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Abstract

In rugged terrain, walking robots that select footholds can be more mobile and more
energy efficient than machines that roll on wheels or crawl on tracks. To achieve these
footholds requires calibration of the terrain sensors with respect to the walking mechanism.

We present an implemented technique to calibrate scanning laser rangefinders to legged
robots. The procedure accommodates two scanners, one manufactured by Erim and the
other by Perceptron, and two walkers, a one-legged robot and a six-legged robot. The
technique acquires two sets of corresponding three-dimensional points and identifies the
rigid transformation that maps one onto the other with least squared error, i.e., it solves the
absolute orientation problem.

We report experimental results with the two different scanners and vehicles. For the Erim
and the one-legged robot, the technique achieves an accuracy of 6-12 cm with a precision
no lower than 2-5 cm. For the Perceptron and the Ambler, the accuracy is 2-7 cm with
a precision no lower than 2-5 cm. These results have proven to be satisfactory for con-
structing terrain maps and using them to select footholds during our rough terrain walking
experiments.



 



1 Introduction

In order to act autonomously and intelligently, mobile robots must be able to sense their
environment, and to relate the sensor readings to their actions. For example, threading a
needle requires coordination of the eye, or whatever senses the relative positions of needle and
thread, and the hand, or whatever acts on them. Similarly, walking requires coordination
of the eye, which senses where on the terrain to place the foot, and the leg, or whatever
supports and propels the robot. This paper presents a technique to establish such "leg-eye"
coordination for a one-legged robot (Figure 1) and for a six-legged robot (Figure 2), the
Ambler prototype planetary rover [2].

Recently, researchers have questioned the need for calibration, and techniques to avoid it
have gained favor. In the case of the Ambler, it is likely that we too could survive without
calibration; because the machine is big, rugged, and heavy, many objects that are obstacles
before the Ambler steps on them are planar afterwards. But for missions to distant, rugged
regions like planetary surfaces, Antarctica, and the ocean floor, survival is not enough.
Energy-efficient locomotion is essential. With a calibrated sensor, the Ambler can select
where to step, and thus can prevent spending significant fractions of the total power budget
on stumbling rather than productive advance. This ability to select footholds is central to
the fundamental advantages of high mobility and energy efficiency that walkers enjoy over
rolling and crawling machines. Achieving those footholds requires calibration.

Other walking robots face the same requirements. However, walkers that rely on a human
operator to designate footholds, such as the Adaptive Suspension Vehicle [12], do not require
an automated solution. Other researchers [3, 6, 14] have concentrated on range imaging for
autonomous outdoor navigation. Although this work has advanced the state of the art in
range image understanding, it does not directly address the calibration issues raised here.
The photogrammetry literature does address those issues, and we will make use of it in
Section 5.

In this paper we present a single calibration procedure that works for multiple scenarios:
the same code calibrates the Erim scanner with respect to a one-legged robot, and calibrates
the Perception scanner with respect to the six-legged Ambler.

The paper is organized as follows. In Section 2 we define the problem. Next, we describe
in detail how to acquire two three-dimensional point sets, one in a vehicle-centered reference
frame (Section 3), the other in a sensor-centered reference frame (Section 4). Then we show
how to identify the rigid transformation that best relates the two point sets, i.e., we present a
solution to the absolute orientation problem. In Section 6 we report experimental results on
accuracy, precision, and execution time. We conclude by discussing possible improvements
and extensions.



Figure 1: Experimental setup with one-legged robot
The figure shows the prototype leg, the calibration target on the upper leg, and the Erim laser
scanner mounted above the leg.



Figure 2: Experimental setup with six-legged robot
The fisuro shows the Ambler, and the Perceptron laser scanner mounted on the bridge between the
two log stacks. The calibration targets, mounted on the top face of the vertical leg links, are not
visible.



2 Problem Definition

The overall problem is to identify the rigid transformation relating a vehicle-centered ref-
erence frame to a sensor-centered reference frame. The origin of the scanner frame S is
attached to the scanner and lies somewhere nearby it. The coordinates of a point referred
to this frame will be written in lower-case, e.g., ?s = [x,y, z]T. The origin of the body frame
B is attached to the walking robot. The coordinates of a point referred to this frame will
be written in upper-case, e.g., ?B = [X,YJZ]T

1 to distinguish it from points in the scanner
frame.

We attach a number T of targets to the legs. Then, we move the legs to a number L
of different stations. At each, we identify the position ?B of each target in the body frame
(by reading joint positions and using known kinematics, see Section 3), and we identify
the position fs of each target in the scanner frame (by image analysis, see Section 4).
After acquiring a sufficient number of pairs of measurements, we seek the rotation R and
translation t that refer a vector in S to B:

l<i<LxT 7 ' (1)

where

• t = [tXJty,tz]
T is the translation vector relating the two origins, and

• R is a 3 x 3 rotation matrix (det R = +l1R- rR = I).

