
Classification Using Multi-Layered
Perceptrons

Selwyn Piramuthu*
Michael J. Shaw§
James A. Gentry**
CMU-RI-TR-90-29z

December 1990

1990 Camegie Mellon University

I ^Robotics Institute, Camegie Mellon University; on leave from The Beckman Institute,
University of Illinois at Urf>ana-Champaign

* The Beckman Institute and Department of Business Administration, University of Illinois at
Uibaoa-Champaign

" The Department of Finance, University of Illinois

>j>> - i n 4 :

X I! t

Contents

1. Introduction

2. Background

3. Back-propagation in Multilayer Perceptrons

4. Newton-Raphson (NR) Algorithm

5. Modified BP with NR type Algorithm

6. The Hybrid (NR-SG) Algorithm

7. A Financial Classification Example

8. Applications

8.1 Default Classification

8.2 Bankruptcy Prediction

8.3 Loan Evaluation

8.4 Discussion

9 Review of Results and Conclusions

References

Appendix A: ID3, and NEWQ

Appendix B:

Default Classification Data

Bankruptcy Data

Loan Evaluation Data

1

3

7

11

13

16

17

19

20

21

24

25

27

28

34

35

35

36

List of Tables

1. Weights and bias values using loan evaluation data 18

2. Summary of results using default classification data 21

3. Summary of results using bankruptcy data 22

4. Individual classification/prediction results using bankruptcy data 23

5. Summary of results using loan evaluation data 24

6. Individual classification/prediction results using loan evaluation data 25

List of Figures

1. Block diagrams of classifiers

2. An Artificial Neural unit, Uj, and its activation function

3. Network for loan evaluation data

4. Convergence results of SG, NR, and SG-NR for the example problem

5. Convergence speed dynamics with varying number of hidden units
(Default classification data)

6. Convergence speed dynamics with varying number of hidden units
(Bankruptcy prediction data)

Abstract

There has been an increasing interest in the applicability of neu-
ral networks in disparate domains. In this paper, we describe the
use of multi-layered perceptrons, a type of neural network topology,
for financial classification problems, with promising results. Back-
propagation, which is the learning algorithm most often used in multi-
layered perceptrons, however, is inherently an inefficient search proce-
dure. We present improved procedures which have much better con-
vergence properties. Using several financial classification applications
as examples, we show the efficacy of using multi-layered perceptrons
with improved learning algorithms. The modified learning algorithms
have better performance, in terms of classification/prediction accura-
cies, than the methods previously used in the literature, such as probit
analysis and similarity-based learning techniques.

1 Introduction

The need for classification or separation of data consisting of patterns or
examples into their respective categories is an ubiquitous problem in business
applications. Classification problems arise in such situations as credit or loan
evaluation (Carter and Cartlett, 1987; Orgler, 1970), bond rating (Gentry,
Newbold, and Whitford, 1988), consumer choice (Currim, Meyer, and Le,
1988), tax planning (Michaelsen, 1984), and prediction of bankruptcy of
firms (Gentry, Newbold, and Whitford, 1985), among others.

Statistical procedures such as multiple discriminant analysis (Abdel-Khalik
and El-Sheshai, 1980), probit (Finney, 1971), logit, and regression have been
widely used (Alterman, et aL, 1981) in business for classification purposes.
Parametric statistical methods require the data to have a specific distribu-
tion, which is usually Gaussian. In addition to the restriction on the distri-
butions involved, missing (omitted) variables, multi-collinearity, autocorre-
lation, linear versus quadratic model assumptions, and qualitative variables
could lead to problems with the estimated model when statistical methods
are used. Inductive learning (Michalski, 1983) and learning by using artificial
neural networks (Rumelhart, et al, 1986) are two recent developments in the
AI domain that have potentially promising applications for classification in
business applications. Researchers (Braun and Chandler, 1987; Messier and
Hansen, 1988; Mingers, 1987; Shaw and Gentry, 1990) have studied various
inductive learning algorithms along with appropriate statistical methods with
results favoring inductive learning algorithms over statistical methods. In-
ductive learning methods have better knowledge representational structure in
the sense that the decision tree that is induced can be used to derive (produc-
tion) rules which can be implemented in an expert system, thus facilitating
in automating the classification process.

