NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU PDP-10
INTRODUCTORY USERS MANUAL

Editors: Jack Dills
Art Farley
Mary Shaw

JANUARY 1973

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

PREFACE

The following manual is intended to provide & usable introduction to
computing on the CMU PDP-10, To accomplish this, a discussion of general
computing procedures and the PDP-10 monitor is given, followed by descrip-
tions of the available language systems, The manual does not provide full
language descriptions (references are provided to necessary, useful lan-
guage manuals); but through a short introduction, sample problems to try,
and an annotated script, the manual hopes to impart to the user an intro-
ductory knowledge of what it is like,and what to expect, when using each
of the discussed language systems on the CMU PDP-10,

Note that timely information can be found for many of the language
systems in a printable text file <language>.DOC on the PDP-10, Informa-
tion on which files are availaple can be found in DOC,DOC, To get a copy

of a DOC file print SYS:<language>.DOC.

Wi,

sal. KW

TABLE OF CONTENTS

Page
I. PROCEDURES AND MONITOR
1. General ProcedUres.ueesesuieioaneenaannnesnesenseennanns 1
Usage NUMDeT B, o vv vt setaeentennnnonneesassneeesnssnsennns 1
DE AP S . . vttt ii st tenaoentnsusnnannnsenasanonsensases 1
Trouble Report FOrmB. .0 vt ivreteenrnnnrnrnesenosoansasanns 2
B el o T 2
Control characters........oiivviveennnrennsns s iaasiaas 3
Getting Tapes Mounted.covivrtrenunesennnsarenconnes 7
Line Printer OutpUL.iuetitinnennnrenerennsaesssnenans 8
Utility Programs. .. vuui i inn i ssrsennseennnesssnes ceesiaa 8
Learning to TypPe...vve vt teciennesoscanes tesanas vasseeeasld
Datel Terminals.......oviueieunnacarenennnes teeasssnsaa ee.16
2. PDP-10 Monitor..........ce.evvua. tesasasena tviissesesenaans 18
IT. THE LANGUAGE SYSTEMS
K ¢ o) P eeesiaae sorevas 28
4., APL.......i0vuu. sereans iesaeaan Wbt eaateaeisaaas cereveseas 39
5., BLISS............. I e et ae ettt 1.
6. LISP.....vevvunas temreseass ceaaaaa tenesans treaceacasens es0.66
P P teenves cesevaas teaenna creraaraa -
8. MACRO-10........ vees P Creseaaeaaaa Crereraeas veedd9
9. MLISP......... ceerenne tressressnnenaas Cedcedsisernearaanas .86
10, PIP..... ceeaeeas Seereseavratenatatarratcortoancsnssannereesd
L - -4 Ceds et iien et eanns veee99
12, SAIL......eovvvevnnns tereessasnanans Cieseans decanna cerseean 101
13, SNOBOL.......vovvvereen. secsssacesnaas seseacas trercesrareas 108
ITI. THE EDITORS
T4, SOS.......00vvvne.. Ceret i ereecietsenas et aenanarens . 120
15, TECO......vvierreennennnenans C e e s e ettt .. 143
L 6] - 1 148

NOTE : The FORTRAN and BASIC language systems are fully described in
the PDP-10 Timesharing Handbook. Thus, no discussion of either
is included.

ii

GENERAL PROCEDURES

D. Bajzek, B. Anderson, H. Wactlar

USAGE NUMBERS

A computer usage application may be obtained from the Manager of
Operations, Science Hall 3204, and should be returned there when
completed. You will be notified by campus mail, probably within a week,
as to your usage number. It will contain eight alphanumeric characters.
The first four characters are your account number; this is used for
departmental accounting and statistics. The last four characters are
your man number; i.e. the initials of your first and last names with two
digits appended. Your man number will be the first part of your dectape

name(s), and is sufficient to identify you in most cases.

DECTAPES

DECtapes may be purchased in the CMU bookstore. Members of the
Computer Science Department may borrow DECtapes for their personal use
free of charge from the Manager of Operations, Science Hall 3204, For the
benefit of students in the Immigration Course and other graduate courses
in the Department, one DECtape will be assigned to each student in the
course and will be filed in the machine room for your use during the
duration of the course. If additional tapes are needed, see the Manager
of Operations, Each DECtape is named with from five to seven alphanumeric
characters, The first four characters will be your man number, with from
one to three characters of your choice appended. This is the name which

you will use when requesting that a DECtape be mounted,

-2-
TROUBLE REPORT FORMS

Hardware trouble report forms are located in the teletype room,
Science Hall 5201. These are to be filled out when you encounter
hardward trouble with Datels and teletypes. The yellow copy should be
put in a conspicuous place on the terminal, and the white copy should
be put in the container marked REPAIR REQUESTED.

Software bugs can be reported by running the cusp GRIPE described
.under the heading UTILITY PROGRAMS.

If a hardware or software problem is seriously impeding your work
and should receive immediate attention, call the operator on extension

350, He will report the problem to the appropriate staff member.

TELETYPES

We currently have two dial=in lines for teletypes on the PDP-10/A:
687-3411 and 687-3412.

A knob is located on the right front panel of the teletype, with
three positions: LINE, OFF, and LOCAL. Line indicates that the
telétype is on-line to the computer; that is, typed characters are sent
to the computer for interpretation and response by the system. Local
indicates that the teletype is being used off-line from the system, as a

typewriter.

To change teletype paper, insert the red spindle through the center
of the roll of paper, and place the spindle in the appropriate grooves
in the teletype, making sure that the paper unrolls from beneath the roll.
Unroll a foot or so of paper, and tear the paper unevenly so that a corner
protrudes when inserted into the carriage. Lift the view plate and pull

forward the rubber tipped lever at the right of the platen (black roller).
Tilt the metal paper bale toward you and insert the paper under the platen.

Pull the paper through toward you, tilt the paper bale back again, and
insert the paper under the metal paper holder. Align the paper and then
push the rubber tipped lever back. Lower the view plate and pull the
paper through over the paper bale. Tear along the edge of the view plate.
The knob on the left of the tty will advance the paper manually.

To change the ribbon, examine another tty to see how the ribbon is
inserted. Be sure to keep one of the spools which is already on the tty,
as the ribbon replacement has only one spool.

CONTROL CHARACTERS
On the Teletype, there is a special key marked CTRL called the Control
Key. 1If this key is held down and a character key is depressed, the Tele-

type types what is known as a control character rather than the character

printed on the key. In this way, more characters can be used than there
are keys on the keyboard. Most of the control characters do not print on
the Teletype, but cause special functions to occur, as described in the
following sections.

There are several other special keys that are recognized by the system.
The system constantly monitors the typed characters and, most of the time,
sends the characters to the program being executed., The important characters
not passed to the program are-also explained in the following sections,
Cont¥ol - C

Control - C (sC)interrupts the program that is currently running and
takes you back to the monitor. The monitor responds to a control - C by
typing a period on your Teletype, and you may then type another monitor
command. For example, suppose you are running a program in BASIC, and you
now decide you want to leave BASIC and run a program in AID, When BASIC
requests input from your Teletype by typing an asterisk, type control - C
to terminate BASIC and return to the monitor. You may now issue & command
to the monitor to initialize AID (.R-AID). If the program is not requesting
input from your Teletype (i.e., the program is in the middle of execution)
when you type control - ¢, the program is not stopped immediately. 1In this
case, type control - C twice in a row to stop the execution of the program
and return control to the monitor. If you wish to continue at the same
place that the program was interrupted, type the monitor command CONTINUE.

As an example, suppose you want the computer'to add a million numbers and

to print the square root of the sum. Since you are charged by the amount
of processing time your program uses, you want to make sure your program
does not take an unreascnable amount of processing time to run, Therefore,
after the computer has begun execution of your program, type control - C
twice to interrupt your program. You are now communicating with the monitor
and may issue the monitor command TIME to find out how long your program has
been running. If you wish to continue your program, type CONTINUE and the
computer begins where it was interrupted.

The RETURN Key

This key causes two operations to be performed: (1) a carriage-re-
turn and (2) an automatic line-feed. This means that the typing element
returns to the beginning of the line (carriage-return) and that the paper
is advanced one line (line-feed). Commands to the monitor are terminated
by depressing this key.

The RUBOUT Key

The RUBOUT key permits correction of typing errors. Depressing this
key once causes the last character typed to be deleted. Depressing the key
n times causes the last n characters typed to be deleted. RUBOUT does not
delete characters beyond the previous carriage-return, line-feed, or alt-
mode. Nor does RUBOUT function if the program has already processed the
character you wish to delete,

The monitor types the deleted characters, delimited by backslashes.
For example, if you were typing CREATE and go as far as CRAT, you can correct
the error by typing two RUBOUTS and then the correct letters. The typeout
would be

CRAT\TA\ EATE
Notice that you typed only two RUBOUTS, but \TA\ was printed. This shows

the deleted characters, but in reverse order.

Control - U

Control - U ($U) is used if you have completely mistyped the current
line and wish to start over again. Once you type & carriage-return, the
command is read by the computer, and line-editing features can no longer
pe used on that line. Control - U causes the deletion of the entire lime,
back to the last carriage-return, line-feed, or altmode. The system re-
sponds with a carriage-return, line-feed so you may start again.

The ALTMODE Kev

The ALTMODE key, which is labeled ALTMODE, ESC, or PREFIX, is used as
a command terminator for several programs, including TECO and LINED., Since
the ALTMODE is a non-printing character, the Teletype prints an ALTMODE
as a dollar sign ($).
Control - O

Control - 0 (10) tells the computer to suppress Teletype output. For
example, if you issue a command to type out a 100 lines of text and then de-
cide that you do not want the type-out, type control - O to stop the output,
Another command may then be typed as if the typeout had terminated normally,
Control - 7

This is the end-of-file character when the input device is the tele-

type, similar to and end-of-file mark on a magtape,

Modifying the terminal characteristics

When you login to the system the teletype characteristics are defaultead
to the appropriate set for that terminal. If you wish to modify them, there
is a TTY command which declares special properites of the Teletype line to
the scanner service, The command format is:

TTY dev: NO WORD

dev:® the device argument that is used to control a line other than the

one where the command is typed. This argument is optional and is legal
only from the operator's consocle. It may be used to modify the charac-
teristics of any Teletype lines in the system,

NO = the argument that determines whether a bit is to be set or cleared.
this argument is optional.

WORD = the various words representing bits that may be modified by
this command. The words are as follows:

TTY TAB This terminal has hardware TAB stops set
every eight columns.

TTY NO TAB The monitor simulates TAB output from
programs by sending the necessary number
of SPACE characters.

TTY FORM This terminal has hardware FORM (PAGE)
and VT {(vertical tab) characters,

TTY NO FORM The monitor sends eight linefeeds for a FORM
and four linefeeds for a VT.

TTY LC The translation of lower-case characters input
to upper case is suppressed.

TTY NO LC The monitor translates lower-case characters
to upper case as they are received. In either
case, the echo sent back matches the case of
the characters being sent.

TTY WIDTH n The carriage width (the point at which a free
carriage return is inserted) is set to n. The
range of n is 17 (two TAB stops) to 200 decimal,

TTY NO CRLF The carriage return normally outputted at the
end of a line exceeding the carriage width is
suppressed.

TTY CRLF Restores the carriage return.

TTY NO ECHO The Teletype line has local copy and the computer
should not echo characters typed in.

TTY ECHO Restores the normal echoing of each character typed
in.

TTY FILL n The filler class n is assigned to this terminal. The
filler character is always DEL (RUBOUT, 377 octal).
No fillers are supplied for image mode output.
Teletypes are class 0, 30 character per second termi-
nals use classes 1 and 2, and datels are class 3 fillers.

TTY NO FILL Equivalent to TTY FILL 0.

-7-

GETTING TAPES MOUNTED
The first thing to do is to get a unit assigned for your tape,
Type: .AS DTA (FOR DECTAPE) or
.AS MTA (FOR MAGTAPE)
The monitor will respond with:
DTAZ ASSIGNED
or, if no unit is available, it will respond:
NO SUCH DEVICE
After a unit is assigned to you, you will notify the operator to mount
your tape by using the monitor command PLEASE, PLEASE is described under
the heading UTILITY PROGRAMS. 1In your request specify the tape name,
tape unit, and whether the tape should be enabled for writing. If you do
not specify "write enabled," the operator will write lock the tape, Re-
main in PLEASE mode until the operator responds to your request. He may say
NNSFABC MOUNTED ON DTA2 ENABLED
or, since the monitor recognized eight DECtape units and eight magtape
units, and we have only five DECtape drives and two magtape drives, there
may not be a drive free for you even though you have a unit assigned. If
this is the case, the operator will try to get a drive for you as soon as
possible. The drives are allotted on a first-come-first-served basis,
If you need a drive urgently or only for a minute, the operator can try
contacting other users to see if someone can give up a drive, When a
drive is free the operator will mount your tape and notify you.
The tape drives are very much in demand, so please be considerate of
others., When you finish with a tape, be sure to tell the operator to

dismount it immediately, thus freeing the drive for someone else. If

you are logging off, the unit will be returned to the pool. If not, you
can type
.DEAS DTA2
to make the unit available for others. If you are using the same unit
number for more than one tape, be sure to reassign the unit between tapes
.AS DTA2
and so a fresh copy of the directory will be read into core and you will
not be using the directory from the last tape.
A unit can be reassigned to another job without first being returned
to the pool by typing
.REAS DTA2Z n

where n is the job number.

LINE PRINTER OUTPUT

The line printer (LPT) is currently located at the far end of the
machine room, behind the operator's console. The operator bursts output
as soon as it comes off of the printer if possible; however, if he is
busy mounting tapes it may take a few minutes. Output is filed alpha-
betically by man number just inside the door to 3103. This door will be
left unlocked for users to retrieve their output from 0800-2400. It will

be locked from 0000-0800,

UTILITY PROGRAMS

Two monitor commands, PLEASE and SEND, may be used for inter-console
communication, including communication between your teletype and the
CTY (console teletype).

PLEASE is & monitor command which puts the issuing terminal, and
eventually the CTY, into a special communications mode. This mode is
evoked by typing, when logged in and in monitor mode,

. PLEASE text <er>

If the CTY is logged in, or running SYSTAT, or in another PLEASE, the
message
OPERATOR BUSY, PLEASE HANG ON
will print on the teletype. You can terminate the PLEASE with a CONTROL C
or wait until the CTY is free. When it is free your teletype will print
OPERATOR HAS BEEN NOTIFIED
and your message will print on the CTY along with identifying information
about you and several "bells.'" Now both terminals are in PLEASE mode. Any
line typed on either terminal, terminated by <cr> will print out on the
other terminal and will otherwise be ignored by the system. Thus a two-way
communication is established. This mode is terminated with a CONIROL C
or an ALTMODE typed on either terminal. Both terminals will then be in
monitor mode, The most frequent use of PLEASE is to request mounting of
tapes, or to talk with the operator via teletype.
SEND provides a mechanism for one-way inter-console communication,
One line of text is transmitted to another terminal, TTYn, by typing
.SEND TTYn text <cr>
SEND 1éaves the user in monitor mode. The format of the message on the
receiving terminal is
TTYm: text <cr>
where m is the terminal where the message originated. If the sender or
receiver of the message is the CTY, the message will be transmitted
regardless of what the receiving terminal is doing. The message will
print out, leaving the terminal in its former state. If CTY is not involved,
a busy test is made to see if the receiving terminal is in monitor mode.

If so, the message is transmitted; if the designated terminal is not

-10-

in monitor mode, the sender will get the message

7BUSY
on his terminal. You can do a short SYSTAT

.S5Y S
to determine which terminals are in use by whom and what they are rumning.

Another monitor command, SYSTAT, will give you current running informa-

tion about the system. To get all the information printed on your tty,
type

.5Y
Subsets of the STSTAT information are available by running variations of
SYSTAT. To get a short version of SYSTAT, giving the current status of
all users on the system, type

.5Y 8
To determine. the status of a particular job, type

.5Y n
where n is the job number. To find out which I/O devices are assigned to
which users, type

.SY B
To list all jobs waiting in the line printer queue, type

.8Y @
Also

.5Y H
1ists all the SYSTAT commends, including those given above.

Two CUSPs (commonly used system programs) , MATL and GRIPE, may be

used to write a message onto a file in another's disk area. MAIL will

create or update a file called MAIL.BOX on another user's disk area.

-11-

To send mail to a usef type

R MAIL
The CUSP will respond

ENTER PPN:
After the colon, type the user number (all eight characters) of the user to
whom you are sending mail, and the <cr>. MAIL responds

ENTER A MESSAGE TERMINATED WITH AN ALTMODE:
Type your message, followed by <cr> and ALTMODE. There is no need to
identify yourself as this information will be recorded in the file. Your
terminal will then be returned to monitor mode. When the user next logs
onto the system, the message

MATL PENDING
will print on his tty at the beginning of the logon message. He can read
tﬁe message by listing his file MAIL.BOX; i.e.

.R PIP
*TTY :«MAIL.BOX

GRIPE will create a file for your message on one of the system disk
areas. If you have a comment or gripe about the hardware, software,
operations, etc. of the system, you can run the GRIPE CUSP.

.R GRIPE
GRIPE will respond with

YES?7 (TYPE ALTMODE WHEN THROUGH)
Type your comments as instfucted; that is, first type <cr>, then your
message, another <er> and ALTMODE, There is no need to identify yourself,
as that information will be recorded along with your comments in the GRIPE
file. Systems personnel regularly review the GRIPE files and an answer

will be sent to you by campus mail if appropriate.

-12 -

PRINT is another useful CUSP. PRINT can be used to print files on
the line printer. Unlike printing with PIP, PRINT supplies the filename
on the file header page, and enables the user to print several copies of
the file if desired. To rum the CUSP, type

.R PRINT ~
When PRINT prompts you with a *, type the names of the files to be printed
separated by commas. If you want the file to be deleted after being
printed, type /D after the filename; if you want several copies, type /n
after the filename where n is a number from 2 through 9 indicating the
number of copies wanted. An example follows:

.R PRINT
F00,LST/D,.MAC /2 ,FO0.F4

Now F0O.LST will print on the line printer and then that disk file will be
deleted. Two copies of all files with MAC extensions will be printed and
FOO.F4 will be printed. If the files to be printed are on a device other
than DSK, you must precede each filemame with the device name on which it is
located; i.e.,

,R PRINT
*DTA2 :FILE]l,DTA2 :FILE2 ,FILE3

Now files FILEl and FILE2 from DTA2 and FILE3 from DSK will print.
Another useful CUSP is SAVE. SAVE will save on magtape, or restore
from magtape, all or selected disk files for a single user. For instructions

on how to run SAVE, type

.R SAVE
*/H

The instructions will print on the TIY; or type
R SAVE
* /2L
*/H

to get the typeout on the line printer.

-13-

LEARNING TO TYPE

You will probably be spending many hours at the teletype. It will
greatly increase your efficiency if you learn to type properly at the
beginning. Following are a few brief instructions to get you started.

Study the keyboard chart below, Find the left-hand home keys on it;
the left-hand home keys are "a-s-d-f." Now find them on your teletype
keyboard. Place your finders on them. Study the chart again., Find the
right-hand home keys on it. Find them on your teletype keyboard. Place
your finders on them. Take your fingers off the keys. Replace them,
Repeat two or three times. Get the feel of these home keys. Curve your
fingers. Hold them lightly just above the home keys. Drop your wrilsts
slightly, but do not let them rest on the frame of the teletype. Strike
the space bar with a quick inward motion of your right thumb.

Type the line of home keys shown below. Say each letter as you strike
it. Repeat several times.

£f dd ss aa jj kk 11 ;; £f dd ss aa §j kk 11 ;; £

TELETYPE KEYBOARD

SPACE BAR

SHADED KEYS ARE MHemMmE KEYS

14~

Carriage return is operated with the little finger of your right hand.
Type each line twice. Double space after the second line.

ff jj dd kk ss 11 aa ;; £j dk sl a; fdsa jki; fisl

a lad; a fall; a lad; a fall; a lad; a fall; a lad

all lads; all lads fall; a lad falls; a lad falls;

Regardless of what key you are typing, the other fingers should
always remain just above their home keys. Operate h with the j finger;
g with the f finger.

‘5hj fgf jhj fgf jhj fgf jhj fgf jhj fgf jhj fgf £J gf

Study the chart again. The a finger also operates the q and z keys.
Similarly, each finger operates the keys in a line with its home key.
Practice the exercises below.

aqaz aqaz swsx swsx dedc dedc friv frfv gtgh gtgb

hyhn hyhn jujm jujm kik, kik, lol. lol. ;p;/ ips/

The six sets of exercises below will give you more practice in
learning where the keys are. Do mnot go on to the next set until you are
fairly sure of the current ome.

fdsa jkl; fdsa jk1; gf hj gf hj fall hall glad had

juj juj uj uj full jug dull dud lugs hug hugs gulf

ded ded ed ed led fled he held she shed fell shell

10l 1ol ol ol old sold fold do so gold log loss go

keg jug she shall fog half log; he had a dull duel

fdsa jkl; uj ed uj ea full fled dull fell jug held

frf kik rf ik rf ik fuxr fir furl fire ride hire or

lol ded ol cd ol cd so sod sold cod code ice slice

jnj jnj nj nj fin fund and lend land gain sun sung

a large jug; and hold; did shake; and can £fill all

-15-

sws sws ws ws will will with loss low how show who
jmj jmj mj mj mad made mar make am same me come me
ftf fef tf tf to told the then them their lot late
karl saw the gold mine shaft. lou called. jouran
fvf fvf vf v five live strive move love have give
k,k k,k ,k ,k work, rack, trick, to give, for all,
i¥d iv3 vj yj yet yell year sly they lay flay gray
ws nj ws nj win wing wink drink won now know knows
they just like to drive down fog street in wmy car.
;P> ;P: P: p; pled pledge help plain gulp tip trip
fbf fbf bf bf bug but bluff bring rub rib rob bold
aza aza za za zone size maze zones zeal doze dozed
vj vEf vj vf live five yet they sly move love stray
jess dent gave buz a small pay check for his work.
aga aga qa gqa quit quip square squid squash squint
sxs sxs xS xs x8 six fix hoax mix flax box tax box
p; bf p; bf pled bring trip blot gulp bold rip rub

gay quick foxes run and jump with bold vim or zip.

-16-

USING DATEL TERMINALS ON THE PDP-10

There are currently four dial-in lines for Datels on the PDP-10/a:
683-8330 to 683-8333., The procedure for getting onto the system on a Datel
is:

1. Dial.

2. Place receiver on coupler, making sure the ON switch is lit.

3. Switch to remote.

The PDP-10 monitor has been modified to handle Datel terminals with the
ASCII type head. Almost every character on the Datel keyboard has a direct
ASCII equivalent in the PDP-10. However, some characters do need explanation.
See the table below.

The ATTENTION key has two different functions depending on whether the
keyboard is locked. If it is locked, ATTENTION unlocks the keyboard but does
not result in any character being input. If the keyboard is unlocked,
ATTENTION may be used to send an end-of-message; i1.e., to release the key-
board control without inputting a carriage returm.

The PDP-10 monitor can handle both lower and upper case characters from
a Datel, and these terminals are initialized to have both cases. TIY commands
can enable or disable this feature; that is, lower case characters will be
mapped into upper case if the proper command is used. These commands are:

TTY LC (tells the monitor that the keyboard has a lower case

keyboard so lower case letters are not mapped into
upper case)

TTY NO LC (no lower case keyboard, therefore, mapping is necessary)

Remember that TTY LC is the initial state of the Datel when logging in.

-17-

Typing a CONTROL Q on the Datel puts the terminal into the non-standard
APL mode, in which no characters can be input to the Datel. Exit from APL
mode is by hitting four successive ATTENTIONs.

Monitor assumes that tabs are set to B print positions. 1f tabs are

set to more than 8, early printing may occur.

CHARACTER TABLE

PDP-10 INPUT TYPE ON DATEL OUTPE'II)'P(-)I]\}ODATEL
CONTROL G lc »C

LINE FEED INDEX NONE
ALTMODE $ (also —) $

t |1 |

] B)

[| ¢ (

\ |/ / \
$ |$ $

- __ (underline)

' (grave) ¢ g

#*##% similarly for all control characters

-18-

PDP-10 MONITOR

H. Wactlar

Commonly used monitor commands:

ASSIGN <physical device> <logical name>

allocates an I/0 device (dectape, magtape) to the user's job and
optionally assigns a logical name designated by the user to that

device

e.8., .ASS DTA3 IN
DTA3 ASSIGNED

ATTACH <job no.>[project programmer No.l<password>

detaches the current job, if any, and connects the
console to a detached job.. Exclude <password> if

attaching to a job detached during logout.

COMFIL <list of source file names separated by commas>
produces relocatable binary files for the specified program(s)
by calling the appropriate compiler as determined by the source
file name extension (ALG for ALGOL, MAC for MACRO, F4 for FORTRAN
BLI for BLISS, SAI for SAIL)
€.8., .COMP TEST.MAC
CONT starts the program at the saved program counter address stored
by a TC (halt) command
CREATE <filename>
calls the line editor to create a new file
e.2., .CREATE TEST.MAC
DDT saves the program counter and starts the program at the dynamic
debugging module optionally loaded with the compiled program
DEASSIGN <logical or physical device name>
returns the 1/0 device to the systems available pool

e.8., .DEASS 1IN

DEBUG

DELETE

DETACH

DIRECT

EDIT

EXECUTE

-19-

<list of file names separated by commas>

performs the compile and loading functions and in addition
loads DDT which it enters on completion of loading

e.g., .DEBUG TEST.MAC, TEST2.F4

<list of file names or groups separated by commas>
automatically runs PIP to delete the specified files

e.g., .DELETE TEST.MAC,*.REL

Disconnects the console from the users job without

affecting 1its status. Console is now free to control

another job,.

<logical or physical device name>:

runs PIP to list the names and space occupied by files on that
device (DSK is assumed if no device name given)

e.8., .DI DTA3:

<file name>

calls the live editor to edit an already existing file

8.8, .EDIT TEST.MAC

<list of file names separated by commas>

performs the compiling and loading functions and initiates
program execution

e.g2., .EXEC TEST.MAC

KJOB

LOAD

LOG

2=

initiates log-off sequence

e. g.

.KJ
CONFIERM: H

IN RESPONSE TO CONFIRM:,TYPE ONE OF: DFHIKLPQSU

D TO DELETE ALL FILES

(ASKS ARE YOU SURE?, TYPE Y OR CR)

F TO TRY TO LOGOUT FAST BY LEAVING ALL FILES ON DSK

H TO TYPE THIS TEXT

1 TO INDIVIDUALLY DETERMINE WHAT TO DO WITH ALL EXCEPT TEMP FILES

WHERE TEMP IS ,LST, .CRF, .TMP, .TEM, .RPG

AFTER EACH FILE NAME IS TYPED OUT, TYPE ONE OF: EKPQS

E TO SKIP TO NEXT FILE STRUCTURE AND SAVE THIS FILE IF
BELOW LOGGED OUT QUOTA ON THIS FILE STRUCTURE

K TO DELETE THE FILE

P TO PRESERVE THE FILE

Q TO REPORT IF STILL OVER LOGGED OUT QUOTA, THEN REPEAT FILE

S TO SAVE THE FILE WITH PRESENT PROTECTION

TO DELETE ALL UNPRESERVED FILES

TO LIST ALL FILES

TO PRESERVE ALL EXCEPT TEMP FILES

TO REPORT IF OVER LOGGED OUT QUOTA

TO SAVE ALL EXCEPT TEMP FILES

SAME AS I BUT AUTOMATICALLY PRESERVE FILES ALREADY PRESERVED

cwOo YR

IF A LETTER IS FOLLOWED BY A SPACE AND A LIST OF FILE STRUCTURES
ONLY THOSE SPECIFIED WILL BE AFFECTED BY THE COMMAND. ALSO
CONFIRM WILL BE TYPED AGAIN,

A FILE IS PRESERVED IF ITS ACCESS CODE IS GE 18§

CONFIRM:

<list of file names separated by commas>

perform the compiling and loading functions to execute core image
of runnable program

initiates log-in sequence; prompts for password

Passwords may be modified during login by typing altmode {(ESC)
after the password instead of a carriage-return. Prompting

for the new password will follow.