In practice, it is unlikely that R and f exist that satisfy Equation 1, because measurements
are not exact and may be contaminated by noise. Instead, we seek R and f that best satisfy
Equation 1 in the least-square sense.

Problem Statement Find R and t minimizing the sum of squares of errors

LxT

mf, (2)
{.ft

where

|£|]2• ||£|]2 = £ - x in the square of the length of the vector x, aad

• the error of the itk pair of measurements is 5 = flew — Rrk ~* *•

This problem is closely related to a number of other problems that arise in photogram-
mefcty and computer vision. Given the pairs- of measurements^ the problem is equivalent to
the absolute orientation problem in photogrammetry, Bud to the exterior orientation part
of the camera calibration problem in computer visioa (see Chapter 13 of [7], and references
therein).
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Figure 3: Reference frames for one-legged robot

3 Target Location in Body Coordinates

This section describes the procedure for measuring the target locations fB assumed in the
problem statement in Section 2. With the leg at one station, the procedure produces a set
of measurements {fB}j where fBi = [Xi,Yi, Zi]T, 1 < i < T. Repeating the procedure for a
number L of stations yields a set of measurements of cardinality L x T .

3-1 Single-Leg Prototype

For the one-legged prototype, the origin of B coincides with the shoulder joint, and lies at
the center of the supporting shaft, on the plane of the upper arm (Figure 3). Calibration
targets (pieces of reflective tape) axe attached to the upper leg.



We now describe how the target coordinates axe computed, beginning with the Z-
component. Since the upper leg can not move relative to the hip (where the forearm meets
the upper leg), the targets lie at fixed and measurable distances from the hip. We manually
measure the constant vertical distance from each target to the hip; let us call it Z'target- We
also manually measure the constant vertical distance from the hip to the origin of B; let
us call this Zhip. Then the vertical distance from a target to the shoulder is a constant:
Z =s Zkip + Ztarget* Since all points on the upper leg are below the shoulder (the origin of
B), and the Z-axis points upward, it follows that Z < 0.

It remains to determine the X and Y coordinates of a given target. This reduces to the
identification of the planar position of the hip from two joint angles and two link lengths,
which is an easy kinematics problem whose solution is not discussed here.

3-2 Six-Legged Ambler
For the six-legged Ambler, the origin of B lies at the center of the downward-facing surface
of the structural bridge that connects the two leg stacks and supports the scanner (Figure
2). Calibration targets (pieces of brown paper) are attached to the top of the vertical links.

The joint angles and link lengths are known, so elementary kinematics suffice to determine
the target coordinates with respect to B. Unlike the previous section, the solution is not
easy to derive immediately, because the geometry of the Ambler legs is more complex.

4 Target Location in Sensor Coordinates

This section describes the procedure for measuring the taxget locations fs assumed in the
problem statement in Section 2. It begins by describing the Erim and Perceptron sensors
and their common reference frame. It then presents a procedure that starts with the sensor
images, analyzes them to identify the taxget locations in image space, maps the image
locations to a spherical-polar space, and finally converts these to a Cartesian space. Figure
4 records the constants used for the image analysis.

With the leg at one station, the procedure produces a set of measurements {f$}1 where
fsi = [**, yij z%]Ti 1 < i < T. Repeating the procedure for a number L of stations yields a set
of measurements of cardinality L x T .

4.1 Erim and Perceptron Sensors
We consider two scanning laser rangefinders, one manufactured by Erim, and the other by
Perception. They both are optical-waYekngth radax systems that use a laser diode source
operating in the new-infrared region (Erim 320 nm, Perception 310 nm) that is amplitude
modulated and scanned across the field of view using a nodding mirror and a rotating polygon
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Figure 4: Image analysis constants

mirror. The nodding mirror changes (tilts) the elevation and the polygon mirror changes
(pans) the azimuth of the emitted signal. The infrared light is reflected off the desired target,
gathered by the receiver optics, and focused onto the detector. The envelope of the output
of the detector is at the same frequency as that of the laser source, but is shifted in phase by
an amount proportional to the distance traveled by the beam (range). Using a digital phase
detector the range is assigned for each pixel along the scan line. The devices digitize two
images: a range image, with pixel values proportional to phase difference; and a reflectance
image, with pixel values proportional to reflected energy.

The Erim acquires data in 64 x 256 pixel images at a rate of 2 Hz [15]. The scanner
digitizes to 8 bits over approximately 20 meters, which provides a nominal range resolution
of 7.62 cm. The measurements cover 80 degrees in the horizontal direction (azimuth) and
30 degrees in the vertical direction (elevation).

