the semanticl, semantic2, and graphic3 modes, if suppress • T then
during processing the state vector values and the s-a rules matched
are not printed. If suppress - F (the default condition) they are
printed.

4.3.10. Time Flag

If time • T then during mode processing timing information is
printed. If time • F (the default condition) it is not printed.

4.3.11. Versionl and Version2 Flags

If versionl = T (the default condition) then the system expects to
find the old type of formats used in the grammar and space rules, and
the old parser is used for processing data during parsing in the

PAS-II REFERENCE MANUAL
4.3. FLAG FUNCTIONS

47

Iinguistic2 mode. If version2 • T, the system expects the new grammar
and space formats and uses the new parsing system when parsing in the
Iinguistic2 mode. Note: when versionl is set to T. version2 is
automatically set to F and vice versa. Thus the flags versionl and
ver8ion2 never have the same value at the same time.

4.4. PROCESS FUNCTIONS

4.4.1. Again Function

The again function takes the data out of the current run mode buffer,
puts it into the previous run mode buffer (deleting any data left
there), and executes go.

4.4.2. Apply Function

The apply function applies rules from the current rule mode to lines
of data in the appropriate run mode and places the result at the end
of the scratch buffer. The 'appropriate* run mode is the one defined
by the control cycle to provide input to the run mode associated with
the current rule mode. Thus calling apply in the space mode applies
space rules to the data in linguisticl (see control cycle layout).
The function has the general form:

(APPLY linesl TO Iines2)
where linesl are the lines of rules from the current mode, and Iines2
are the lines of data from the appropriate run mode. Missing
arguments are given the default values shown below:

ARGUMENT DEFAULT VALUE

linesl all lines in the current rule mode
Iines2 all lines in appropriate run mode

Any number of lines may be specified as arguments to the apply
function.

Examples of the use of apply are shown below. It is assumed that the
current mode is SPACE.
(APPLY 1-8 TO 8) : applies rules 1 through 8 in space to

line 6 in linguisticl and puts result in scratch.
(APPLY TO 4 18) : applies all rules in space to lines 4

and 10 in linguisticl and puts result in scratch.
(APPLY 8) : applies rule 8 in space to all lines in

linguisticl and puts result in scratch.
(APPLY) : applies all rules in space to all lines in

linguisticl and puts result in scratch.
Note that apply does not affect the contents of any run or rule

PAS-II REFERENCE MANUAL
4.4. PROCESS FUNCTIONS

48

modes. It only modifies scratch, an auxiliary mode.

4.4.3. Copy, Go, Recopy, Restart, and Start Functions

The go function takes data from the previous run mode, processes it,
and adds the result to the end of the current mode buffer. The data
is deleted from the previous mode buffer, but a copy is made.

The start function deletes all lines in the current mode buffer and
then executes 'GO*.

The restart function puts the copy of the data deleted from the
previous mode (when GO was executed) back into the front of the
previous mode's buffer and then executes 'START'.

The copy function simply prints at your terminal the lines which
comprise the copy of the data in the current mode.

The recopy function puts the current copy of the data back into the
front of the mode buffer, but it does not delete the data in the
following mode. Thus executing 'RECOPY NEXT GO' is not equivalent to
executing 'NEXT RESTART' since in the latter case the data in the
following mode is deleted. For example, if you are in the topic mode
and execute 'GO' the data in the text mode is automatically deleted
as it is processed. To restore that data to the text mode, enter the
text mode and execute 'RECOPY'.

PAS-II REFERENCE MANUAL
5.1. CHANGES TO PAS-II

5. EVOLUTION

5.1. CHANGES TO PAS-II

Changes to PAS-II are listed below:

Version 29 June 17. 1973
1. Apply is a new process function for applying a

subset of the rules in a mode to some subset of
the associated data.

2. Scratch is a new auxiliary mode, used as the desti­
nation mode for the apply function.

3. Move is a new basic function for moving rules or data
from one mode to another (or within a mode).

4. Prior is a new basic function that puts the user into
the prior mode as defined in the control cycle.

5. Core is a new basic function that indicates how much
free storage is left.

G. It is now possible to write when PRINT * T.
7. Semanticl and semantic2 now have an expanded trace when

SUPPRESS = F.-
8. The status of flags can be obtained by using as

the argument to the flag function.
9. The comment flag can now be used to record comments

on your console output.

