NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



LABELLED PRECEDENCE PARSING

Mario Schkolnick

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

July 1973

This work was supported by the Advanced Research Projects Agency of the Office of the
Secretary of Defense (F44620-73-C-0074) and is monitored by the Air Force Office of
Scientific Research. This document has been approved for public release and sale; its
distribution is unlimited.




Abstract

Precedence techniques have been widely used in the past in the construction of parsers.
However, the restrictions imposed by them on the grammars were hard to meet. Thus, .
alteration of the rules of the grammar was necessary in order to make them acceptable to
the parser. We have shown that, by keeping track of the possible set of rules that could be
applied at any one time, one can enlarge the class of grammars considered. The possible set
of rules to be considered is obtained directly from the information given by a labelled set of
precedence relations. Thus, the parsers are easily obtained. Compared to the precedence
parsers, this new method gives a considerable increase in the class of parsable grammars, as
well as an improvement in error detection. An interesting consequence of this approach is a
new decomposition technique for LR parsers.

L. Introduction

Among the large variety of techniques used for parsing, one can distinguish the bottom-
Up parsers, as those which attempt 1o make succesive reductions on a given string so as to
eventually get to the starting symbol of the grammar. These parsers can be thought of
operating in two modes (or phases). On the detection phase, the parser attempts to
determine the portion of a righl hand side of a phrase within the string which is being
considered. Once this boundary is detected, the. parser goes into a reduction phase,
consisting of selecting a production which is a handle at the determined position.

If we classify different types of bottom-up parsers according to the amount of
information they carry while in the detection phase, we can distinguish two extremes. On
one hand we have the precedence parsers, which are characterized by the fact that they
carry no information while looking for the righthand side of a phrase and by making its
decisions in the reduction phase by using local context only. The parsers obtained are
relatively simple but the classes of grammars they can parse is restricled by the existance of
focal ambiguities.

By varying the amount of context examined one can define different families of
)



grammars. Among the most popular ones, we have the Wirth-Weber precedence [1]), the
simple weak precedence [2.3], and the simple mixed strategy precedence [3]

On the other side of the spectrum lie the LR(k) parsers [4]. While in the detection pha<e,
they carry enough information so {hat the decision to reduce can be made immediately after
a right hand side is detected. The number of states an LR(k) parser has can become
immense. Part of this high number of states is due to the fact that different information that
is carried forward has to be further distinugished for the same local context.

An intermediate situalion is obtained if one separales what is to be considered infarmation
which has to be carried forward and information that can be obtained from local context.
A parser thus constructed will consist of two machines: a forward machine F and & decision
machine D. The parser will work as follows: Initially the contral is given to the F machme.
While on ¥, the parser behaves like a precedence parser but every time it shifts an input, it
stores in the stack the input symbol tozether with a symbol denoting the state it is currently
in. The decision to shift, which 15 accompanied by a transition to a new state, is done by
examining local contexl. The F machine can also determine acceptance, an error condition or
a call on the D machine for a decision. The D machine determines whether a shift or a
reduce has to be performed, by examining local context together with the state information
that exists on the pushdown. A shift is performed like the F machine. If a reduce is called
for, the right hand side of the production used is removed from the stack, the F machine is
initialized to the stale denoted by the topmost symbol, and the left hand side of the
production used is given as input to it (this is like an LR{k) parser). A parser of this type is
given in Example 1.

Example 1

Let G be given by: S - cAbB
A adaA
B - adiaB

G is not a member of any of the classes of precedence grammars mentioned above. An
LR(1) {or an LR(Q)) parser for G has 10 states. We can see that we really need 2 states to

carry information forward (i.e. whether a "¢" or a "b" was first seen). The rest of the
information can be determined from local context. A diagrara for the F machine could be:

¢

a 1l 1 a
d d
A D

The D machine would check the contents of the stack to match a right hand side of a subset
of the productions, determined by the state of F from which it was called and it would give
a decision on which reduction to make. A diagram for D can be given as a forest:



Called
from: i 2
d - d
c a a b a a

reduce reduce reduce reduce reduce reduce
S-cA A aA A ad S bB B .aB B--ad

In this paper we examine parsers built using this approach. Different classes of parsable
grammars can be obtained by applying different criteria for the construction of the F and D
machines. We will see that any class of precedence grammars can be extended this way,
without a significant complication of the parsers and with the big advantage of not having to
accomodate the rules of the grammar fo satisfy the requirements of the particular
precedence method used. Althoush the intent of this study was to extend precedence
parsers, we get as a side effect a decomposition method for LR(k) parsers. This approach is
a matter of further study.