The Perceptron acquires data in 256 x 256 pixel images at a rate of 2 Hz. The scanner
digitizes to 12 bits over approximately 40 meters, which provides a nominal range resolution
of 0.98 cm. The measurements cover 60 degrees in azimuth and 60 degrees in elevation.

Figure 5 illustrates the sensor reference frame S we use for both the Erim and the
Perceptron measurements. As shown, the y-axis coincides with the direction of travel of
the laser beam projected through the central point of the scanner. The angle 9 (azimuth)
corresponds to a rotation about the z-axis. The angle <j> (elevation) corresponds to a rotation
about the x-axis.

This reference frame is not a standard spherical-polar system. In a standard spherical-
polar reference frame, 9 is measured from the positive ar-axis in the xy plane, and 9 > 0
in the counter-clockwise direction. In the scanner frame^ 9 is measured from the positive
y-axis in the POQ plane, and 9 > 0 in the clockwise direction. In a standard spherical-polar
reference frame, <j> is measured from the positive z-axis in the zR plane. In the scanner
frame, <j> is measured from the positive y-axis in the yz plane. In the figure, both 9 and $
are positive.



^ ; azimuth

elevation •

Figure 5: Reference frame S
Both Erim and Perceptron measurements use this coordinate system.

Given the sensor measurement (r,c,d) (i.e., row, column, range), the transformation to
spherical-polar coordinates is

, 0 = cA§ + 8® = kd 7 (3)

where

is the angular increment, in degrees/row, of the nodding mirror,

• A§ is the angular increment, in degrees/column, of the panning mirror,

• ^p is, the initial orientation, in degrees, of the nodding mirror,

• #o is the initial orientation, in degrees, of the panning mirror, and

• jb is the scanner range resolution in meters/bit.

Given the spherical polar coordinates ^ 0, p, the transformation to Cartesian coordinates
is given by

. (4)



Figure 6: Erim images of prototype leg
The leg appears in the left-hand side of the reflectance (top) and range images as a tapered cylinder.
The bump on its lower left side is a cable reel; the cable appears faintly below the reel. In the
reflectance image, the calibration target appears as a bright band below the reel. In the center of
the images is sand.

4-2 Target Location from Erim Imagery
Given a pair of reflectance and range images a(u7t7) and 0(u, v), as in Figure 6, the task is
to compute the image coordinates of the target. The four following steps perform this task.

1. Register the range and reflectance images.

Although the image pair is nominally registered, we find that in practice they axe not in
perfect registration. In particular, we observe that the range image lags the reflectance
image by two horizontal pixels. In this case, we trivially register the images by shifting
one of them by two columns.

2. Locate the leg in image space.

Initially, we attempted to locate the upper leg by examining the difference of two
images (either reflectance or range) taken with the leg in two different poses. If the
only difference between the Images is the pose of the leg, then subtracting one image
from the other will yield only the pixels that changed from frame to frame, viz., leg
pixels. This approach does not work, because pixel values change significantly from



Figure 7: Thresholded Erim range image of leg (ftthre*h)

frame to frame not only because of leg motion, but also because of random noise, and
the mixed pixel effect [6]. So instead we take the following approach.

(a) Bound the range to the target. Because the calibration procedure commands
the leg, the pose of the leg is known approximately. This establishes an interval
[Knean Kfar] that bounds the range to the target on the leg. This distance interval f
determines a range image intensity interval [Inear<,Ifar] that bounds the pixel |
values of the target on the leg. j

i

(b) Threshold the range image, removing pixels with ranges that are either too close I
or too far to lie on the upper leg in the vicinity of the target(s): [

i"

{ 1 if Inear < f}(u,v) < I / a r , I

0 otherwise, ^ |
i

i

where
• j3(u,v) is the input range Image value at pixel (uyv)7

# Inear and Ijar are derived from the constants K^^t and Kfar>
Figure 7 illustrates the results of the thresholding operation. It shows that the
output binary image contains regions that do not belong to the leg, and is noisy-

(c) Filter the thresholded range image by first shrinking a&d then growing^ in order to
eliminate regions that are too small to be the target* To eliminate small reg£oos7

threshold (shrink) the output of the Grassiire transform ds foEo*s:

, v)-^Q otherwise,

where

• G is the forward Grassfire transform (defined in Appendix A),

10



Figure 8: Grassfire transforms of thresholded Erim range image
The results of the forward transform appear in the top panel, and the results of the reverse transform
appear in the bottom.

• Pthresh(u, v) is given by Equation 5,
• Kgrasa is the minimum size of the target, in pixels.

To restore (grow) the target region to its original size, apply the reverse Grassfire
transform as follows:

= G l(/3shrink{u,v)) , (7)

where

• G~l is the reverse Grassfire transform (defined in Appendix A), and
• $shrink(Uj v) is given by Equation 6.