Version 28 ApriI 38, 1973
1. Trace modes were renamed: tracel, trace2, trace3,

trace4.
2. Match is now the rule mode for trace4.
3. Search is now flag. If search«T processing using

integration and normalization rules become more
exhaust i ve.

4. Again is a new control function which reprocesses the
data just processed.

5. Association is a new mode that defines the associations
between run and rule modes.

G. Control is a new mode that defines the control cycle.
7. The create function has been generalized to permit

creation of different types of modes.
8. The erase function has been generalized.

Version 27 December 22, 1972
1. Buffer lines containing nothing but comments are now

a I I owed.
2. Numbers is a new flag, if numbers=T, disk files with

buffer line numbers can be created.
3. Versionl and version2 are new flags, if versionl-T, the

system uses the old parser (and space and grammar

PAS-II REFERENCE MANUAL
5.1. CHANGES TO PAS-II

formats). If version2=T the new, improved parser (and
formats) are used.

4. Graphic4, tracel, trace2, and match are new run modes.

Version 2G September 18, 1972
1. ' (HELP DEM)' tells you how to get a PAS-II

demonstration listing.
2. Print is a new flag. If print=T all tty interactions

are written on a disk file.
3. Create and erase are new functions which create a new

production system mode or erase it.
4. PS is a new rule mode which holds production rules

which together define a production system.
5. Memory is a new rule mode which holds rules defining

the memories used by the production system modes
and their current contents.

6. Tracel is a new run mode associated with the production
system and memory modes, (not yet operational)

Version 25 August 15, 1972
1. PAS-II starts from the text rather than the information

mode.
2. Comments may now be added to buffer lines.
3. '(HELP PAS)' tells how to run old versions of PAS-II.
4. Comment is a new flag. If comment=F, comments are

Version 24 August 1, 1972
1. Parentheses are no longer needed in function calls,

except for disambiguation.
2. Two new control functions: copy and recopy have been

added.
3. All index words are now legal arguments for the help

funct i on.
4. The editing functions now interpret an asterisk (>v) in

the argument list as refer ing to the last item in the
buffer.

5. ED is a new function which lets you use the Lisp editor
(Alvine) to modify a buffer.

Version 23 July 21, 1972
1. Save mode completely revised: will now accept rules in

save buffers; can read or write partial contexts.
2. Read function now expects a different format on disk

f i I es.
3. File names with extensions are now allowed.
4. Fast is a new flag; if fast=T, reading disk files is

faster.

PAS-II REFERENCE MANUAL
5.1. CHANGES TO PAS-II

51

5.2. OLD VERSIONS OF PAS-II

Version n of PAS-II can be found on dec-tape DW28-PASn. Thus, version
27 i s on dec-tape DW28-PAS27, etc. Below is a script showing how to
load old versions of PAS-II.

.R LISP G5
ALLOC? Y
FULL UDS=
BIN.PROG.SP=
SPEC.PDL-3BB8
REG.PDL-3B88
HASH-
AUXILIARY FILES?
DECIMAL?Y
*<INC (INPUT DTA1: PAS27))
*(PAS-I)
INITIALIZED
ft (BEGIN)

To obtain help information for version 27 of PAS-II (or older
versions) the following steps are needed:

ft(INC (INPUT DSK: INF07))
ft(INFO-I)
INITIALIZED

before executing (BEGIN). Also, Lisp should be loaded with 8BK of
core.

PAS-II REFERENCE MANUAL
B. EMERGENCY PROCEDURES

52

8. EMERGENCY PROCEDURES

When using PAS-II it can be useful to know the proper action to take
in case of system trouble, whether it be a PDP-1B, LISP, or PAS
problem. Listed below are emergency procedure recommendations:

1. If you get a LISP error message such as X UNBOUND VARIABLE,
or X UNDEFINED FUNCTION then do:

>v (PAS)
to return to the PAS-II system.