-21-

PJOB types job number and project programmer number of job rumning
on terminal on which this command is typed

R <CUSP name>
executes the named commonly used system program

€.8. *R PIP

RENAME <new file name> = <old file name>
runs PIP to change a file name
e.g., RENAME TEST1.MAC = TEST.MAC
FILES RENAMED:
TEST.MAC
RUN <file name>
runs the core image previously loaded and SAVE'd with that
file name
e.B., RUN DSK:TEST.SAV
SAVE <file name>
topies the core image currently loaded in core onto the specified

file so that it can be RUN at a later time

€.2., .LOAD TEST.MAC

.SAVE TEST
5YS runs & CUSP to provide system status information
e.g.
.S5YS H

SYSTAT INSTRUCTIONS:

TYPE "SYS<C.RET.>" TO LIST THE ENTIRE STATUS, OR

TYPE "SYS " FOLLOWED BY ONE OR MORE LETTERS AS FOLLOWS--

"<STRING>"
<STRING> IS AN ACCOUNT NO. ,MAN NO.,STRUCTURE,DEVICE,CUSP
THIS OUTPUTS THE SYSTEM STATUS OF <STRING>

BUSY DEVICE STATUS

DORMANT SEGMENT STATUE

FILE STRUCTURE STATUS

THIS MESSAGE

= -l B~

=22 -

JOB STATUS

QUTPUT TO LPT

NON-JOB STATUS

DISK PERFORMANCE

PRINT QUEUE

SHORT JOB STATUS

TYPE "SYS " FOLLOWED BY A JOB NUMBER FOR THAT JOB'S STATUS

no™"ZEZE Y

TIME <job no>
causes typeout of total runtime since last TIME
command, total runtime since login, and integrated

product of runtime and core size

TYPE <file name>
runs PIP to type on the terminal the specified file

e.g., TYPE TEST.MAC

Note:
PIP and the two editing systems TECO and SOS are discussed separately

as language systems in this manual.

Extended Command Forms

The commands previously explained are adequate for the compilation and
execution of a single program or a small group of programs at one time.
However, the assembly of large groups of programs, such as the FORTRAN li-
brary or the Timesharing Monitor, is more easily accomplished by one or
more of the extended command forms.

Indirect Commands(@ Construction) - When there are many program names
and switches, they can be put into a file; therefore, they do not have to
be typed in for each compilation. This is accomplished by the use of the

® file construction, which may be combined with any COMPIL-class commands.

-23-

The @ file may appear at any point after the first word in the command.
in this construction, the word file must be a filename, which may have an
extension and project-programmer numbers. If the extension is omitted, a
search is made for the command file with a null extension and then for a
command file with the extension .CMD., The information in the command file
specified is then put into the command string to replace the characters

@ file.

MONITOR
For example, if the file FLIST contains the string

FILEB,FILEC/LIST,FILED

then the command

.COMPILE FILEA,FILEB,FILEC/LIST,FILED,FILEZ

could be replaced by

.COMPILE FILEA ,®FLIST,FILEZ

Command files may contain the @ file construction to a depth of nine levels.
Ef this indirection process results in files pointing in a loop, the maximum
depth is rapidly exceeded and an error message is produced.

The following rules apply in the handling of format characters in a command .
file.

a, Spaces are used to delimit words but are otherwise ignored.
Similarly, the characters TAB,VIAB, and FOEM are treated like spaces,

b. To allow long command strings, command terminators (CARRIAGE RE-
TURN, LINE FEED, ALTMODE) are ignored if the first nonblank char-
acter after a Scquence of command terminators is a comma. Otherwise,
they are treated either as commas by the COMPILE, LOAD, EXECUTE,

and DEBUG commands or as command terminators by all other COMPIL-class

commands.

24 -

¢. Blank lines are completely ignored because strings of returns
and line-feeds are considered together.,

d, Comments may be included in command files by preceding the com-
ment with a semicolon. All text from the semicolon to the line-

feed is ignored.

e. If command files are sequenced, the sequence numbers are ignored,

The + Construction* - A single relocatable binary file may be produced
from a collection of input source files by the "+" construction. For example:
a user may wish to compile the parameter file, S.MAC, the switch file,
FT50S.MAC, and the file that is the body of the program, COMCON.MAC.

This is specified by the following command:

.COMPILE S+FT5$S+COMCCN
The name of the last input file in the string is given to any output (.REL,
.CRF, and/or .LST) files. The source files in the " construction may each
contain device and extension information and project-programmer numbers.,

The = ConstructionT - Usually the filename of the relocatable binary
file is the same as that of the source file, with the extension specifying
the difference. This can be changed by the "='" construction, which allows
a filename other than the source filename to be given to the associated
output files. For example: if a2 binary file is desired with the name
BINARY.REL from a source program with the name SOURCE.MAC, the following
command is used.

.COMPILE BINARY=SOURCE
This technique may be used to specify an output name to a file produced
by use of the "+ conmstruction. To give the name WHOLE.REL to the binary
file produced by PART1.MAC and PART2.MAC, the following is typed.

.COMPILE WHOLE=PART1+PART 2

TUsed in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

-25-

Although the most common use of the "=" construction is to change the filename
of the output files, this technique may be used to change any of the other
default conditions. The default condition for processor output is DSK:
source.REL[self]. For example: if the output is desired on DTA3 with the
filename FILEX, the following command may be used:

EXECUTE DTA3:FILEX=FILE].F4

The < > ConstructionT

- The < > construction causes the programs within
the angle brackets to be assambled with the same parameter file. If a + is
used, it must appear before the < > comstruction. For example: to assemble
the files LPTSER,MAC, PTPSER.MAC, and PTRSER.MAC, each with the parameter
file S.MAC, the user may type

.COMPILE S+LPTSER, S+PTPSER, S+PTRSER
With the angle brackets, however, the command becomes

.COMPILE S+<LPTSER,PTPSER,PTRSER>
The user cannot type

.COMPILE <LPTSER,PTPSER,PTRSER>+5

Compile Switchesf

The COMPILE, LOAD, EXECUTE, and DEBUG commands may be modified by a
variety of switches. Each switch is preceded by a slash and is terminated
by any non-alphanumeric.character, usually a space or a conma, An abbreviation
may be used if it uniquely identifies a particular switch.
These switches may be either temporary or permanent. A temporary switch
is appended to the end of the filename, without an intervening space, and
applies only to that file,
Example:

.COMPILE A,B/MACRO,C (The MACRO assembler applies only

to file B.)

TUsed in COMPILE, LOAD, EXECUTE, and DEBUG commands only,

-26-

A permanent switch is set off from filenames by spaces, commas or any com-
bination of the two. It applies to all the following files unless modified
by a subsequent switch,
Example:
.COMPILE /MACRO A,
.COMPILE A /MACR

0
.COMPILE A,/MACRO,
0

B
B
B
.COMPILE A,/MACRO B

G
,C
,C
,C
Compilation Listings* - Listing files may be generated by switches.
The listings may be of the ordinary or the cross-reference type. The op-
eration of the switch produces a disk file with the extension,LST ,queues
it, prints it, and then deletes it.
The compile-switches LIST and NOLIST cause listing and nonlisting of programs
and may be used as temporary or permanent switches.
Listings of all three programs are generated by
.COMPILE /LIST A,B,C
A listing only of program A is generated by
.COMPILE A/LIST,B,C
Listings of programs A and C are generated by
.COMPILE /LIST A,B/NOLIST,C
The compile-switch CREF is like LIST, except that a cross=-reference listing
is generated (FILE,CRF), processed later by the CREF CUSP which gemerates
the .LST file, queues, prints and deletes it, Unless the /LIST or /CREF
is specified, no listing file is generated,
Since the LIST, NO LIST, and CREF switches are commonly used, the switches
L,N, and C are defined with the corresponding meanings, although there are
(for instance) other switches beginning with the letter L. Thus, the
command

.COMPILE /L A

1.Used in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

27-

produces a listing file A.LST (and A.REL).

Standard Processor - The standard processor is used to compile or
agssemble programs that do not have the extensions .MAC, .CBL, .F4, or .REL.

A variety of switches set the standard processor, If all source files are
kept with the appropriate extensions, this subject can be disregarded,
If the command

.COMPILE A
is executed and there is a file named A. (that is, with a blank extension),
then A, will be translated to A,REL by the standard processor. Similarly,
if the command

.COMPILE FILE,NEW
is executed, the extension .NEW, although meaningful to the user, does not
specify a language; therefore, the standard processor is used. The user must
be able to control the setting of the standard processor which is FORTRAN IV
at the beginning of each command string.

Forced Compilation - Compilation (or assembly) occurs if the source
file is at least as recent as the relocatable binary file, The creation time
for files is kept to the nearest minute. Therefore, it is possible for an
unnecessary'compilation to occur, If the binary is newer than the source,
the translation does not usually have to be performed.

There are cases, however, where such extra translation may be desirable
{(e.g., when & listing of the assembly is desired). To force such an assembly,
the switch COMPILE is provided, in temporary and permanent form. For example:

.COMPILE /CREF/COMPILE A,B,C
will create cross-reference listing files A.CRF, B.CRF, and C.CRF, although

current ,REL files may exist. The binary files will also be recreated.

-28-

ALGOL

T. Teitelbaum, L. Snyder, J. Dills
(Revised Jan. 1973)

Algol 60 is an algebraic programming language developed by an
international committee in 1960. Algol was designed at a time when many
computer installations had their own ad hoc algebraic programming languages.
Algol was intended to be a machine independent standard for the communication
(and execution) of algorithms. Most of the arbitrary restrictions found
in languages such as FORTRAN were eliminated. Algol was the first language
for which a complete and precise syntactic and semantic definition was
attempted. The terminology used in this definition (in the Algol Report)
has come into wide use in computer science. Algol is characterized by
dynamic array allocation, recursive procedures, block structure, and a

generalized parameter passing mechanism.

REFERENCES

Manual

[1] Digital Equipment Corp. PDP-10 Algol Manual.

Definition

[2] wNaur, P. (ed.) Revised Report on the Algorithmic Language
ALGOL 60. Comm.ACM 6 {(Jan 63).

[3] Knuth, D. E. The remaining trouble spots in ALGOL 60.
Comm.ACM 10 (Oct 67).

[4] Abrahams, P. W. A final solution to the dangling else of
ALGOL 60 and related languages. Comm.ACM 9
(Sept 66)«

[5] Kmuth, D. E., Merner, J. N. ALGOL 60 Confidential. CACM, Vol. &4, 196l.

Philosophy
[6] Perlis, A. J. The synthesis of algorithmic systems.
J.ACM 14 (Jan 1967).

History-Bibliography
[7] Bemer, R. W.

[8] Sammet, Jean

Introductory
[9] Bottenbruch, H.

[10] Higman, B.

[111 Ekman, T. and
Froberg, C.

[12] Dijkstra, E. W.

Imp lementation
[13] Evans, A.

[14] Randell, B. and
Russell, L. J.

[15] Dijkstra, E. W.

Extensions
[16] Wirth, N

[17] Perlis, A, J. and

Iturriaga, R.

[18] wirth, N. and
Weber, H.

[19] wWirth, N. and
Hoare, C. A. R.

[20] Dahl, 0. J. and
Nygaard, K.

[21] Hoare, C, A. R.

~29-

A politico-social history of ALGOL.
Annual Review In Automatic Programming, 5
Pergamon Press, 196%.

Programming Languages: History and Funda-
mentals, Prentice-Hall, 1969.

Structure and use of ALGOL 60. J.ACM 9
(Apr 62).

What everybody should know about ALGOL.
Computer Journal 6 (1963) p. 50.

Introduction to ALGOL programming.
Oxford University Press, (1967).

A Primer of ALGOL 60 Programming, Academic
Press, London, 1962.

An ALGOL 60 Compiler.
Annual Review in Automatic Programming, &.
Pergamon Press (1964).

ALGOL 60 Implementation.
Academic Press, (1964), 418 pp.

"Making a Translator for ALGOL 60,' Annual
Review of Automatic Programming, Vol. 3.,
MacMillan, 1963, pp. 347-356.

A Generalization of ALGOL. Comm.ACM 6 (Sept

An extension to ALGOL for manipulating
formulae. Comm,ACM 7 (Feb 64).

EULER: A generalization of ALGOL and its
formal definition. Comm.ACM 9 (Jan, Feb 66).

A contribution to the development of ALGOL.
Comm.ACM 9 (June 66).

SIMULA - An ALGOL-based simulation language.
Comm.ACM 9 (Sept 66).

63).

Record Handling, in F. Genays (Ed.) Programming

Languages, Academic Press, 1968, pp. 291-347,

-30-

SAMPLE PROBLEMS

1. Continued Fractions

__1 1 _ 1
Let @ = 751> %~ T%1__ * B~ T+1 » ete.

As i » o, Qi->Q=0.61803. . .
Write an ALGOL 60 function procedure Phi (n) that will return the

value Q.- For example, Phi (2) = 0.6666. Write two versions of

Phi, one recursive and the other iterative.

2. Palindromes
A palindrome is a vector V of values such that V = XY where
X = reversal of ¥. E.g., 110011.

Write a Boolean function that determines if a vector is a

palindrome.

Write another which determines If a vector consists of a list of

palindromes; e.g., 110110,

3, Tower of Hanoi

Write an ALGOL program to print the solutiom sequence to the towers

of Hanoi puzzle. Given,

Move the stack of disks on pin 1 to pin 2 (possibly using pin 3 as
jntermediate storage) so that (1) the disks finally end up in the
same order as they started (as shown); (2) at no time is a large
disk on top of a smaller.disk; and (3) only one disk at a time is

moved. Your program should allow an arbitrary number of disks.

=31~

4, Partitions
Write an ALGOL procedure PART(X) which prints the partitions of the
integer X. A partition is defined as a sequence of positive integers

which sum to X. 1If that's too easy, find the unique partitions of X,
y unigue

5, Pascal's Triangle

Recall that Pascal's triangle begins:

Write an ALGOL procedure, PASCAL(N), which prints the Nth row of
Pascal's triangle. It should be possible to compute the result
without a factorial routine and with only a single vector for a

data structure,

6. Pattern of Primes

Write a program which fills an N x N array A with the integers
1 through N2 arranged in a spiral.
E.g., when N = 3, then A =

789 N
612
543

The pattern of primes in this arrangement (for large N) has been

of some interest (to some people). Try a printout where primes are
'*' and non-primes blank.

Can you think of a more efficient storage arrangement for the pattern

of primes when N is large?

7.

8,

Answers for odd number problems follow the Algol Script.

as it seems.

~32-

BEGIN REAL A,B;
REAL PROCEDURE INCV (X);VALUE X;REAL X;

BEGIN X¥+1; INCVX END;
REAL PROCEDURE INCN(X) ;REAL X;
BEGIN XX+1; INCN«X END;

REAL PROCEDURE ADDV(Y) ;VALUE Y;REAL Y;

-ADDV+Y §
REAL PROCEDURE .ADDN(Y) ;REAL Y;
ADDNY+Y ;

Acl; BcADDV(INCV(A));

COMMENT A IS NOW ------ , B IS NOW -wwu-- 5

Ael; B<ADDV{INCN(A));

COMMENT A IS NOW ------ s B IS NOW ----- H

Acl; B<ADDN(INCV(A));

COMMENT A IS NOW ------ » B 1S NOW -w--- ;

Acl; B<ADDN(INCN(A));

COMMENT A IS NOW ------ , B IS NOW ----- :
END;

Exchange

Write a procedure EXCH(A,B) that exchanges A and B.

How well do you understand call-by-name and call-by-value?

This is not as easy

Consider the problems exchanging I and A[I].

33
ALGOL SCRIPT

T . .
n o His Script T yge the text edivg,. 305 to Creave and Edit {iles,

¢ so0s Commagnd +hag« -+ r S
Th f T PR P E A w h
S on¢ ne eds o now aqre s ¥ F Y BV

Tngert, Dele+
n , Delere R, place Pr-:‘n+J End, Alver
50¢ , Ste +he S0¢ Section

ich are
respectively . To find out more abouy

O'Fl t+his do‘-“""tﬂ"‘_

- «CREATE FIBsALG
vo1BoY BEGIN
eR280 INTEGER PROCEDURE FIBONACCI(N)JIVALUE NI INTEGER N}

20300 BEGIN IF N<=1 THEN FIBONACCI:=
B Y400 ELSE FIBONACCI:=FIBONACCI(N=-1)+FIBONACCIC(N-2);
22500 END 3 , CCLN-2):
20680 READ(K): This pro
00720 J:=FIBONACCI(K)3 - Jram calculetes Fiponace
PIBRB PRINT(J,6)3 Numbers using 4 recarsive precedure., T+
9900 END Showld be poved 4 :
01000 § el that +hiS s net the mose
*E \&/"Mfmode efficient pmothod. :
EALT .
Cq”in} the A”I?oi (omﬂilef
«R ALGOL) .
*FIB’IIéi:iiid__f Source file -
listing €ile — TTy,; Causes £ile ® 9o +o Ty

Object €ile '
DECSYSIEM 19 ALGOL-68, V. 2B(146):
5= JAN=73 14:24:87
80190 BEGIN . . _
@200 INTEGER PROCEDURE FIBONACCI(N)3SVALUE N3 INTEGER N;
08300 BEGIN IF N<=) THEN FIBAINACCI:=
P0420 ELSE FIBONACCI :=FIBONACCI(N-1)+FIBONACCI(N=2)3
20500 END3
PB6VB READ(K)}:
* kb kK t)
6P0 UNDECLARED IDENTIFIER '
REL FILE DELETED I ¢ -
62708 J:=F IBONACCI(K)3: _ de wasns listed on Trr 44 en
STTIIL Just these ecror messagec weuld aqppear

700 UNDECLARED IDENTIFIER
P VB0 PRINICJ6)3
pid9ovd END

722 ERRORD)
ﬂ'jol qs‘l’inj Lor more €iles to Compile

. *S%/Conh'dl c

—-54-

CEDIT <2 _———2ne wneed +0 nume +ne file baecause i+ s

1159 ‘ alrga d e

62150 INTEGER JsK3 Y in flere,

*E

EALIT

mcc l.. Com J .

s EX FlB : Mand = (nugfl Compilin] din
ALGOL: FIB of Pregram . 2, 'oa 3 and Qrecuvicn
LOADING

LOADER 1K CORE

> ON

';';ECU]I I énter a i1gp

9)\0
8 Pror,r'qm returnsg ?‘?’ +he

’D““l ;.'be‘qqtti
END OF EXECUTION - 2K CORE ‘

Number,

EXECUlION TIMES Q.17 SECS.
The (o“ow.'qj, Procedurs is « ps@udo rundom

b + n“Mb:Oﬁ 3fcﬂ¢rq+or, If you wish 4o Haow mere
about hisS +ypPL o alepg~ithm se tNu]
OCREATE RANDUALG -Sen'iﬂﬂmgricuf ﬂf,o.—i'“vlm,;“ﬁu Ars a{‘ Com’,u‘:_h;,.p& voi.
pO129D INTEGER PROCEDURE RAND(LESS)3INTEGER LESSS

Pp200 COMMENT THIS PROCEDURE RETURNS AN INTEGER BETWEEN @ AND
Ba300 . LESS-~13

PB400 BEGIN OWN INTEGER SEED,MUL,MOD3 Tan +his A‘jci compiler, Owa vericbiles
BBSQ@ IF SEED=P THEN 4 initialized +o @. Thus +his blacir

ELAPSED TIME: 11.88 SECS.

2"
F""Qf‘ivmfn:]- .

20600 BEGIN Performyd only +he €frs+ —Time the
PPT709 COMMENT SEED,MUL&MOD MUST BE LESS THAN 185364 precedure
BOLOD TO PREVENT OVERFLOW. THE FOLLOWING s called.
VBIBe NUMBERS ARE 7t6,51t7,2t17 RESPECTIUELY:

21000 SEED*1176493

P1100 © MUL-T781253

21200 MOD* 1310723

Q1300 END3)'/ofh.s line s really, +he randem Numbe-
01400 SEED*(SEED*MULY REM MOD; gener vor,

p1500 RAND«(LESS*SEED) DIV MOD3s
V1600 END

V1700 $
*E .

This program will read npumbers and prinr
OCREATE TESTR-ALG :"dnlam numbefs ‘e“ *‘\Qa\ f'ht nld'Mb!fS J'-Is'f
20100 BEGIN INTEGER IsR3 read unvil o g is read. The
PR200 EXTERNAL INTEGER PROCEDURE RAND:; M -
PP308 READCI); rasdam numbers are genecared by
Phe abee precedure wmich s

R l

BO6VE R:=RANDCI)3 called e »rernqliy.
PV720 PRINTC(R,»3)3
PO8DO NEWL INE3 Y T~v Newline coases co roi etarn and
02900 BREAKOUTPUT3 |) G carpmge reTon Ao ke
01000 READCI): lint €ted ¢o be placed in the oOGYpur buffer.
Gt100 END3 i
1200 END Bf‘Mh'OM*FMT causes +ht outpur butfer v
21300 5 be dumped to the ouv pur device, in +his

*E
' casse the TT):

-35-

+EA TESTR,RAND
LUADING

LOADER 1K CJIRE
EAECUTION
16d
26
100
4

Y3
1Y
2

(3]

END OF EXECUTION = 2K CORE
EXECUTION TIME: ¥.U3 SECS.
ELAPSED TIME: 42.738 SECS.

- 1 K« <€ .
*i?é; TR e yeu don+ Hﬂlvs-q.m“(the A command uie a g Command

Bo1oL BEGIN INTEGER L,I,J,K;:

*250

na254 WRITE("RANGE :*") 3BREAKOUTPUT

*1325,25 The pregram ;s aletered ¢,
@a32s WRITE(""NUMBER $"IIBREAKOUTPUT; - h 4 -

60353 KEADCL);S - Thee it will produce an
BO375 $ arbitrary aumba~ of random numbcrs/
*8466 all in +he same rQnye,
W40y FOR J:=1 UNTIL L DO

winazs $

*US@@ - ® Here T delgee Newcirwe na +a

*D19vod / ¢ ¢t effecy

g beh.'aw.

EAIT

+EXA TESTR,RAND
ALGOL: TESTR
LOADING

LOADER 1K CORE
EAECUTION o T enttr +ht rang e -and numbea-,
RANGE 4
NUMBEK 3
26 4 93 2 84 27 55 30 3- 86 92 27T 115 68 21 96 43 7
7 90 89 12 66 13 62 96 64 17 50 B 5 6 94 75 RB87 2
84 74 93 99 61 35 1 68 16 35 25 19 89 2

END OF EXECUTION =~ 2K CORE
EXECUTION TIME: B.35 SECS.

ELAPSED (IME: 32.10 SECS.

=36=

o W
e disk O chana
: _ pesiars
;?gé; }-SSTR-ALG N""": +he program s gltered So +hqv
, .
BB368 OUTPUT(4,"DSK"); tht ourpar will yo rv a4 disk €i0e calles
@8370 SELECTOUTPUT(4)3 RAND.DAT,
00380 OPENFILE(4,"RAND.DAT*);
20398 s
. *E . Th. ﬂ'uMbC’ Y 'n +he q‘bove S taremen+ts _ii +h
EXIT Channe ! number, '

+EX TESTR,RAND
ALGOL: TESTR
LOADING

LOADER 1K CORE
EXECUTION -
RANGE:100
NUMBER : 50

END OF EXECUTION - 2K CORE
EXECUTION TIME: @.22 SECS.
ELAPSED TIME: 11.66 SECS.

« TYPE RAND.DAT

26 4 93 2 B4-27 55 30 3 B6 92 27 15 68 21 96 486 75
7 98 89 12 66 13 62 96 64 17 S8 8 15 & 94 715 871 32
84 74 93 99 61 35 1 6P 16 35 5 19 89 2

.EDIT TESTR.ALG Seltcts Ch‘ﬂﬂ"" 3 for +he jnpu¥.

*D250 o
*D325 Here +he Prog ram s altered go +ha
*1225,25 ‘ + . .
0225 INPUT(3,"DSK")} A dnput will come from a disk ¢4,
PR250 SELECTINPUT(3): calted = RANEE, Mum.
80275 OPENFILE(S:“RANGE.NUM")3}5\\\$
*E . _ :

. optns Eile RANGE.NUM ;. channg(3.
EXIT

\

«CREATE RANGE .NUM
Pa10D 109
P O200 50
VB30 $
*E
EXIT

Strips the ling. numborg ot the davqg €ile,
«R PIP : ,
* RANGE « NUM/N+=RANGE « NUM F“gal can no+ handle line numbers on davg Eile s
*tC ' '

.EX TESTR,RAND
ALGOL: 1ESTR
LOADING

LOADER 1K CORE

-37=
EXECUTION :

FATAL RUN-TIME ERROR AT ADDRESS DO0167

MORE HEAP SPACE REQUIRED FOR I1-0 BUFFERS

TACTION (H FOR HELP)>? F

END OF EXECUTION - 2K CORE
EXECUTION TIME: 6.05 SECS.

ELAPSED TIME: 17.33 SECS. '

+R ALGOL _
- *TESTRs=TESTR/ 10080 .
¥10) Cauges +he
«EX TESTR,RAND
LOADING

' LOADER 1K CORE

£ XECUTION

END OF EXECUTION - 2K. CORE

EXECUTION TIME: ©.13 SECS.

ELAPSED TIME: 3.13 SECS.

« TYPE RAND.DAT

26 4 93 2 84 27 55 38 3

7 90 89 12 66 13 62 96 64
B4 74 93 99 61 35 1 60 16

END OF ALGoL SCRIPT

Heep

S omll

on¥p
Heep siie
86 92
17 50
35 25

This

was

I/a ‘Buff-‘gr: arg

Pur ntg

and +he defauit Siae

4o o

dis ko,

27

19

bo+h

+o becowme

15
15
89

NOTE: There is useful information on the file S¥YS:ALGOL.DOC,

Cauced pecause

the

[

st Gad

180D wor
21 96

94 75

dg.

49
87

‘oo

oqvmf

75
32

-38-

Solutions to Sample Problems

REAL PROCEDURE PHIR(N)3VALUE N; INTEGER N3
PHIR*IF N=0 JHEN 1.0 ELSE 1.8/ (]1.0+PHIR(N-1))}
REAL PROCEDURE PHI1(N)3VALUE NJIINTEGER N3
BEGIN REAL P3P~0.03;
WHILE (N*N=1) > @ DO P=1.6/(1.08+P);
PRII-PZEND;

PROCEDURE HANOI (N, START,OTHER,FINISH)}
VALUE Ns»START,OTHER,FINISHS INTEGER Ns»START,OTHER,FINISH;

BEGIN IF N=1 THEN BEGIN
WRITE("MOVE DiSC] FROM")3PRINT(START,3)3
WRITEC"™ TO")3PRINT(FINISH>3)3NEWLINESEND

ELSE BEGIN '
HANO I (N-1,START,FINISH,OTHER) 3
WRITE("MOVE DISC"™)JPRINT(N,3)3WRITE('" FROM')J
PRINT(START»3)3WRITEC'" TO*)3PRINTC(FINISH,3)3NEWLINE
HANOI1(N=1,0THER, START,FINISH);END}

BREAKOUTPUTENDS

PROCEDURE PASCALI(NY3VALUE N3 INTEGER N3
BEGIN INTEGER ARRAY PL1:NI1JINTEGER I.,J3
Pl1l:=}43
FOR I:=2 UNTIL N DO
‘BEGIN PL11:=03;
FOR Jit=1 STEP =1 UNTIL 2 DO P(Jl:=PLJI+PLJI-11}
END3 _
FOR §:=1 UNTIL N DO PRINT(P(Il},4);
END3

[V LI S N -3
Sees

-39.

Ui:e S November, 1969

A reprint from c@mp

and automation

Vol. 18, No. 12

APL: A PERSPICUOUS LANGUAGE

Garth H. Foster

Department of Electrical Engineering
Syracuse University

Syracuse, N.Y. 13210

“In APL, a great many highly useful functions which are required in
computing have been defined and giwen a notation consisting of a

single character.”

The news and promotion copy now beginning 1o appear
in many computer-related publications proclaiming APL (A
Programming Language) to be everything from a successor
to PL/I (Programming Language One) to the most powerful
interactive terminal system available, has no doubt been
widely noticed. Such copy has led many to wonder what
APL is, and after seeing its notation, many wonder about
its clarity.

This article is not intended to a tutorial on APL, for that
would take more space than is warranted here, However, let
us discuss some of the aspects of APL which have excited
the academic communities at a number. of colleges and
universities and at least one high school system, and which
have triggered a number of implementation efforts in
Canada, France, and the United States. The interested
reader may then investigate further the many features of
APL which cannot all be covered here. To assist in this
direction, a rather compiete bibliography of APL source
material is appended to this article.