Figure 8 illustrates the results of applying the forward and reverse Grassfire trans-
forms to the thresholded image shown in Figure 7.

3. Identify target pixels on the leg.

The target- is distinguishable from the leg only in the reflectance image. The range
image is of no utility in identifying those leg pixels that belong to the target. The
procedure to identify the image coordinates of the target is as follows.
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Since the target is chosen to be made of a material that provides sharp contrast to the
leg, it is possible to identify target pixels by thresholding on reflectance intensity. We
take the target pixels to be those pixels that both belong to the leg, and exceed an
intensity threshold, as follows:

/ ^ — / 1 ^ fthg{uiv) ^ 0 BXk^L <*(^>v) > Kref, /£>,

where

• a(u,v) IS the input reflectance image value at pixel (uyv),

• ftieg(u,v) is given by Equation 7, and

• Krcf is a constant intensity threshold.

4. Compute the centroid (fi, t;) of the target pixels in

The completed image analysis computes the following parameters of the target: row u;
column v; and sensed range fi{u, v).

4-3 Target Location from Perceptron Imagery

The method described in this section is similar to the procedure detailed in the previous
section. However, the order and type of operations differ enough to warrant a complete
description, at the expense of some redundancy.

The six following steps compute the image coordinates of the target.

L Acquire a temporal sequence of pairs of reflectance- and range images af-(u, v) and
/?,-(u,t/), as in Figure 9. Apply a median filter to the range images, computing /3(u, u).
Arbitrarily select one of the ai(u,v) to be a(u1 v).

We apply the median filter because of Its robustness In the presence of outliers.

No filtering Is necessary for the procedure described in the previous section. How-
ever* we find it to be required here. This might be due to the finer resolution of the
Perceptron, the larger distances involved with the Ambler tesfcbed, or other factors.

2. Locate the leg In image space.

(a) Threshold the range image, using Equation 5 to compute 0

(b) Find the largest connected component C In ̂ tkrmki^i tf )> ̂ ^ create a binary image
of it as follows (Figure 10):

h.(w) = \ Q otherwise. <9>
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mm:

Figure 9: Perceptron images of Ambler leg
The contrast of the reflectance (left) and range images has been enhanced. The extensional link of
the leg appears in the bottom left, and the vertical link appears in the center. In the center of the
reflectance image, the calibration target is visible as a white patch at the top of the vertical link.

3. Find the top of the leg, as follows (Figure 11):

= I1 Hplea{u,v)
0 otherwise,

0 and u —
(10)

where

^iv) *s give& by Equation 9,

• UQ is the smallest u for which f$im9(u^v) <fi 0 (LeM the highest point on the leg)?and

• Ktap is the maxiiraim number of rows the leg top may extend in the image.

4. Identify target pixels at the top of the leg.



1
Figure 10: Thresholded Perceptron range image of leg (0ieg)

This typical result includes pixels that do not belong to the leg, and does not include some pixels
thai do belong to the leg.

(a) Identify potential target pixels

where

[u,v) as follows (Figure 12):

if Ptopiu.v) ̂  0 and a(u,v) > Kref3

otherwise,

• afav) is the input reflectance image value at pixel (u,tr),
• Ptop{u7v) is given by Equation 10, and
• Kref is a constant intensity threshold.

(b) Filter this processed reflectance image by first shrinking and then growing, in order
to eliminate pixels that belong to regions that are too smaJl or too elongated to
belong to the target. To eliminate sxnal regions, threshold the output of the
Grassfire transform as follows:

/ v _ J G(athreth(u,v)) if C
a.hrink[u,v) - < Q otherwise, {12}
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Figure 11: Perceptron range image of top of leg {jStOp)
The contrast of this image has been enhanced and inverted. Note the vertical bands on the left and
right sides of the leg. The left bands are due to variations in material where the rack (i.e., part of
the rack-and-pinion drive) meets the aluminum leg structure. The right bands are "ghosts* that
occur immediately to the right of the image of a depth discontinuity.

where

• G is the forward Grassfire transform (defined in Appendix A),

• <Xthre3k(ujv) is given by Equation 11,

• Kgrass ̂  the minimum size of the target, in pixels.

To restore the target region to its original sizet apply the reverse Grassfire trans-
form as follows:

ow,*(tt,t>) = CTl(a*ri*k(u,v)) , (13)

where

• G"1 is the reverse Grassfire transform (defined in Appendix A)7 and
• Gikrinkiuiv) is given by Equation 12.

The results of applying these transforms are represented well by Figure 8, and so
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Figure 12: Processed Perceptron reflectance image of top of leg (athresh)
This figure illustrates the results of applying Equation 11 to the image shown in Figure 11. The
bands that appear on the right side of the leg in Figure 11 have been removed, but the bands on
the left remain.

axe not shown. It suffices to note that the transforms do remove the bands shown
in Figure 12.