2. Labeled Precedence Parsing

In this section we examine the construclion of different parscrs and the classes of grammars
they can parse. We assume the reader is familiar with the terminology for context free
grammars [7,8]. Since our original attempt was in the direction of extending precedence
techniques, ail the grammars considered here will be proper. Extensions to non A-free
grammars can be studied along the same lines.

Definition 1: A proper context free grammar G=(V,\V1,P,S) is a reduced, A-free, cycle-free
context free grammar. V denotes the vocabulary, Vr is the set of terminals, Vn is the set of
nonterminals. We assume the productions in P are indexed. The set I of indices will consist
of symbols of the form A, where A « V. An index i=A, ¢ I will denote the k-th production
whose left hand side is A. If this production is A & we will write it A - & (or A A -8
If there is only one production for nonterminal A we will use A instead of A; as its index.
There will be an index @ to denote an augmented production of the form S' +LS1 (S' ¢ V).
(This is jusi a convenience to make definitions simpler.)

Except where otherwise noted, the following conventions apply throughout the paper:
ABCD ¢ Vs abcdegr ¢ Vi; B8Pl o, T (VEXY,Z CV

We will now define certain relafions between pairs of symbols in V. These relations will be
defined in a similar way as was done in [1] but there will be a label attached to them. The

tabels will provide information about the way the relation between the symbols was
obtained.

Definition 2: Let X,Y ¢ V. Let ay, ¢y, a3, o € I Then,

1) X ig less than Y under «y, oo, which we will write as [og; ap} @ X €Y, if Yi ¢ ap, d
ABX,Mv, such that i: A pXBy and o ={j|B #sC o s 1:C - YT)L

2) X is equal than Y wunder w3, which we will write as fog] e X =Yy, |if
ag ={i|i:A -+ pXYV}



3) X is greater than Y under a4, which we will write as fe] : X > Y, if Y €V, Fi¢ T
A-pBDy,D & YPand a4 =1{j|B &L oC,j: C ~ ¥X}

Notice that, ignoring the labeling, the relations are defined as in [1] Example 2 shows a
grammar together with a matrix of labelled relations.

Example 2. Let G be defined by the productions

S1: S - big ‘ Y:Y - ag
Sp: S - ar¥Y Z:1 ~ra
S3: 5 - brX X:X - a

The labelled precedence relations can be displayed in matrix form:

S b c g 1L
S [0}:&
Y [S2):»
zZ [Sl]:é
X [S3)?
a [Y]= [X]:>»
(23>
B KA
1] [@)=  [055,,53)¢ [0;52):¢
Y Z X a r
b [S1]= {S1;2]:¢
{S3):=
cl [S2):=
r| [S2)= [S3)= [S2;Y]:¢
[S3:X):¢
[Z):=

(We have listed the elements of the sets a, instead of using the usual set notation.)

The matrix of labelled precedence relations will be denoted by M. Note that for two
symbols X and Y there may be more than one pair of labels oy, az such that [og;0p]:X €Y.

We will later perform reductions on this matrix. These wili amount to merging some indices
into one. We can think of the set of labels as coming from a set L and having a mapping
$:I-L. The original matrix is defined with L=I and ¢ 1-1. In general though, we will have
a labelied precedence matrix M with labels from a set L.

Given a labelled matrix of precedence relations we now define a parser for the grammar.
The {forward) states of the parser will be subsets of L.



Informally, the parser can be defined as follows: Define a directed graph whose nodes are
the members of V (plus two other nodes, denoted by L, one of them will be the unique
source node, the other, the unique sink node in the graph). An arc exists between nodes X
and Y if the X-Y entry of the M malrix is not emplty. The initial state will be the set
consisting of the label for production @, and we will say it is incident to the source node L.
Now we perform the following operation at every node: Let state s be incident to node X
and let there be an arc from X into Y. Let [o00)X4Y and [a3]:X2Y. (There may be more
than one label of the form [a);az] for the ¢ relation.) We then define a state t incident to
node Y as s M a3 together with the set of all indices of productions in 3 such that s N a;#4.
The state t will be referred to as the successor of state s. When no new states are created
the process stops. Note that the computation of the states is done using only boolean
operations on sets and that checking if a state has already been created is straightforward.
(The whole process can be viewed as a parallel operation at all nodes.)