Definition

The initials APL' derive from the title of the book A
Programming language'’ by K.E. lverson, published by
John Wiley and Sons in 1962; and it was that publication
which served as the primary vehicle for the publication of
the initial definition of APL. Subsequent development of
the language by lverson has been done in collaboration with
A.D. Falkoff at IBM's Thomas J. Watson Research Center,
Yorktown Heights, New York.

The present form of APL is the APL\360C Terminal
System, the implementation of APL on the system 360.
Although there are implementations for the IBM 1130 and

'APL should not be confused with “ABL — A Langusge for Associative
Dats Handling in PL/1,” by George G. Dodd, General Motors Research,
19464 Fall Joint Computer Conference.

1600 computers, when we speak of APL we shall mean
APL\360.

The terminal system was designed by Falkoff and Iver-
son with additional collaboration from L.M. Breed, who,.
with R.D. Moore {iI.P. Sharp Associates, Toronto} devel-
oped the implementation. Programming was by Breed,
Moare, and R.H. Lathwell, with continuing contributions
by L.J. Woodrum (IBM, Poughkeepsie), and C.H. Brenner,
H.A. Driscoil, and S.E. Krueger {SRA, Chicago). Experience
had been gained from an earlier version which was created
tor the IBM 7090 by Breed and P.S. Abrams {Stanford U.,
Stanford, Catifornia).

A computer language which is classified as algebraic is
generally, but not exclusively, used to program problems
requiring reasonably large amounts of arithmetic. Generally
such languages have avsilable, as formalized arithmetic
operators with a notation, the operations of addition,
subtraction, multiplication, division, and exponentiation;
and there the list ends, To achieve other arithmetic opera-
tions either calls to pre-written subroutines must be made
ar the user must supply his own,

This is not true of APL; a great many highly useful
functions which are required in computing have been
defined and given a single character notation {some of these
require 3 keystrokes, striking a key, backspacing and then
striking another key, but usually only a single keystroke is
required.)

The APL Keyboard

Figure 1 shows the APL keyboard. The letters and
numbers all appear in their usual places on a typewriter,
except that the capital letters are in the lower case positions
(the lower case letters do riot appear). The up-shift posi-
tions on the keyboard are occupied by symbols used to
represent the powerful set of APL operators.

[AR | "1 l<ls]l=}2>j2}|v|A]|l-]|=+ BaCK |]
REL 1(1 2l3 a)5]6s 7_8J9 oI+ x][SPACE [‘““‘
CLR TAB][? w | GIP ~ 1 4 .;,1'1 ol]| = 1 on]
l elwlrelrRl?7|Ylul>T OLP|<-|
S RETURN
Lock][a rJLI_Iv A -I'ID ()]
! Als|p|Fle|rR]|s | K]L]C]2 B
[cl{a]njJulalT] o] :]\N
ser J_ U7][ZIxICIVJBIN MIII/][SHFT]L.orr
Figure 1 '

Reprinted _with permiggion from "C’on_vputers and Automation", November, 1969, copyright 1968 by
and published by Berkeley Enterprises, Ine., 815 Washington St., Newtonville, Mass. 02160

~40 -

Besides +, -, x, +, (the famifiar symbols for addition,
subtraction, multiplication, and division located on the two
right-most keys on the top row) and the symbol * assigned
to represent exponentiation (the star over the P as ih raising
to a power), there are distinct single character notations for
the operations of: negation; signum; reciprocal; fogarithms
(to both matural and arbitrary base}; combinations and
factorials; base e raised to a power; the residue of a number
modulo any divisor. There are characters which represent
taking: P times a number; sines; cosines; tangents; hyper-
belic sines, cosines, and tangents: and the inverse functions
for the six preceding functions. Available too are: floor
{truncating a8 number to the largest integer less than or
equal to the number); ceiling (rounding up to the smallest
integer greater than or equal to the number}; and maximum
or minimum of a pair of numbers,

APL also provides the relations which test whether two
numbers are: less than; less than or equal to; greater than or
equal to; greater than; equal; or not equal. The last two
relations are also applicable to characters. These relations
check to see, for example, if a relation is true and produce
1 (representing TRUE) or O {FALSE}; these binary quanti-
ties may be operated upon by the logical functions of: OR;
AND; NOT; NOR; and NAND. All these are also available
as standard functions in APL, and are designated by a single
character graphic. These operations are all summarized in
Figure 2.

Monadic form {8 f Dyadie Fform afn
Definition Name Name Definition
or txampls or sxample

B == OB Plus + | Plus 200,72 ++ 5.7
-8 «~ 0-8 Negatiyve - | Minus 43,2 == T1.2
=B 4=+ {Br0)-{Bc0) Signum x| Times Te3.2 -+ BN
(LR | Reciprocal + | Divide 243,37 ++ 0.B2%
] 2] ik Ceiling [| Maximum 3[7 «+ ?
BT 3
TR LY I B B Floor | { Minimum MY ee 3
w} «~ {7,71878..)}+F|Exponantial | « | Power 743 = 8
BeX =+ N e vaN Natural s | Logarithm Asg ++ Log B Dase 4
logarithm A®B v+ [#B)iwd
17346 == d.tu Magnitude I | Residue
AzG , Beo|Domain error
10 e 1 Factorial Binomial A »s (IEYCLLAY=IR-A
B oee Balf-1 ooefficient [2!5 ++ 10 315 ++ 10
or '8 e+« Gamma{Fel)
78 «- Random choice|Roll * | Deal A Miwed Function
from 1B
o ++ Pu3. 14189, |Pi timaw o | Circular See Table at left
-1 ++ D D v Not -
A | And AlglasB|AvEB|AnR]Aw
{-4)08% A Aok vl Or ole]| o] 1 1
[1-Bo23s.% JO| (3-Bed)s.t » | Hand af1]| ¢ 1 1 3
Arcein § |1} Sine § » | Nor 1jof o 1 1 [
Arccos P | 2] Cosine ¥ 1[1] 1 1] [
Arcran B | 3] Tangent &
(T1eBa2)s, 5 |u| t1eBa2)e S « | Less Relstions
Arcsinh b | 5| Sinh A 5 { Not qraater Result is) if the
Arccosh 8 |6 | Cosh A : | Equal relation holds, ©
Arctanh & | 7| Tanh 8 ¥ | Not less if it doem nCR:
» | Greater IET ==)
Table of Dyadic o Functions » | Rot Equal T3 ++ 0
Figure 2
Order of Operations

Of course when such a host of generalized and powerful
operations are at the disposal of the programmer, there is
immediate concern as 1o the order or precedence of
operations in an arithmetic expression written without
parentheses.

Traditionally in algebraic languages, exponentiations
were performed before multiplications and divisions, and

these were done before additions and subtractions. One of
the reasons for this choice (of hierarchy of operations} was
that normal conventions in algebraic notation provided that
the expression

5.6y + 8y? + 2.84y+9.06
could be written as
56*y**3+8*y""24+284"y+9.06

without the use of parentheses,

if one wanted to make the compiler work more effi-
ciently when programming in the higher order language,
then parens (parentheses) were used and the polynomial
was “‘nested’’, so that in the above example one coded:

{(66"y+8)*y+284) "y +9.06

That is to say, one discarded the built-in precedence order.

Clearly, in APL having all the functions shown in Figure
2, the establishment of any hierarchy of operators would bé
arbitrary and open to question at best; and more than likely
it would border on the impossible to justify the hierarchy
in any reasonable way.

Thus in APL there is only one rule for evaluating all
unparenthesized expressions {or within a pair of parens},
and that rule is:

Every operator takes as its right-hand argument the
value of everything to the right of it (up to the
closing parenthesis).

Now such a rule may seem strange and unfamiliar to
somecne who is now programming, but it has advantages:
{1} Uniformity—it is applied in the same way for all
standard or primitive functions provided by the
APL systern as well as all functions {programs)

written in APL by the user;
{2) Utility—this approach, for example, allows the
nested polynomial to be written without paren-

theses as:?

Q06+Y x284+YxB8+Yxb86

It is also possible to write continued fractions without
parentheses and the rule given provides other interesting
and useful results as a by product.

Sum Reduction

Another area in which looping {of computer instruc-
tions) is explicitly required’ in maost programming languages
but not in APL is that of summing the components of a
vector, which we will call for the sake of example, X. The
usual approach is to initialize the sum to zero and then use
a running index variable of a DO or FOR loop, and then
take the summation by an expression fike

SUM = SUM + Z{l1).

In APL we use what is called sum reduction. This is the
name for conceptually taking the vector X, inserting phus
signs between each of its components, and then evaluating
the resulting expression; its notation is simply +/X. If we
had wanted to take the product of the elements of a vector
Q, then in APL we write x/Q and this provides the times
reduction.

*There are even more powerful ways to evaluate a polynomial ex-
pression in APL, but the availability of such methods does not reduce
the affectiveness of the right to left rule just described.

-2 -

~41 -

The Value of Powerful Operators

Thus the first area in which APL provides clarity in
programming is by providing a large set of powerful
functions. Now one may ask whether writing AT” B in APL
is only marginally more compact than say writing
MAX{A,B). However, in APL we are allowed to use AIB to
denote the combinations of taking B things A at a time.
Such an operation in languages other than APL generally
require the user to write his own program, perhaps calling:
upon routines to provide the factorials and if they in turn
are not available, writing that routine also, The claim is that
the presence of the APL operator ! in a program provides
much more clarity than the presence of the equivalent
routine in another programming language,

Of course one may argue that factorials and combina-
tions are not needed all that much anyway. In many cases
such a point of view may be correct; however, the fact still
remains that the need for, say, the FORTRAN Library of
subroutines indicates a need for arithmetic computations
which are more complex than the operations included in
the language as primitives. What APL has done therefore is
to move in the direction of a library increasing the sophisti-
cation of the language, and at the same time simplifying the
notation for using a much more powerful set of operators.

Extending the Scope of Functions

The next step forward which APL has taken is to extend
the scope of those functions shown in Figure 2, in the
following way. In most languages extant today, if one
writes A + B, then one commands the computer to add the
number A to the number B. In APL the command stil}
produces the addition of the single numbers, called scalars,
if that is the nature of the variables A and B. 1f on the other
hand, A and B are each names for a coliection or string of
numbers, called a vector, then the addition takes place on
an element by element basis, with the first element of A
being added to the tirst element of B, the second 1o the
second, and so forth. The requirement is that either A or B
may be a scalar while the other is a vector, but if they are
both vectors, then they must have the same number of ele-
ments, that is. they must be of the same size.

H A and B are matrices of the same size (having the same
number of rows and columns), then A + B in APL adds, on
an element by element basis, matrix A to matrix B. To
perform equivalent operations in most computer languages
requires a DO or a FOR loop when adding vectors, or
nested loops when adding matrices.

Two comments are relevant here. First, the explicit-
loops embodied in the DO or FOR loops are required by
the language, but they are ancillary 1o communicating the
process to be performed, say adding two matrices. Second,
the utility of providing an extension of this nature, where
the system assumes additional responsibility, is borne out,
for example, in the MAT commands of BASIC., APL
extends such ideas and applies them uniformly to all data
structures treated in the language. In fact, from the pro-
grammer’s point of view, one does not care in what
sequence the operations in the loops implied in such an
APL command take place. They could just as well be done
all in parallel; the fact that the computer does not process
the matrix elements in parallel does not matter. The
extension of scope of the notation allows the algorithm to
be thought of as acting ‘on the data in parallel. Thinking
about the computing process in this way gives new insight
into the way the programs manipulate or transform the
data.

-3 -

All'pcating Space for Arrays

The philosophy is that the system should perform the
tasks which are required by the computer but not essential
to the algorithm, A useful extension is to have the compu-
ter assume the burden of allocation of space for arrays on a
dynamic basis. This is done in the APL terminal systern; for
example, if one creates the vector X having components 2,
5, and 10, then X + 2 5 10 is the specification or assign-
ment of those constants to be the value of the variable X.
No dimensioning is required. L ater if we wish to respecify

Name sign' | Definition or enampie!
Siaw o4 pP v 0F v 3w 8% == 10
Rashape Vod Aeshapae 4 to dimeansion ¥ 1 wpil12 += F
120E == 112 OpE v+ 10
Ravel A A e (=foddpd WL el [IR L
Catenate v,V £,03 ++ 3 33 T} } VPV UHISY e 'THISS
¥4 PL1] v=3 Plu 12 1] ==7 % 3 2
Indands LA A) £(1 3132 1) «s 3 2 1
11 18 9
ALA: E{1;) »= 1 2 2 % ARCD
LA E(31) =+ 1 % % TABCDEFGRIJRLE(E) ~= EFGH
LN L
Indax 5 First § integars 1% =+ 1T 2N
generatord (0 ~+ an empty vebtor
Index of? |vi4 Least indan of 4 P13 =42 $125
in ¥, or eV PIE ~= 3 5 v §
u uiks ve | 3 5 5 8
Take VA Take or drop IV[{?) [irat 2 31X = ANC
(Vi 7120} ox last {¥{I)«0) EFG

Dro| ¥id

p T2tP ww 5 7
Zrade uwp¥¥ |J4

Iy 5 32 v+ w1 372

wlements of coordinate [
The parmutation which

} would order 4 (ascend-
ing or descending)

Grade down¥lts

£3 5 3 1 =+ 2 1 3 u
1 3

Comprass? VA t 01 0/P «v 2 % 101 G/ ++ 5 7

911

10 1/[1)E »» 1 2 3 4w ++ 1 0 1AE

9 1% 11 12
A o
Expand® Y 10 1Vi2 =+ 1072 10 1 1 1\ «= & FGK
L IXL
ocea IJKL
Revarse® A X +~ KCFE (11X +» oF o= EFGH
LKJT P -+ 2 512 ABCD
BCHA
Rotate® [aba P e+ T 2 3 % v+ TLOP 1 0 T18X =+ EFGH
LIJK
AET
vad Coordinate [of A 2 18X += BFJ
becomes coordinate cex
Transpose ¥(I] of result 1 188 =+ 1 B 11 DKL
lea Transpose last two coordinatas QE «= 1 18F
wTI13
Mambarship [Aca aWeY = oW EeP »+ 1 0190
Peys «+ 11 00 2090
Decods Y 1001 7 7 & ++ 1776 2% 60 €011 2 3 ++ 13723
_Ens_qg! vrs 4 60 §OT3TTI s+) 2 3 80 60v372) ++ 2 3
Cual 575 ¥*Y ++ Random deal of W elements from .r
Notes:

1 MRestrictions on argqument ranks are indicated by: 5§ for
scalar, ¥ for vector, N for matpix, 4 For Any. Except as
the flrst argument of 5.4 ox 5741, a scalar may be used
instead of a vector. A one-slement array may replace any
scalar.

1 Arrays used ‘ 12 1 % ABCD
in examples: P+ 357 E~-5 6 7 &8 X «= EFGH

% 10 11 12 TJRL

1 Punction dapands on index origin.

4 Elision of any index selects all along that coordinate,

5 The function is applied along the last coordinate; the

symbola /¢, &, and e are squivalent to /, \,
raspactivaly, except that the function is applied along ths
first coordinates If [S] appeacs after any of the symbols,
the relevant coordinate isn deteemined by the scalar S,

Figure 3

and &,

9 R~AVERACE V
Re(+/VivpV
v

[11

Figure 4

¥ R+STATS X,S5D,VAR;MEAN -
ReMEAN VAR SD+{ VAR+{ ¢/ { X~ MEAN«AVERACE X)n2)}4 1epX)=
0.5

(11

v

Figure 5

“42.

X to be all of those elements currently. comprising X
followed by the numbers 1.5 and 20.7, then X« X, 1.6
20.7 catenates the constant vector 1.5 20.7 1o X and
respecifies X. The variable X is now a data object with 5
elements where X[1] is 2 X[4] is 1.5 and X[5] is 20.7. We
may query the system as to the size (number of compo-
nents) of X by use of the function denoted by the Greek
letter Rho. Thus, pX produces 5. The tunctions of size and
catenate are summarized together with the rest of the
mixed APL. dyadic functions in Figure 3,

We will not here treat further the powerful functions of
data manipulation illustrated there. However, we have now
exposed the reader to a sufficient amount of detail in APL
to understand Figure 4. This shows the listing of a user-
written function, the name of which is AVERAGE. The
first or header fine of AVERAGE declares the syntax for
that function, that is, it indicates that the explicit resull
will be called R and the vector ot data to be averaged will
be denoted by V. The line numbered [1] is the algorithm;
and it is self explanatory, even at this point.

Figure 5 shows how AVERAGE is called within the
function STAT to calculate the mean, variance, and stan-
dard deviation of a set of values. Here the variable names of
MEAN, VAR, and SD refer to the result of the AVERAGE
program and the calculated variance and standard deviation.

We do not illustrate the comparable programs in other
languages. we leave to the reader the task of noting the
coding compression achieved by APL, The APL array
operations obviously provide both brevity and clarity in

An APL

1. Abrams, P, 5., An Inferpreter for “lverson Notatlon”. Stanford,
Calif.: Computer Science Depariment, Stanford University, Tech.
Report C547, August 17, 1966.

2. Anscombe, F. J., Use of Iverson’s Language APL for Statistical
Computing, New Haven: Department of Statistics, Yale Unjver-
sity, July, 1968, TR-4 (AD 672:557).

3. Berges, G. A. and F. W. Rust, APL/MSU Reference Manual. Boze-
man, Montana: Department of Electrical Engineering, Montana
State Univ., September 26, 1968,

4, Berry, P. C., APL/Y130 Primer. 1BM Corporstion, 1968. (C20-
16%97-0).

5. Berry, P. C., APL\I60 Primer Student Text. IBM Corporation,
1969. (C20-1702-0).

6. Breed, L. M. and R. H. Lathwell, “The Implementation of APL\
360", Interactive Systems for Applied Mathematics. New York
and Llondon: Academic Press, 1968, pp. 390-399.

7. Calingaers, P., Introduction to A Programming Language. Chica-
go: Science Research Associafes, field test edition, October, 1967.

B. Creveling, Cyrus J. {Ed), Expsrimental Use of A Programming
Language (APL) #t the Goddard Space Flight Center. Greenbelt,
Maryland: Goddard Space Flight Center, Report No. x-560-68-420,
November, 1968,

9. Charmonman, 5., 5. Cabay and M. L. Louie-Byne, Use of APL\360
in Numerical Analysis. Edmonton, Alberta, Canada: Department
of Computing Science, University of Alberta, December, 1967.

10. Falkoff, A. D. and K. E. lverson, APD\360 User's Manual. York-
town Heights, N.Y.: T. J. Watson Research Center, {BM Corpora-
tion, 1948,

11. Falkoff, A. D. and K. E. lverson, #The APL 360 Terminal System”,
Interactive Systems for Applisd Mathematics. New York and
London: Academic Press, 1968, pp. 22:37. (Abe Research Note
RC 1922, October 16, 1967, T.). Watson Research Center.)

12, Falkof, A. D, K. E. lverson and E. H. Sussenguth, “A Formal
Description of System/360. IBM Systems Jourmal, 1Il, No. 3
(1964), pp. 193.262.

13. Gilman, L. |. and A. J. Ruse, APINISO An Interactive Approach.
1BM Corporation, 1969,

14. Hellerman, H., Digital Computer System Principles. New York:
McGraw-Hill, 19567,

15. lIverson, |. .E, “A Common Language for Hardware, Software and
Apptications”, Eastern Joint Computer Conference, December,
1962, pp. 121-129 (RC 749).

-4

expression, and in that sense the programs may be thought
of as somewhat seif documenting.
The symbolic nature of APL makes it multilingual,

Evaluation of APL

in these pages we have only scratched the surface of
APL. The availability of a powerful set of functions having
a generality and a sense of uniformity in definition is
important in providing capability to program complex
algorithms, The extension of operations uniformly to
strings of quantities or tables of numbers is a step forward
in programming, because a greal deal of computing in
science, government, and business may be cast in terms of
those data structures. Also it is important to relieve the
computer user of the burden of bookkeeping and house-
keeping operations in computer programming in higher
level languages, particularly in an interactive environment.

Enthusiastic supporters of APL have claimed that rather
than standing for either A Programming Language or
Another Programming Language. the initials APL stands tor
A Permanent Language. APL was first conceived of as a’
means of communication; and it will have importance in
that regard independent of the availability of APL on a
terminal system. The heart of communicating, describing,
or programming a process is to make clear what is to be
done. In fact | might suggest that Ken lverson and his
colieagues meant APL to be a tool so that we all could
program fucidly, (]

Bibliegraphy

16. Iverson, K. E., “The Description of Finite Sequential Processes”,
Information Theory, 4th London Symposium, Colin Cherry (Ed).
Londen: Butterworth’s 1961,

17. lverson, K. E., Elementary Functions: An Algorithmic Treatment.
Chicago: Science Research Associates, 1966.

18. Iverson, K. E.,, Formalism in Programming Language. Yorktown
Heights, N.Y.: T. J. Watson Research Center, IBM Corporation,
July 2, 1963. (RC-992).

19. Iverson, K. E., A Programming Language. New York: John Wiley
and Sons, Inc., 1962

20. Iverson, K. E., “A Programming Language”. Spring Joint Com-
puter Conference, May, 1962, pp. 245-351.

21, Iverson, K. E., “Recent Applications of a Universal Programming
tanguage”. New York: IFIP Congress, May 24, 1965, {Also Re-
search Note NC-511, T. J. Watson Research Center)

29, iverson, K. E, The Rola of Computers in Teaching. Kingston,
Ont., Canada: Queen's University, Queen's Papers on Pure and
Applied Mathematics, No. 13, 1968. Aho issued as The Use of
APL in Teaching, 1BM Corporation, 1969. (320-0995-0).

23. Kolsky, H. G., “Problem Formulation Using APL”. IBM Systems
Journal, B, 3(1969), pp. 204-217.

24. Kryeger, 5. E. and T. P, McMurchie, A Programming Langusge.
Chicago: Science Research Associates, 1968.

25. Lathwell, R. H., APL\380: Operations Manual. IBM Corporation,
1948,

26. Llathwell, R.H., APL\360: System Generation and Library Msin-
tenance. IBM Corporation, 1968.

27, MacAuley, Thomas, CAL/APL: Computer Aided Learning/A Pro-
gramming Llanguage, Author’s Manual. Costa Mesa, Calif.: In-
formation Services and Computer Facility, Orange Coast Junior
College.

28, Pakin, Sandra, APIN3IS0 Reference Manual. Chicago: Science Re-
search Associates, 1948, (No. 17-1).

29. Rose, A. 1., Teaching ths APLNIGO Terminal System. Yorktown
Heights, N.Y.: T. J. Watson Research Center, IBM Corporation,
August 28, 1968. (RC 2184.}

30. Rose, A,)., Videotaped APL Course. IBM Corporation, 19467,

31, Simillie, K. W., STATPACK II: An APL Statistical Packege, Edmon-
ton, Alberta, Canada: Department of Computer Science, University
of Alberta, Publication No. 17, February 1969,

342. Woodrum, L. J, “Internal Sorting with Minimal Comparing”.
IBM Systems Journal, B, 3(1969) pp. 189-202.

0]

@)

(3)

4]

5]

=43~

Selected Bibliography for APL

Berry, P.C,, APL/360 Primer Student Text. |IBM Corporation, 1969,
(C20-1702-0).
An excellent Introduction to the fundamentals of APL.

Falkoff, A.D. and K.E. lverson, APL/360 User's Manual.
Yorktown Heights, N.Y.: T.,J. Watson Research Center, [B8M
Corporation, 1968,

Rilman, L.,!., and A.J. Rose, APL/360 An Interactive Approach.
{BM Corporation, 19G9.
A textbook on APL (used in advanced undergraduate
programming course at C-MU)}, Discusses some extensions to
basic APL/360.

Iverson, K.%., A _Programming Language. MNew York: John Wiley and

Sons, Inc.,, 1962,
The original definition.of the notational scheme.
Excellent in its own right, but not directly useful in
learning one of the APL impiementations.

Pakin, Sandra, APL/360 Reference Manual. Chicago: Science
Research Associates, 1968,
The definitive work on APL (as of 1968): explains each
operator (with many examples), l!Note: this hook is a
reference manual, not a primer.

Documentation for APL/10 system at C-MU can be

found on the file APL.DOC, This file explains
the: differences between APL/10 and APL/360 and
discusses the extensions Implemented in APL/10,
as well as how to get onto the APL/10 system at
C=MU.

* * * % # %
* 4 % F % %

~444

APL

Simple Examples and Problems

Write APL expressions to perform the following:

1.

Remove all duplicate elements from a vector V, and call the
resulting compressed vector RES.

Determine which vowels ('AFIQU') and how many of each appear
in a given character string C.

Given a vector V, whose components are decimal integers,
determine how many decimal places each component has,

Write APL functions to perform the following:

L

5.

Write a function PRI to list the prime numbers that lie
between the integers R and S, inclusive,

let X be a vector whose components are arranged In ascending
order. Define a function MFRGE which will insert the
components of a vector V so that the resulting vector R is
still in ascending order,

Write a one~line function to determine if a square matrix M
is symmetric or not and have it print out either 'THE MATRIX
IS SYMMETRIC' or 'THE MATRIX 1S NOT SYMMETRIC',

Without using the array catenation extension of the ravel
operator, write a function to:

a. catenate a vector R rowwise to a given matrix M.

h. catenate a vector C columnwise to a glven matrix M.
Do not assume that the lengths of R or C are proner.

=45~

APL

ANSWERS TO SIMPLE EXAMPLES AND PROBLEMS

RES«((2AV)=VaV)/V

+/YAEIQUYe ,=C

1+l10@|V

(1]

[1]

(1].

£1]
21
£3l

V2Z+«R PRI 87T

2+«(R<T)/T+«(2=4/0[1]0=(18)e. [S) /1S
7 .