5. Compute the centroid (5,5) of the target pixels in atar^ct-

6. Compute the median range value 7 in a small, typically 3 x 3 , spatial neighborhood
around (5,5). This provides further protection against outliers.

The completed image analysis computes almost the same parameters of the taxget as in
the previous section: row fi; column v; and median range 7,

5 Identification of the Transformation

This section presents our solution to the least-squares absolute orientation problem. As
discussed in Section 2, the problem is to identify the rigid transformation minimizing the
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squared error in mapping the point set {r$} into {re}-
The problem is non-trivial because there are more unknowns than equations. There are

3LT scalar equations (Equation 1). The number of unknowns is at least six (three translation
vector coefficients plus at least three independent variables to parameterize the rotation) and
at most twelve (three translation coefficients plus nine — not independent — rotation matrix
coefficients).

There are a number of approaches to solving this under-determined system. We will
briefly review them before presenting our solution method.

First, the problem can be solved using Equation 1 and at least four corresponding points.
With four points there axe twelve equations, enough to solve for the maximum number of
twelve unknowns. The equations axe linear, so unless the points are coplanar, the existence
and uniqueness of a solution are guaranteed. The disadvantage of this approach is that it
does not guarantee that R is orthonormal.

Second, the above difficulty can be circumvented by using Equation 1, and in addition
enforcing the orthonormality constraints on the rotation matrix. Only three points are
necessary (in fact, more than sufficient), but the equations axe non-linear, leading to a con-
strained minimization problem that must be solved iteratively, for instance, using Lagrange
multipliers.

Third, the problem can be solved when three points are measured by selectively neglecting
the additional constraints available from the three measurements [11, 13]. This approach
applies only to the case of three points, no more and no less, and thus lacks generality and
robustness.

Fourth, exact closed-form (non-iterative) solutions are possible using an orthonormal
matrix to represent the rotation. One solution uses the singular-value decomposition of
an arbitrary matrix [1], while another uses the eigenvalue-eigenvector decomposition of a
symmetric matrix [9]. The disadvantage of these approaches is the complexity involved with
the six nonlinear constraints that ensure that the matrix is orthonormaL

Fifth, exact closed-form solutions are possible using unit quaternions to represent the
rotation. The solution for the desired quaternion is the eigenvector associated with an
eigenvalue (either the smallest [5] or largest [8]) of a symmetric matrix, whose elements are
combinations of sums of products of corresponding coordinates. The quaternion representa-
tion affords two advantages: simplicity — it is simpler to enforce a unit norm for a quaternion
than it is to ensure that a matrix is orthonormal; and closed-form solution — no iteration
is required.

We prefer the latter approach because of its elegance and effectiveness, and implement the
technique in [5]. For convenience in the physical interpretation of the solution rotation, we
do not use the solution quaternion q itself. Instead, we first express qmin as an orthonormal
matrix R using the equations in [8], p. 641, and then parameterize R under the roll-pitch-
yaw convention. Let <f> correspond to roll, 0 correspond to pitch, and tp correspond to yaw.

17



We specify the order of rotation as

>J7i>) = Rot{Z,<t>) Roi{Y,9)

that is, a rotation of %j> about X, followed by a rotation 0 about K, and finally, a rotation <f>
about Z, The orthonormal matrix corresponding to RPY(4>,0,ij>) is given in [10], p. 47.

Note that the identified transformation maps a vector referred to frame S into a vector
referred to frame B. This is the covariant transformation. The contravariant transformation
maps frame S into frame 5; it is the inverse of the covariant transformation, and transforms
frames, not vectors. Because the contravariant corresponds more closely to our physical
interpretation of the rotation, our discussion of the rotation parameters in the sequel will
always be in terms of the contravariant transformation. Specifically, we give the roll, pitch,
and yaw parameters of the contravariant rotation and the negative translation parameters
of the covariant. This corresponds to rotating frame S about the axes of the initial 5, and
translating the rotated frame along the axes of B.

We have implemented an optional, second stage to cope with unexpected behavior by
the sensor. Typically, we observe such behavior when operating the sensor under conditions
that exceed its operating range, e.g., high temperature. This second stage searches for
two parameters, gain ki and offset &2, that minimize the squared error E. We replace the
expression p = kd in Equation 3 by

p^kid + h . (14)

At each iteration, the second stage invokes the exact solution procedure described above,
using the revised sensor model given by Equation 14.

6 Results

In this section we present experimental results from the calibration procedure. First, we
describe the experimental setup and state the experimental procedure. Next, we quantify
the accuracy of the procedure, and discuss its utility for building terrain maps and choosing
footholds. Then, we analyze the precision of the procedure for various trials.