The set of states so created constifutes the set QF of states of the F machine. The
underlying fsa will be called the unwesirictedFmachine.  The parsing of a word proceeds as
follows: Initially the T machine is in the initial stale sg, incident fo node 1. There is a stack
which will have two channels, subsequently referred as ¥ and ¥5. ¥,¢(V U {1}¥, ¥o00*.
Initially ¥j=1,%7=s59. Let ¥=1¥X for some ¥<V¥ ¥={0}os for o<Qr*, [¥|=|ol, be the
contents of the stack at some point in the computation. (Thus the F machine is in state s
incident to node X.) Let Y be the next input symbol (normally this is the next symbot in the
input string). Let [ag XY, If <llg=¢, a shift is performed. This consists in changing state
to the successor state t of s and pushing in the stack the symbols Y on the first channel and
t on the second. If sha,#¢ we <ay that a potential conflict occurs. The set of all
productions whose indices are in sii{imglgtleg), for all &y, is made available to the D machine
which (hopefully) will give a unique decision of what to do.

The D machine will either determine a <hift, by examining productions in sN{aslicey), or a
reduce to one of the productions in sty Tf a shift is determined, control is transferred to
the succesor state of s in the machine . If a reduce is determined, the right hand side of
the production being reduced is popped up from the stack, control is transfered to the
topmost state now appearing on channel 2, and the input symbol fed to machine F is the left
hand side of the production used. The parser accepls if the input symbal is L, F is inits
final state and ¥,=15.

We will now define the F machine.

F is a finite state machine, F=(Qr,VxV,5,P-H0){F-1(0)}), where Qr is a subset of the et
of all subsets of L, VxV is the input alphabet, the initial (and final) state is the set containing
P-1{0} and &¢ is defined as follows: Let s(Qp,(X,Y)}VxV. The (X,Y) entry of M contains labels
[op3o2]; [a3)[og ] (there may be many labels of type {ap,02]).

&r(s,(X,Y) = if sNag=d then (slasd ) U ay
sl #d
else D

(D in the range of & is interpreled as a call 10 machine D). The empty state is interpreted
as an error indication. The transition function for the unrestricted F machine is



&' (s,0,Y)) = (sNoz} ) 1) oy
Sl](_tl’r“¢

The D machine can be defined in different ways, giving rise to different classes of parsable
grammars. We will give some definitions here. For simplicity, we will restrict to local
contexts of one symbol, but these constructions can be extended to other contexts. We will
need some definitions which we now give:

Definition 3: Let &(V*. We denote by f, an operator such that f,& is the longest prefix of
5 of length <k. We denote by f,* an operator such that £,*& = {fy p| &), Similarly we
define |, & for suffix strings.

Let (Z,s) be an interior symbol of a 2-channel stack (i.e., the stack is ¥=(¥;,¥2), [¥1i=1¥2i> 1,
and for some n > 1, f1l,¥%)=7, {jl,¥>=5).

Let i:A =& be the production whose index is i. If [ay; ¢2]: Z € f18, sha#é, Aoy we say
that (the distinguished occurrence of) Z leads into production i

If 3n>1, 1,¥)=f,Z6=25" and (the distinguished occurrence of) 7 leads into production i then
(the distinguished occurrence of) &' is a valid expansion of production i.

If [or;02}:X €Y or [a3}X2Y and for some state s, sN{ullas)#é then we will say that X leads
into Y under s. We will write [s]:X -Y.

If ior and [oiX2Y we will sometimes write ():X=Y. A similar convention holds for the other
labels.

Now we can give a definition for the D machine. The T machine is specified as follows:
a: if i, Picsilog, A BX, n=iBX|+1, 1,¥,=ZBX and 7 leads into i, then "reduce i"}

b: "{Pi|Pict=(sller3) t) oap , iBA BXCS, Y *C,
sty #d
n=|3X|+1, 1, ¥1=26X and 7 leads into 1}"

(when D is called, the parser has Y as input and ¥j=oX)

This D machine works as follows: For each production i:A & in sllay it checks that &
appears as a valid expansion of i. 1f so, machine D outputs “reduce i*. Also, it may output
a state consisting of the set of all labels of productions i:A XC& such that Y *C, [s)X Y
and such that BX appears as a valid expansion of i. Thus, the D machine could preduce
more than one output. We are interested in deterministic behavior so we will say that a
parser is well defined if the D machine has at most one output. (An empty output from D is
an indication of error.)