Vv X MERGE V
R«RUAR«X, V]
v

v SYM M

'THE MATRIX IS ';(0eM=8QM)/'NOT ';'SYMMETRIC.'

v

v M PLUSROW R

(1 0+OM)9(.M).R-((DM)EZJOO)

A NOTE--NUMERIC INPUT IS ASSUMED SINCE R IS
) EXTENDED BY 0'S IF TOO SHORT.

v

v M PLUSCOL ¢C
®(1 o+p@Mip(,8M),C,((pM)[1]p0)
A NOTE--NUMERIC INPUT IS ASSUMED SINCE ¢ IS

U] EXTENDED BY 0'S IF TOQ SHORT.
v

TTY

+AL
-« DE
. DU
. FL
.EP
.US
DL
LD
.10
+50

. BX
.AB
+EN
. LO

.RO
+.CE
.NT
+DA
.UU
- OM
. LU

+RU

.DD
-.GE
. GO
+.LE
+NE
.NG
.OR

=46 -

APLSS\APL

TELETYPE SYSTEM MNEMONICS

AP

M —>2F-a

-0~ B g}

A F v

<

N+ UEC 4+ 1m0 w% 0-A—10O

L ALTERNATE
TTY

@A
@B
@c
@D
@E
@F
el
@H
@I
@J
@K
@L
@M
@N
@o
@r
aqQ
@R
@s
@T
chif
Qv
@w
@x
ey
@z

TTY

.CB
.CR
.CS
.DQ
. GD
.GU
.IB
.10
.LG
NN
.NR
. 0Q
.ou
.PD
.QD
.QQ
.RV
.TR
.XQ
.ZA
.ZB
.ZC

etc.’

e o S i = 38T

APL

o

1]

ke x a3

Baad<20HHIEN O .-

M~ se e X > D

Ecv'\g*

%mgihhd\) FﬂY%V\mJ$.
+R APL
CHARACTER SETs.
TTY
APL-0LS .
TTY100) 19:11:16 8/19/71 (65,10)
CLEAR WS
3#4
12
Xe3#4
X
12
Ye=5
X+Y
7
144E.NG2
1. 44
Pe1 2 3 4
P#P
1 4 9 16
P#Y
=5 =18 -15 ~-20
@+ *CATS"
e
CATS
3+ 4#5+2
31
X=3
Y+4
(X#YI+4
16
X#Y+4
24
XY
VALUE ERROR
XY '
t
X~015
X
t 2 3 4 5
eI B
Y+=5-X
Y

4 3 2 1 8

47 -

Gets you into APL
type tty if vou are at teletype

or APL 1f at datel
You are now in APL
entry 1s automaticallv indented
response is not
X 1s assigned the value of 3 times 4
value of x tvped out
v assigned -5
the sum of x plus vy
exponentlal form, .neg 1s special minus
for constants. It is not an onerator
assign the vector 1 2 3 4 to p
multioly p bv itself
scalar 1s apllied to all elements
assien g a 4 element character vector

evaluation 1s from richt to left
with no operator precedence

the variable xy has not been defined

index generator function

the vector of 0 elements

all scalar functions extend to vectors

X<y
1 1 8 @ ©
00 1
3. 141592
3zz
1«5
e 0 2 1 2
3141592 1.579796
100 1
2 001 2

P«5403022 -9.416)468

DL ZeX F Y
€11 ZeC(X#2)+Y%2)%.5
21 DL

3F a

pe7
Q-(P+1)F P-1
0
10
4af3 F 4
2
#G B-G A
€11 B=(A>®)~A<P
(21 eG
G 4

G +NG6
6 X*-6

-DL H A
€1l P=CA>B)~A<P
£21 eG

H +NG6

P

Y.'H -NG6
VALUE ERROR
Y*H ~6

DL Z+FAC N3I
11zl

21 1+9

£3] LisleI+]

{4l «GO O# oI I>N

£5) Zez#l
L6 +6GO L1
73 G
FAC 3
6
FAC S

120

=408 -

result of relational operator is 0 or 1
Pi times 1

3 divided 2

pl divided by 1 2

sin 1

cos 1 2

Funetion Definition

function header, result plus 2 parameters
function bodyv

close of funetion
executing function
result

function call with expresslions
value assigned to q

g 1s slgnum function. MA and B are
locals. funetion 1s monadic.

monadic function eall

assignments mav be anvwhere in statement

same as G but no result

value error since function call returns
ne explicit result

FAC 1s faectorial function

L1l becomes 3 at entrance into funetion
Ll i1s loeal,

49-

TOHFAC+~3 S set to trace lines 3 and 5 of FAC
X=FAC 3

FACC 31
FACE 5]
FACC 3]
FACLS]
FACC 3]
FACCS3
FACT 3]

X

Trace of FAC

B OO N e

6
TeHFAC-P set trace off

@G G~M GCD N
{1) G*N
{21 MeM oM N
£3] + GO 4 .NE 0

£ 4] C11G~M correction of line 1
£2) L AIN=G resume with line 4
£5] {1.BX] displav line 1

Greatest common divisor

€11} GeM

L1l £ .BX] display entire funetion
+DL GeM GCD N

L1l G+M

c2l MeM.AB N
L3l «GO 4#M.NE @

{ 4] NeG
DL
£5) « GO 1 enter new line
L6l @G close of function. @z and .dl are 5
36 GCD 44 a the same
4
+DL GCD reopen definition
€61 LA.1IM,N insert new line
4.2 [«BX)] display funection
+DL G~M GCD N
€13 Ge-M

23 MM+ AB N
£3) +GD AMM.NE @
£4a] NeG
(411 MsN
£51 «+ GO 1}
« DL
£8) «DL close function,
36 GCD 44
6

3
8

b b ®

=50 -

G GCDC.BXle6

reopen,display, and
+DL G+~M GCD N ’ play, close function

notice that when function is closed,

(1) GeM the lines
[2) MeM.AB N are automatically renumbered,
€3] +GO 4#M.NE 0
L 4) NeG
£51] MsN
6] +GO 1
DL

«DL GCD
(71 C[@HS) delete line 5 of function
(51 86 _

+DL Z«ABC X

to demonstrate line editin
1) Z«(33#Q+(R#5)-6 &

t2] {1.-BX 81

edlt line 1 rint line and
[11 Z~C33#Q+(R#5)=6 » P nd space in 8

LY !
/7 1 /1 / for‘deleté’number'for\leave space’
13 Ze(3#QY+(T#5)-6 enter) and % in proper place P ’
21 «DL
FAC 5 PAC 8t111 defined
128
YERASE FAC Erase it
_FAC 5 FAC no longer defined
SYNTAX ERROR
' FAC 5
IFNS List defined function in this workspace
ABC F G 6CD H
P*2 35 7 - assign p the veector 2 3 5 7
#RP dimension of p
4
Te'0OH MY' character vector
OR' T dimension of t
5
PsP catenation of two numeric vectors
2 3 5 7T 2 3.5 17
T, T catenation of two character vectors
OH MYOH MY
P>T catenation of numbers with characters
DOMAIN ERROR not permitted
P.T
t
Ne5

 *NOTE: -I0°sN3' IS °*3.10 N Mixed output
NOTE: .I05 IS 1 2 3 4 5

-51.

M=~2 36R 2 3 5 7 11 13 create matrix of dimension 2 3
M
2 3 S
7 11 13
2 4R T reshape t into 2 4 matrix
OH ™
YOH ‘
69 RM reshape matrix into vector
2 3 5 7 11 13
e BX*Pe,M ravel 1n row major order
2 3 5 7 11 13
PL 3] indexing
5
PL1 3 5] indexing bv a vector
2 5 11 .
PLel3] first 3 elements of p
2 3 5
PL@RP) last element of P
13 :
MLt32] element in row 1 column 2 of @
3
M{13] row 1 of M
2 3 5
MC1 133 23 rows 1 and 1, columns 3 2
5 3
5 3
A*"ABCDEFGHI JKLMNOPORSTUVWXYZ *
ACM1 A matrix index produces a matriz result
BCE
GKM
ACML1 133 23
EC
EC
ML131+~15 3 12 respecifying the first row of M
M
15 3 12
7 11 13
Q~3 1 5 2 4 6
PLA]
5 2 11 3 7 13
el
S 3 4 1 2 s
PL 3]
5
YORI GIN 2 set origin to O
wWAS 1
PC3) fourth element of P
7
PLB 1 2] first 3 elements of P
2 3 5
215
2 1 2 3 A4
YORIGIN |

was g

[- -

S

12
17
10

H AN

15
a8
22
14

14

=52-

Ve?230R9 get random 3 element vector whose elements
M«?3 38R9 are less than 10. and 2 random matrices
Ne3\3\73 38R 9
v
1
M

| 5
4 8
6 é
N
7 2
6 4
é 4
M+N sum element by element
g 7
18: 12
12 19
M @D N Minimum
1 2
4 4
6 a
MeN comparison(result 0 Ng 1)
1 @
1
P @
«/V sum reduction of v
FYL] product reduction
+/C1IM sum over first co-ordinate of m

11 19 .
+/§2]u sum over 2nd co-ordinate of M

20 8
+/M sum over last co-ordinate of m

20 18
#S/M max over last co-ordinate of M
6

Me o #N

61 92 4

198 128 64

182 114 60
M'I'r <N

M+ 2V

61 88 99
v

6 8 1
VeJ.#e15

6 12 18 24

8 16 24 32

1 2 3 4
vV eJ.<el5

2 0 2 @ ©
2 2 @
g6 1 1 1 1
3 3 3
@+=?108R5
Q
4 3 2 2 5 2 53 5
+/01)Q8J.=015

1 31 2 3
2 1.TR M
2

8 ® &

1 4 6

5 8 6
«TR M

8

30
49
5

1

4

-53-

ordinary matrix inner product

inner product

+.# 1nner product with vector right
argument

Outer product (times)

Outer product with 1 2 3 4 5(less than)

Outer product of rank 3

random 10 element vector(l-5)

Ith element of result 1is number of
occurences of the value I in @
ordinary transpose

same as monadie transpose

-54-

e
4 3 2 2 5 2 S S 1 4
3 RV @ rotate q to left by 3
2 5 2 5 5 1 4 a4 3 2
. «NG3RV @ Rotate Q to right by 3
5 1 4 3 2 g2 5 ¢2 S
-3 «RV © negative of rotate Q to left by 3
=2 =5 =2 ~5 =5 =1 -4 -4 -3 -9
2 1 2.RVLIIM Rotate columns by different amounts
8 4 é
8 6 5
6 1 8
«NG2.RVL2IM rotation of all rows by 2 to right
1 5 8
4 8 8
6 é 6
1 2 3RV M Rotation of rows
1 S 8
8 8 4
6 6 6
" «RV 0 Reversal of Q
4 § 5 5 2 5§ 2 2 3 &
«RVL1IM Reversal of M along first co-ordinate
é 6 6
8 4 8
8 1 5
« RVM Reversal along last co-ordinate of M
5 1 8
'8 4 8
6 6 6
U=g>4
U _
e 0 1 2 t 1 B ©
. s gle Compression of Q by loglcal vector U
c(eT Ud/@ compression by not U
4 3 2 2 2 1 4
L T4174°]

15

=55+

1 @ 101IM type-in error
SYNTAX ERROR
1 8 1t13M
+ .
C1.BX 91 edlting of immedlate line
1 2 1C1IM
‘) V4
18 1/701IM insert '/
8 1 5 compression along first co-ordinate of M
6 é 6
CaoM>5)/,M _
8 8 8 6 6 &6 all elements of M which exceed 5
V-1 81 0 1
VNSI3 expansion of iots 3
1 # 2 @ 3
V\M expanslon along last co-ordinate of M
8 e 1 2 5
g f 4 e 8
6 2 6 2 6
VN 'ABC"* expanslon of character inserts blanks
ABC ' '
tpeB 1 7 7 6 base 10 value of 1 7 7 6
1776
8 PBl 7T 76 typing error

SYNTAX ERROR
8 PBL 7 7 6
t

L1.BX73
8 PB1 776
/1 P should be @

8 OBt 7 7 6 base 8 value of 1 7 7 6
18622

18 10 18 1P8N1776 4 digit base 10 representation of 1776
1 7T 7T 6

10 1908N1776 2 dgit base 10 representation of 1776
7 6 .

24 69 608B1 3 25 mlxed base value
38a5

24 60 60@N3B8O5
1 3 25

2eB1 2 1 1 0 base 2 value
ee

-56-

P
2 3 5 7 1t 13
o P 10 7 least index of 7 in p
; P +10 6 6 not in p, result is l+,ro P

P .10 45 6 7
7 3 7 8 least index of 4 56 7 in p

=51 3 2 4

R*Q«10 -I0@RE

R
2 4 3 35 1

QCR1
1 2 3 4 5

A= "ABCDEFGHIJKLMN'

A+A, 'OPQRSTUVWXYZ'

A
ABCDEFGHI JKLMNOPORSTUVWXYZ

. ASl'CAT' rank of ¢ a t in alphabet

3 1 26 '

J=A®I *CAT®

ALJ) '
CAT

375 random choice of 3 out of 5 with no repeat
2 4 1

673
RANGE ERROR

673

'_

X818 a random permutation vector

X
7 1 3 2 8 6 5 A4

. GUX : the grade up of X
e 4 38 7 6 1 5

X(.GU X1J X in ascending order
1 2 3 4 5 6 7 8 :

XL +GD X3 X in descending order

g 7 6 5 4 3 2 1
UrA O0E °NOW IS THE TIME' Membership

(«BX*UY/A

2 o0 20 2 1 8 8 1 1 @ 6 8 1 1 1 ¢ @& & 1 1 e 8 1
2 o

EHIMNOSTW

(9I9)YPE3 6 2 9
2 1t @ 6 1 06 @8 1

«DL. Z+BIN N
£11l A
L2131 LASZ=(Z,0)+0,7
£31 «GO LA#NSGE +RO Z

=57 -

Brmom AL COTERICIOT FuncTrion -

«DL
YFNS . List of funetions in workspace
ABC BIN ENTERTEXT F G GCD H
MULTDRILL
YVARS List of variables in workspace
A D J LA M N P (4] R
T u v X Y
Ar"IFNS string containing two APL statements
YVARS'
A
YFNS
YVARS
B+~eE A Execution of string. value of first printed
ABC BIN ENTERTEXT F G GCD H
MULTDRILL Second assigned to B
B .
A D J LA] N P 8 R
T u v X Y
A-'BIN 3°'
B~@¢E A Execute string value returned iIn b
B print value of function call
1 3 3 1
B~@N °'BIN"* get lines of functlion BIN
B _
«DLZ-BIN N
YA |
LASZe(Z20)+0,Z
» GOLA#N. GE.ROZ
« DL
YERASE BIN erase functlon
BIN 3
SYNTAX ERROR
BIN 3
h 4
9E B execute wlll redefine function
BIN 3 try it out
1 3 3 1
INVe.DG M get inverse of matrix
M+ .+ #INV result should be identity matrix
1-0090900E0 2.988232E-8 B.0
B0 1.000000EQ 0.0
B0 2.980232E-8 1.9090000E0
YOFF _HOLD sign off APL

TTY108) 28:52305 8/19/71
CONNECTED

1:40:48 CPU TIME

B:100:17

-58-

BLISS

C. Geschke (Revised, 6/29/72, C. Weinstock)

INTRODUCTION

BLISS-10 is a language specifically designed for writing software
systems such as compilers and operating systems for the PDP-10. While much
of the language is relatively "machine independent' and could be implemented
on another machine, the PDP-10 was always present in our minds during the
design; and as a result, BLISS-10 can be implemented very efficiently on
the 10. This is probably not true for other machines.

We refer to BLISS-10 as an "implementation language.' This phrase
has become quite popular lately, but apparently does not have a uniform
meaning. Hence, it is worthwhile to explain what we mean by the phrase
and consequently what our objectives were in the language's design. To us
the phrase "implementation language'' connotes 2 higher level language
suitable for writing production software; a truly successful implementation
language would completely remove the need and/or desire to write in assembly
language., Furthermore, to us, an implementation language need not be machine
independent--in fact, for reasons of efficiency, it is unlikely to be.

Many reasons have been advanced for the use of a higher level language
for implementing software. One of the most often mentioned is that of
speeding up its production. This will undoubtedly occur, but it is one of
the less important benefits, except insofar as it permits fewer, and better
programmers to be used. Far more important, we believe, are the benefits of
documentation, clarity, correctness, and modifiability. These were the most
important goals in the design of BLISS-10.

Some people, when discussion the subject of implementation languages,

have suggested that one of the existing languages, such as PL/I, or at most

-59-

a derivative of one, should be used; they argue that there is already a
proliferation of languages, so why add another. The only rational excuse for
the creation of yet another new language is that existing languages are
unsuitable for the specific applications in mind. In the sense that all
languages are sufficient to model a Turing machine, any of the existing
languages, LISP for example, would be adequate as an implementation language.
However, this does not imply that each of these languages would be equally
convenient., For example, FORTRAN can be used to write list processing
programs, but the lack of recursion coupled with the requirement that the
programmer code his own primitive list manipulations and storage control
makes FORTRAN vastly inferior to, say, LISP for this type of programming.
What, then, are the characteristics of systems programming which should
be reflected in a language especially suited for the purpose? Ignoring
machine dependent features (such as a specific interrupt structure) and
recognizing that all differences in such programming characteristics are
only one of degerr, three features of systems programming stand out;
1. Data structures. In no other type of programming does the
variety of data structures nor the diversity of optimal
representations occur.
2, Control structures. Parallelism and time are intrinsic parts
of the programming system problem.x*
3. Frequently, systems programs cannot presume the existence of
large support routines (for dynamic storage allocation, for

example).

* Of course, parallelism and time are intrinsic to real time programming

as well.

-60~-

These are the principal characteristics which the design of BLISS5-10
attempts to address. For example, taking point (3), the language was
designed in such a way that no system support is presumed or needed,
even though, for example, dynamic storage allocation is provided. Thus,
code generated by the compiler can be executed directly on a "bare"
machine. Another example, taking point (1), is the data structure defini-
tion facility. BLISS contains no implicit data structures (and hence no
presumed representations for structures), but rather provides a method for

defining a representation by giving the explicit accessing algorithm.

CMU 1.0. and Peripherals

There are several peripheral packages 5uilt around the BLISS-10
language. Here is a list of the packages and their implementations, which
can provide more detailed information:

10/DYIO:

The BLISS-10 language has no I/0 facilities. This package
provides a library of routines which can be used to build 1/0 handling
capabilities within BLISS-10 programs.

Documentations 10.DOC Also in Bliss

Reference Manual
Implementor: J. Newcomer

HELP:

This is a set of routines useful in augmenting the DDT debugging
facility which unfortunately is not geared to stacks, block-structured
symbol tables, etc.

Documentations: HELP.DOG

Imp lementor: W. Wulf

-67.-

TIMER:

A package which can be loaded with your BLISS-10 to provide
statistics on the run-time of routines in your BLISS-10 program.
Extremely useful in the degign-implementation cycle of an efficient
programming system.

Documentations TIM.DGC

Implementor: J. Newcomer

POOMAS ¢
WPoor-Mans-Simulation-Package.' An adjoint to BLISS-10 of the
same flavor as the union of SIMULA and ALGOL.
Documentations POOMAS.DOC

Implementor: A. Lunde

SIX12:
A high level debugpging package. Since it knows about the Bliss-10
run time enviromment it is useful in interactive Bliss deburring.
Documentation; SIX12.DOC

Implementors: C. Weinstock
W. Wulf

- REFERENCES

[1] Wulf, Russell, Habermann, Geschke, Apperson, Wile, Brender, "BLISS
Reference Manual,'" Computer Science Department Report, CMU, 1970.

[2] Wulf, Russell, Habermann, "BLISS: A Language for Systems Programming,"
DECUS Proceedings, Spring, 1970.

[3] Wile, Geschke, "Efficient Data Accessing in the Programming Language
BLISS," SIGPLAN Conf. on Data Structures in Programming Languages,
SIGPLAN Notices, February, 1971.

{4] Wulf, Geschke, Wile, Apperson, "Reflections on a Systems Programming
Language, ' SIGPLAN Conf. on Implementation Languages, SIGPLAN
Notices, October, 1971.

[5] Wulf, Russell, Habermann, '"BLISS: A Language for Systems Programming,'
C.A.C.M., (to be published).

-62-

Some fairly extensive examples have been prepared as an appendex to
the BLISS-10 Reference Manual. Anyone interested in these can see the

BLISS-10 implementors for a copy.

SIMPLE EXAMPLES
1) } find index of first space in a line

! image of 80 characters (one per word)

index = -1 implies none found

index ¢« incr j from ¢ to 79 do
if . line [.j] eql #40 then

exitloop .j;

2) ! find last item of simple list
link « . beginning of linked list;
while .. link neg § do link « ..link;

1 link contains address of last item

3) ! add the first N numbers
sSum « Q;

incr j from 1 to .n do sum « .sumt.j;

4) 1 roﬁtine to compute factorial
routine factorial (n) =
if o0 eal §
then 1

else .n* factorial (.n-1);

THE FOLLOWING 1S AN EXAMPLE OF A TERMINAL SESSION USING
BLISS1@. COMMENTS ARE DISTINGUISHED FROM ACTUAL MACHINE INTERACTION
BY BEING ENCLOSED IN ~---'ED LINES. SINCE BLISS16 HAS NO BUILT-IN
I7/0 FACILITIES, YOU WILL FIND THE USE OF A FILE IOPRE.BLI WHICH
WAS CREATED USING TECO. ITS CONTENTS ARE:

«TYPE IOPRE.BLI
MODULE TTIO(STACK)=
BEGIN

MACHOP TTCALL=#513;

MACRO INC= (REGISTER Q3 TTCALL(4,Q); .@)%,)
OUTC(Z)= (REGISTER Q3 Q+~(Z); TTCALL(1,Q))%
OUTSA(Z)>= TTCALL(3,Z)%., :
OUTS(Z>= OUTSA(PLIT ASCIZ Z)%»

OUTM(C,N)= DECR I FROM (N>~1 TO @ DO QUTC(C)>S.,
CR= OUTC(#15)%, LF= OUTC(#12)%, NULL= OUTC(@)>%,
CRLF= OUTS("IM?4?7278°')>%, '

TAB= QUTCC(#11>%;

ROUTINE CUTN({NUM,BASE,REQDY=
BEGIN OWN N.B,RD,T;
ROUTINE XN=

BEGIN LOCAL R; .
IF +N EQL & THEN RETURN OUTM(*"@", .RD-.T)3
R=eN MOD «B; N~eN/eB3 TeT+13 XNC):;
QUTCC.R+"0"™)

END;

IF +NUM LSS @ THEN OUTGC("™-'");
B+-.BASE; RD-.REQD; T«@3 N«-ABS(.NUM); XNC)
END;

MACRO QUTD(Z)= OUTN(Z,1@,1)%,
OUTO(Z)= OQUTNCZ,8,11%,
OUTDR(Z,NY>= OUTN(CZ,10,N)%,
OUTOR(Z,N)= OUTN(Z,B,N>$;

-.o------—---———-----au—-——----—-—-----—-\--------———----a—---—---—--—m---———

NOW WE WILL BUILD A PROGRAM TO PRINT THE FACTORIALS FROM g TG
12 AT THE TTY. WE HAVE ALREADY CREATED THE FIiLE FACT.BLI USING TECO.
ITS CONTENTS ARE:

-64 -

«TYPE FACT.BLI

ROUTINE FACTQRIAL(N)>=
IF N EQL @ THEN 1 ELSE «N*FACTORIALC.N~1)3

CRLF3 TAB3 OUTS('N")>; TAB3 OUTSC('N!'); CRLF; CRLF;
INCR I FROM @8 TO 12 DO ' '
BEGIN
TAB}
OUTD(+1)3;
TAB;
OUTD(FACTORIALC.1))3
CRLF:
END3

END ELUDOM

NOTICE THAT THE FILES IOPRE.BLI AND FACT.BLI WHEN CONCATEN-
ATED WILL FORM A SYNTACTICALLY VALID BLISS1¢ MODULE. NOW WE ARE
READY TO COMPILE THE PROGRAM. BL1SS18 ACCEPTS THE STANDARD DEC
QOMMAND STRING ALONG WITH A LARGE NUMBER OF OPTI1ONAL (AND DEFAULTED)
SWITCHES WHICH ARE DESCRIBED IN THE MANUAL. IN THIS EXAMPLE VWE
ARE NOT GOING TO USE ANY OF THE CCL COMMANDS ALTHOUGH THE CMU MONITOR
DOES RECOGNIZE THE .BLI EXTENSION AND WILL HANDLE BLISS1@ FILES.

THE COMMAND STRING WILL PRODUCE A «REL FILE NAMED FACT.REL.

------n----———--------a---——---——---—----——_---—---—----—----—----—----—

« R BLISS
*FACT»~10PRE,FACT

MODULE LENGTH =91+16

COMPILATION COMPLETE

~65-

«+L0AD FACT
LOADING

LOADER 2+1K CORE

EXIT

+START

=2
2

N e

24

1209

720

5840
45320
362880
3628800
39916800
12 479001600

VATV LW =

[ST]
= &

-66-

LISP

D, Waterman

The following quote from the introduction to the LISP 1.5 Primer

by Clark Weissman will serve to introduce the language:

"LISP is an unusual language in that it 1s both a
formal mathematical language, and (with extensions) a
convenient programming language. As a formal mathematical
language, it is founded upon a particular part of mathemat-
ical logic known as recursive function theory. As a
programming language, LISP is concerned primarily with the
computer processing of symbolic data rather than numeric data.

From childhood we are exposed to numbers and to ways of
processing numerical data, such as basic arithmetic and solu-
tions to algebraic equations. This exposure is based upon
a well-established and rigorously formalized science of
dealing with numbers. We are also exposed to symbolic data--
such as names, labels, and words--and to ways of processing
such data when we sort, alphabetize, file, or give and take
directions. Yet the processing of symbolic data is not a
well-established science. 1In learning al algebraic¢ program-
ming language, such as FORTRAN or ALGOL, we call upon our
experience with numbers to help us understand the structure
and meaning (syntax and semantics) of the language.

In.learning a symbolic programming language such as LISP,
however, we cannot call upon our experience, because the
formalism of symbolic data processing is not part of this
experience. Thus, we have the added task of learning a basic
set of formal skills for representing and manipulating symbolic
data before we can study the syntax and semantics of the LISP
1.5 programming language.

LISP is designed to allow symbolic expressions of arbitrary
complexity to be evaluated by a computer. To achieve a thorough

understanding of the meaning, structure, construction, and

evaluation of symbolic expressions, is to learn how to program
in LISP."

-67 -

REFERENCES

[1] Quam, Lynn, Stanford LISP 1.6 Manual, Stanford AI Project, September,
1969.

[2] McCarthy, John, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin, LISP 1.5 Programmer's Manual, Cambridge,
Massachusetts, The MIT Press, 1962.

[3] Hart, Timothy P., and Thomas G. Evans, "Notes on Implementing LISP
for the M-460 Computer," in Edmund C. Berkeley and Daniel G.
Bobrow (eds.), The Programming Language LISP: 1Its Operation
and Applications, 2nd ed., Cambridge, Massachusetts, The MIT
Press, 1966, p. 191.

[4] Weissman, Clark, LISP 1.5 Primer, Dickenson Publishing Co., 1967.

The first reference, the Stanford LISP 1.6 Manual, contains most of

the special features of the CMU LISP and outlines the differences between

CMU LISP and the LISP described in the last three references. Reference 3

contains an excellent set of LISP exercises with solutions, pp. 73-92.

68

RECURSIVE EXAMPLE

A simple example of a recursive LISP program to sum the digits in

a list is shown below.

(DEFPROP SUM (LAMBDA (L) (COND
((NULL 1) O)
(T (PLUS (CAR L) (SUM (CDR L}))))

)) EXPR)

Executing (SUM (QUOTE(1 9 7 1))) produces 18.

-69.

SAMPLE PROBLEMS

Write LISP functions for the following purposes:

1.

to determine whether an atom is a member of a list.

e.g. member [B;(ABC)] =T
member [X:(A B C)1 =F
member [A;(B (A B) C) = F

to produce a tale (list of dotted pairs) given two lists,
one of the references, and other of values.

e.g. pair [(ONE TWO THREE);(1 2 e)} = ((ONE . 1) (TWO . 2) (THREE . 3))
pair [(PLANE SUB); (B47 THRESHER)] = ((PLANE . B47) (SUB . THRESHER))

to append one list onto another.

e.g. append [(ABC);(DEF)]=(ABCDEF)
append [(A B) C (D E}));((A))] = ((A B)Y C (D (E)) (&)

to delete an element from a list.

e.g. delete [Y;(XY Z)] = (X 2)
delete X;((ULV) X Y¥)] = ((U V) Y)

to reverse a list. (Hint: wuse append.)

e.g. reverse [(ABC)] = (CBA)
reverse [(A (B C) D)1 = (D (B C) A)

to produce a list of all the atoms which are in either of two lists.

e.g. upion[(UVW;(WXV]=UVWIXY)
union[(ABC);(BC D)] =(ABCD
union[(ABC);(ABC)] = (A B C)

to produce a list of all the atoms in common to two lists.

e.g. intersection [(ABGC);(BCD)] = (B C)
intersection {(A B C);(ABC)] = (A B C)
intersection [(A B C);(D E F)] = NIL

to find the last element on a list.

e.g. last[(ABC)]=C
last[((A B)(C))] = (C)

10.

=70~

to reverse all levels of a list.

e.g. superreverse[(A B (C D))] = ({D C) B A)
superreverse[((U V) ((X Z) Y))] = ((¥ (Z X))V U))

to determine whether a given atomic symbol is some part of an
S-expression.
e.g. partfA;A]l =T

part[A;(X . (Y . A))] =T
part[A;(UV (W . X) 2)] =F

EXemples: (MU Lis P

JOB_1 CHULQA 6,N /CEC 5S02.C° TTY33
#3330dwi8

PASSWORD: BfMABR

W35 20-Aug-71
WELCOME BACK.

READ SYS:NOTICE FCR INFCRMATION ABOUT YOUR DISK FiLES.

FOUR DIAL UP TTY LINES (887-3411) AND FOQUR
DATEL LINES (683-8330) NOW IN SYSTEM.

NEW BLISS IN SYSTEM, OLD VERSION CALLEC OLDBL!....BAO3

— LTP wants upper cose, Ihis telb the S:,s'l’em no lower case

—— Credting o Tile wsing SO

_ alimaie

Lty no o <

create filel €—

00160 (defprop factorial

00200 (lambda (x){cond

00300 ({zerop n) 1)

0400 (t (times n (factorial (subl n))))
00500 A expr)

00600 i

$

* 4

KIT

AA\ADS AS\."‘

7~

. lisp 15))
¥ ' s - l'c onoluty 13 rho’ +3(1 a Space, (-‘or 1’1")
£ILOC? :
(or a §pace, attantion (for 17%\ or dajt\)

AMXTLEARY FILES?