6,1 Experimental Setup and Procedure
Figures 1 and 2 illustrate the experimental setup. Observing the physical pose of the scanner
in the two figures, we see that it sits above and in front of the supporting structures, and
that it looks down toward the ground. Thus, to map the scanner frame into the body frame,
we would first rotate it a substantial amount about the scanner z-axis (tilt it up from looking
at the ground to look at the horizon), and then translate it along the negative body

18



(back) and along the negative body Z-axis (down). According to the convention established
in the previous section, this mapping is equivalent to the following rigid motion parameter
values:

t * « O , i y < O , * z < O , ^ « O , 0 « O , 0 > O .

To formally state the experimental procedure, let i and j be counters, B and S be sets
of target position vectors, L be the number of leg poses, and T be the number of targets on
each leg.

1. i «- 1, B *- 0, 5 ^ - 0

2. while i < L do

(a) Move leg to pose i

(b) Compute fsij , 1 < j < T, as in Section 3

(c) B+-BU{rBij}, l<j<T

(d) Acquire reflectance and range images

(e) Compute r$ij , 1 < j' < T, as in Section 4

(f) 5 - S U {?*,-}, l<j<T
(g) i«_ i + i

3* Compute R and £ from 5 and 5, as in Section 5

We have automated this procedure entirely, and have executed it hundreds of times,
perhaps a thousand times. Over the course of these trials, we have tested the procedure under
a wide variety of conditions, including 50°F differences in temperature, ambient illuminations
ranging from bright sunlight to night-time fluorescent lighting, and background materials
ranging from sand to people to heavy machinery.

Typical values from one Exim and one Perception data set, respectively, are the following,
in units of meters and degrees:

tx = 0.2 , ty = -0.6 , tz = -0.8 , <f> = -0.5 , 6 = 1.8 , ^ = 75.1 ,

ts = 0.0 , ty = -0.1 , ts = -1.0 , ^ = 0.4 , 9 = -0.3 , tk = 41.7 .

These rigid motion parameters agree with our expectations, without exception, and with
each other, except for the rotation about the x-axis.
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6.2 Accuracy
Accuracy of Rigid Motion Parameters

It would be revealing to compare the computed rigid motion parameters obtained by our
calibration procedure with those measured by direct techniques. However, the origin of S
does not physically lie at a distinguished position that* we can measure directly, i.e., with
devices such as calipers or rulers. Thus, such a comparison is not possible.

Accuracy of Points Transformed into B

An alternative basis for evaluating the accuracy of the computed parameter values is the
distance between corresponding points after applying the transformation. We consider two
distances.

The first distance we consider is related to what we earlier called "error." Recall from
Section 2 that the error of the ith pair of measurements is

To illustrate the distribution of errors, Figure 13 plots three projections of the ei for a
typical Erim data set. The errors for a typical Perception data set are similar, and so are
not shown. The figure suggests that the errors tend to cancel. For example, in the front view,
the magnitude of the errors in the positive Z direction approximately equals the magnitude
of the errors in the negative Z direction. The figure also indicates the absence of outliers.

The second distance we consider is the square root of the sum of component-wise differ-
ences. Here, the distance d{ between the iih pair of measurements is given by

d^mii-ii , (15)

and d denotes the mean of the distribution of the d*. Graphically, d is the average length of
the line segments in Figure 13.

Figure 14 shows d for ten Erim trials. We observe that the mean varies from 5.5 to 11.2
cm, and that it varies significantly between data sets of different sizes, and between data sets
of the same size. This range of values and variations is typical of other trials. We conclude
that the accuracy of the calibration procedure for the Erim is 6-12 cm.

Figure 14 also shows d for tea Perception trials. The results show that the mean values
range from 1.8 to 6.7 cm, and vary significantly between data sets. This range of values
and variations is typical of other trials. We conclude that the accuracy of the calibration
procedure for the Perception is 2-7 cm, or two times greater than for the Erim. This
difference in accuracy may be due to better leg position sensing with the Ambler, or superior
accuracy on the part of the Perceptron scanner, or both.