Neural networks, which learn by modifying weights in the connections in
the network, are potentially advantageous over both inductive learning and
statistical methods. Characteristics of neural network axe its inherent paral-
lelism, and its tolerance to noise, which is achieved by distributing knowledge
across the network (Matheus and Hohensee, 1987). Neural networks have in-
cremental learning facility which eases the process of updating knowledge
as new examples axe added to the system. The topology of neural network
that is most suitable for classification purposes is the multi-layered percep-
tron along with back-propagation algorithm, which is discussed in detail in

section 3. Back-propagation utilizes steepest-descent method for searching
in the problem space. The method of steepest-descent is the most simplis-
tic of all gradient descent methods, and does not take the curvature of the
search space into consideration. In this paper, we present a modified back-
propagation algorithm with the Newton-Raphson algorithm, which utilizes
information on the curvature of the search space for efficient convergence to
the final solution, for gradient search.

Comparing neural-net methods with other classification methods, a num-
ber of prior studies (Dutta and Shekhar 1988; Fisher and McKusick, 1989;
Mooney, Shavlik, Towell, and Gove, 1989; Weiss and TCapouleas, 1989) have
found that the back-propagation algorithm achieves higher asymptotic ac-
curacy levels, is better able to handle noise, but requires a larger training
data set. It is also commonly acknowledged that a major problem with the
back-propagation algorithm is that it is too slow.

The main objectives of this paper are: (1) to develop modified learning al-
gorithms for improveing the back-propagation procedure, and (2) to show the
effectiveness of using neural-networks, specifically, multi-layered perceptions,
as a tool for classification problems, focussing specifically on financial man-
agement and credit analysis. As will be discussed in subsequent sections, the
results are very encouraging, showing definite value in using neural-networks
for financial classification applications such as loan evaluation and credit
analysis.

When implemented in the back-propagation algorithm, the modified (Newton-
Raphson) method performed consistently better than the regular back-propagatioa
algorithm, in terms of efficiency and classification/prediction accuracy. The
hybrid-method, a combination of the regular as well as the Newton-Raphson
type algorithms, performed the best overall. In addition to back-propagation,
we use two similarity-based learning algorithms and probit to analyze three
real-world financial data sets. Overall, the back-propagation algorithms per-
formed at least as good as the other methods used in the literature for ana-
lyzing financial classification data.

In the next section, we present a brief overview of various methods that
have been used for financial classification. In section 3, we review the back-
propagation algorithm as implemented in a multi-layered perceptron. The
Newton-Raphson algorithm is discussed in section 4". The modified back-
propagation with Newton-Raphson algorithm and corresponding gradient
derivations are discussed in section 5. Further improvements in performance

of the algorithm are considered by combining the strengths of both Newton-
Raphson and Steepest-Gradient methods as implemented in the Hybrid al-
gorithm which is given in section 6. An simulation example using financial
classification, comparing the performances of the three algorithms (SG, NR,
and NR-SG) as incorporated in back-propagation algorithm in multi-layered
perceptions are given in section 7. In section 8, three real-world financial
classification examples are used to compare the performances of neural-net
method with two Similarity-based learning algorithms and Probit. Section 9
concludes with insights gained through this study and its contributions.

2 Background

Traditionally, researchers interested in financial classification applications
have applied parametric methods such as multiple discriminant analysis (MDA),
probit, logit, and regression. Most of these statistical methods assume the
data being used to be distributed gaussian. In addition to assumptions of
the distributions involved, statistical methods are restricted by the following
potential problems. While using qualitative variables in probit, when the
probit regression lines that correspond to the different values of the quali-
tative variables are not parallel, interpretation of any comparison between
them is difficult (Finney, 1971). Omitted variables, unless their regression
coefficients are zero, could be a cause for non-zero mean value of error terms
in regression analysis which in turn could lead to erroneous results. Multi-
collinearity, a major problem when analyzing real-world data, arises due to
inter-dependencies among attributes. Auto-correlation is due to correlations
between residual or error terms of two or more observations. Finally, assump-
tion of regression functions to be linear or quadratic might induce additional
bias in estimating parameters.