CECIFAL?y €—— ~
STAUFORD Al LISP 1.6 AT CNU 9-SEP-70 \ If onswer 15 (yis) 4y = 4 (for T1¢)

SEE LISP.DOC FQR HELPFUL (SIC) HINTS
or a v,sHention (for 2241 or Jd‘e/)

 setq *nopoint t) € . when .“.,& is TI the detimel pont in ,'ﬂ‘\'qlu B cof pr'o,{'[cd
T
o grindef factor!a])l ‘“\is \isfs o LIP S:um*;on, if Ahe gw-d"u'cﬂ
o j does mot exisi it returas NI
*(inc (ipput dsk: filel)) &—— .
. Hhe Sunclion FACTORIAL. 15 wot in the

il o -1 - . i
snﬁgj[e.., , 52 \“‘ 15 rea\ ‘h’om 'H"-l

RCTORIAL pisk file Jwt CreaTed

-ZL-

t{grindef factorial)

the fundionis now wn the Sgs'{'en R

CCaRBoAGK) however it is clear thef

Ex;g(})no ((ZERCP N) 1) (T (TIMES N (FACTORIAL (SUB1 N)))))) conlave oy error () shotd k(n)
,,N(E_,d) - el the LISP editor Yo corret the ervor

s factorial ¢ msde the edito, , ‘ge-f’ FacToRIA L
(x)7(n)” €&~ trgr‘g.u\ (_]() wrh (ND) , £l occurmmes 3"

&
s* !

**p factorial Cee —ae (P""r\ correct ed Vergen o Sg;"tm with

e the rere FACTORIAL
NIL — _) .
«(grindef factorial) exit Srom e LISP edter (4 s P
on +he TTYX)

GEFPROP FACTORIAL

(LAMBDA(N) . T

(COND ((ZERCP N) 1) (T (TINES N (FACTORIAL (SUB1 N)))}))) e Sunchion has wdeed beer
EXPR) Corrected

NIL

*(factorial 3) ‘ 3‘ '“‘ 'Qw-.c_‘ha\ SeSyms ‘\" Loor <

6

*(factorlal 4)

b

j{detprop orints (lombde (x)(cons oo & Fonclon, lldl BRI is dafias (Vhi

»(t (and {princ (car x)){princ (guote " ")) On altercative . Using SOS Yo crete L1sP 'Fuf'iw)

4
o~
1

#(prints {cdr x)))))) expr)

RINTS
t{grindef prints)

CEFPROP PRINTS
(LAMBDA(X)
(COND ((WULL X) (TERPRI))

(T
(AND (PRINC (CAR X))
(PRINC (QUOTE ™ "))

(PRINTS (CDR X))))))

EXPR)
{prints (quote {(this Is a print test))) ¢&———" PM"’“ P“‘f\t‘ 0o “‘ “'“’"‘"+ P“‘”H‘“‘

NL
THIS 1S A PRINT TEST

WL

*(print (quote (this is a print test))) G — PKIMT,o. g._’T.n ’)'uq"‘l}n‘, pri.'l‘,s -Hw. fnm-}bcses

(THIS IS A PRINT TEST)
(THIS IS A PRINT TEST)

+(ed) ¢~ baw to He LI oditor

+f (factorial prints) dsk: filel & (s.'].’ FacToiatl and PRINTS 0 O1SK wuith
ke Silereme FrLEL

L

-type filel €&~—___

hst FiLE4

CEFPRCP FACTORIAL
(LAMBDA (N) (COMD ((ZERCP M) 1) (T (TIMES N (FACTORIAL (SUBI N))II))
IXPR) '

(CEFPROP PRINTS

(LAMBDA (X) (COND ((NULL X) (TERPRI)) (T.(AND (PRINC (CAR X)) (PRINC (QUOTE " ")) (PRINTS (CCR X))}
IXPR) _

ke

=76~

L*

G. Robertson and D, McCracken

L* is a system on the PDP-10 for constructing software systems, which
is under development at CMU by A. Newell, D. McCracken, G. Robertson, and
P. Freeman. The current version, L* (G}, is the seventh to be designed for
the PDP-10 and the fourth to become a running system. There are also three
running systems on the PDP-1l, the most current version being L*1l (C). A
running system on 360 TSS also exists, L%360.

The design rationale for L* is discussed in the article, "The Kernel
Approach to Building Software Systems," which appears in the 1970 Computer

Science Research Review. This guide makes brief references to the principles

set forth in that article.

L* is intended to be a complete system for running and constructing
software systems. Completeness implies that one should be able to perform,
and to construct systems for performing, the following:

a) Procéssing of arbitrary data types, e.g., symbolic structures,

lists, numbers, arrays, bit strings, tables, text

b) Editing

c) Compiling and assembling

d) Langﬁage interpreting

e) Debugging

f) Operating systems, e.g., resource allocation, space and time

accounting, exotic control (parallel and supervisory control)

g) Communication between user and system, e.g., external languages,

dynamic syntax, displays, etc.

iy Jy

L* is a kernel system. It starts with a small kernel of code and
data and is grown from within the system. Thus, L* does not perform all
the functions above when it exists only as a kernel. It does have means to
construct systems for them all.

L* is designed for the professional programmer. It assumes someone
sophisticated in systems programming who wants to build up his owm system
and who will modify any presented system to his own requirements and
prejudices. Thus, L* is intended to be transparent. All mechanisms in

the total system are open for understanding and modification. No mechanisms

are under the floor.

One of the design goals of the L*(é) system was that it should be entirely
self-documenting on-line to the maching, but this goal was not fully realized,
The listings of the system which are available on the [A11§LGP#] disk area
may be used as documentation. There is available an interactive script which
teaches L*L, the simple list processing language at the heart of the L*(G)
system.

Getting into L*(G) is very simple, All that is neccessary is:

R LSGA

HELP
The response of the HELP command will be sufficient to get you started in
the system.

There is also a file SYS: LSG.DOC which contains a few helpful hints
on using L*(G)

There is a new (and hopefully final) version of L*, called L*(H)
which should be completed during the fall of 1972. Along with L*(H) there

will also be a new PDP-11 version of L*.

-78-

L*(H) will have complete facilities for assembly, tramslation, filing
and documentation, and will be written up in final form for publication,
As soon as L*(H) becomes available for use, documentation on getting

into the system will appear on file SYS: LSH.DOC

-79-

MACRO 10

D. Bajzek

MACRO 10 is the symbolic assembly lanéuage for the PDP-10 machine
language. It is characteristic of most machine languages in that is is
most useful in fully utilizing the facilities of a PDP-10.

The PDP-10 Reference Handbook is a complete reference guide for
the MACRO 10 assembler since no special CMU features have been added to
this processor. Chaptets 1 and 2 contain a complete description of the
PDP-10 instruction set and the MACRO 10 assembler.

Chapter 3 contains detailed information on communication with.the
TOPS-10 monitor. Section 4.10 of this chapter is very important since
it describes all the input/output operators. In particular, this section
describes the ﬁse of the directory devices, disk and DECtape, which are
most commonly used since they provide random access data storage. Also
included are diagrams and explanations of data structures and programming
examples on

1) how to create data files and transfer data in buffered

mode (pp. 3-197),

2) how to transfer data in unbuffered mode (pp. 3-199),

3) a general subroutine to input ome character (pp. 3-200),

4) and a general subroutine to output one character (pp. 3-201).

In general, to create or update a data file on disk or DECtape, it
is necessary to understand the following operators:

OPEN
INIT (pp. 3-189) The OPEN and INIT programmed operators initialize

a file by specifying a device (or data channel), logical device name,

initial file status, and the location of the input and output buffer headers.

80

INBUF
{OUTBUF (pp. 3-193) can be used to establish buffer data storage areas.

LOOKUP (pp. 3-194) selects a file for imput on the specified channel.
ENTER (pp. 3-195) selects a file for output to a specified channel.
RENAME (pp. 3-196) is used to

a. alter the filename, filename extension, and the
protection, or

b. delete a file associated with a specified channel
on a directory device.

INPUT
IN (pp. 3-198) transmits data from the file selected on the specified

channel to the user's core area.

QUTPUT
QUT (pp. 3-198) transmits data from the user's core area to the

file selected on the specified channel.
CLOSE (pp. 3-2b3) terminates data transmission on the specified channel.
RELEASE(pp. 3-205) releases the channel.
The following is an example of a MACRO 10 program which merely reads

a string on one-digit octal numbers, ignoring all other characters, from

an ASCII text file called DATA.FIL. It then sums these digits and prints

out their octal sum on the TTY.

-81.

. . _PITLE ADDER
} GIVE ACCUMULATORS SYMBOLIC NAMES

Apd
Adn2
D181Te3
SUMpd
COUNTSS
PNTsb
3 DEFINE 1/0 CHANNEL
_ INCHNEY
INOW BEGIN
STARTI INIT INGHN,% JINITIALIEE INPUT CHANNEL IN
1ASC11 LINE MODE
SINBIT /D$K/ JILOGICAL DEVICE NAME [S DSK
XWD 2,1BUr INEED YO GIVE NAME OF INPU?T
1BUFFER HEADER ONLY, SINCE WE
JONLY WISH TO {NPUT FROM THIS
| 1DEVICE,
JRS? NOFAVL 160 Y0 ERROR RODUTINE IF DEVICE
| 118 NOT AVAILASLE,
INBUF INCHN,4 ISMALL AMOUNT OF DATA, WE ONLY

N . INEED § BUFFER IN RING,
LOOKUP INCHN, INNAME 1ILOOK UP FILE WHICW 1S DESCRIBED
$IN INNAME,

JRST NOTFND 1ERROR [F FILE NOT FOUND
3 PREPARE TO START SUMMING ,
SETZM SUM FINITIALIZE SUM YO ZERO
LOOPLI JSR GETCHR IGETCHR RETURNS WITH ASCI! CHAR
u 1IN 01617
CAIG ~ DIGlT,87 IMAKE SURE ASCII CHAR IS REALLY
CAIGE DIlglT,62 IAN OCYAL DIGIY
JRS? LOOPY 11F 1T'S NOT, IGNORE [T AND GO
IGET ANQTHER CHWAR
SuB! DIGlY, s FGET ACTUAL VALUE OF ASCII OCTAL
IDIG1Y,
ADOM DIEIT,SUM 1ADD DIGIT TO SUM
JRST LOOP1 160 GEY NEXT DiGIY

INEOPI JWWEN YHE END OF FILE 1S REACHED ON THE INPUT FILE
JTHE GETCHR SUBROUTINE WILL TRANSPER CONTROL Y0 MERE,

INOW _THE VALUE IN SUM MUST BE CONVERTED TO AN ASC!! STRING
JOF OCTAL DIGIYS To BE QUTPUT TO THE TTY,

MOVE PNY QUTRNT JLOAD PNT WITH A BYTE POINTER
‘ JINTO THE AREA THE RESULY IS TO
{8 STORED INTO,

MOVS] COUNY, =14 IMAXIMUM OF 12 DIGIT RESULT
. P CASSUMING NO QVERFPLOW)
MOVE A1,SUM JTHE 0CYAL DIGITS CAN BE

JOBTAINED BY SIMPLY SHIFTING THE
ISUM 3 BITS AT A TIME INTYO
IREGISYER 4,
LOOP2; SETEZM A JINITIALIZE &
LSKC A3 IMOVE LEFT 3 BITS OF AL INTO A
CAMN PNY OUPPNTY 11F POINTER WAS CMANGED, SKIP

JUMPE

ADD1
10PB
LEND21 AOQBUN
MOVE1
10PB

NUTSTR
QUTSTR

EXITTE CALL

-82-

A, LEND2

A, 80

Ay ONT
COUNT,LO0P2

4,2
A PNT

OUTNSG
OUTWRD

[SIXBIT /EXIT/)

JOVER TEST FOR LEADING ZERD

J1F LEADING ZERO JUST INCREMENT
JCOUNTER BUT DON'T QUTRUT,

JMAKE INTO ASCI] CHAR

JPUT CHAR INTO TTY OUTPUT BRUFFER
J1F THERE ARE MORE DIGITS LEFT,
5GO GET THEM ToO

ISTORE AN ASCI! NULL AT END OF
ISTRING

JTHIS SPECTAL PROGRAMMED
JOPERATOR QUTPUTS AN ASCII
ISTRING TQO A TYY{STRING IS
ITERMINATED BY A NULL)
ISPECIAL FUNCTION YO GRACEm
JIFULLY TERMINATE THE EXECUTION
10F & PROGRAM,

}THE FOLLOWING SUBROUTINE IS USED TO INPUT ONE ASCII CHAR

GETCHRI 7
GETNXT! SOSLE
JRST

IN

JRSY
STATZ

JRST

JRST

ILDB
JUMPN

GETOKH

JRSTY

1BUF &2
GEYOK

INCHN,

GETOX
INCHN, 740000

INERR

INEOF

DIGIT,1BUFe1
NIGIT,8GETCHR

GETYNXTY

INEXT COME SOME ERROP ROUTINES
170 EXPLAIN ERRQRS RECEIVED BY THWE PROGRAM,

INERRY DQUTSTR

JRSTY

INPMSGE ASCILZ

l--——.;q—------

NUTSTR
JRST

NOTAVL1

AVLMSG1 ASCIZ

;-——GQ ---------

NOTFNDE AUTSTR
JRSTY

FILMSGt ASClZ

INPMSG
EXITY

/ERROR WHILE RE

-y T oom G W o ae Wy

AVLMSG
EXITY

IRETURM ADDRESS 1S STORED WERE
JOECREMENT THE BYTE COUNT
INON=-ZERD RESULT MEANS MORE
JCHARS LEFT IN BUFFER

$GET NEXT BUFFER FRQM MOMITQR
PRETURN WHEN BUFFER IS FULL

JIN DOFS A SKIP RETURN IF THERE
IWAS AN ERROR ON INPUT, THE
~JSTATUS BITS MUSY BE TESTED 1O
IDETERMIME WHAT xIMD OF ERROR,
INOT END=OF-FILE, GO PROCESS TME
JERROR :

JEND OF FILE RETURM TO NEXT
JIPHASE QF PRNGRAM,

JGET CHAR FROM BUFFER

JIF NOT wULL CHAR, RETURM TOQ
JCALLING PLACE WHOSE ADDRESS IS
JSTORER IN GETCHR,

J16NORE NULL AND GET NEXT CHAR,

WHICH TYPE OUT ERROR MESSAGES
JOUTPUY MESSAGE AND

JEXIT FROM FROGRAM

ADING INPUT FILE/

/DEVICE MOT AVAILARLE/

/F1LE WAS NOT FOUND/

-83-

LR) e dp e WP MR v W - mom e - - e Bt omoa woa -
jromessnepReResceraRewnyan®oen

INOW YO DEFPINE SOME CONSTANTS AND DAYTA

tpur1 BLOCK 3 }THIS 1S THE INPUY BUPFER WEADER
" INNAME!D SIXBIT /DATA/ INANE OF DATA PILE
syxpty /riL/ JEXTENSION OF DATA FILE
))
) 11F THIS 18 LEPT m@" THE QWNER

10F THE FILE 18 ASSUMED 70 BE
JITHE UBER RUNNING THIS PROGRAM,
JTHIS NUMBER CAN BE OBTAINED BY
JRUNNING THE "mPN® CUSP,

QUEPNTI POINT 7,0UTWRD JPOINTER TO OUTWRD WHERE THE
)ASCI] REPRESENTATION OF THE SUM
JOF THE DIGITS IS TO BE STORED,

OUEMSGI ASCIT /ea®THE SUM OF THE 01617S IS
OUIWRDE BLOCK 4

END START

The following is an example of a terminal session in which a data
file for the ADDER.MAC example program is created, and the example program

(assumed to exist on dsk) is assembled, loaded, and executed.

-84-

+LOG

JOB 17 CMUL0A 6.Ul0/DEC 5502.C/D TT740

#27991D0J "1Your usage number goes here.

BoSWiiDs ;Type your password here. It will not be echoed.
2141 1 7=-JUL-72 : The system will respond with a greet message.

DN T=17eseBLL STHUCTUIES IV SYSTEMe es 3YSSMEWS C(7=7)

;To run the ADDER program which we assume is on disk

:from a previous secession, the data file must fir
sfirst be created.

LCREATE DATC.FiL

Lol (o | 2 354,996 7 8,9,E

200 $

*E

EXMVT ;Now that the data file has been created, we can

;execute the ADDER program.

- ;We can assemble,load,and execute ADDER 1in
ithree seperate steps, or we can simply use the

;EXECUTE command to do all three.

LEXCCUTE ADDER.MAC

MACRO: ADDER ;This statement indicates that the MACRO 10
;assembler is now assembling.
Lonp ING iThe loader i{s now loading the relocatable file

OER 1K € ;produced by the assembler.
LoADE COR

QC_CES_‘QN ;Begin execution,

FILE WAS NeT FOUND :This message 18 coming from the ADDER program.

T :It says there is no file called DATA.FIL. If
:we look back we see a spelling error in the
;CREATE .

;We can correct this error by using the RENAME
;:command to change the name of the data file.

2 RENAME DATA. FLL=DATE-FI L

FILES RENAMED!

-85-

"?EX ;Try executing ADDER again.
Loanidg ;S8ince the relocatable file already exists, the

R) ¢ ;assembly step has been skipped.
MOADER 1K CORE

EXCCYTION

*iTeE JuM OF THE PIGITS IS 36 ;I1f we look back to the data file, the sum of the

4 1hy ;octal digits should be 34(we ignore the 8,9,and E),
;But notice, there is an octal non-zero digit in
;the line numbere the line number was included as
ipart of the data string.

LR PYP ‘ ;We can use "PIP" to remove the line numbers

‘ ;from the file.
APSK DA TA.FIL/NEDSK:1 DATAFiL
;This command aimply causes the file to be
«nc srewritten without the line numbers.

2EX ;Again execute the program.

LOA DING

LOALER VK CORE

EXECUTION -

WHTHE SUM OF THE DIGITS IS ¥ ;The sum 18 now correct.

eXtr
;To get off the system it's necessary to execute
;the "KJOB" command which returns all 1/0 devices
;to the system device pool. In addition, if there
;are any files on our disk area, the monitor
;responds with "CONFIRM:" to which we have
;several options, described on page 2-17 of the

K08 ;Timesharing Handbook.

Q!ﬂﬁ'[ﬂﬂj U .
;""U" says list all unprotected files so they
;can either be protected or deleted.

DSKA;.
- DSK@: .
OFfA_ +F1t. <055> % 8LKs ¢ P ;Here we've said protect the data file ,

ADOER -REL <Q$5> S. BLKS £ K ;but delete th‘e relocatable ADDER file.

;The monitor responds with gome file statistics
;yand accounting information.

JB 2» USEL £7991D00 LOGGED OFF TTYl 1420 20-AUG-"71
DeLbkiklD 1 FILES (5e DIsd BLOCKS)

SAVED 7 FILES (85. DISK BLOCKS)

RONTIME O MIY; 03+75 SEC KILOCORE SEC: 23

CONNECT TIME O Hls» 4 MINs 37 SEC TOTAL CHARGE: 5033

-86-

MLISP
M. Rychener

The following is from the MLISP Manual by D.C. Smith (Stanford AIM-1353,
October, 1970).

Most programming janguages are deslgned with the |dea that the syntax
should pe structured to produce efflclent code for the computer.
Fortran and Algol are outstanding examoles, Yet, it IS apparent that
HUMANS spend more time with any glven nrogram than the COMPUTER.
Therefore, It has been our Intentlion to construct a language whlch Is
as transparently c¢lear and wunderstandable to a HUMAN BEING as
possible, Considerable effort has been Spent to make the Syntax

conclse and wunciuttered, 1t reduces the number of parentheses
required by LISP, |ntroduces a more mnemon|c and natural notation,
clarifles the flow of control and permits comments, Some

"meta-expresslions® are added to Improve the |Ist-processing power of
LISP, Strings and string manlpulation features, partlicularly useful
for inputsoutput, are Incjuded, In additlon, a substant|a| amount of
redundancy has been bullt Inte the language, permitting the
programrer to choose the most natural way of writing routines from a
varlety of possibilitles,

LISP Is a list=-processing and symbol-manipuiation language created at
MIT by John McCarthy and hl|s students (McCarthy, 1965), The
outstanding features of LISP aret (1) the simpiest and most elegant
syntax of any language In exlstence, {(2) high-leve| symbol
manipulation capabillties, (3) an efficient sat of |lsteprocessing
primitives, and {(4) an easl|y-usable power of racursion,
Furthermore, LISP automatically handles all Internal storage
management, freeing the user to concentrate on problem sojving, This
Is the single most (Important Improvement over the other major
[Ist-processing language, IPL=V, LISP has found apptications In many
Important artlficlal Inte)llgence Investigations, including symbellc
mathratics, natural-language handllng, theorem proving and fogle.

unfortunately, there are several Important weaknesses In LISP,
Anyone who has attempted to understand a LISP preogram written by
another programmaer (or even by himself a month earfier) aqulckly
becores aware of several difflcultles: .

A, The flow of control Is very difflcult to foliow, In fact, It
|s about as d!fflicult to follow as machine language or fortran, Thls
makes understanding the purpose of routlines gl.e. what do they dol)
difficult, Since comments are not usually permltted, the programmer
is unable to provide wrltten assistance,

B, An Inordinate amount of time must be spent balancing
parentheses, whether In wrliting a LISP program or trylng to
understand one, It Is frequant|y difflcult to determine where one
expresslon ends apd another beglins, Formatting utl|jty routines
(*pretty-print") hejp; but every LISP programmaer knows the dublous
pleasure of laborjously matchlng left and right parentheses In a
function, when all he knows |s that one is missing somewhgre!!

C. The notatton of LISP (prefix notation for functlions,
parenthesas around all funetions and arguments, etc.), while uniform

-87-

MLISP INTRODUCTION - SECTION 1 4
from a J|oglclan’s polnt of view, !s far from the most natural or
mnemonle for a {anguage, This clumsy notatlon a|so makes |t
diffleujt to understand LISP programs, Singe MLISP programs ars

trans|ated Into L]ISP s-expresslons, all of the e|legance of LISP |s
preserved at the trans|ated jeve}; but the unpleasant aspects at the
surface [eve| are e|liminated,

0D, There are Important omisslons In the {lsteprosessing
capabllitles of ISP, These ars somewhat remedled by the MLISP
"meta~express|ons", expressjions whlch have no direct LISP
correspondence but |nstepd are transjated iInto sequences of LISP
instructlions, The MLISP meta-expresslions are the FOR expresslian,
WHILE expresslion, UNTIL wexpression, Index expression, asslgnment
expresslion, and vector operatlons., The particular deflclency each of
these attempts to overcome Is dlscussed in the subsectlon of SECTION
3 descrlbing the meta=~expressjon [n detail,

MLISP was written at Stanford Unlversity by Horace Enea for the I[BM
362/67 (Enea, 1968), The present author has implemented MLISP on the
PDP=1 time-shared computer. He has rewr|tten the ¢transiator,
expanded and simp|lfied the syntax, and Improved the ryn=time
routines, A|l of the changes and addl%tlons are |ntended elther to
make the janguage mors readable and understandable or to make |t more
powerful, :

MLISP programs are first transliated into LISP programs, and then
these are passed to the LISP interpreter or compiler, As Ita name
Impiles, MLISP I3 a "meta-LISP"™ {anguage; MLISP programs may be
viewed as a superstructure over the underlyling LISP processor, Al
of the underiying LISP funct|lons mare avallable to MLISP programs, In
addltion to savera) powerful MLISP run~time routines, The purpoge of
having such a superstructure |Is to Improve the readabiflity and
wrlteabl)ty of LISP, long (In)famous for Its obscurlty, Since LISP
!s one of the most elegant and powerful symbo|-manipulation |anguages
(but not one of the most readable), It seems approprliate ¢to ¢try to
facilltate the use of 1t,

MLISP has been running for several years on the Stanford POP=-1p
time~shared computer, [t hus been dilstributed to the DEC User
Services Group (DECUS), The MLISP transtator and run-time routines
are themsefves c¢omplled LISP programs, The Stanford version runs
under the Stanford LISP 1,6 system (Quam, 1969), Some @affort has
been made to keep the transliator as machlne Independent as possible;
In theory MLISP cou|d be Implemented on any machlne with a workling
LISP system by maklng onty mlnor changes, The one probable exception
to this Is the MLISP scanneri to enabl|e scann|ing (where most of the
time ls spent) tg be as efficlent as posslibple, tne trans{ator uses
machlne |anguage scannlng routlnes, While these routines have
greatiy Increased trams|atfion speed (MLISP now transtates at a rate
of 3200-5Q8Q |lnes per minuta,), thelr use means that someone wlshing

-88-

MLISF INTRODUCTION -~ SECTION 1 5

to Imolement MLISP on a system wilthout LISP 1,6 will have %to use an
equlvalent scanner package, For this reason, a whole gsection of this
manua| (SECTION 7) |s devoted to presenting an aqulvalient scanner,

Whiie LISP was created wlth the goa| of belng machlne Independent, It
has turned out that most LISP systems have unligque features, The
sltuation Is so difflcult that Anthony Hearn has attempted to define
"a wunliform subset of LISP 1,5 capable of assembly under a wide range
of exlsting compliers and Interpreters,” called STANDARD LISP (Hearn,
1969), MLISP halps to alleviate thls situation by Introducing
ancther Jeve!l of machine Independence: to (mplement MLISP on a given
LISP system, one changes the underlylng tranmslator rather than the
surface syntax, Dr, Hearn has al|so constructed an MLISP-like
language called REDUCE (HEARN, 1972),.

For sample exercises, see the Lisp section of this document. There also is
a program available on SYS:, written in MLisp, called MEXPR., In that program,
the function convert tékes a lisp source-filename, reads the file, and writes
an MLisp equivalent of the file. A slightly augmented version of MEXPR is a-

vailable from M. Rychener, SCH 4211.

-89.

« 3 MLISP SCRIPT

+TY ICSCR.MLI

00100 BEGIN ‘ :
00200. EXPR MLISTN()s % READ - EVAL MLISP EXPRS %

00300 AHILE T DO BEGIN. |
00400 TERPRI(NIL); PRINC(Wzn);
00500 PRINT EVAL MTRANS()3

00600 END3

00700 END.

«R MLISP

*x(MLISP (ICSCR.MLI)) -

*
MLISTN
% :
0. SECONDS TRANSLATIOW TIME
0. ERRORS AERE DETECTED
0. FUNCTIONS WERE REDEFINED

*Ek~END=OF ~RUN ~%%%k
*(MLISTN)

tx % NOA WE/RE TALKING TO MTRANS, WHICH TRANSLATES AN MLISP EXPRESSEION
* INTO LISP. THIS LISP IS TAKEN BY THE ROUTINE MLISTK ABOVE AKD

* EVAL/D, THEN PRINT/D, MUCH LIKE THE TOP LEVEL OF LIST\T\?P %

*EXPR FACT(N)$ IF ZEROP N THEN | ELSE N*ANANFACT(N-1)s

FACT
NIL
txFACT(3) 3

6.
txFACT(7)3

5040, '
tx % COMPARE THAT DEFINITION OF FACT TO THE FOLLOWING LISP EQUIVALENT%
* EVAL Z(GRINDEF FACT) 3

=90 -

(DEFPROP FACT

(LAMBDA (#) (COND ((ZEROP N) 1,) (T (TIMES N (FACT (SUBI &))1))))
EXPR) - : :

NIL :
tx % NOW TRY Al ITERATIVE VERSION % :
*EXPR FACT2(1) s BEGIN NEW M5 ¥_13 DO BEGIN M_M*i3

FACT2 % N_o—13 £ND UNTIL Z=ROP Nj RETURN M END3

wIL
exFACT2(3) %

(.’JI
txFACT2(T) 3

2040,
:xFACTZ2 43

24. ‘ '
1w %PARENTHERNR\SES ARE NOT NECESSARY AROUND UNARY FUNCIIONS %
x-VENLNAL 2 (GRIADEF FACT2)

g

(DEFPROP FACTRZ
(LAMBOA (A
(PROG ()
(510 M 1.)
(A0 (QUOTE PROG2)
(QUOTE :
(PROG WIL (SETO M (TIMES ¥ N)) (SETQ d (SUBT wl)))
(QUOTE (ZEROP n)))
(R=TURN M)>)) ’
EXPR)

HIL
tx % ADO IS AN MLISP FUNCTION TO PERFORY THE INDENENICATED ACITIUWH,
* WITHIN THE MLISP INTERPRETER %

*

- :

% % THE ABOVE CALLS TO GRINDEF. ILLUSTANANRATE HOW TO SebAK Lo LISPY
® TO THE FUNCTION MTRANS, IN CASE IT DOESH/T LIKE wHAT YOU/Ve TWIEU
* . .