2 -

Body Y 1 K
[m] 1-5-

Top View
Scanner •
Body +

1 -

-2
I

-1
1
0

BodyXfm]
2

BodyZ

-2.35 -

-2 .45-

-2 -1 0
BodyX[m]

Front View
Scanner •
Body +

1

2

BodyZ

-2 .35-

-2 .45-

- 2 . 5 -

I

1

Side View
Scanner •
Body+

1.5
BodyY[m]

Figure 13: Typical errors, for Erim
The three two-dimensional plots are top, Croat, and side views. The cross symbol represents the
position measured in B; the bullet symbol represeats the position measured ia S and then referred
to B; the lines connect corresponding measurements.
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Trial

1
2
3
4
5
6
7
8
9
10

N

8
8
8
8

18
18
18
50
50
50

d
(cm)

5.5
5.7
6.4
5.8
9.6

10.1
8.6

11.2
8.9

10.7

(cm)
2.4
2.4
1.5
1.9
4.3
3.1
3.8
3.6
2.9
4.3

Trial

11
12
13
14
15
16
17
18
19
20

N

12
12
12
12
12
12
12
12
12
12

d
(cm)
2.5
2.2
6.7
2.9
6.7
6.0
4.0
2.7
1.8
2.9

(cm)
1.0
1.3
4.3
1.6
3.8
3.2
3.0
1.5
1.9
1.5

Figure 14: Statistics of error distributions
Trials 1-10 use the Erim, and trials 11-20 use the Perceptron.

Accuracy of Maps

Another measure of the computed rigid motion parameters is their utility for building terrain
maps from which footholds can be selected.

To achieve high map accuracy we have added a third stage to the calibration procedure
described in Section 5. This stage searches for the vertical translation tz that produces maps
with elevations closest to a given elevation (often, it is convenient to use the elevation of the
ground). This compensates for changes in the scanner performance caused by factors such
as range drift and temperature variation, without requiring acquisition of new data.

We have not yet determined the accuracy of the maps to our complete satisfaction (that
will be the subject of a future report). Rather than reserve comment, in the following
we report results that are approximate and representative, but not definitive. By relative
accuracy we mean accuracy in determining relative positions, for instance, to compute the
dimensions of an object. By absolute accuracy we mean accuracy in determining absolute
positions, for instance, to compute the position of an object in some external reference frame.

For both the Erim and Perception, using the third stage, we reliably achieve a relative
accuracy of 5-10 cm, and an absolute accuracy of 10-20 cm. We believe that some improve-
ment is still possible. Nevertheless, this degree of fidelity has proved to be adequate for all
of the rugged terrain walking experiments conducted to date.
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Trial

A,B
B,C
A,C
D,E
E,F
D,F

N

18
18
18
12
12
12

Atx

(cm)
16.1
-3.4
12.7
7.4

-3.8
3.6

Aty
(cm)

7.3
10.6
-3.2
3.5

-3.6
-0.1

Atz
(cm)
-6.5
-0.2
-6.7
2.1

-5.7
-3.6

A<{>
(deg)

0.4
0.1
0.6
1.6

-0.7
0.8

A9
(deg)

2.0
-0.5
1.5
0.8

-0.5
0.3

A^
(deg)

-0.8
1.4
0.6

-0.7
1.6
0.7

Figure 15: Variation of the computed parameters between data sets
Trials A-C use the Erim, and Trials D-F use the Perceptron.

6-3 Precision

Precision of Rigid Motion Parameters

To evaluate the precision of the computed rigid motion parameters, we execute the calibration
procedure several consecutive times, and observe the difference in the computed parameters.
Between data sets, we do not move the scanner or alter any settings. Thus, in the ideal case
we expect the procedure to compute the same rigid motion parameters for each trial.

Figure 15 shows by how much the estimated parameters change between three data
sets for each sensor. Some parameters change by significant amounts; the largest observed
differences are 16.1 cm and 2.0° for the Erim and 7.4 cm and L6Q for the Perceptron.

The variations in the rigid motion parameters may be due to numerical instability of
our computations. To investigate this, we compute the condition number—the ratio of the
largest eigenvalue to the smallest—of the symmetric matrix described in Section 5. In the
experiments, we observe condition numbers between 1 and 120. These values do not approach
the reciprocal of the computing machine's floating point double precision. This demonstrates
that the matrix is not ill-conditioned. Further, this suggests that the commanded target
positions do not lie in a configuration that could cause the solution to degenerate.

The variations in the rigid motion parameters may be due to poor leg position sens-
ing, or poor image analysis, or both. If poor leg position sensing reported target locations
imprecisely, then the rigid motion parameters would vary, even with perfect image analy-
sis. Similarly, the parameters would vary if poor image analysis reported target locations
imprecisely, even with infinitely repeatable leg position sensing.

For the Erim trials, both factors are conflated, making it difficult to identify their relative
magnitudes. We suspect that the dominant cause of poor calibration repeatability is leg
position sensing that does not account adequately for the significant structural compliance
of the leg members and rails. However, we do not suggest that image analysis errors are
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negligible.
For the Perceptron trials, sensing the position of the stiff Ambler legs is highly repeat-

able, so the dominant cause of poor calibration precision is image acquisition and analysis.
Examining the target positions measured in the range images, we find that the position of
the target changes less than one pixel between trials (low geometric variation), but that the
sensed ranges in the range image can vary significantly (high radiometric variation), even
after applying temporal median and spatial averaging filters.