Recent advancements in artificial intelligence have spurred interest both
among practitioners and researchers to evaluate some of the methods that
have been developed under the rubric of AI as compared to statistical meth-
ods. Mingers (1987) compared the performances of a modified version of ID3
(Quinlan, 1986) and multiple regression and concluded in favor of induction.
Messier and Hansen (1988) used loan default and bankruptcy data to com-
pare the effectiveness of IDS, discriminant analysis, individual judgements,
and group judgements in discovering predictive knowledge structures. After

cxteaave analysis they concluded that (similarity-based) inductive learning
methods may be useful for small highly-structured problem domains, and
ako for expert system development. An advantage of similarity-based learn-
ing is its representation of causal relationships which are more informative for
Identifying the relative importance of attributes that are used in the study.

Theoretically artificial neural network systems are capable of acquiring
any arbitrary mapping function (Hornik, Stinchcombe, and White, 1989), by
means of appropriate number of nodes and links among them, and therefore
have no inherent representational or learning advantages or disadvantages as
compared to traditional machine learning systems. Both back-propagation
algorithm and induction are independent of assumptions of the distributions
of the sample of training data that are used in the learning process. Most of
the shortcomings that are associated with statistical analyses are hence of no
eoiiceni wlie ming either back-propagation or inductive learning algorithms.

In Edition to similarity-based learning methods, artificial neural net-
work* an bring widely wed for similar purposes. Neural networks have the
fblcwimg inherent advantages over inductive learning methods:

• Imcmmmtd homing ~ induction of decision trees (Quinlan, 1986), is
done probablisticaJly based on the number of positive examples that
i t t pimeBt a! a ghra node, and -as such necessitates a need for all the
CKutples to be present simultaneously, whereas back-propagation does
not hmt %M$ restriction - examples are included and learning occurs
m t ie aetwork at ami when new 'examples are added to the network*
TUM firalilates t ie process of incremental learning in neural networks
If ktttaiog to modiljr current knowledge incrementally as new examples
aw tided to ike system.

to nmm - dbrafication analyses using real-world data en-
t i l l * ctftilB ttMmat oC hmmnmif toward noise present in the data.
Bmmk aotwmkf wr« kkcraiily noise tolerant due to its distributed rep-
mtatttfo* w|«e kawkdve m repretent^i across all the nodes in the
Mtirar&u Simct * mx$& piece of ^formation is distributed and stored
m m »mm^ S » H « MHOTg ciffa^it nodes in the network, noi#e in

fa rail dim not ̂ e c t the ovcral behavior of the network
Slttkrly, whm only partial or incomplete information is

t ie aetwwk pwviiics kmanity by attempting to complete
ti tt b i

p y by attempting to com
tkt mptetift pattexttt by ^tiiaag avwkble partial information.

• Polythetic learning/interaction effects - given a set of observations, in-
formation can be obtained by considering each of the variables that
are included in the observations as well as by considering the effects
of variables on one another in influencing the final decision. Inter-
action between variables thus play a crucial role in providing a more
complete information in addition to those from the individual variables
themselves. These interactive effects are naturally captured in neural
networks by means of connections from different variables that end up
at a single node at a higher node, thus aiding in an efficient use of
the information that is present in the input variables. In the inductive
learning process, for splitting at a node each of the variables are eval-
uated one at a time, thus ignoring the effects of variable combinations
(to account for interactive effects) explicitly. This could lead to a loss
of information that could have otherwise been retrieved from the exam-
ples. The process of considering all the variables together {polythetic)
in back-propagation (Fisher and McKusick, 1989), as opposed to one at
a time as in inductive learning, fosters an improvement in performance
of the back-propagation algorithm over inductive learning algorithms.

• Concept representation - knowledge is represented as strengths of weights
in links in a neural network thus leading to tolerance of noise, whereas
in inductive learning, explicit rules are formed for a given class, which
need not represent the actual state of affairs in the data set of interest.
A single wrong example can lead to a misleading rule while using in-
ductive learning, which is avoided in neural networks by diffusing the
same across units in the network leading to severity of a lesser order.
Whereas the induced rules are informative as to the knowledge they
represent, it is very difficult, if not impossible, to derive meaning from
the weights in the links in a neural network.