2. If you get the LISP error message NO FREE STORAGE LEFT,
or NO FW STORAGE LEFT then do:

ft(control)C
.CORE n
.REE
*(PAS)

This will change your core allocation from 65K to nK, where
n should be a number such as 75 or 88.

3. If PAS does not come back with a prompt (ft) after a reason­
able length of time then do:

(control)C
.REE
ft(PAS)

This will return you to PAS.

4. If you have a large investment (time or effort) in rules,
data, or processing then do:

ft(control)C
.SAVE DSK: filename
.REE
ft(PAS)

This saves your core image on the disk as file 'filename'.

5. If the system crashes and you have previously done a
SAVE DSK: filename, then do:

.RUN f iIename
ft(PAS)

This restores your old core image and returns you to PAS.

6. If PAS continually gives LISP error messages (or I FEEL
SICK messages) then do:

ft(PAS)
ftSAVE WRITE filename
ft(control)C
.R PAS
ft(PAS)
ftSAVE READ f iIename

PAS-II REFERENCE MANUAL 53
6. EMERGENCY PROCEDURES

This will save the contents of the PAS buffers, read in
a fresh version of PAS, and restore the buffers.

PAS-II REFERENCE MANUAL
7. REFERENCES

7. REFERENCES

1. Newell, A. f and Simon, H. A., Human Problem Solving,
Prentice-Hall, Englewood CIiffs, N. J., 1971.

2. Waterman, D. A., and Newell, A., An interactive,
task-free version of an automatic protocol analysis
system, CMU Computer Science Report, 1973.

3. Waterman, D. A., and Newell, A., Protocol analysis as
a task for artificial intelligence. Artificial
Intelligence, vol. 2, nos. 2 and 3, 1971, pp. 285-318.

4. Waterman, D. A., and Newell, A., Preliminary results
with a system for automatic protocol analysis. CIP
Paper no. 211, May, 1972.

ACKNOWLEDGMENTS

The contribution of Mike Rychener, both in developing the improved
parser and describing it in this manual is gratefully acknowledged.
Also, the help of. AI Newell and Dick Hayes in revising this manual
is much appreciated.

PAS-II REFERENCE MANUAL
8.1. PAS-II RULES

55

8. APPENDIX

8.1. STATE VECTORS

Rules using a state vector format must have a state vector definition
in the first line of the buffer and situation-action rules (s-a
rules) in the rest of the buffer. The state vector definition must
have the form:

SV = (var var ... var)
where var refers to state vector variables which have a value defined
by the current situation, i.e., the data stored in the run mode
associated with this particular rule mode.

The s-a rules must have the form:
(val val ... val) »> (action)

where val is a legal value of the corresponding sv variable in the
current situation. To decide what action to take, the sv variables in
the first line of the buffer are evaluated and these values matched
against the values in the situation part of the s-a rules below. The
first match determines the action to be taken. A ft can be used in the
situation part of the s-a rules to indicate A match with any sv
vaIue.

8.2. PAS-II RULES

The following rules are designed to handle the very simple
cryptarithmetic protocol shown in the text mode below. These rules
were used in PAS-II to generate a script of a PAS-II demonstration.

TEXT MODE
1. D IS 5 ; THEREFORE T IS 0 . ASSUME R EQUALS 4 . SINCE YOU

CARRY 1 , R IS ODD . ASSUME R IS 7 , NOT 5 .

SPACE RULES
(NEG) IND
(ODD <V>) KN
(EQ <V> <DIGIT>) KN
(THEREFORE) IND
(BECAUSE) IND
(ASSUME) IND
(DIGIT <DIGIT>) KN
(<V> <LETTER> <CARRY>) SPASET

GRAMMAR RULES
1. <EQ> = (<CARRYEQ>) (<LETTER> ft <EQUAL> ft <DIGIT>)
2. <CARRYEQ> = (<CARRY> ft <DIGIT>) (<CARRY>)
3. <ODD> - (<LETTER> ft <EQUAL> ft ODD)
4. <EQUAL> - IS EQUAL EQUALS BE WAS ARE