The class of grammars which have deterministic parsers whose D machine are defined as
above and whose F machines have n states will be called the class of n-state labelled
precedence grammars with independent leff and right context (n-LPI grammars).




Let us compute the machines F and D for the grammar in Example 2:
¥ machine
States
X,Y) {0} {S1,53} {S2} {S1} {Z,53} X2} {Y} {S3}

1S | {B}

ib {81’53}

le | {Sz2}

bZ 1S1}

by {2,53}

cr {Sz2}

lg {S1}

ry {Sa}

rX 1S3}

ra {v} {X,2}

gl D(Sy) DY)
Y1 D(Sy)

X1 D(S3)
ag D{Z) {Y}
al D(X)
5L]end

Whenever a call to the T machine is given, the set of all i such that PicsN(orgllogllerg) is
given. The D machine can be represented as a forest where the root of each tree is
labelled by an element | of L and the corresponding tree represents all right hand sides of
productions i such that Pi=l. In this case, L.=I and P is 1-1 so there is one tree for each
production.

Sy S2 S3 Y Z X
b Y X g{\n al aI
z r r ad shift v

{Y}
B c b

reduce S; reduce S; reduce Sj reduce Y reduce 7 reduce X

The parsers constructed as above will be such that their F machines usually have more
states than it is necessary. We can get minimal machines T as follows: Assume we have a
definition for the class of D machines. We then define an incompatibility relation on the set
of productions I. We will cay that two productions i1, i, are incompatible if when a call to D
occurs with stale s=%i,=®i;, D will produce more than one outpul. Once we have
determined all incompatibic pairs of productions we will define a new set L and a new
function P such that if i; and i; are incompatible then Pii#Piz. (In other words we are
defining an equivalence relation on I.)

Note that a call to D occurs whenever there is an entry in the. matrix M containing a refation
> The incompatibilities are dofined below. Let # denote incompatibility between
productions.

1Yy A#C if  IX,Y such that (CyiBjXey, (A)X2Y, ApA-pXYBZ , Bj:B-YBZv and
(A ):Z>W for some W¢fi*v or v=A and 3W such that (A;,B; Z>W.



2) Cy#D, if there are productions A;:A--YBZv, BB Y¥8Z, there is V such that
(CesA VY  and (DyB;):VeY and (B):Z>W for some Wd*v or v=A and IW such that
(A;,B;):2>W.

Given the set of incompatible productions, we can define a partition n on the set of
productions such that if ij,i» are incompatible productions they belong to different classes.
For each class we define a symbol. Let L be the set of all these symbols and define the
natural map P:I 'L such that Fi=®j if i and j belong to the same class of n. We can now
define the F and D machines as before. For some partitions n it may happen that D will not
‘be well defined. But if the parser defined on the identity partition was well defined, there
exist a partition for which the parser is well defined and for which the number of states of
the machine T is minimal. This number gives an indication on the amount of information that
has to be carried forward in order to successfully parse the sentences of the language
generated by the grammar. It is clear that, for each n, we can define grammars for which
the F machine will have at least n states, so this gives a measure of the complexity of the
grammar.

As the following result shows, even the simple class of grammars in this hierarchy, ie., those
for which the number of states of the ¥ machine is I, is an extension of the largest class of
grammars defined using precedence relations over VxV, ie., the class of simple mixed
strategy precedence.

Theorem 1: The class of SMSP grammars is contained in the class of 1-LPI grammars.

Proof: Let G be a SMSP grammar. Assume there are two productions A;:A -PXYQZ,
B;:B-YBZv. Let vAA and W *viWy. Since Z¢W or Z=W we cannot have 2>W. In
particular, we cannot have (A;):73W. If v=A we cannot have X=B or X 4B so, in particular,
there is no index Cy such that (Cy;B;):X<¢Y. So no incompatibilities of type 1 can occur. If
there are two produclions A;:A YBZv, B;:YBZ then again, if v#A there can be no
W ¥ W such that (B;):Z>W. 1f = A then A; and B; have identical right hand sides. So,
there is no V such that (VA 4l and (V,B)dl= In partlcular, there are no Cy, Dy such
that (Cy;A V€Y and (Dn;B;:VeY. Thus no incompatibilities of type 2 occur. Thus, we can
define F with one state. 1t is easy to see the D is deterministic. §

The class of 1 state labelled srammars with independent left and right context has been
presented in the literature under another name as indicated by the following result,

Theorem 2: The class of | state labelled grammars with independent left and right context
coincides with the class of overlap resolvable (OR) grammars [5].