• Finer granularity - inductive learning algorithms are characterized by
their coarser granularity due to the mode in which examples are cov-
ered. Neural networks, on the other hand, are relatively fine-grained
due to distributed knowledge representation. The finer granularity of
search in neural networks enables the search process to be focused more
on the structure of the search space, thus leading to better learning.

As shown in figure 1, the classification process in statistical, inductive

learning, and neural network classifiers are done in two stages. In the sta-
tistical classifier, input values are used sequentially to evaluate the function
value using the estimated parameter values. During the second stage, the
best among different functional values is used to determine the (maximum
likelihood) class of a given pattern. In the inductive learning classifier, input
values axe used sequentially to be passed on from the root of the decision
tree toward its leaf nodes« The input class is deduced as per the leaf node to
which the pattern belongs. In the neural network classifier, input values axe
propagated in parallel through the No input connections toward the output
layer. For a given example, all the M units in the output layer might have
non-zero values, and the output unit with the maximum value is selected to
be the class of the given pattern.

insert figure 1 here

Artificial neural networks have shown promising results for a number of
problem areas including content addressable memory, pattern recognition
and association, category formation, speech production and global optimiza-
tion (Kohonen 1984, Rumelhart, et aL 1986, Anderson 1977, Sejnowski and
Rosenberg 1987, Hopfidd and Tank 1986). It has also been tried with fairly
good results in financial (Dutta and Shekhax 1988) as well as in manufactur-
ing applications (Rangwaia and Dornfeld, 1989).

Back-propagation algorithm uses an iterative method to feed the acti-
vation values, from lower layers to the layers, above and to propagate the
error values backward from layers above to the next layer below. There axe
three broad classes of iterative methods that are used for optimization prob-
lems (Walsh, 1975): (1) quadratic methods, that use the first and second
derivatives of the objective function in the neighborhood of the current trial
solution, (2) linear methods that use first but not second derivatives, and (3)
directional methods that use no derivatives.

Researchers (Becker and IeCunt 1988; Pahlman, 1988; Parker, 1987; Wa~
trolls^ 1988) have studied second order functions with promising results. The
primary motivation behind this study is to improve the performance of the
classical back-propagation algorithm by utilising better gradient search meth-
ods than the simplistic steepest gradient method that is being currently used.

Recently, several researchers (Dutta and Shekhar, 1988; Fisher and McKu-
sick, 1989; Mooney, Shavlik, Towell, and Gove, 1989; Weiss and Kapouleas,
1989) have studied the comparative performances of symbolic, connectionist,
and statistical methods, Dutta and Shekhar (1988) used bond-rating data
to compare the performances of back-propagation and regression, in which
back-propagation out-performed regression in predicting bond ratings from
a given set of financial ratios. Singleton and Surkan (1990) compared the
classification performances of back-propagation and linear discriminant anal-
ysis on ratings by Moody's and Standard and Poor's indices and concluded
in favor of back-propagation. Fisher and McKusick (1989) compared the
performances of ID3 and Back-propagation in which Back-propagation per-
formed consistently better in terms of asymptotic accuracy in classification.
Mooney, Shavlik, Towell, and Gove (1989) used ID3, Perceptron, and Back-
propagation in their study using four real-world data sets and concluded that
Back-propagation performs better on noisy complex environments. Weiss
and Kapouleas (1989) used four real-world data sets to compare the per-
formances of statistical classifiers such as linear/quadratic, Bayes, nearest-
neighbor, CART (Breiman, Friedman, Olshen, and Stone, 1984), ID3, and
back-propagation and concluded that back-propagation performed at least
as well as the other methods in terms of classification accuracy.

3 Back-propagation in Multilayer Perceptrons

Multi-layered perceptrons consist of a set of processing units (figure 2), with
corresponding activation functions (a*), links among the processing units,
weights (W) corresponding to the links, and threshold (0) values for each
of the processing units. The processing units are arranged in layers and
axe connected to one another by restricted links. Each unit in a layer is
connected to units in the immediate next and previous layers and not to
any of the units in the same layer. Each unit acts as an integrator of the
signals which it receives from the units in the layer which is immediately
below the layer in which the unit of interest is located. The links between
the units are all assigned weights as per the activation of the unit in the
lower layer from which the link originates. Each of the units, except those
in the input layer, are also assigned a threshold value (0), which is used in
deciding to propagate the units5 activation forward. As shown in figure 2,

a processing unit j receives its input from all the units in the previous layer
(Xo, Xi, • • •, XJV-I), which is used to determine its output. The output from
an unit (j) is a function (usually sigmoidal) of the difference between its
threshold (Sj) and the sum of weighted activations from previous layer.