PAS-II REFERENCE MANUAL
8.1. PAS-II RULES

56

5. <NEG> = CANNOT NOT NO N'T
6. <THEREFORE> = THEREFORE IMPLIES
7. <ASSUME> = ASSUME ASSUMING
8. <BECAUSE> = BECAUSE SINCE
9. <CARRY> = CARRY CARRYING CARRIED

18. <LETTER> = A B D E G L N O R T
11. <DIGIT> = 8 1 2 3 4 5 6 7 8 9

SEGMENTATION RULES
1. . /
2. ; /
3. <DIGIT> , /
4. <LETTER> , /

EXTRACTION RULES
1. 12

INTEGRATION RULES
1. (XI CARRY X2) => (XI <C> X2)
2. (EQ XI X2) / (DIGIT X3) => (EQ XI X2) / (EQ XI X3)
3. (NEG) (EQ <LETTER> <DIGIT>) => (NEQ <LETTER> <DIGIT>)
4. (ASSUME) (EQ <LETTER> <DIGIT>) -> (AEQ <LETTER> <DIGIT>)

NORMALIZATION RULES
1. Al / (THEREFORE) A2 => (BECAUSEOF Al A2)
2. (BECAUSE) Al / A2 => (BECAUSEOF Al A2)

CONFLICT RULES
1. SV = ((SAME 2) (ITEM 1 1) (ITEM 1 2))
2. (F ft ft) => NO-CON
3. (ft ODD NEQ) => NO-CON
4. (ft ft ft) => ASK-IF-CON

PBG RULES
1. SV = (TYPE (ITEM 12))
2. (CON NEQ) => BLOCKREJ
3. (CON ft) -> (BLOCKREJ COPY)
4. (ft ft) -> BLOCKREJ

8.3. PAS-II SCRIPT

A listing of the PAS-II demonstration given at the cognitive workshop
on June 21, 1972 is on disk file PAS2.DEM[X328DW281. This
demonstration consists of using PAS-II to analyze a short crypt-
arithmetic protocol, using the rules in disk file RULES.CA[X328DW281.

Below is a relatively short script of a PAS-II demonstration using
the rules and cryptar i thmetic protocol listed in section 7.1. of the

PAS-II REFERENCE MANUAL
PAS-II SCRIPT

57

PAS-II reference manual. I terns in upper case were typed by the PAS-II
system, those in lower case by the user.

fttext display
TEXT MODE

1. D IS 5 ; THEREFORE T IS 8 . ASSUME R EQUALS 4 . SINCE YOU
CARRY 1 , R IS ODD . ASSUME R IS 7 , NOT 5 .

ftnext go
TOPIC MODE
1. D IS 5 ;

THEREFORE T IS 8 .
ASSUME R EQUALS 4 .
SINCE YOU CARRY 1 ,
R IS ODD .
ASSUME R IS 7 ,
NOT 5 .

OK? yes
TOPIC MODE FINISHED
>vnext go
LINGUISTI CI MODE

1. D IS 5 ;
2. THEREFORE T IS 8 .
3. ASSUME R EQUALS 4 .
4. SINCE YOU CARRY 1 ,
5. R IS ODD .
G. ASSUME R IS 7 ,
7. NOT S .

OK? yes
ftnext go
LINGUISTIC2 MODE
<EQ> <LETTER> D

<EQUAL> IS
<DIGIT> 5

1. (EQ D 5)
FROM : D IS 5 ;

OK? yes batch suppress
BATCH= =T
SUPPRESS=T

2. (EQ T 8) (THEREFORE)
FROM : THEREFORE T IS 8 .

3. (EQ R 4) (ASSUME)
FROM : ASSUME R EQUALS 4 .

4. (EQ CARRY 1) (BECAUSE)
FROM : SINCE YOU CARRY 1 ,

S. (ODD R)
FROM : R IS ODD .

6. (EQ R 7) (ASSUME)
FROM : ASSUME R IS 7 ,

7. (NEG) (DIGIT 5)
FROM : NOT 5 .