TO TYPE IN MLISP, FOR INSTANCE **\: % .
*GRINDEF(FACT); : : '

-91-

*%*x ERROR IN TOP-LEVEL o :
. %4« JLLEGAL SYMBOL BEGINNING A SIMPLE EXPRESSION
%%% CURRENT SYMBOL IS)

x%x SKIPPING TO NEXT SEMICOLON

xkx ERROR IN TOP-LEVEL

*x% [LLEGAL ARGUMENT

*%x%x CURRENT SYMBOL IS 3 :
*%% SKIPPING TO NEXT SEMICOLON

(DEFPROP (FACT NIL)
(NIL)
VALUE)

NIL . ' ' .
tx % SOMEHOWN, MTRANS DOSN\S\ESHN’T LIKE TO SEE GRINDEF %
*CDR Z (G\G{\GRINDEF 3

(FSUBR #6164 PNAME (#50763 #50764))

tx % PERHAPS BECAUSE IT’S AN FSUBR % EVAL /(GRINDEF FACT)
HOANEVER %

(DEFPROP FACT

i %DOES WORK,

(LAMBDA (N) (COND ((ZEROP H) 1,) (T (TIMES N (FACT (SUB1 i))))))

EXPR)

NIL

% % MLISP DOESN/T REQUIRE PARENTHESE FOR BIWARY FUNCTIONS EITHER 1%

*/ X MeMBER /(A B CD XY Z) s

"
ix/(A B C) CONS #(D E F) 3

((ABC)DER) :
:x/(A B Cy@ (D EF) 3

(A3 CD=re F)

:x % & 1S USED FOR APPEND % <A, ,B\B,,A<\ <AyB,C>
A B

UNBOUND VARIABLE - EVAL

RACKTRACE

MAPLIST=? LIST-*EVAL PRINT-EVALARGS PROG-*EVAL &dHILE-*EVAL ?-%EVAL

*(4LISTN)

file:///GRINDEF

-92-

tx %LISP ERRORS TAKE US BACK TO LISP READ-EVAL LLOOP
* THE ERROR “AS OMMITTING QUOTES ABOVE % </A,73> 2 </C,70>%

(A 3 CD) .

sx %ANGENE\LE BRACKETS DENOTE. THE LIST FUNCTION I& YLISP %
% MTRANSO) 3 |

% <7A,7B>3

(LIST (QUOTE A) (QUOTE B))
sxSXPR HAVEQ) S X3

HAVE

Hilk '

sx=XPR JTININTH(X,Y)s U

EuXPR SITH(X,Y)s REUNUNTURN Z0K!! 3

Wl it
NIL
txHAVE FUN #ITH MLISPS

532335,
twEEXPR ATHNHNTH(X,Y)s 20K 3

AITH %% JARNING, FUNCTION REDEF INED

NIL
sxHAVE FUN nIfH MLISPY 3

0K |
sxFEXPFR WIHNHNTH(X,Y) 5 Z0K!! 3

AL TH *kk WARNING, FUNCTION REeEDEFINED

NIL)

txHAVE UNNAJUNTU

~U

HAVZ FUN AITH MLISP!I! &
OK !

tx"C
~C

-93.

PIP - Peripheral Interface Program

B. Anderson

PIP is a basic systems program of the PDF-10 which provides the user
with the necessary facilities for handling existing data files. Actions
possible, among others, are transferring files from one standard 1/0 device
to another standard I/0 device, listing and deleting directories, simple
editing, changing protection codes, and controlling magnetic tape functions.
The following script shows the typical uses and efficient methods for

handling such uses.

REFERENCES

[1] PDP-10 Reference Handbook, pp. 585-596.

=94

+AS DTA
DTA2 ASSIGNED

+AS DTA N&e: h\s W\\ -“}t ASHIq™ é“‘“f” :\-\‘\“’5 3\1

DTA4 ASSIGNED o~y devrca a.ssxgmmtks wosX \e Q\tuxt:\
oNne.

sPLEASE MOUNT BA(3BC ON DTA2 ENABLED AND RAA3DF ON DTA4 ENARLED
OPERATOR HAS BEEN NOTIFIED

BAA3ZBC IS ON DTA2 AND BAG3DF IS ON DTA4 BOTH ENABLED

THANK YOU '

1C

<R PIP

3COPYING FILES

3UNDERLINING DENOTES SYSTEM TYPEOUT
3 SEMICOLONS DENOTE COMMENTS

%*DSK: A«EXT+~DSK: B« EXT A COPY OF R<EXT CALLED A«EXT
31S MADE ON DISK. ANY FORMER
3 CONTENTS OF A.EXT ARE LOST

*DTAS: A+ EXT+DSK: Bs EXTLOSB2BAGB3] 3 B.EXT FROM 05@2BAG3'S NI SK

- ' : 3AREA IS COPIED ONTO THE USER'S
3 DISK AREA WITH THE NAME A.EXT,
3PROVIDED B.EXT IS NOT READ
$PROTECTEN

*LPT:+~DSK: R« EXT SLPT 1S A NON-DIRECTORY DEVICE
$AND SO A FILENAME IS NOT
JREAUIRED. IF ONE 1S GIVEN, IT
315 IGNORED

ipTAE:A-EXT*DSK:B-EXT:C-EKT 3 B.EXT AND C.EXT FROM DISK AFRE
: . ' 3 COPIED ONTO DTA2 IN THE ORDFER
3SPECIFIED AND COMBINED IN THE

3FILE AEXT

XDTA2: Ae EXT+DTALt % +MAC sALL FILES WITH MAC EXTENSIONS
- : s ON DTA4 ARE COMBINED IN ALEXT
30N DTAZ

*DTA2: A« EXT*DTA4: FILE X $ALL FILES WITH THE FILENAME
- ' : FILE, REGARDLESS OF EXTENSIONM,
: ARE COMBINED IN A.EXT ON DTAZ2

ZDTAPtAFXTDTAA Ik ok :ALL FILES ON DTa4 ARE COPIED
SINTO AEXT ON DTAR

iDSK:FILEI*DTAE:A-EXT;DTA&:FILE-MAC 3 ALEXT FROM DTAR AND
;FILE.MAC FROM DTA4 ARE COPIED

INTQ FILE!l ON DISK

-05.

3}

FEND OF FILE ON TTY IS DENOTED BY tZ (CONTROL Z)

XDSK:A«EXT~TTY: N _ : JTHE TEXT OF THE TTY FILE IS
THE TEXT OF THE FILE GOES HERE JCOPIED INTO A.EXT ON DISK
AND HERE h

tZ

s COPYING SPECIFIED FILES WITHOUT COMBINING THEM.

3 ORDINARILY ONLY ONE DESTINATION FILE IS PERMITTED BY
5PIP, THE X SWITCH ALLOWS FILES TO BE COPIED AS THEY

sARE, KEEPING THEIR NAMES AND INDIVIDUAL FILE STATUS

*DSK: /X~DTA2; A+ EXT : 5AEXT 15 COPIED TO DISK WITH
S 3 THE SAME NAME .
*DSK: /X=DTA2: A«EXT, DTA4: FILE.MAC 3AEXT AND FILE.MAC ARE EACH
- . 3COPIED TO DISK WITH THE SAME
3 NAMES -
ADTA2: (DX) #DSK: As EXT» Be EXT 3¢DX) DENOTES TO COPY ALL FILES

S EXCEPT THOSE SPECIFIED. ALL
FFILES EXCEPT A+EXT AND B.EXT
i ARE COPIED TO DTAZ2

3 DELETING FILES

X*DSK:/D+DSK:FILE.MAC 5FILE.MAC 1S DELETED FROM THE
FILES DELETED: ;DISK. PIP TELLS YOU SO
FILE.MAC a5

*DTA2: /X+DSKt FILE.MAC ;FILE.MAC HAS BEEN DELETED. PIP

? NO FILE NAMED FILE.MAC : sTELLS YOU IT IS NOT THERE

$RENAMING FILES

*DSK:FILE2/R«DSK:B+EXT
FILES RENAMEDS
Be EXT a5

*DSK: A« EXT/R-DSK: B« EXT
? NO FILE NAMED R.EXT

*DSK:Bek /R-DSK: Ask
FILES RENAMED:
A« EXT M5

=36 -

JREXT IS RENAMED AS FILFEZ.
sJ1F /R WERE LEFT OUT, ANOTHER
3COPY OF B.EXT WOULD BE MADE
CALLED FILEZ2

3B.EXT WAS RENAMED ABOVE AND 50
WO LONGER EXISTS UNDER THAT
F NAME

JALL FILES WITH THE FILENAME A
5 ARE RENAMED VWITH FILENAME R
JAND THE SAME EXTENSIONS

JCHANGING FILE PROTECTIONS

%#DSK: /R<155>=DSK? Be EXT
FILES RENAMED:
B.EXT 05

%*DSK: A« EXT<155>+DSK: Be EXT

#DSK1%e%<155>/ReDSKt* o %
FILES RENAMED:

FILE2 a5
C-EXT A5
B« EXT as
FILE1

AEXT a5

ADNSKi*kek<155>/R-DSK 1%« EXT
FILES RENAMED:

Ce EXT a5

Be EXT as

HAeEXT a5

SB.EXT'S PROTECTION IS MADE 155.
5 DEFAULT PROTECTION IS5 855

JB.EXT IS8 COPIED INTO AEXT
3VITH THE PROTECTION 155,
JKEEPS ITS. OLD PROTECTION

B« EXT

jALl. FILES ARE RENAMED TO THEIR
3 SAME NAMES, BUT THEILIR
JPROTECTIONS ARE CHANGED TO 155

;JALL FILES WITH EXT EXTEWSIONS
$ GET THE PROTECTION CODE 155

-97 -

$ZEROING A DECTAPE DIRECTORY

:pTA2:/Z~

*DTA2: A« EXT/Z+~DSK¢ Be EXT

3 DTA2'S DIRECTORY IS ZEROED OUT
3FIRST THE DIRECTORY IS5 ZEROED

3AND THEN B.EXT IS COPIED INTO
}A-EXT -

FGETTING A DIRECTORY LISTING

TTY: /LeDSK2 ok

i

;A DIRECTORY OF YOQOUR .DISK

DI RECTORY __Q582BA@3 14:36 25-AUG~7] ;AREA PRINTS ON THE TTY.
i * ' 3THIS 1S EQUIVALENT TO

DSKB: .. . 3THE NEXT EXAMPLE

FILE®2 a5 <155> 25-AUG- 71

c EXT ps <]55> o8=AllG=7)

B .. EXT ' 85 <155> 25-AUG- 71

FILEl gs <]155> 25=-aliG= 71

A EXT - 85 <]155> 25-AUG~- 7]

TOTAL BRLOGKS 25

DSKA:

EXTTY: /L~ .. }

DI RECTORY Q5@2BAA3 14:37 25-AUG=71

DSKB: . B

FILE? 35 <)155> 25-4UG~ 71

c EXT g5 <155> 25-AUG= 71

B) EXT 35 <155> 25-AUG= 71

EILE1 g5 <155> - 25-AlIG- 71

A EXT a5 <155> 25~-AUG-171

TOTAL BLOCKS 25

DSKA:

*LPT: /L-DTA2: % %

*TTY: /L/F~

DSKRB:

FILEZ2 :

c EXT

B - EXT

FILE] ;
A EXT

DSKA:

;A DIRECTORY OF ALL FILES ON
#DTAZ2 PRINTS ON THE LINE PRINTER

A SHORT DIRECTORY, LISTING ONLY
3 FILENAMES, PRINTS ON THE TTY

98-

JINSERTING OR ELIMINATING SEQUENCE NUMBERS

%DSK: /X/S+~DSK: A« EXT s RESEQUENCES OR ADDS SEQUENCE
$NUMRERS, INCREMENTED RY 14,
3TO AEXT |

; ANY SEQUENCE NUMBERS IN ALEXT

*DSKs /X/N+DSK: Ae EXT
- $ ARE DELETED

3 COPY THE FILE ON THE

*LPT: /N“DSK: A-EXT
3LPT WITHOUT SEQUENCE NUMBERS

3JLESS FREQUENTLY USED SWITCHES, INCLUDING MAGTAPE
$ CONTROL SVWITCHES, CAN BE FOUND IN THE REFERENCE

$HANDBOOK, PAGES 6-9 TO 6-23.
3AFTER FINISHING WITH YOUR DECTAPE, ALWAYS HAVE THE

3OPERATOR DISMOUNT THE TAPE. THEN DEASSIGN THE UNIT

+PLEASE DISMOUNT BA@3BC AND BAB2DF FROM DTA'S 2 AND 4
OPERATOR HAS BEEN NOTIFIED

TAPES DI SMOUNTED

tC

JWAIT UNTIL THE TAPES ARE
3 DISMOUNTED DEFORE DEASSIGNING
3THE UNITS

- +DEAS DTA2

+DEAS DTA4

s

-99.

PPL

S. Gerhart

PPL (Polymorphic Programming Language) was developed by Tim Standish,
formerly of CMU and now at Harvard. PPL is a conversational, extensible
language, in many respects like APL. Conversational features include line
and character editing of functions, trace and suspension, and I/0 to tele-
types. Also, functions may be written onto files and edited by TECO or
508.

PPL is a typeless language with extensibility for operator and data
definitions. Built-in types includes integer, real, double precision,
Booleau, and string, with the usual operators for atoﬁic data. Data
definitions for structures, variadic sequences, fixed sequences, and altermates
may be given, each having association construction, predicate, and selection
operations, New operators are defined by associating user-defined functions
with strings. Other features are Iversonian precedence, structure sharing,
and both call by reference and call by value.

PPL is not supported here but is fairly stable. A good users! manual
is available in the Computer Science Department Library. PPL is recommended
for programs which require variability of data structures, structured data

representation, and conversation.,

e
SLY\?‘

«R PPL

-100-

PPL.26 31-JaN-71

£11
[21
£33

Cl1
el
£3l
£4]

C11l
£21
{31
£41]
£51]
£61l
£E71]
[81l
[91]

READ("PROTO'™)

WRITEC)

BINARY("&™,CATAND)

UNARY("@'",RETURND

$L.IST = [l: 1 GENERAL

FCATAND(A-B)
AND(CA==LIST?»B==L1ST)~-~->CAT.0OP
-=>@CATAND~AND(A,»B)

CAT.0Pt CATAND+~CONCAT(A,B)

%

SRETURNCEAD

RETURN-D

%

$APPEND(A,L)

NOT(L==LIST)-->ERROR ++« == [S THE "INSTANCE OF" OPERATOR
-~->8APPEND+-L&LISTC(A)

ERROR: PRINT("APPEND TRIED ON NONLIST")
?

;)

$EXPLANATION

«++@ IS A DEFINED OPERATOR WHICH COMPUTES AND EXPRESSION
+++THEN RETURNS FROM A FUNCTIONC(BRANCH TO @ IS5 AN EXIT).

ese& IS THE BUILT-IN SYMBOL FOR THE "AND" OPERATOR
es+HERE, & 1S5S REDEFINED TO HAVE THE MEANING CATENATION WHEN
+++1TS OPERANDS ARE BOTH LISTS.

wees A LIST IS DEFINED AS A VARIADIC SEQUENCE WITH ELEMENTS OF
es o ANY TYPE IN THE SYSTEM.
%

X-LIST(1,2,3)
Y~LIST(6,3)
X&Y

t1,2’3’6,5]

APPEND(X,Y)

[6s5,[152531]

APPEND(X,LIST())

[(L1,2531]]

XL[21=Y
X

(1,06551,31

TRUE

FALSE

X==LI5T

XC11==LIST

=101~ .

SAIL

J. Nugent

INTRODUCTION

SAIL is a high-level programming system for the PDP-10 computer,
developed at the Stanford AI Project to be the major language for the hand-
eye robot project. It includes an extended Algol compiler and a companion
set of execution-time routines. A non-standard Algol 60 compiler is extended
to provide facilities for describing manipulations of an associative data
structure. This structure contains information about items, stored as
unordered collections of items (sets) or as ordered triples of items
{associations). The algebraic capabilities of the language are linked to
the associative capabilities by menas of the datum operator, which can
associate an algebraic datum with any item.

The associative data structure is a slightly reworked version of the
LEAP language, which was designed by J. Feldman and P. Rovner, and implemented
on Lincoln Laboratory!s TX-2. This language is described in some detail in
an article entitled "An Algol-Based Associative Language" in the August, 1969,

issue of the ACM Communications (Feldman and Rovner). The implementation

was modified to tolerate the non-paging enviromment of the PDP-10.

SAIL in a sense has something for everyone. For those who think in
Algol, SAIL has Algol. For those who want the most from the PDP~10 and the
time-sharing system, SAIL allows flexible lin#ing to hand-coded machine
language programs, as well as inclusion of machine language instructions in
SAIL source programs. For those who have complex input/output requirements,
the language provides complete access to the I/0 facilities of the PDP-10

system. For those who aspire to speed, SAIL generates fairly good code.

-102-

The user should, however, be warned that SAIL falls several man-decades
short of the extensive testing and optimization efforts contained in the

histories of most commercial compilers.

COMPILER OPERATION

SAIL accepts commands in the same format as other DEC processors, i.e.,

<Binary>, <listing> « <source 1>, <source 2>, ., . .

where <Binary>, <listing>, <source 1>, etc., are of the form

<Device>; <file name>. <extension> [<PPN>].

If <Device> is omitted, the last device specified will be used. If none has
been given, DSK will be used.
1f <device> is not a disectory device, it is the only specification necessary.

If <extension> is omitted, the following will be assumeds:

.REL for binary

.LST for listing

.CRF for CREF listing

.SA1 for source file

(See DEC reference manual for explanations of CREF.)
1f [<PPN>] is omitted, the user's PPN will be used.
Switches, if given, should follow the listing file name. See section 14 of
the SAIL manual for a description of valid switches.

For example,

+R SAIL
* MYPROG « MYPROG

would compile the program MYPROG.SAI and place the output file MYPROG.REL

on the user's disk space.

-103-

The following:
MYPROG, MYPROG + MYPROG.NEW [A70¢HU¢¢]

would compile the program MYPROG.NEW on HU¢¢'S disk area, agaln generating
output MYPROG.REL, but also creating a listing of the program in MYPROG.LST.

Also:
*DTA2: MYPROG, MTA§: /C « PTR:

would compile a program read in from paper tape, place output file MYPROG.REL
on DTA2 (dectape), a CREF listing on MTAQ (magtape).

The SAIL compiler can be invoked in the same ways as FORTRAN or MACRO.
The Default extension for SAIL SOURCE PROGRAMS is .SAI.

The COMPILE, EXECUTE, LOAD, or DEBUG commands may be used. For example:

« EX PRGRAM.SAI
.DEB PRGRAM {(where the extension is the default for SAIL)

.EX PROGl, SUBl, SUB2 {where SUBl and SUB2 are separately compiled
procedures)

For details on these commands, see the PDP-10 Reference Manual.
If a CREF listing is to be generated, AICREF must be used instead of

«R AICREF
* (commands are the same as for DEC's CREF.)

v - — e

To lecad a SAIL program, use AILOAD, as above. The correct DDT to use is
{what else?) AIDDT.
If you use DEBUG, EXECUTE, LOAD, etc., they will do the above things

correctly automatically upon seeing the .5AI extension.

-104-

NOTE:

Since SAIL is a very fast (one pass) compiler, it is generally a
good idea to delete .REL files after using them. This will save space and
avoid possible confusion in the effects of the load, debug and execute

commands.

REFERENCES

[1] Swinehart, D. and R. Sproull, SAIL Manual, CMU version of May, 1970,
available from Computer Science Department.

[2] Most recent CMU manual update, available from Computer Science Department.

[3] Erman, L., SAIL Pocket Guide (Sailing Chart), available from Computer
Science Department.

[4] Feldman, J. and F. Rovnar, 'An Algol-Based Associative Language,™ CACHM,
12(8), August, 1969, pp. 439-449.

-105-

EXERCISES

1. Write a SAIL program to merge two S0S files, according to
sequence numbers.

2. You are given an M x N matrix of numbers where M and N can be very
large. The values of the entries are 0 - 15. In order to conserve DISK
space, it is desirable to pack the data (each number can be represented in
4 bits) nine entries to a PDP-10 word before writing the matrix onto a
DISK file. Write a SAIL program which does this packing, writes out the

file, reads it in, and "unpacks" it.

(]

-106-

SOME SIMPLE PROGRAMMING EXAMPLES

BEGIN "FACTrRIAL"
COMMENTY THIS PROGRAM READS NUMBERS FROm Thr TELCTYPE AND
TYPES RBAZK TwEIR FACTGRIALSS

REFINE la"COMHENTY} !COvMENT IS TG LOAGS
DEFINE CRs™*15", | Fs'r12") ! ASCIT FOR CR AMG LFJ
INTEGER PROGE .JRF FACT(INTFGRR N}

BEGIN nFenT®

INTERER 11

lel}) !OINTTIAL VALUE FAS THE LGOPI
FOR Nesy STEP <1 UNTIL 1 DO)
l1eloN; ! NOTE THAT FCR Ns?Z, 1 WILL BE 1}

RETURMII))
END "FACT";
INTEGER X;
WHILE TRUE DO
BEGIN "INFINITE LOOP™
1 WHDM FIMISHFD WITH THE PROGRAM, TYPE C YC BREAK GULT)
OUTSTR(CRALFEZ"NUMBER, PLEASE:")}
XeCVDCINCHWL) ; ! READ THE MUMBER)
OUTSTR(IF X<2 THEN "NOW REALLY"™ ELSE CVS(FACTI(X)))}
END “INFINITE LOOP™)
END "FACTORIAL™;

~107-

) BEGEN "PIXER®
COMMENY TH1S PROGRAM READS A FILE AND RCPLACES ALL OCCURRENCES
OF OLDOMR WITH urucnn TH]S 1S tsvzc!ALLv USEFUL FOR
FIXING UP PFILES OR!G!NAL?Y ODESEINED FOR THE LPT, —~
WHICH GONTAIN SPECIAL PRINYER EONTROL EZWARACRERS S
INSTEAD OF REGULAR LINE FEED CMARACTERS (SUCH
CHARACYERS GAUSE SPECIAL PRINTER ACTION, BUT ARE IGNORED
BY A TELETYPE, MAKING !T [MPOSSIBLE TO PRINT THEM ON
A TELETYPE]
OEFINE OLDCKRa" 123", NEWCHRS" 42|
BEFINE :e"conn:N?” NOTERMCOMMENT™
LABEL sva
¥7n:~c +82,33,54)
EECF,BRK,DEX{N,DSKOUT,EEEOF
ouTS Rt'!NPUY FILE®)]
A-INBHHLJ
ASK INeGEYCHAN
BPEN(DSKIN, "DSK",0,4,4, 4ae.alx.tzur)i
ooxun:o:xxn.s4.t£oras
f EEQF YHEN USERERR(P,0,"FILE NOT FOUND"})
QUTSTR(MOUTPUY FILE™)S
A INCHUL)
BSKOUT=GETCHAN)
OPEN(OSKOUT, "DSK",8,4,4,402,BRK,EEEQP))
env:ntoauou7.54.:£zor’:
IF EEEOF THEN USERERR(D,0,"CANNOY ENTER PILELI"))

TYPE PROMPY MESSAGE]
READ INPUY FILE NAME)
CHANNEL POR INPUT;
OPEN DSK OM CHANNEL)
LOCK UP THE FILE)

IF EEQF 1T FAILED)
DITTO FOR OUTPUT)

v wom ru B Bm em aw

BREAKSET(4, OLDCHRc“IS")I : ! INPUT BREAK ON
OLOCHR)
WHILE NOY EEOF DO | "

BEGIN "READ FILE"
NOTE ~ THIS LOCP WILL CONTINUE UNTIL END OF FILE 1S REACHED)
SeINPUTIDSKiN, 1))

oyT{OSKOUT, 8¢ ! INPUT ENDED ON E!TWER)

{1F BRKSOLDCHR THEN NEWOHWR ELSE BRX))j | OLDCHR OR 42¢ CHARS;

END "READ FILE") . _ ,
RELEASE(DSKOUT)Y} RELEASE (DSKIN)} ! RELEASE 1/0 DEVICES; -

END "FIXER™) 1 AND CLOSE FILESS

http://ESFtClAi.LV

-108-

SNOBOL4

Script: §S. Schlesinger

SNOBOL4 is a computer language, developed at Bell Telephone Laboratories,
which contains many features not commonly found in other programming
languages. The basic data element is the string. The language has opera-
tions for joining and separating strings, testing their contents, and
making replacements within them. Strings can be broken down and reassembled
differently. Also, examination of a string for a desired structure of
characters, an operation called pattern matching, is possible and most
powerful. Because SNOBOL4 is mainly character oriented, the numerical
capabilities with both integers and reals exist, but are limited. Array
variables also exist.

Execution of SNOBOL4 is interpretive. This allows easy tracing of
variable values, and the ability to redefine functions during execution.

The language can be extended by using data type definition facilities and
defining operations on these through function definition (i.e., lists,

complex numbers).

REFERENCES
[1] Griswold, R. E., J. F. Poage, and I. P. Polonsky, The SNOBOL4 Programming
Language, Prentice Hall, 1968.

[2] Modified Chapter 8 of above, for local PDP-10, I.0. conventions, available
from Computer Science Department.

3] SNOBOL.DOC, a printable text file on the PDP-10.

-109-

CMU PDP-10 I/0 Notes - SNOBOL

SNOBOL4 I/0 is similar to FORTRAN I1/0 as described in Griswold, et al,[1]
The following list is the current device assigonments as used for input and

output.

The SNOBOL 10 list of device numbers:

UNIT DEVICE
1 DSK
2 TTY
3 PTR
4 PTP
5 PSK1f - Program input file.
6 DSKLl - .LST file
7 CDP
8 CDR
9 LPT
14 DTAf
11 DTAl
12 DTA2
13 DTA3
14 DTA4
15 DTAS
16 DTA6
17 DTA7
18 PLT
19 FORTR
24 DSK@
21 DSK1
22 DSK2
23 DSK3
24 DSK4
25 DSK5
26 DSKé
27 DSK7
28 DSK8
29 DSK9
34 MTAM
3 MTAL
32 MTA2
33 MTA3
34 MTA4
35 MTAS
36 MTA6
37 MTA7
99 TTCALL

=110~

To perform input and output from within a SNOBOLA program, variables are
associated with devices or file names. If a variable is associated in an out-
put relation with a device or file then each time the variable is agsigned a
value, a copy of the value is written to the device or file. Similarly each
time an input variable is used, a new value is read from the associated de-
vice or file to become the value of the variable.

The function

OUTPUT (variable name, unit number, format)
[e.g. OUTPUT ('DONE', 23, '(1X,20 A5)")]
associates the variable DOME with unit 23 which is a disk device. Output
data will be written in the indicated FORTRAN IV format. Unit 23 may be
associated with a particular file by coding the function.
OFILE (unit number, file name)
Input associations are similarly accomplished using
INPUT (variable name, unit number, length)
IFILE (unit number, file name)
where length is the number of characters to be read into the input variable
each time it is referenced. Files may be closed using ENDFILE (unit number).

Other I/0 functions and an extended discussion of those named here ap-
pears in reference [2]. Examples of these functions appear in the following
script,

There does exist a SNOBOL4 system which permits saving of SNOBOL programs
and variables during execution in order to restart them at a later date.
Documentation on this version of SNOBOL may be obtained from the system file

SNOBRLX.DOC.

111

SAMPLE PROBLEMS

Write SNOBOL programs to do the following:

1.

10.

11.

Read and print cards, removing all blanks before printing.

Read cards and print those beginning with '/'.

Read cards and print those not containing '*',

Reverse the order of characters in a atring.

Count all the vowels in the input text.

Read left-justified text; print it centered on the line.
Alphabetize the characters of a string,

Count the occurrences of pronouns in English text.

Read a deck. For each card, if a vowel appéars in the first five
columns, print the card as it was read. If not, and if '$' or '#!
appears between columns 60 and 70, reverse the card, prefix two
slashes, and print the result.

Read numbers in free form (e.g., separated by commas). Every

time you have read ten numbers, print them in colummar format.
Agsume that no number is more than ten characters long.

Devise a simple cipher (e.g., letter substitution). Write programs
to encode and decode messages using this cipher. Generalize to
accept a description of the cipher as an input. How complex can you

make the cipher?