insert figure 2 here

In situations where linearly separable functions are used, a single-layered
network (with no hidden layers) is appropriate, and for non-linear functions,
multi-layered networks are more appropriate. In single-layered networks,
since the activation values of the output layer is influenced by only a linear
combination of the inputs, only a few hyper-planes (as per the number of
output units) can be represented. Single-layered networks are used in cases
where a few hyper-planes are sufficient to separate inputs belonging to dif-
ferent categories. In cases where a convex region or any arbitrary function
(Lippmann, 1987; Hornik, Stinchcombe, and White, 1989) is present, more
than one layer is required to be able to separate examples belonging to dif-
ferent classes, by utilizing multiple-ordered effects of input values.

Back-propagation (Werbos, 1974) is one of the most widely used among
the different neural-network algorithms that axe used for classification pur-
poses. Back-propagation is carried out in layered feed-forward networks with
input and output nodes at the extremes (the back-propagation algorithm is
given later in this section). Figure 3 in section 7 is an example of a multi-
layered perceptron network. The input layer has 15 (No = 15) units, the (h
= 1) hidden layer has 10 (Ni = 10) units, and the output layer has 5 (M = 5)
units. All the 15 input units are connected to all 10 units in the first hidden
layer* which axe all in turn connected to all the 5 units in the output layer.
Activations from input layer is passed on to the first layer, which then passes
on its activations to the output layer. The output layer passes on the error
backward to the first hidden layer, and the weights in links between the first
hidden layer and the output layer are modified as per the back-propagation
algorithm that is given below.

Back-Propagation (BP) Algorithm

1. Initialize - Set number of units in input (No), output (M), and hidden
(Nk'j k= l .. h) layers, where h is the number of hidden layers. Specify
links between units with no links between two units in the same layer.
Set random values for weights in all the bias levels for all the units
(except those in the input layer).

2. Input - Present input/output vectors ily..., iiy-i» 01 , . . .

3. Update weights: Wij{n + 1) = Wij(n) + tfSjOi + a(w{j{n) — Wij(n — 1))
where Wij(n + 1) is the weight in the link from unit i to unit j in the
nth iteration (epoch), TJ the learning rate, and a the momentum term.
The weights during the initial pass are set at random-

4. Calculate actual outputs*.
for hidden layers (xi = %i if unit i is an input unit):

i=0

for output layer:

where 9j is the threshold in the j t h unit in the layer under consideration.

5. Update 6-values:
if unit(j) is an output unit:

if unit(j) is a hidden unit:

6. Repeat Go to step 2.

Since there is no set prescribed number of hidden units or hidden lay-
ers that need to be used in a back-propagation network, a certain amount
of experimenting with different number of hidden units are required before
settling on a final network configuration. The number of input units is set to
be equal to the number of variables of interest in the input data. Since the
output units are binary, the number of units in the output layer are chosen
as per the number of classes in the data (for example, 1 unit which takes on
values 0 or 1 if there are 2 classes). In this study, the number of hidden units
(with 1 hidden layer) are taken to be about half the total number of input
and output units.

Initially, weights to the links are assigned randomly and the resulting
(actual) output is compared with the target output provided by the teacher
(steps 1-5). The difference between the actual and the target output is the
error, which is summed over all the output units. Since the purpose here
is to minimize the error that results from the weights that are assigned to
the links, the objective function for this optimization problem is taken to be
the total sums-of-squares (tss) of the differences between the actual and the
target values for the output nodes. Weights in the links are then modified by
means of a function that takes the gradient of the objective function into ac-
count (step 3). Steps 1-6 axe repeated until the pre-specdfied tss value (ecrit)
is reached or the pre-specified number of epochs (iterations) are reached.
Step 5 incorporates the gradient search information (as derived in section
4) by means of £, the step length in the direction of descent. Since this
is a gradient search method, it has all the pitfalls that are associated with
gradient descent methods such as finding a local minima or a saddle point.
The Newton-Raphson algorithm discussed in the next section avoids saddle
points although local minima would still remain a problem.