Proof: The reader is referred fo [5] for the definition of OR grammars. A case analysis
shows that D has a deterministic behavior iff every conflict is left or right resolvable. |l

Thus we get the following corolary, which answers a conjecture of Wise:
‘Corolary 1: The class of OR languages coincides with the class of deterministic languages.

Proof: Follows from the fact that every deterministic language has an SMSP grammar. 1



Example 2 presented a grammar which failed 1o be OR. There are two entries in M which
can cause incompatibilities, namely M{ag) and Mig,l). For the latter we have that
productions ¥ and S; are not of the form occuring in case | or 2 for the definition of
incompatibility. For the former, we do have that S,#Z. Thus, at least 2 stales are required
for the F machine. It turns out that 2 stales are sufficient to get a parser for this grammar,

Because we have defined the D machine as one which checks left and right context
independently we have the following result.

Theorem 3: For any n, the class of n-state labelled grammars with independent left and
right context is properly included in the class of SLR(1) grammars [6).

Proof: Given the set Qg of scts of LR(O) items for a grammar and the set Qg of states of
the unrestricted ¥ machine, we can define a mapping h from Qg to Q5 as follows: h(Sg)={G}.
Let S; be a set of LR(@) items. For each symbol Y(V we can partition S inH sets, §;=5;1
U Si2 U-S3 U Si4 1) 55 S;1=]A «X.YB}, 5,2={A -oX.ZBIZ#Y}, S;3={A -aX.}, S;4={A -YB},
SiS={A--ZB|Z#Y}. TIf h(S;)=q;, then h{5(S,Y)=6"(q;,(X,Y)), where &' is the transition
function of the unrestricted ¥ machine and &(S;,Y)=S; is the set of LR(Q) items obtained
as the GOTO(S;,Y) (see [7] for undefined terms). Now we make the following claim,

Claim: If S; is a set of LR(O) items partitioned as above, then h{S;) contains the indices of
all productions in §;1 1) §;21i §,3.

The claim is certainly true for Sp because 59!=592=Sg3=¢. Now, assumming the claim holds
for S, we note that GOTO(S;,Y) is abtained by taking all productions in 5111 5,4 with the
dot shifted over the symbol Y (which becomes the set $;1115;21'S;3), and applying a
closure operator to get the set 5;4 ) $;5. Bul, for every index i of a production in §;1 we
have (i):X2Y, and for every index j of a production in §,4, there is an index i of a production
in S;3 U S;2 such that {i;j}:X4Y. Thus, all indices of productions in §;1 1) S;j2 U4 $;3 appear in
state h(S;) and the claim holis.

It is now straightforward to verify that it G is not SLR(1), i.e., if there are two conflicting
items in some set S; of LR(Q) ilems, then the corresponding state of the F machine will
produce a call of the D machine which will in turn, give more than one output. Thus the
parser will not be a determinisiic cne and the grammar will not be an n-state LPI grammar.

We note that to generate the F machine we do not distinguish positions within a production,
as an LR(or SLR) parser does. Thus, we are able to gel the F machine faster, but we
restrict the class of grammars which can be parsed, excluding those which have productions
in which a repeated occurrance of a symbol may cause problems, as suggested by the
following example:

Example 3: Let G have productions
S -abcabA | abB
A d
B-d
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Since [0;51,52):1¢a, [S1,52]:azb and [S;A)béd, [$2;B)b4d and [ABl:d>L we have that the
F machine calls the D machine when in state {AB} and reading symbol {(d,l). The D
machine gives as output both "reduce A" and "reduce B". This behavior will occur even if
the D machine checks the left and right context simultaneously as is done later.

On the other hand, it is easily seen that G is an SLR(1} grammar. Example 3 leads us to the
following definition:

Definition 4: Let A -X;X..X,_iX, be a production. We will say that this production is free
of repetitions {FOR) if for all 1<ij<n we have i#j implies X;#X; (ie., there is no repeated
occurrence of a symbol among the first n-1 symbols). A grammar will be free of repetitions
(FORY) if all of its rules are FOR. FOR grammars and FOR productions occur very often. Any
grammar in normal 2 form is a FOR grammar and every CF fanguage can be given a trivial
FOR grammar. Among the grammars used in prograrming languages, a quick glance at some
reveals that: PL360 as defined in [9, pages 39-53] is FOR; SNOBOLA, as defined in [7,
pages 505-507], has only one non FOR rule; ALGOL 60, as defined in [10], has only one
non FOR rule (which happens to be a production for the <for list element>!); PAL, as defined
in [7, pages 512-514], is FOR.