SNOROL

+MAKE HEV.SNO

.1 DEFINE(*REVERSECX)A®) ¢ CREVEND) 2d vy,
REVERSE X LENC1) « A = t FCRETURN) CRSE

REVERSE = SSREVERSE A $ (REVERSE) Q\E_\' &
REVEND | Shool) wevevse

DATA = TRIMCINPUT) ¢ CCFCEND)

QUTPUT = DATA * REVERSED 1S * REVERSE(DATA> \oy \“Y"*

¢ CREVEND) \

END Nev
SHTSS Qeyom=at™”

DEFINE(* REVERSECX)A®) $ CREVEND) STy
REVERSE X LENC1) « A = $ FCRETURN)

REVERSE = REVERSE A $ (REVERSE)
REVEND

DATA = TRIMCINPUT) $FCEND)

OUTPUT » DATA * REVERSED 15 * REVERSEC(DATA)

¢ CREVEND) \

END Q
#I ABCDEFG , \ X £ oveavawm S22
1234567890 Nete VS CURN '}X the e Y
SEXSS
EXIT

«R SNOBOL 4l

*REV

*TTYs=REV

2~

'ch{kl

Odt?dr-

s cavses

- Cvexes Cle REv. 900 awd s TELD veuby Gov

Tis “’"}t'—s o C.\\‘L REN. LSY c_m}an\W\
oi\”\:q\ o& sulvBoL Twolassov & greave

Forw Witk

aS
REN . L ST s <} om TY‘(J
QO\ADUDS E
SNOBOLA C(VERSION 3.4.3, JAN. 16, 1971) XY
DIGITAL EQUIPMENT CORP., PDP-10
1 DEFINE(* REVERSE(X)YA*') ¢ ¢ REVEND)
2 REVERSE X LEN(1) « A = 2t FCRETURN)
3 REVERSE = REVERSE A t CREVERSE)
4 REVEND
-] DATA = TRIMCINPUT) t FCEND)
6 OUTPUT =» DATA * REVERSED IS5 °* REVERSEC DATA)
7 t (REVEND)
8 END

N0 ERPNHS DETECTED IN SOULCE PROGRAM

-113.

ABCDEFG REVERSED 1S ABCDEFG v u% u&
890 l" progvem owip

1234567890 REVERSED IS 1234367

“q_ ‘\rfk 3 bér?:k

?voce. sSov
NORMAL TERMINATION AT LEVEL O
LAST STATEMENT EXECUTED WAS 5
SNOBOLA STATISTICS SUMMARY=-
700 MS. COMPILATION TIME
417 MS. EXECUTION TIME
44 STATEMENTS EXECUTED, 3 FAILED
N\
0 ARITHMETIC OPERAT®O - ST
«TECO REV.SNO
*LLS» $I1A $S AS-R2DOTTSS
REVERSE = A REVERSE 8 CREVERSE)
*OLS$SRI SOL-TTSS
RUVERSE X LENC1) « A = ¢ FCRETURN) ReveEwRse
REVERSE e« A REVERSE ¢ CREVERSE)
*S$$-RDOL~TTSS C 3.(
REVERSE X LENC1) + A = S FCRETUBRN) Smel o
REVERSE = A REVERSE (REVERSE)

*S(SRItSOTTSS

C.ov‘\\('ci\m.x evvmf,

REVERSE = A REVERSE $ CREVERSE)
*TSS
¢ REVERSE) C_gvaE\\m-.. \\QVQ— .
«R-DOL~TTSS
REVERSE X LENC1) . A = $FCRETURN)
REVERSE = A REVERSE $ CREVERSE)

*EXSS
EX1IT

~114-

«R SNOBOL 41 | e
*REV — Cvea e Q\)\\ RE\]‘ LN$T asS ovo

«TTYs=REW/U — /U “Tuvns oq pyeLessoy \\s\"“\B o xc
' - ?'\IO%'\IG.W\ l(Q."L- *
NO ERRORS DETECTED IN SOURCE PROGRAM

' ~ K
ABCDEFG REVERSED 15 GFEDCBA REV. LST V3R
1234567890 REVERSED 15 0987654321

/J su.){\Yc.\'\ .

s'\.‘o}\‘\ 53(‘\&5 OW\AQSY‘LX :
(%1 1§X}To~fs t)

NORMAL TERMINATION AT LEVEL O
LAST STATEMENT EXECUTED WAS -]

«MAKE REVaDAT Greske an ‘m‘,é\ W Cle

%Y ABCDEZFGHJKLMN
Coa7rrenng
b Favid 3N

=115~

SNOBOLA (VERSION 3+4.3, JAN. 16, 1971)
Jsh “3 T NPuT

am) TEWE

DIGITAL EQUIPMENT CORP., PDP=10

! DEFINEC * REVERSECX)A®) ¢ CREVEND) q&kgm%tm Yo
8 REVERSE X LENC1) « A = ¢ FCRETURN) o

3 | REVERSE » A REVERSE % CREVERSE) %{\‘ \ng

A REVEND 1k
s INPUTC *FILE®, 20, 72)

6 ILEC£0, * REV.DAT*) Cvomn \>

7 DATA = TRIMCFILE t FCEND)

8 OUTPUT = DATA °* REVERSED IS * REVERSECDATA) o\\o .

9 ' 1 CREVEND)

10 END

NO ERRORS DETECTED IN SOURCE PROGRAM

ABCDEFGHJKLMN ‘REVERSED §S NMLKJHGFEDCBA
ABCDEFGHJKLMN REVERSED IS NHLKJHGFEDCBA _ NG*Q. evvoy

ABCDEFGHJULMN REVERSED IS NMLKJHGFEDCBA \n
ABCDEFGHJKLMN REVERSED 1$ NMLKJHGFEDCBA '
ABCDEFGHJKLMN REVERSED 1S NMLKJHGFEDCBA \"‘\k‘“&’-& erecSTiom
ABCDEFGHJKLMN REVERSED 1S NMLKJHGFEDCBA

ABCDEFGHJKLUN REVERSED 1S NMLKJHGFEDCEA a5 The i le \S

ABCDEFGHJKLMN REVERSED 1S NMLKJHGFEDCBA
ABCDEFGHJKLMN REVERSED 15 NMLKJHGFEDCBA
ABCDEFGHJKLMN REVERSED 1S NM+0 Neo ?‘”“Lx dov 9

Q.\Je.s.q \oo?-—-— 3‘\\\)5
%oox \\Qm Mo ?C}\' CL\\ tF\LE)
TAPY JofLE A\ out Py
S?QQ\Q\CQY\WS X Mea)M 0%

tC P"O’BV‘L‘”\ - o5 Qo\\bu)S

'C

-116-

INPUTC *FILE®,20,78)
IFILEC20, *REV.DAT*)

DEFINE(* REVERSECX)A®) $ CREVEND)
REVERSE X LEN(1) « A = s FCRETURN)
REVERSE = A .JAEVERSE s REVERSE)}
REVEND
DATA = TRIM(FILE) sF(END)
OUTPUT » DATA * REVERSED (S °* REVERSE(DATA)
s (REVEND)
END
*EX3$
EXIT

« RENEN SNOBOL 41}
«TTYs=REV/U

NO ERRORS DETECTED IN SOURCE PROGRAM

ABCDEFGHJKLMN REVERSED 1S NMLKJHGFEDCBA | P . oo oé\' ?-}T y &S
0987654321 REVERSED 1S 1234567890
éu;we,x.

17-

—r————

: — Nowd V O VO
1 ourmrc'ournu:um.'qx.mmﬂ(eV WX\ ao
8 ILEC21, *REV.QUT*) ~
3 INPUTC*FILE®, 20, 78) 4o ¥ S\
A IFILEC20, *REV.DAT®)
s DEFINEC * REVERSE(X)A') . sCREVEND) eV, 0UT
6 REVERSE X LENC1) « A m =~ ° # FCRETURN)
7 REVERSE = A REVERSE $ ¢ REVERSE)
8 REVEND
9 DATA = TRIMCFILE) $FCEND)
10 <g§f§ii§)- DATA * REVERSED 1S * REVERSE(DATA)
11 | | » CREVEND)
12 END

NO ERRORS DETECTED IN SOURCE PROGRAM

NORMAL TERMINATION AT LEVEL O
LaST STATEMENT EXECUTED WAS 9

N‘-}te—- KE-_\, cQ\)T \S e_m\)*“ - 0.5 |)
Co\) Yo use MNe BRDFLE
ST et Yo \ose e

[:'nr REV.OUT
+TECO REV.S

*SF(END)SAR3IDEFILESOTTSS

DATA = TRIMCFILE) ¢ F(LE) Cle .
#OLESCSIEFISOTTSS

DATA » TRIMCFILE) tFCEFILE)
«3L1EFILE ENDFILEC 21)

SEXS$S \
N0 FILE FOR OUTPUT Thos oGt TELO e\ .

2N

-118-

OUTPUTC *OUTFILE®*, 21, '(1X,27A5) ")
OFILECCI, *REV.QUT*)
IPUTC ' FILE 220, 72)

IFILEC(R0, *REV.DAT*)

DEFINEC * REVERSECX)A®) £ CREVEND)
REVENSE X LENCIS o A = 8 FCRETUIND

REVERSE = A REVERSE $ CREVERSE)
REVIMD '

DATA = TRIM(FILE) $ FCEFILE)

OUTFILE = DATA * REVERSED 15 ° REVERSE(DATA)

. $ CREVEND)
EFILE ENDFILE(21)
I WeXe \ -
rEss OFILE w)\ cyeate REV.OVT .
EXIT
<R SNOBOL 37
*REV/U
®1
\S ?LGi\J‘ ()\)Tr
TY RTV.OUT — o
ADCDEFGHJILN REVERSED IS MHLKJHGFEDCBA %o
0987654321 REVERSED IS 1234567890 W vooavoyw VAR
as Y 3
«TY REV.LST X \
as Awlews2 &

NO ERRORS DETECTED IN SOURCE PROGRAM & Q -\‘e
e xo
Meve REV.LST CL\%O ce_*\‘-:}(-% QS_)
yaan w5 ?NJO‘§~quyﬂ\ 0(%???‘* -

-119.

OUTPUT(C *TTYOUT 52, *C1X, 14A5)*)
INPUT(*TTYIN',2,72)

.FIJMC'RAV&RSECX)A' $ CHEVEND)
REVZIRSE KX LHI1) « A = sFCRETURNY
REVZIRSS = A REVERSE ¢t (REVERSE)
REVEND
) TTYOUT = °*ENTER DATA: °*
DATA = TRIMCTTYINY ~ s FCENDD
TTYOUT = DATA °* REVERSED IS * REVERSECDATA)
‘ .) 1 CREVEND)
END
=EX$S
EXIT

R SNOBOL 37

*JEV1

ENTER DATAs

ASDFG HJKL

ASDFG HJHL REVERSED IS LKJH GFDSA

UNTER DATAR

Zeslity BVC DED 678

/e, BVC DE3 678 REVERSED IS 876 3ED CVB NH:-I

ENTER I Im
REVERSED IS Rave wo ‘“x Q,\Ao.\ra. (*Q.\r ~ -\(\\\JS oS\
m'i:ER ;f;'l‘ns Tav m\vxo__\ﬁ wT‘T’\r\ AC.

" This as R=N wad *{Vw{\\f\m\t&,

«TY REV1.LST
c:sts t;uv&w\ C Q‘\a

7 NO FILE NAMED REV]e.
._“‘"\ Q\)D\l{ GO v \(}(\\0 ? Q-QJ*‘
Connde Q_,x_ l\\\&t 2.5S i’.\k&\.\t\x. \\Qt\', GQ‘ Jr\v\-Q,

C.;\ADV)O\- %Y ‘T}“m a.vxx .0

- 120 -

SOS Primer
Joseph M. Newcomer

Introduction

This document is merely intended as an introduction to the SOS
editor. For further explanations and a more complete set of commands,
consult the SOS manual.

SOS is a teletype-oriented text editor written by Bill Weiher and
Stephen Savitzky of the Stanford Artificial Intelligence Laboratory.
In addition to the common editing capabilities of inserting, deleting,
and shifting of lines of text, SOS includes string search and
substitute commands, an intra-line edit capability, text-justifying
features, and a few other assorted bells and whistles.

SOS does not edit a file "in place”, as some editors do. Changes
are made on a temporary copy of the file, and ordinarily are made
permanent only upon completion of the edit. However, you may request
at any time that all changes up to that point be made permanent. This
is an especially recommended practice for beginners, as it insures all
changes made in the file since the EDIT command or the last save
request against loss due to system failure or user inexperience.

SOS is oriented towards full-duplex devices, such as the
teletype, the ARDS display, the Infoton display, and other ‘such
devices. Before attempting to use it from a half-duplex device such
as an IBM 2741 terminal or a Datel terminal, you should become
thoroughly familiar with using it from the teletype or similar
full-duplex device. You must then familiarize yourself with the
conventions for using half-duplex devices on the PDP-10 as impiemented
here at C-MU. In general, it is not worthwhile for the novice to
learn how to use SOS from half-duplex devices, since the effort
involved in using them does not really make up for the 507 faster
typeout.

121

Basic commands

The basic operation in a file-oriented system is the creation of
a file. To invoke the editor and request it to create a file, give
the CREATE command when the console is in monitor mode i.e.,, the
computer has typed a period.

in all examples, the computer output is underscored.
Example | Creating a file:

CREATE BLAT.DOC

00100 THIS IS AN EXAMPLE OF HOW TO CREETE

00200 A FILE USING THE EDITOR.

00300 N ORDER TO GET OUT OF NUMBERING MODE, TYPE
00400 AN ALTMODE (ESCAPE(CHARACTER, WHICH ECHOES
00500 AS A DOLLAR SIGN.

00600 $

When the asterisk is typed, you may enter any editor commands you
want. The E command (End) terminates the edit, saves the file, and
returns to the monitor.

Example 2 Terminating an edit:

*E
EXIT

The fite now exists and you may access it in any of the normal
modes in which files are accessed. For example, you may type it:

Example 3 Typing a file:

.TYPE BLAT.DOC

00100 THIS IS AN EXAMPLE OF HOW TO CREETE

00200 A _FILE USING THE EDITOR.

00300 [N ORDER TO GET OUT OF NUMBERING MODE, TYPE

00400 AN ALTMODE (ESCAPE(CHARACTER, WHICH ECHQES
00500 AS A DOLLAR SIGN.

122

‘ If upon examining the typeout, you find there are some errors (as
in the typeout above) you may invoke the editor with the EDIT command
to make the corrections. The set of commands for simple editing is:

I - Insert
D - Delete
R - Replace
P - Print

L - List

The Replace command is used to replace lines of the file. In its
simplest form it is the single letter R followed by the line number to
be replaced. The editor then types the line number out and new text
may be typed in. This new line replaces the previous contents of the

~ line.

The Delete command is used to delete lines from the file. In its
simplest form it is the single letter D followed by the line number of
the line to be deleted. The editor deletes the line and returns
control with the asterisk. There is normally no other typeout. To
delete a group of contiguous lines, a range may be specified; see
"Specifying Ranges”, below. '

The Insert command is used to insert new lines in a file. lts
basic format is the letter | followed by the line number of the line
to be inserted.

Example 4 Simpie editing

.EDIT BLAT.DOC

*R100

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

+D400

#1400

00400 AN ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES
*

Note that the Replace command has the same effect as a Delete
command followed by an Insert command. In order to use insert to
replace a line, the line must first be deleted. The Insert command by
itself does not replace the line specified if it already exists, as in
some editing systems, but instead creates a new line whose number is
equal to the line given plus the line increment {(normatly 100). The
Insert command will always insert 2 new line in a file, never replace
an old one. If the line following the specified line has a line
number less than or equal to the computed insertion line number, then
the insertion is given a number which is halfway between the line
specified and the next line.

123

Example 5 Interpolated insertion

%1200
00250 SINCE THE INCREMENT IS 100, THIS LINE IS HALFWAY
%250

00275 BETWEEN TWO LINES, AS THIS LINE ALSO 1S,
¥

In order to see what your file now looks like, you can use the
Print command to print it on the teletype. The Print command is the
letter P followed by the line number of the line to be printed. The
letter P by itself will print the current line and 15 following lines.
To specify a range of lines, a colon may be used to indicate a
beginning and ending line number specification; see “Specifying
Ranges”, below, for more details on this.

Example & Printing part of a file

*P100:500

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE EDITOR.

00250 SINCE_THE INCREMENT IS_100, THIS LINE IS HALFWAY
00275 BETWEEN TWO LINES, AS THIS LINE ALSO IS,

00300 [N ORDER TQ _GET OUT OF NUMBERING MODE, TYPE
00400 AN_ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES
00500 AS A DOLLAR SIGN.

In addition to the P command, two keys on the teletype will also
" cause printing. A linefeed (in this text,), will print the next
line, and an altmode (escape, shown as a "§") will print the previous
line.

Example 7 Linefeed and Altmode commands

*P300
00300 IN ORDER TO GET OUT OF NUMBERING MODE, TYPE
xkl

00400 AN ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES
- %$00300 IN_ORDER TO GET OUT OF NUMBERING MODE, TYPE
*

i there is too much information to conveniently type on the
" teletype, the L {(List) command may be used to output the lines on the
printer. its format is precisely the same as the P command, except
that if just "L" is specified the entire file is listed. Note that
the file may not come out immediately on the printer, as print files
are queued waiting for the printer to become available. Consequently,
your file may not be printed for some time after the L command
completes. You may continue editing the file, however, since the
information is copied into a temporary buffer and held until printed.
The file name on the listing printed will be of the form “nnnlLPT",

124

where "nnn" is a number assigned by the monitor, and "LPT" indicates a
print buffer file. You should not then be looking for a listing with
the file name printed on the front.

Example 8 Listing a file
L

#I1E

This has printed the entire file on the line printer.

Specifying Ranges

Whenever you wish to specify more than a single line, you may
specify a range. This is done by using a colon to separate the two
line numbers (where the second must be higher than the first). Thus
100:600 specifies lines 100 to 600. Most commands accept a range of
lines to be operated upon, and this is one way of giving that range.
However, in some cases it is easier or more appropriate to specify a
quantity of lines (5 lines, 17 lines, etc) regardless of the line
number of the last line. This is indicated by using an exclamation
point (1) to specify the range: 10013 is line 100 and the following
two lines (so "100!1" is the same as "100").

Example 9 The exclamation point

%P 1004

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE EDITOR.

00250 SINCE THE INCREMENT 1S 100, THIS_LINE IS HALFWAY
00275 BETWEEN TWO_LINES, AS THIS LINE ALSO IS.
kD25012.

%P1004 :

00100 THIS IS AN EXAMPLE OF HOW TO CREATE

00200 A FILE USING THE EDITOR.

00300 IN ORDER 1O GET OUT OF NUMBERING MODE, TYPE
00400 AN ALTMODE (ESCAPE) CHARACTER, WHICH ECHOES
o

125

Intermediate commands

The intermediate editing 'commands are:
C - Copy

T - Transfer

N - Number

W - save World

M - Mark page

G -~ Go

The Copy command copies lines from one place in the file to
- another. The first location specified is the “"destination” line
number. The second location {which may be a range) is the "source”
location, The editor will choose an increment which will allow ail
the specified lines to be copied to the destination without
overflowing; this increment is printed out in the message
"INCi=nnnnn". If the editor cannot compute an increment such that all
tines will fit, then an error message will be typed and appropriate
action will be taken by the editor (see the S0S manual, page 28).

The Copy command can also copy from another file, so that
portions of program files can be extracted to form a new file. Again
for details, consult the SOS manual (page 28).

The Transfer command is much the same as the Copy command, except
that the lines which are copied into the specified destination in the
file are then deleted from the source location.

Note: In the SOS manual it states that Copy and Transfer behave
as Insert, ie, "C200500" would copy line 500 to somewhere after
line 200 (the exact number depending on the line number following line
200). This is not true! The Copy (or Transfer) command will copy line
500 and put it after iine 200, but will also number it 200, giving two
line 200’s. To get out of this problem, use the N command to renumber
the file. The extra line 200 will be numbered correctly.

Example 10 Copy & Transfer commands
.CREATE COPY.DOC

00100 THIS IS
00200 A SHORT

00300 FILE
00400 §
*C150,300

INC | =00050

126

P 100:300
00100 THIS IS
00150 FILE
00200 A SHORT
00300 FILE
#T3%50,100
+P100:400
00150 FILE
00200 A SHORT
00300 FILE
00350 THIS |

*x

The'Number command is used to renumber files. This is usually
done after a number of insertions have been made and no more room
exists between line numbers for further insertions. The simplest form
of the Number command is simply the letter N, which renumbers the
entire file with an increment of 100. For more information on the
Number command, see the S0S manual, page 13. :

Example 11 The Number command

P 100:400
00150 FILE
00200 A SHORT
00300 FILE
00350 THIS IS
kN
%P100:99999
00100 FILE

- 00200 A SHORT
00300 FILE

00400 THIS IS

The W command is particularly useful to the beginner. The W
command makes permanent all changes made in the file up to the time it
is given. Changes made in a file are temporary until either a W or an
E command is given. There are two reasons you should do a W command
often: 1) The system could crash, and all editing done would be lost
when it came back up, or 2) you might attempt using some new command
(say, "substitute", a somewhat tricky one), and confuse your file to
the point where you cannot recover the text you started with. In
either case, the loss will be back to the tast "EDIT" command to the
monitor, or the last W command to the editor. By giving permanence to
those changes whose accuracy you are certain of, you will avoid losing
time in re-creation of those changes, or perhaps the entire file.

Fages

Files can be divided into logical subunits. termed "pages". A
page in the SOS editor is merely a collection of lines. [t may be
less than one physical printer page, or it may be several physical
printer pages. When we need to make a distinction, we will call the
SOS pages "logical pages” and the printer pages “physical pages". We

127

will use the term "page" ordinarily to mean a logical page. To
indicate the separation into logical pages, a "page mark"” is inserted
into the file by the Mark page command. The Mark page command places
a page mark immediately before the line number specified. Each page
is numbered separately, and hence you may have several line 100’s in a
file. In order to specify what page you are on, use the slash (/} in
the line number specification, with the page number following the
slash. Line 100 on page 1 is then designated as "100/1". To minimize
the amount of typing required, the editor remembers what the current
page is, and subsequent commands need only specify the line number on
the current page.

Example 12 Multipage file

%P100:400
00100 FILE
00200 A SHORT
00300 FILE
00400 THIS IS
*M300
*P100/1:400
00100 FILE

00200 A_SHORT
*P100/2:400

00300 FILE
00400 THIS IS
%N
*P100/1:400/2
00100 FILE
00200 A SHORT
PAGE 2

00100 FILE
00200 THIS IS
X

When listed on the line printer with an L command, each page has
the page number printed in the upper left. The form of this page
number is the logical page number followed by a hyphen followed by the
physical page number (recall that logical pages can be longer than
physical pages). The physical page number is reset for each logical
page, so that the numbers proceed as "1-1, 1-2, s, 1-n, 2-1, 2-2,

“. When usmg a listing as a guide to editmg, remember thai the
first number is the page number that SOS uses, eg. when correcting
page 4-15 specify "/4" for the page number.

There are two other special characters which you can use to
designate lines in the file. The period {) is used to designate
either the current line or the current page, depending on where it is
used. |If it is used in the line position, it is the current line; if
in the page position it is the current page. ¥ page 2 is the current

128

page, and line 100 is the current line, then "./2" is “100/2", "./1"
is "100/1", "200/." is "200/2" and of course "/ is the current
line, 100/2. The asterisk is always the last line on the page
indicated. If the current line is 100/2 in the file of example 12,
then "+" is "200/2" and "#/1" is "200/1". |f the line number is
omitted but a page number is given, it means the entire page, eg.,
"P/2" is the same as "P0/2#/2". For more details on specifying
ranges, see the SOS manual, page 7.

Example 13 Period and asterisk designators

Q
Q
o
<
M %

—

|

E
SHORT

<
<
™
o
o
>

EW LINE

o
Qo
F=
o
o
m =2

ILE
00200 THIS IS
00300 NEW LINE
KkPx/1:%/2

00200 A SHORT

PAGE 2

00100 FILE
00200 THIS IS
00300 NEW_LINE
%P/ 1:/2

00100 FILE
00200 A SHORT
PAGE 2

00100 FiLE

00200 THIS IS
00300 NEW _LINE
P, :
00300 NEW_LINE

00100 FILE
50150 INSERTION

00175 ANOTHER

00175 ANOTHER
00200 A SHORT

- Q0100 FILE
00150 INSERTION
00175 ANOTHER
00200 A SHORT

129

*

The Go command is equivalent to the End command in that it terminates
the edit; however, it also causes the last COMPILE, EXECUTE, LOAD, or
DEBUG monitor command to be re-executed. This is a great convenience
when debugging programs.

Example 14 The Go command
.CREATE TEST.ALG

xE
EXIT

.COM TEST

ALGOL: TEST

200 [INCORRECT STATEMENT
REL FILE DELETED

300 UNDECLARED IDENTCTC
ED

%:P200

00200 INTEGRE 1, J, K;
R, |
00200 INTEGER 1, J, K;
*G

ALGOL: TEST

EXIT

130

Advanced commands

The advanced editing commands are:

A - Alter

J - Join

S - Substitute
F - Find

B - Beginning

The Alter command is one of the most useful features of the SOS

editor, - It allows editing individual lines much as the normal edit
commands are used to edit files. You can alter a single letter in a
line, i.e, change it, delete it, or even insert it The full

capabilities of the Alter command are explained in the SOS manual,
page 14 ff; some examples wiil be given here.

Edit commands in intraline edit mode are not echoed by the
teletype. We will indicate this in examples by showing the edit
commands in lower case. One exception to this will be the altmode

character, which will still be a dollar sign. Remember that in
intraline edit mode it will not echo. The following notation will be

LU 1]

used: "." will be a space, "B" will be a rubout, "}" will be a
carriage return, and TU will be control-U (the control key and U key
simultaneously).
The set of intraline edit commands is:
~ - Accept the character under the pointer
m - Backspaces the pointer
" C - Chlange the character under the pointer
. D - Delete the character pointed to
| - Insert new characters (terminated by altmode)
)} - Terminate intraline edit
Q - Quit intraline edit without making changes

T4 - Start over
S - Skip

K
R
L
P

Kill

t

Replace

131

Print remaining line and continue edit

Print remaining line and resume edit

For explanations of the commands, see the SO$ manual, pp 15-17.
With this as a guide, you may follow the examples below. In these
examples, a } is a non-echoed carriage return; 2 B is a non-echoed

rubout, and 2 . is a non-echoed space.

Example 15 intraline skip and insert
¥P/1

00100 FLE

00150 INSERTION

00175 ANOTHER

00200 A _SHORT

*A150

00150 seiNSi*++$)JERTION
*P.

00150 INS:#k:kkERTION

®

Example 16 Intraline delete and Kkill
*P150

00150 INS:#:k:ERTION

XA,

00150 ssINd\\S J\\:kxkERTION
*P.

00150 IN:kk:ERTION

kA,

00150 s»{Nkr)\xkkEJ\\RTION
*P,

00150 INRTION

¥

You may precede a command with a number which causes it to be

repeated, e.g.

"2sa" is equivalent to "sa" followed by another "sa". _

132

Example 17 Intraline skip and change

*¥1150

00175 THIS IS A (SMAPLE(LINE
XA,

-02175 2s(THIS IS A (SMAPLEc))_LINE
00175 THIS IS A (SMAPLE) LINE

:l._‘

Example 18 Intraline accept and rubout

*P17%

00175 THIS IS A (SMAPLE) LINE

%A,

00175 B3ssTHIS IS A (2..SMm\\M2c\\AMIPLE) LINE
%P.

00175 THIS IS A (SAMPLE) LINE

*

One of the most common errors made in using the Alter command is
failure to type the altmode terminating an Insert within the line.
This - has the effect of terminating the line being edited and beginning
a new line. Although a sometimes desired effect, such as in indenting
Algol program files, it is more often just an error. Should you type
a) after an insertion, and get a new line number instead of the rest
of the line, just type the altmode and] again. You now have two
lines where you had one before, and the Join command can undo this.
To use the Join command, type J followed by the original line number.

Example 19 The Join command

*P175

00175 THIS IS A (SAMPLE) LINE

KA. :

00175 s)THIS IS A (SAMPLE..)i OF Al
00187 $J_LINE

%P17512

00175 THIS IS A (SAMPLE) OF A
00187 _LINE

#J175

%P175

00175 THIS IS_A (SAMPLE) OF A LINE
*

The Find command may be used to locate known strings in a file
when their line numbers are not known, or to check a file for
occurrences of strings. The basic format of the Find command is the
letter F, followed by a string to be searched for, followed by a

133

altmode, followed by a range specification. Again, more details may
be found in the SOS manual, pp 23-25. When a string is located, the
line containing it is typed out and search is suspended. To resume
the search with the same string, only an F followed by an altmode is
required.