It is unlikely that these range variations are due to mixed pixels, because we exclude all
measurements near the edge of the target. It is also unlikely that they axe due to changes
in material across the target, because the target is homogeneous.

We observe that the range variations correlate strongly with ambient temperature; the
higher the temperature, the greater the variations. We have not been able to eliminate
the variations, but can achieve acceptable precision by conducting calibration during cool
conditions, where inferior to 75° is our heuristic measure of cool.

Precision of Points Transformed into B

To assess the precision of the points transformed into B, we evaluate the standard deviation
$i> of the distribution of the <£,-. This statistic quantifies the scatter of the points mapped
into Bj illustrated graphically for one particular data set as the variation of line segment
lengths in Figure 13.

Figure 14 shows S& for ten Erim trials. We observe that the values of SQ range from 1.5
to 4.3 cm, and that they vary significantly between data sets of different sizes, and between
data sets of the same size. This range of values is somewhat better than for other trials,
where it is not uncommon to observe standard deviations of 10 cm. We conclude that the
precision of the calibration procedure for the Erim is no better than 2-5 cm.

Figure 14 shows so for ten Perceptron trials. The results show that the precision ranges
from 1.0 to 4.3, which is commensurate to that of the Erim. This is several times worse than
the resolution of the Perceptron. As in the case of the Erim, the reported range of values is
somewhat better than for other trials.

6*4 Execution Time
The time required to execute the calibration procedure with 10-20 points totals approxi-
mately 15 minute for either scanner. The procedure spends roughly 70 percent of this time
moving the tegs, and roughly 20 percent acquiring and filtering images. Computing the rigid
motion parameters and searching for the gain and offset account for most of the remaining
10 peroeot.
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7 Discussion
In this report we have presented an implemented technique to calibrate scanning laser
rangefinders to a vehicle-centered reference frame. We reported results for two different sen-
sors and two different vehicles. For the Erim and the prototype leg, the procedure achieves
an accuracy of 6-12 cm with a precision no lower than 2-5 cm. For the Perceptron and the
Ambler, the accuracy is 2-7 cm with a precision no lower than 2-5 cm. These results have
proven to be satisfactory for constructing terrain maps and using them to select footholds
during our rough terrain walking experiments.

We have also successfully calibrated the Perceptron scanner to a fixed reference frame.
The techniques and results are very similar to those reported for the vehicle-centered ref-
erence frames, so we have not treated them separately. We note that this success provides
further evidence for the generality of the approach.

The closed-form solution for the rigid motion parameters more than lived up to our
expectations. It performed its function with high reliability in reasonable time.

The image analysis has performed well under a wide variety of conditions. Reasons for
this success include removing possibly mixed pixels from consideration, using region-based
rather than point-based features and statistics, and applying temporal median filters. We
found the Grassfire transform to be remarkably effective in removing non-target points and
regions.

Still, we can improve the image analysis in a number of ways. Perhaps the most significant
would be to modify the sensor so that it is not so sensitive to temperature. It would also be
valuable to develop more robust methods, perhaps involving sensor fusion, to identify and
eliminate mixed pixels.

One promising direction for future research is toward more comprehensive sensor calibra-
tion. This would involve identification of intrinsic sensor parameters such as the relationship
between range grey level and absolute distance, the mirror starting angles, and the angular
increments, in addition to the six rigid motion parameters.

A Grassfire Transform

The Grassfire transform is a distance transformation related to the Medial Axis Transform
[4]. It takes an input image (typically a binary image) and produces an output image whose
pixel values indicate the distance to the perimeter of some target region in the input image.
In this case, the target region is not literally the region of the image containing the projection
of the calibration target, but any of the regions that satisfy Equation 5.

The forwaxd Grassfire transform, Gf assigns to each pixel inside a region the distance
to the region perimeter. More precisely, it fills the area inside the region with the distance
to the nearest pixel outside the region, i.e., T s in the perimeter pixels, C2's in the interior
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pixels adjacent to the perimeter, '3's in the interior pixels adjacent to these, and so forth. It
fills the area outside the region with 4O's.

It is this behavior that gives the transform its name. Imagine that the input image is a
field, where the non-zero pixels correspond to dry, grassy patches, and where the null pixels
correspond to barren patches. The Grassfire transform "lights" the perimeter of all grassy
regions "on fire," and it assigns the time required for the fire to reach a pixel as the pixel
value. Thus, the value of each pixel in a region is its distance to the perimeter of the region.

The reverse Grassfire transform, loosely denoted C?""1, fills the area outside the region
with the distance to the nearest pixel inside the region, and fills the area inside the target
region with c0's.
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