If we are dealing with FOR prammars, we can strengthen the result of Theorem 3:
Theorem 4: If Gis FOR and SLR(1), then it is n-LPL

Proof: Define the F machine using the identity map 9:I--L=I. If G is FOR, the claim
stated in the proof of Theorem 3 becomes the following:

Claim: Tf S, is a set of LR(Q) items partitioned as beforethen h(S;) coincides with the set
of indices of all productions in S;1 U} $;2 U §;3.

To prove the claim, it suffices 10 show that there are no indices of productions in h(S;)
which are not in ;11 5;2 1] §;3. This follows from the fact that, if (():X+Y or (i;j}:X<Y then,
since G is FOR, there is only one occurrence of X in the production whose index is i. Since
an LR(B) ifem is idenlified by this symbol, the map h is 1-1. It is easy to see that the
parser constructed is isomorphic to the SLR(1) parser. ||

Thus, if we restrict our attention to FOR grammars, both classes coincide. Moreover, the
SLR(1) parser can be obtained very casily from the F machine so that a fast procedure for
constructing SLR(1) parsers is obtained. As mentioned above, FOR productions and
grammars occur frequently in programming languages. Thus, we should take advantage of
this fact when constructing parsers for them.

We will now modify the definition of the D machine so as to make it check tor simultaneous
left and right coniext.  We need to introduce the following definition. :

Definition 5: A symbol Y s adjacent fo symbols X and Z
within the context of a production C; if either

1) (C;):X=Y and either (C;):Y -Z or (C))Y>Z
or
2) (C;3De):X <Y and (Dy):Y -Z for some production Dy.
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Let A;:A-& be a production and P(A)={B|BX.A). We say that A is a valid reduction for &
within symbols X and Z, and state s if

1) {Cj3A):X ¢f1& for some Cyts
2) AYCP(A) such that Y is adjacent 10 symbols X and Z
within the context of production C;.

Note that we can check the condition of valid reduction by inspecting the matrix M. As the
following lemma shows, we get information about possible simultaneous left and right context
in which a nonterminal may appear.

Lemma 1: Let C;:C -¥Xc , ¥rV¥crVh, Let SZunaCl=ra¥Xcflina¥XYe'8Inn¥XY1c", with
o,B3,e',e"CV¥ (but Zf* (') for some YCP(A) such that ®{Y)=¢. Then A is a valid reduction
for & within symbols X and 7 and some state s such that C<s.

Proof: We know C=+¥XcX.¥XYc'. There are two cases: c=Ye' or ¢#Ye¢',c'2A (since
C(Y)=9). In the firslt case, (C;):X=Y. Also, eilher Z¢f ¥ (") or ¢'=A and Z(fi*(B). Then,
either (C;):¥-+Z or (C;):Y»Z. If c#Yc' then ID;:D YP such that cX.Dp'=>¥Ypp'=Ye' with
PEA. Then Z ™ (1) so (C;;D; kX ey and (D;)Y -Z. In either-case, Y is adjacent to symbols
X and Z within the context of C;. Since YE.A=>% we have (C;;A;):X¢f1& where A;:A &.
Thus we have that conditions 1) and 2) of definition 5 are satisfied. |

We are now in a position to specify another class of parsers, by changing the D machine.
The change will only affect the inslruction labelled a. This instruction is changed to:

a; 'i_f Ji, Picshog, i:A BX, n=I8X{+1, 1,¥,=2BX, Z leads into i and A is a valid reduction for
BX within symbols Z and Y and stale s, where s=f;l,¥5 (i.e., the state which appears next to
Z) then "reduce i".

We will now construct a parser for a grammar using this machine D.