PAS-II REFERENCE MANUAL
PAS-II SCRIPT

58

LINGUISTIC2 MODE FINISHED
*(batch f)(suppress f) automatic
BATCH=F
SUPPRESS-F
AUTOMATIC=T
ftnext go
SEMANTICl MODE
RULES APPLIED : 4 1 2 4 3

1. (EQ D 5)
2. (EQ T B) (THEREFORE)
3. (AEQ R 4)
4. (BECAUSE) (EQ <C> 1)
5. (ODD R)
8. (AEQ R 7)
7. (NEQ R 5)

OK? yes
SEMANTICl MODE FINISHED
SEMANTIC2 MODE
RULES APPLIED : 1 2
1-7. (BECAUSEOF ((EQ D 5)) ((EQ T 8)))

(AEQ R 4)
(BECAUSEOF ((EQ <C> 1)) ((ODD R)))
(AEQ R 7)
(NEQ R 5)

OK? yes
SEMANTIC2 MODE FINISHED
SEMANTIC3 MODE

1. (BECAUSEOF ((EQ D 5)) ((EQ T 8)))
2. (AEQ R 4)
3. (BECAUSEOF ((EQ <C> 1)) ((ODD R)))
4. (AEQ R 7)
5. (NEQ R 5)

OK? yes
GRAPHICl MODE

1. (BECAUSEOF ((EQ 0 5)) ((EQ T 8)))
FROM : (BECAUSEOF ((EQ D 5)) ((EQ T 8)))

OK? yes
2. (AEQ R 4)

FROM : (AEQ R 4)
OK? yes

3. (BECAUSEOF ((EQ <C> 1)) ((ODD R)))
FROM : (BECAUSEOF ((EQ <C> 1)) ((ODD R)))

OK? yes batch suppress r: (becauseof ((eq c2 l))((odd r)))
BATCH=T
DO YOU REALLY WANT BOTH AUTOMAT I C«=T AND BATCH-T ? yes
SUPPRESS=T

4. (AEQ R 7)
FROM : (AEQ R 7)

5. (NEQ R 5)
FROM : (NEQ R 5)

PAS-II REFERENCE MANUAL
PAS-II SCRIPT

59

GRAPHI CI MODE FINISHED
GRAPHIC2 MODE
FOR (BECAUSEOF ((EQ D 5)) ((EQ T 0))) :
OP = (pc 1)
OUTPUTS = (eq t 0)
INPUTS - (eq d 5)(eq cl 0)
FOR (EQ D 5) :
OP = (recalI d)
INPUTS =
OTHER ORIGINS FOR (EQ D 5) ? no
FOR (EQ Cl 0) :
OP - (recall cl)
INPUTS =
OTHER ORIGINS FOR (EQ Cl 0) ? no
ORIGIN TREE :
(EQ T 0) (PC 1) (EQ D 5) (RECALL D)

(EQ Cl 0 *) (RECALL Cl)
1. (RECALL D) NIL (EQ D 5)

(RECALL Cl) NIL (EQ Cl 0)
(PC 1) ((EQ D 5) (EQ Cl 0)) (EQ T 0)

FROM : (BECAUSEOF ((EQ D 5)) ((EQ T 0)))
GRAPHIC3 MODE

1. GROW (EQ D 5)
FROM : (RECALL D) NIL (EQ D 5)

2. GROW (EQ Cl 0)
FROM : (RECALL Cl) NIL (EQ Cl 0)

3. GROW (EQ T 0)
FROM : (PC 1) ((EQ D 5) (EQ Cl 0)) (EQ T 0)

GRAPHIC3 MODE FINISHED
GRAPHIC2 MODE
FOR (AEQ R 4) :
OP (av r)
INPUTS =
OTHER ORIGINS FOR (AEQ R 4) ? no
ORIGIN TREE :
(AEQ R 4) (AV R)

2. (AV R) NIL (AEQ R 4)
FROM : (AEQ R 4)

GRAPHIC3 MODE
1. GROW (AEQ R 4)