Example 20 The Find command

EDIT SOME.BLI
%FLOCALS/1
*

{There were no occurrences of "LOCAL" on page 1)

KkF§/2 :

00150 LOCAL A, B, C;

kF8

00300 LOCAL AARGH BLAT[5);
*F$.+1:/99

PAGE 6

00400 MEASURES LOCALIZED PHENOMENA SUCH AS
*F$

|

If you give further Find commands without specifying a range, no
more strings will be found, since the current line position is the end
of the file. To reset the file position, you could either specify the
first line of the file as the lower bound of search, eg,
“"Fstring$100/1:/999", which is clumsy, or, more simply, you could use
the Beginning command to reposition the file,

If you are not interested in stopping at each line where the
string is found, you can give a parameter to the Find command which
telis how many occurrences to print and bypass before stopping. To

find ali occurrences in a file, use some large number such as 999 or
99999.

Exame’ le 21 The Begin and Find commands

 Assume the file is in the state it was left in at the end of
example 20.

*F§,

%B

*F$,999

PAGE 2

00150 LOCAL A, B, C;
00300 LOCAL AARGH BLATIS];

134

00400 MEASURES LOCALIZED PHENOMENA SUCH AS

The Substitute command is similar to the Find command, in the
sense that a string is searched for; in addition, a second string is
substituted for the one found. The format of the Substitute command
is the letter S followed by the string to be searched for, followed by
an altmode, followed by a siring to replace it, foliowed by another
altmggeé;ollowed by a range. For more details, see the SOS manual,
pp e/,

Example 22 The Substitute command

Assume the file is in the state it was left in at the end of
example 21.

*B

*SLOCALSOWNS

PAGE 2

00150 OWN A, B, C;

00300 OWN AARGH BLAT{5);

PAGE 6

00400 MEASURES OWNIZED PHENOMENA SUCH AS

As you see, the string substitution also replaced the occurrence
of "LOCAL" in line 400/6. This is one of the most common errors made
with the Substitute command. In this example the Substitute command
or the Alter command may be used to correct the problem; in another
example it may be neither simple or even possible to undo a bad
substitution. For this reason, we recommend giving a W command before
doing a Substitute. If the Substitute command then destroys part of
the file, abort the edit without making the changes permanent by
typing TC {(controt-C), and typing EDIT again. Since you are editing
the same file, the file name need not be given.

Example 23 Aborting an edit

Assume the file is in the condition it was in at the end of
example 22.

®TC

EDIT

TEMPORARY EDIT FILE ALREADY EXISTS! DELETE? (¥ OR N)
=Y

*P400/6

135

00400 MEASURES LOCALIZED PHENOMENA SUCH AS
*P150/2

00150 LOCAL A, B, C;

*

The message about the temporary edit file may not be typed if the
editor was left in a state where the temporary file did not exist.

136

Miscellany

In addition to the commands discussed here, there are several
others of marginal interest. One of the most usefu!l of these is the
"=" command, which types out information contained in the editor. Hs
format is "=" followed by the name of the internal parameter to be
displayed. The command is discussed more fully on pp 20-21 of the SOS
manual. The most useful parameters to display are the current line
(), the number of pages in the file (BIG) and the current line
increment (INC).

Along with the "=" command there is the complementary “set”
command which is a left arrow (¢). This is used to change the values
of the internal parameters. This is discussed on pp 19-20 of the
manual. The most useful parameter to set is the line increment (INC).

Example 24 The = and « commands

EDIT HUGE.BLI

*=BIG

62

*P100/41

00100 INCR | FROM | TO .N DO
100/41

1,25

00125 BEGIN A«5; Xe.Y<3,2>;
00150 $§

£=INC

00025

HeINC=

5

00130 BLAT(% THUD(.Q)
00135 END;

00140 §

X

00135/41

Removing line numbers

In some cases it is necessary to remove the line numbers wricl:l'
SOS places in the file. To do this, you may use PIP with the "/N
switch, as shown in the example below. :
Example 25 Removing line numbers
.R PIP
*BLAT.DOC/N«BLAT.DOC

*1C

137

Using terminals with both upper and lower case

Some terminals are available with both upper case and lower case
letters, notably the ARDS display and the Western Union 300 terminals.
The PDP-10 monitor, however, always translates lower case input into
upper case unless instructed otherwise. S0S also assumes the terminal
has only upper case letters unless instructed to the contrary (except
for the ARDS display, which SOS knows has lower case). The example
below shows the commands necessary to use such terminals.

Example 26 Using a terminal with lower case

JTY LC

.edit garble.doc

*em37 .

®kpl100

00100 This document describes the GARBLE system of
X

Note that when using the WU300 terminals, the "all caps" switch
must be turned off, or the terminal will convert lower case letters to
upper case letters before transmitting.

When in intraline edit mode, a "skip" or "kill" command will
interpret its argument in the exact case it was typed in. Thus in the
last example, a skip to "r" from the beginning of the line will stop
in "describes”, while a skip to "R" will go (from the beginning of the
line) directly to the R in "GARBLE"

Using terminals with only upper case

Most terminals available are Teletype model 33 terminals, which
have only upper case letters. Occasionally it is necessary to create
or edit a file containing both upper case and lower case letters on
one of these terminals. S0OS allows the case of the input character to
be shifted by preceding it with a question mark (?). In normal mode,
- for example, "A" represents "A", and "?A" represents "a". By changing

the mode, "A" will represent "a" and "?A" will represent “A". This is
shown in the examplie below.

Example 27 Lower case from a teletype

.EDIT GARBLE.DOC

*P100

00100 T2H2?S ?2D?0?CPUPM?EZN?T ?D?E?S?CIR??B?E?S ?T?H?E GARBLE
?S?YPS?TPE?M ?Q7F

HeLOWER

*P100O

00100 ?THIS DOCUMENT DESCRIBES THE ?G?A?R?BIL?E SYSTEM QF
*

Example

WCOONO O b WN -

138

LIST OF EXAMPLES
(See index for page numbers)

Description

Creating a file

Terminating an edit

Typing a file

Simple editing

Interpolated insertion

Printing part of a file
Linefeed and altmode commands
Listing a file

The exclamation point

Copy and Transfer commands
The Number command
Multipage file

Period and asterisk designators
The Go command

Intraline skip and insert
Intraline delete and kill
Intraline skip and change
Intraline accept and rubout
The Join command

The Find command

The Begin and Find commands
The Substitute command
Aborting an edit

The = and « commands
Removing line numbers

Using a terminal with lower case
Lower case from a teletype

139

INDEX
{1), command 123
(1), example 123
1), line feed 123
(m) (backspace pointer), example 132
(@) (rubout, backspace pointer) 130
{_} (accept character), example 132
{.) (accept character), intraline 130
{}) (carriage return), example 131,
() (carriage return), intraline 130
) 124
(!), example 124,
(8) Altmode 121,
(8), command 123
(8), example 121,
() Last line on page 128
(*), example 128
{.), example 131
{.), Current linefpage 127,
(.), example 128,
(/} Page specifier 127
{/), example 127,
) 124
(:), example 123,
(=), command 136
{=), example 136
{«), command 136
{«), example 136,
A (Ailter), command 130
A (Alter), example 131,
Aborting an edit 134
Advanced commands 130
Altmode 123
Altmode, example 121,
Asterisk, example 128
Asterisk, line specifier 128
B (Beginning), command 130,
B (Beginning), example 133,
Basic commands 121
C (Change), example 132
C (Change), intraline 130
C (Copy), command 125
C (Copy), example 125
Colon 124
Colon, example 123,
Commands, advanced ' 130
Commands, basic 121

Commands, intermediate 1256

132
132
123
123, 125, 128

136
131, 132, 133, 136

128, 131
126

137

132

123, 125, 128

133
134

126

140

CREATE i21, 129
D (Delete character), example 131

D (Delete character), intraline 130

D {Delete), command 122

D (Delete), example 122, 124
E (End), command 121

E (End), example 121, 129
EDIT command 122, 129, 134
Example 1 121
Example 2 121
Example 3 121
Example 4 122
Example 5 123
Example 6 123
~ Example 7 123
Example 8 124
Example 9 124
Example 10 125
Example 11 126
Example 12 127
Example 13 128
Example 15 131
Example 16 131
Example 17 132
Example 18 132
Example 19 132
Exampie 20 133
Example 21 133
Example 22 134
Example 23 134
Example 24 136
Example 25 136
Example 14 129
Example 26 137
Example 27 137
Examples, list of 138
Exclamation point 124
Exclamation point, example 124, 132
F {Find), command Loran, 132, 132
F (Find), example 133

G (Go), command 125

G (Go), example 129

| (Insert character), example 131

i (insert characters), intraline 130

| {Insert), command 122

| {Insert), example 122, 123, 136
Index 139
Intermediate commands 125

Interpolated insertion 123

J (Join}), command
J (Join), example

K (Kill), example
K (Kill), intraline

L (List), command
L (List), example

L {print Line, continue), intraline

Line feed

Line feed, example
Line feed, command
Line numbers, removing
List of examples
Logical pages

Lower case terminals
LOWER command

M (Mark page), command
M (Mark page), example
M37 command
Miscellany

N (Number), command
N (Number), example

P (Print line, resume), intraline
P (Print), command

P (Print), example

Page marks

Pages

Pages, logical

Period, example

Period, line specifier

Period, page specifier

PIP

Q (Quit edit), intraline

R (Replace), command
R (Replace), example
R {(Replace), intraline
Ranges, specifying
Removing line numbers

S (Skip), example

S (Skip), intraline

S (Substitute), command
S (Substitute), example

Set command

Space (accept character)
Specifying ranges

141

130,
132

131
131

122
124
131
123
123
123
136
138
126,
137
137

125,
127
137
136

125,
126,

131
122
123,
127
126,
126,
128
127
127
136

130

122
122,

124
136

131,
130
130,
134
136
130
124

132

127

126

126
127

124, 128
127

127

129

132
134

T (Transfer), command

T (Transfer), example
Terminals with lower case
Terminals with upper case
TTY LC command

Upper case terminals
W {save World), command

TU (Restart edit), intraline

142

125
126
137
137
137

137
125, 126, 134
130

=T43-

TECQ - Text Editor and Corrector

Script: T. Teitelbaum

TECO edits files recorded in ASCII characters on any standard device.
It can perform simple editing functions as well as sophisticated search,
match, and substitute operations, and operate upon arbitrary length character
strings under control of commands which are themselves character strings
{and can exploit this recursiveness).

The following script will show the uses and methods of TECO.

REFERENCES

(1] PDP-10 Reference Handbook, pp. 501-523,

<SCV(Ft

e e e

TECO I5 A TEXT EDITOR. THE TEXT REING EDITED

IS STORED A5 A SINGLE CHARACTER STRINMG IN THE
TECO BUFFER. THIS BUFFER 15 ALWAYS JUST AS LONG
AS THE STRINMG IT CONTAINS. THE BOUNDARIES OF THE
BUFFER CELLS ARE NUMBERED STARTING TO THE LEFT OF

Z THE FIRST CHARACTER WITH 7ZERQ0. THE INDEX QF THE
BOUNDARY TO THE RIGHT OF THE LAST CHARACTER 1S5
KNOWN AS "7". THUS, THE BUFFER CONTAINING THE
STRING "ABCD" MAY BE PICTURED AS

AlB|C|D
A1 2 3 &4=7 .

M, N A SUBFIELD OF THE RUFFER IS DESIGNATED BY THE
INTEGER PAIR “M,N' WHERE WM<N. THUS, IN THE
EXAMPLE ABOVE, THE SUBFIELD "1,3" CURRENTLY

H CONTAINS THE STRING 'BC". WE MAY REFER TO THE
WVHOLE BUFFER RY "H" WHICH IS REALLY JUST AN
ABREVIATION FOR "@,7'" .

2 TEXT IN TECO HAS NO LINE NUMBERS, UNLIKE 505
OR EDITOR. THE RETURN KEY OF THE TELETYPE 1S TREATED
LIKE ANY OTHER SYMBOL, WITH THE EXCEPTION THAT
IT IS INPUT TO THFE BUFFER AS THE TVW0 CHARACTERS
“CARRIAGE-RETURN®" AND "LINE-FEED*" . THUS, THE
L INE

ABCD
~

WILL AFPPEAR IN THE BUFFER AS

[A]B]C]D fcel 4]
@1 23465 6=7 .

. ASSOCIATED WITH THE BUFFER I5 A CURSOR WHICH CAN
BE MOVED TO POINT TO PLACES OF INSERTION,
DELETION, ETC. THE CURRENT BOUNDARY
POSITION OF THE CURSOR IS5 KNOWN AS "." .

* TECO SIGNALS THAT IT IS5 WAITING FOR COMMANDS
BY TYPING A "% . ARBITRARILY MANY COMMANDS
5% MAY BE STRUNG TOGETHER IN A COMMAND STRING

WHICH IS TERMINATED BY TW0O ALTMODES (ESC ON
SOME TELETYPES). NOTE THAT THE ALTMODE ECHOS
AS A "S$" . ON RECEIVING THE "$$" TECO WILL
INTERPRET THE COMMAND STRING FROM LEFT TO
RIGHT, THEN RETURN TO THE USER FOR MORE WITH
A ar *Ol

LET US NOW USE TECO IN ORDER T0 CREATE

A NEW FILE NAMED "SCRIPT.TEC™ .

REMARKS ADDED AFTER THE SESSION WILL APPEAR
INTERMITTENTLY AND WILL RFE INDENTED.

file:///JW/cJd/

MHKE SCRIPT.TES

¥en17.=%%
/]

)

1T

w TARLD
RHTYY
ALGID

LT YALS S
O

6

¥ THFOT
1.JK].
MEHOT

%%

*#1THS
ARGD
IR R L
10K,
Mo

E SN S S

7]
#CCamhT
2
Lt s A 23 3 A
4

+ODLY
*e=h'h

@ _
A 0=-O0DUHT ST
RO
1.1,

0, GKHTS S
LK,
FHIL S

-145-

WE ENTFR FEOM PDP=-19
MNEITH® MODE YITH THE

CLL COXMAND “MAvE".

THIS 15 UIED YHE! A NEW
FILF 15 BEING COUSTRUCTED.

VHAT 15 THE VALUE OF “2% 7
WHERE 1S THE GIRSOR?

WHERE 15 THE CURSOR AMND WHERE 1S
THFE ENN OF THE BUFFER?

AN ALTMODE BETWEEM COMMAMDS
I5 OFTIONAL TO IMPROVE CLARITY.

TYPE THE ”HOLE BUFFER. IT'S EMPTY.
INSERT THE LIME *“ABCD*" AND.
TYPE VHOLE BUFFER. THE TEXT OF. THE

INSERTION STOPS AT THE FIRST ALTMODE *“'s*.

WHERE IS CURSOR AND END OF BUFFER?
CURSNR IS AFTER LAST INSERTION.

BIUFFFR SIX LONG (REMEMBER 2 FOR RETURN.)
INSERT SOME MORE LINES. INSERTION
ALYNYTS MADE AT POINT OF CURSOR.,

TYPE WHOLE BUFFER.

MOVE CURSOR TO BEGINNING OF BUFFER.
ADVANGE CURSOR TWO.
MOVE CURSOR TW0 BACHK.

DELETE 6 CHAR TO RIGHT OF CURSOR AND LEFT
ADJUST STRING IN BUFFER.

JUMP CURSOR TO END, DELETE 6 CHAR TO LEFT,
TYP)E WHOLE BUFFER.

KILL SURFIFLD BETWEEN @ AND 6.
NOTE THAT @,6D WON'T WORK.
KILYL THE WHQLFE RUFFER.

&

* IONE
TVO
THEE

$%
*¥~2T%%
TWO

THEE
*-LTES
THEE
*CCTSS
EE

*IR%S
*(OLT$$
THREE
*LIFOR
FIVE

5%
*JSFOLTSS
R
*JUSALTHRS
FOUR
*ISIX
SFVEN
EIGHT

£%

*HTS$ %
ONE

TWO
THREE
51%
SEVEN
EIGHT
FOUR
FIVE
*JSSIXTML.=5%
17
#3LTHS
FOUR

*] 7, XN%ES
*17,«K3%
*HTS &
ONE

TWO
THREE
FOUR
FI1VE

SIX
SEVIEN
EIGHT
*=HSSH
*¥72.]=-72T% %
FIVE

51%

* X545

EXIT

-146-

WE INSERT S0ME LINES 50
WE CAN EXHIBIT THE LINE
ORRIENTED COMMANDS.

TYPE THE PREVIQUS 2 LINES.

MOVE CURSOR BACK A LINE

AND TYPE 1 LINE.

MOVE CURSOR FORWARD 2 CHARACTERS
AND TYPE REST QOF THE LINE.

INSERT THE CORRECTION.

RETURN CURSOR TGO BEGINNING OF LINE
AND TYPE THE LINE.

ADVANCE CURSQR A LINE

AND CONTINUE INSERTING.

JUMP TO @ AND SEARCH UNTIL "F0". NOTE
CURSOR PLACED AFTER PATTERN FQUND.
INSERT CORRECTION AND TYPE LINE.

CONTINUE INSERTIONS.

TYPE WHOLE BUFFER.

WE FORGOT TO MOVE THE CGURSOR BEFORE
THIS INSERTION AND S0 IT was
MISPLACED.

USE SEARCH TQ PLAGE CURSOR
AT LINE SI1X. TYPE CURSOR POSITION.
PLACE CURSOR THREE LINES DOWN.

SAVE FROM 17 TO . IN REGISTER A.
DELETE SAME SUBFIELD IN BUFFER.
JUMP CURSOR TO0 END AND GET (INSERT)
REGISTER A. TYPE WHOLE BUFFER.
THATS BETTER.

DELETE THE PREVIQUS TWO LINES.
ASSURE CURSOR AT END AND TYPE
PREVIQOUS TW(Q LINES.

EXIT. THIS WILL WRITE QUT THE BUFFER
TO THE OPENED FILFE "SCRIPT.TEC"
AND RETURN U5 Ta PDP-1¥ MONITOR MODE.

-147-

< TECO SCRIPT.TEC EN-~ING EXISTING FILES 15 DONE WITH A TECO
COMMAND WHICH FETCHES THE FIRST FEW CHARS.
*1PA0A<A>SS A BACKUP FILE (E«G. SCRIPT.BAK) 1S ALSO MADE.
*HTSS THE REMAINDER OF THE BUFFER IS FILLED USING
ONE THE APPEND COMMAND. VALUES GREATER THAN
TWO ‘ 1668 MAY BE NEEDED FOR LARGE FILES.
THREE MAKE SURE YOUR BUFFER IS FULL BY TYPING IT OR
FOUR ' THE LAST FEW LINES OF IT.
FIVE
SIX
*J5<$S ' . HERE 'SPECIFIC®' ITERATION 1S USED TO CHANGE
$~-2D1 $>%% THE FIRST 5 OCCURANCES OF CARRAGE-RET/
*HTS$S LINE FEEDS TO BLANKS. THE COMMANDS IN THE
ONE TW0 THREE FOUR FIVE S5IX BRACKETS ARE REPEATED AS MANY TIMES AS IS SPEC
#J<S $3-DI *ARBITRARY' ITERATION (INDICATED BY THE
. $>335 ABSENCE OF A NUMBER AND THE PRESENCE OF A ;)
*HT$$ _ ITERATES UNTIL THERE IS NO MATCH, THEN THE.
ONE BRACKETS ARE EXITED.
TWO
THREE
FOUR
FIVE
SIX
%*J5<5S
$-DI
$>55
#HTSS
ONE
TWO
THREE
FOUR
FIVE
SI1X
*J<S50%;OLTSL>%S A FREQUENT USE OF ITERATION IS TO "PRINT ALL
ONE OCCURANCES".
TWO
FOUR
*HTS$S
ONE
TVO
THREE
FOUR
F1VE INTERPRETATION OF THIS COMMAND STRING IS LEFT AS
SiX AN EXERCISE TO THE READER.
*PUASJI<S

$:-2C%.~RAUBSQAC-QB"LABUC'$.+2UASL>350UASJISQAC+1UCS<S
$3-2Ce.~QAUBSQA+QC+2UASBLSAC-QB<] $>L>HT$$
ONE
TVWO
THREE
FOUR
FIVE
51X
HEXSS

EXIT

-

-148-

XCRIBL---A Hardcopy Scan Line Graphics System for Document Generation®

R. Reddy, W. Broadley, L. Erman, R. Johnsson, J. Newcomer, G. Robertson and
J. Wright

in certain areas of computer science research, conventional line printers and
graphics terminals have proven to be inadequate output devices. Typical problems
such as a display of digitized (speech or visual) data require either displaying a very
Jarge number of (flicker-free) vectors or simulating gray scale output. The need for a
hardcopy computer output device capable of producing arbitrary type fonts, graphics,
and gray scale images has been obvious. The XCRIBL system, developed at Carnegie-
Mellon University (CMU), using a Xerox Graphic Printer (XGP) driven by a minicomputer
represents an inexpensive solution to the problem. Careful design of data structures
and interface permits the minicomputer to generate each scan line for the XGP as
needed without having to resort to brute force solutions. Although the XGP was
designed over ten years ago, it had not found wide acceptance as a computer output
device because of the excessive processing time and memory requirements of scan-
line generation.

The XGP is a facsimile copying machine originally designed for transmission of
documents over high bandwidth telephone lines. It has adjustable resolution; the one
described here is operated at 192 points per inch which is equivalent to an image of
approximately 3.5 million bits for an 8%x11 page. Because of its high resolution each
page can contain information equivalent to two pages of conventional computer listing.
The XGP printer is a synchronous device, requiring a complete raster line every B
milliseconds. in order to make the project economically reasonable, a decision was
made to use a low-cost minicomputer, a Digital Equipment Corporation PDP-11, with a
28k (16 bit) memory. The limited computing power of the machine influenced many
design decisions, such as the inciusion of "modes” of operation of the interface.

The usual Xerox process consists of reflecting light from a printed page onto a
selenium drum. The change in electrical charge on the drum caused by the light is
used to transfer the "toner” to paper, where a high temperature "fuser" makes the
image permanent, Instead of refiected light, the XGP uses the image generated on a
cathode-ray tube, one scan line at a time. The image on the CRT is produced by
facsimile transmission or, in this case, under computer control. The image is
transferred to unsensitized 84%x11 inch continuous roll paper at a speed of 1
inch/second; the paper may be cut to size automatically under computer conirol.

The PDP-11/XGP system operates as a peripheral device to the main computer, a
PDP-10. The character se! descriptions for various type fonts may be stored on a

tThis research was supported in part by Xerox Corporation and in part by the
Advanced Research Projects Agency of the Department of Defense under contract no.
F44620-70-C~0107 and monitored by the Air Force Office of Scientific Research. We
would like to thank Bill Gunning, Dave Damouth, and Louis Mailloux of Xerox
Corporation for their help and assistance.

-149-

small head-per-track disk connected to the PDP-11, or kept on the PDP-10. Text and
graphic information are transmitted as needed from the PDP-10 across a high~speed
data link (160,000 bits/sec). In addition to textual and graphic information, the data
from the PDP-10 may also contain special purpose control information such as
changes of type fonts, variations in margins, and special formatting requests such as
line justification.

An interesting feature of the system is that every aspect of the output device now
becomes a variable when compared with conventional line printers. The character
sets, size, all margins, interline spacing, and page size are all variable, and can be
changed dynamically during the output of a document.

Representation of Information

Characters are represented internally as a rectangular bit matrix. Each row of the
matrix requires an integral muitiple of 8 bits (the byte size of the PDP-11), aithough
not all the bits of the last byte may be used. Characters may be any width from 0O to
255 bits wide and {theoretically) up to 2"~1 bits high.

Vectors are represented in a conventional scan line format. This format is
necessarily different from the ordinary representation of vectors, since for most
graphics terminals the entire screen is randomly accessible. In video terminals and
hard-copy scan line devices the data must be presented in the order that the scan -
lines are generated. A software solution to the problem of vector intersection with
scan lines was chosen in order to retain the capability for flexible formatting of the
output. Vectors are processed in real time, and the available computing power limits
the number of vectors which can cross any scan line.

Gray scale representation is achieved by dividing the page into 1/25 inch squares
(an area of .0016 square inches) in which an appropriate number of bits is set to
black to represent darkness. This is achieved at present by using a rectangular spiral
representation of increasing darkness. Generation of gray scale images thus turns

out to be a special case of textual output in which a special gray scale type font is
used.

The generation of a scan line which contains both textual and graphic infermation
is not a problem for the PDP-11 if the text and graphics is non-overlapping. if the
latter is not the case, then one has to resort to an off-line solution of generating the
bit image on the PDP-10 or restricting the character set to only fixed-width
characters. This is a restriction in the present system but may not be permanent.

MPLEMENTATION

In this section we provide a description of the overall implementaion of the
system. More detailed descriptions of the various aspects of the system may be found

in [1}

-150-

The Interface

The purpose of the interface between the PDP-11 and the XGP is to accept a
coded scan line from the PDP-11 memory and decode it into a video signal, every 5
milliseconds. A scan line is a bit vector of about 1550 points, in which each point is
either on (black) or off {white). There is no gray scale available at this level. The
interface has facilities for handling three different modes of data and means for
switching between modes, as well as providing control and interrupt functions. The
modes available are "character mode”, "vector mode", and “image mode".

In the character mode, the first byte sent to the interface represents the number
of valid bits (and consquently, the number of following bytes) which contain the data.
When the width count is given as zero, then the next byte represents a mode change
(to either vector mode or image mode) or a stop code, indicating completion of the
data. :

In the vector mode, each pair of bytes represents a run-coding of (part of) the
data. The first byte of the pair represents the number of white points and the second
byte represents the number of black points. When two successive bytes are zero,
the interface reverts to character mode.

in image mode, every bit is treated as video information until an error condition
occurs, typically "overscan”, at which point an interrupt is caused for restart of the
next scan line. Because of the high data rate required, this is the only mode which
cannot operate in real time from the PDP-10; for this mode, the scan line images are
first sent to the PDP-11, where they are accumulated on the disk before being
transferred to the XGP.

The support system

There are two components to the support system; one resides in the PDP-11; the
other operates as a user program in the time-shared PDP-10. The purpose of the
PDP-11 support system is to generate the scan line data needed by the XGP. The
support system also services interrupts from the PDP-10/PDP-11 link, examines the
incoming data for control information, and selects type fonts from the disk as needed.
All of this is done subject to the real-time constraints of the XGP.

The part of the support system which resides in the PDP-10 provides the users
with the facilities of sending text, vectors, and character sets across the link. It also
provides for conversion of vectors from conventional format to scan line format.

The Character Set Design System

BILOS is a system for the creation and modification of character sets and has many
facilities that are common to other interactive editing systems. Rather than
manipulating lines of text, BILOS manipulates the rectangular bit matrices which define
characters. Any bit of a character matrix may be set or reset by moving a cursor o
the appropriate point on a grid and issuing a command.

-151-

In addition to these manipulations, the system has facilities for copying,
substituting, transiating, rotating, stretching, shrinking and reflecting characters. The
system currentiy runs on a storage screen display terminal connected to the PDP-10.

Document Generation Languages

The XGP provides a powerful and flexible tool for the production of printed
documents. Since there is a very low cost associated with producing a copy of a
document, the user is free to experiment with type fonts, typographic style, physical
arrangement of the text and iliustrations, etc., until the desired document is produced.
The flexibility of type fonts allows mathematical or technical notation to be used
freely, without the necessity of typing or drawing the symbois on the final document.
Furthermore, the output is "camera-ready"---a distinct advantage in light of rising
publication costs.

Two languages for text preparation exist on the PDP-10 at CMU -- XOFF and PUB.
Both have been modified to interface with the XGP and are documented in manuals
available from the Computer Science Department.

INTRODUCTION TO LOOK

LOOK is a PDP-10 program which transmits information from the 10 to the PDP-11
controlling the XGP. Complete documentation of look is available on file
LOOK.DOC[A730GR02]. Below is the sequence of commands used to print this
document on the XGP. User input is underiined, comments in lower case.

R LOOK

*I0UTA NGR25.KST file name for the a partition character set
*!IQUTB NGRU25.KST | file name for the b partition

*eNL=65 set the number of lines per page to 55
#XCRIBL.XGO name of the file to be printed

*1C