Example: Let G be

Sy S--Aa S3: S Bb A: A-c
S2:  S-dAb S4: S dBa B: B--c

The matrix M is:

5 A 8 a b (4 d 1
S (@)=
A [S1):= [S2)=
B [Se)= [S3):=
a (51,54
b [S2.83]:»
c [AB]> [AB)>
d [S2):= [Se)i= [S4iB):4[S2A):¢
HOJ= [0;5,]:¢[0;53]:¢ [0;A,BL:¢ [0;52,54]:¢



The machine 7T is:

{01 {S1} {S3} {AB} {S2Ss} {S2}  {S4}
15 {9}
LAl {S3} -
1B| {Ss3}
lc| {AB)
1d| {S2,S4}
st end
Aa {S1}
Ab ' {S2}
Ba {Ss}
Bb {S3}
ca DABY
ch D
dA 152}
dB {Su}
dc {A’B}
al DS H DHSsD
bl D{S3}) D{{S2})

The forest for machine D is as follows:

{S1} {S2} {Ss} {Sa} {A,B} {A,B}
. 2 b

! .
_a{ b b a I I
A A B B c c
d d

reduce Sjreduce S, reduce S3 reduce Sy direduce B reduce A
Lireduce A reduce B

When D is called with {AB} it knows its lookahead symbol. Assume it"is an "a". Then it

checks that the stack contains "¢” and looks at the left context. If it is a (d,{S2,54}) it

checks to see if A or B are valid reductions of ¢ within d anc a and state {52,854}, From the
matrix M we see that B is valid white A is not. Thus the output "reduce B" is given.

We could proceed as before and give a criteria for incompatible productions. We will not do
this here, but is clear we again pet a hierarchy depending on the number of states the F
machine has. In the above example we really didn't need the states in the F machine in
order to decide the output for the D machine. Thus, we could have built a parser with |
state in the F machine. Actually, we have ' '

Theorem 5: The class of 1-state labelled precedence grammars with simultaneous left and
right context is properly included in the class of (1-1)BRC. If the grammars are restricted

to be FOR, these classes coincide.

Proof: Because the D machine can check for context of at most one to both left and right of
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the right hand side of a production we have that we are within the (1-1)BRC. The following
grammar is (1-1)BRC but not in the class of labelled precedence grammars considered:

S--aAbAc|aBc
A--d
B--d
It thus remain to be shown that any FOR grammar which is (1-1)BRC is in this class.

This follows from the facl that for a FOR grammar, the converse of lemma 1 holds, i.e., if A
is a valid reduction for & within symbols X and Z then XAZ is a substring of some sentential
form. Thus, if the D machine gives more than one output, it means that knowledge of the
left and right context of a handle of a sentential form does not uniquely defermines it. Thus,
G is not {1-1)BRC.

3. A decomposition of LR parsers
So far, we have considered parsers which operate as precedence parsers, in the sense that,
once a reduction could occur {as determined by the F machine) we would check the contents
of the stack to either determine the production to use in the reduction, or to continue the
forward scan.

This sequentiality of actions is clearly not necessary. Since the D machine, when called, only
inspects a bounded amount of tape {not more than one plus the length of the longest right
hand side of any production), we can construct a (definite) machine which can operate in
parallel with the F machine and which performs the checking that D does. (We will also
refer to this new machine as the D machine.) In this way, the decisions are already taken
when the T machine requests them, '

Now the parser is behaving cxaclly as an LR parser, but since we have separated the
functions in the F and D machines, the lotal number of states is reduced. As an example of
these ideas, consider the following grammar:

S: S DADB B B«
D: D -aC B: Bd
Ai: A b Ci: C Ce
Az: Ac C: Cee

From the M matrix we can determine the incompatibilities. We find there are none. Thus one
state is sufficient for the ¥ machine. (In fact, G is an OR grammar,though not an SMSP).
The F machine is obtained direclly from the matrix of (unlabelled) precedence relations. Tt
has only one state, which is denoted by «. A call to D is denoted by D.
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Input Aclion Input Action Input Action
1S o ae « CA D
1D « AD < Ch D
la o Aa o Cc D
Sl end Bl D Cd D
DA a bD D Ce o
DB o ba D eA D
Db a cD D eb D
Dc o ca D ec D
Dd o cl D ed D
aC o dl D ee D

To obtain D we reduce {using slandard techniques of finite state machines) the machine
which checks all productions. Since there is only one state in F, the only information D has,
to determine its output, is the input from which it is calied from F. The following is the
transition table for D. If has 5 states. Noftice that the input to D is taken as the second
component of the input to F (i.e,, the "new” input symbol, not the one aiready on top of the
stack). The output depends on both,

Next slate, under new symbol.