FROM : (AV R) NIL (AEQ R 4)
GRAPHIC3 MODE FINISHED
GRAPHIC2 MODE
FOR (BECAUSEOF ((EQ C2 1)) ((ODD R))) :
OP = (pc 2)
OUTPUTS = (odd r)
INPUTS - (eq c2 1)
FOR (EQ C2 1) :
OP = (av c2)
INPUTS -

PAS-II REFERENCE MANUAL
PAS-II SCRIPT

OTHER ORIGINS FOR (EQ C2 1) ? yes
FOR (EQ C2 1) :
OP = (pc 1)
INPUTS = (eq d 5)(eq cl 8)
(EQ D 5) FOUND IN PBG
(EQ Cl 8) FOUND IN PBG
OTHER ORIGINS FOR (EQ C2 1) ? no
ORIGIN TREE :
(ODD R) (PC 2) (EQ C2 1) (AV C2)

(PC 1) (EQ D 5)
(EQ Cl 8)

3. (PC 1) ((EQ D 5) (EQ Cl 8)) (EQ C2 1)
(PC 2) ((EQ C2 1)) (ODD R)

FROM : (BECAUSEOF ((EQ C2 1)) ((ODD R)))
GRAPHIC3 MODE

1. GROW (EQ C2 1)
FROM : (PC 1) ((EQ D 5) (EQ Cl 8)) (EQ C2 1)

DO (AEQ R 4) AND (ODD R) CONFLICT ? yes
2. CONFLICT: N4 (AEQ R 4) AND (ODD R) WITH

(BLOCKREJ COPY CHAINAEQ)
FROM : (PC 2) ((EQ C2 1)) (ODD R)

GRAPHIC3 MODE FINISHED
GRAPHIC2 MODE
FOR (AEQ R 7) :
OP = (av r)
INPUTS =
OTHER ORIGINS FOR (AEQ R 7) ? no
ORIGIN TREE :
(AEQ R 7) (AV R)

4. (AV R) NIL (AEQ R 7)
FROM : (AEQ R 7)

GRAPHIC3 MODE
DO (ODD R) AND (AEQ R 7) CONFLICT ? no

1. GROW (AEQ R 7)
FROM : (AV R) NIL (AEQ R 7)

GRAPHIC3 MODE FINISHED
GRAPHIC2 MODE
FOR (NEQ R 5) :
OP = (td'r 5)
INPUTS = (eq d 5)
(EQ D 5) FOUND IN PBG
OTHER ORIGINS FOR (NEQ R 5) ? no
ORIGIN TREE :
(NEQ R 5) (TD R 5) (EQ D 5)

5. (TD R 5) ((EQ D 5)) (NEQ R 5)
FROM : (NEQ R 5)

GRAPHIC3 MODE
DO (AEQ R 7) AND (NEQ R 5) CONFLICT ? no

1. GROW (NEQ R 5)
FROM : (TD R 5) ((EQ D 5)) (NEQ R 5)

PAS-II REFERENCE MANUAL
PAS-II SCRIPT

GRAPHIC3 MODE FINISHED
GRAPHIC2 MODE
GRAPHIC2 MODE FINISHED
SEMANTIC3 MODE
SEMANTIC3 MODE FINISHED
LINGUISTIC1 MODE
LINGUISTIC1 MODE FINISHED
PAS-2 FINISHED
>vgraphic3 display
GRAPHIC3 MODE

Nl 8 OP (RECALL D) OUT (EQ D 5)
N2 OP (RECALL Cl) OUT (EQ Cl 8)
N3 OP (PC 1) IN (EQ D 5) (EQ Cl 8) OUT (EQ T 8)
N4 OP (AV R) OUT (AEQ R 4)
N5 OP (PC 1) IN (EQ D 5) (EQ Cl 8) OUT (EQ C2 1)
NG OP (PC 2) IN (EQ C2 1) OUT (ODD R) 8
N7 3 OP (PC 1) IN (EQ D 5) (EQ Cl 8) OUT (EQ C2 1)
N8 OP (PC 2) IN (EQ C2 1) OUT (ODD R)
N9 OP (AV R) OUT (AEQ R 7)

N18 OP (TD R 5) IN (EQ D 5) OUT (NEQ R 5)