Stalel A B C D a b ¢ d e | Qutput
1f- - 2 3 1 - - - 2]B-x5
{by,-}:Ay
(e,-):Cz
{c,a):A>
{c,1):B;
{d,-):Bp
2|- - - - - - - - 1j({C-)D
(e,):Ca
3{4 «x - - - 1 | x =-71-
41- - - B 1 - - - -|-
5(x 1. - - - x | 1 -]- -

(A don't care entry is shown as -. An error entry is shown as x) The following example
shows a sequence of configuration taken by the parser when given an input string. Since F
has | state we do not show it on lhe stack. The state of D appears as a second component.



Stack Input Action of machine
¥ D

i aebaecal

| shift

1l a ehaecal

1 shift

L ae haecal

1 12 D reduce Cp

lac . baccal

1 2 D reduce D

1D baecal

1 3 shift

1 Db aecal

i 31 D reduce A

L DA aecal

1 3 4 shift

L DA a ecal

1 34 shift

1 DAace cal

13412 D reduce Cp

1DAacC cal

13412 D reduce D

1L DAD cal

1 3465 shift

LDADGC al

1 345 ] D reduce Ap

al
45 x error

-
wo
>
o
X
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Had the last symbol "a" nol been lhere, the last two configurations would have been
changed to:

Stack Inpul Action of machine
¥ D

1DADC L

i 3451 D reduce B)

L DADB 1

1 3451 D reduce S

15 1 end

It is interesting to note that this grammar has an 18-state LR(1) parser (constructed a la
Knuth), a 14-state parser (using Korenjak's method [11]), and a 18-state SLR(1) parser.
By allowing the parser to postpone error detection (as the one above does), Aho and Ullman
constructed a 7-state parser [7]. We have shown that using decomposition techniques one '
can get a 1+5-state parser for lhis grammar. Because of the simple way the ¥ and D
machines are determined, this decomposition technique appears quite useful.

We should point out here that, although not explicitly mentioned, a similar decomposition
technique appears in [12]

4, Conclusions

" Keeping track of the possible productions which can be in use at any one time during the:

operation of a precedence parser can significantly enlarge the class of grammars to which it
applies. We have shown how to obtain such parsers and given some ideas about their
relative power. An additional feature over conventional precedence parsers is the improved
error detection capability. The fact that we have more than one state during the detection
phase allows the parser to discover errors before they are detected by conventional
precedence parsers. In fact, these parsers look very much like LR parsers, but are easier
to obtain, and they are considerably smaller than these. By "reversing” the machine which
decides which reduction to perform we were able to get parsers which are equivalent to LR
parsers obtained using error postponment techniques [7] but, again, at a substantial savings
in the number of states. More work is needed concerning this method of LR decompositian.



17

References

I. Wirth, N. and H. Weber [1966], EULER - a generalization of ALGOL and its formal
definition, Parts 1 and 2," Comm. ACM 9:1, 13-23 and 9:2, 89-99,

2. Ichbiah, J. D., and S. P. Morse [1970), "A technique for generating almost optimal Floyd-
Evans productions for precedence grammars,” Comm. ACM 13:8,501-508.

3. Aho, A. V, P. J. Denning, and J. D. Uliman {1972}, "Weak and mixed strategy precedence
parsing,"LACM 19:2,225-243

4. Knuth, D. E. [1965], "On the translation of languages fram left to right,” Information and
Contraol 8:6, 607-639,

5. Wise, D. S. [1971], "Domolki's algorithm applied to generalized overlap resolvable
grammars,” Proc, Third Annual ACM Symp. on Theory of Computing, 171-184.

6. DeRemer, F. L. [1971], "Simple LR(k) grammars,” Comm, ACM 14:7, 453-460.

7. Aho, A. V. and Ullman, J. D. [1972-3), The Theory of Parsing, Translation and Compiling,
Prentice-Hall.

8. Ginsburg, S. {1966], The Mathemalical Theory of Context-Free Languages, McGraw-Hill,
New York,

9. Wirth, N. [1968], "PL360 - a programming language for the 368 computers,” JLACM
15:1, 37-74.

1@. Naur, P. (ed.) [1963]), "Revised report on the algorithmic language ALGOL 60," Comm.
ACM 6:1, 1-17.

11. Korenjak, A. J. [1969), "A practical method for constructing LR(k) processors," Comm.
ACM 12:11,613-623.

12. Harrison, M. A. and Havel T. M, "On the parsing of deterministic languages," to be
published.