The number of nodes and the connections between them are configured
initially and are never modified unless it is absolutely necessary due to im-
proved performance otherwise. The patterns learned axe stored in the same
set of nodes overlapping one another, in a sense^ as weights in the links and
also in the threshold values that are associated with each node. Hence the
time required to produce output patterns is independent of the number of
patterns that are stored in the network.

10

4 Newton-Raphson (NR) Algorithm

For non-linear functional optimization problems, gradient descent methods
are used for finding the best (if possible, optimal) solution by searching (re-
verse hill-climbing) the solution space iteratively. Initially, an arbitrary point
in the search space is chosen, from which the final solution is approached iter-
atively by descending along the direction which provides improved solutions.
The Newton-Raphson algorithm is one of the several classes of methods that
are based on a quadratic model of the objective function, in contrast to the
scaled linear model function of the classical steepest-gradient method. There
are two major justifications for choosing a quadratic model: its simplicity
and, more importantly, the success and efficiency in practice of methods
based on it (Gill , Murray, and Wright, 1981).

A quadratic model of the objective function is obtained by taking the
first three terms of the Taylor-series expansion about the current point.

f(xk + P) * f(xk) + g£p + \fGup

where, Xk is the current estimate of 2*, the minima; p is the direction of
search; <7fc(= g(&k)) is the first derivative off, and G^(= G(xje)) is the second
derivative.

The quadratic function is then formulated in terms of the step to the
minimum (p) rather than the predicted minimum itself. The minimum of
the above function is achieved if pk is a minimum of the quadratic function:

$ = 9k P + p^GfcP-

Suppose that $ takes its minimum value corresponding to p = p&, then,
VP]k$ = 0. i.e., GkPk + 9k = 0, which yields pu = — G^xg^ The Newton-
Raphson method uses pu as the current direction of search which is updated
iteratively.

In the simplest problem of unconstrained minimization of the univariate
function f:

min fix)

if a function is everywhere twice-continuously differentlable? and a local min-
ima of the function exists at a finite point x*, then the following two necessary
and sufficient conditions for an unconstrained minimum must hold at x*:

11

1.

/(*•) = o

and
2.

/V) > 0

The local convergence properties of Newton-Raphson method make it
an exceptionally attractive algorithm for unconstrained minimization, A
further benefit of the availability of the second derivatives is that the sufficient
conditions for optimality can be verified as stated above.

The Newton-Raphson algorithm can be summarized as follows:

1. initialize - for any starting point xky Taylor-series expansion (first 3
terms) about the current point:

1 -f(xk + p) « f(xk) + gkp + -p

2. minimize:

3. obtain gradient

Vj>4$ = 0, giving Gkpk + gk = 0

4. search in direction: pk = —G^dk*

GUI, Mmnray, and Wright (1981, p286) rank different methods for solving
uncoiistrmiiieii problems based on the confidence that can be placed in the
methods1 success in finding an acceptable solution. Newton-type algorithms
with second derivatives is ranked first, followed by Newton-type without sec-
ond derivatives, Qtuud-Newton with first derivatives, Quasi-Newton without
first derivatives, Conjugate-Gradient type with first derivatives, conjugate-
gradient without first derivatives, and polytope. The superiority of the
Newton-Raphson type method reflects the use of the second order properties

12

of the function to improve algorithmic efficiency as well as to provide quali-
tative information about the computed solution (Gill, Murray, and Wright,
1981, p320). An additional benefit using the Newton-Raphson type method
is that there are certain problem classes (eg., those with saddle points) where
only a Newton-type method is assured of being able to proceed.

Local minima, which is a problem with all gradient search methods, is
still a problem with the Newton-Raphson method. But, it can still be used
for finding local minima when there axe saddle points, or when the problem
is known to Jbe convex, since the local minimum must then be a global mini-
mum. Many real-world problems are not convex, but one may still be content
with a local minimum because the non-convex elements in the problem are
in the nature of small perturbations (which are probably saddle points), so
that it seems unlikely that they could introduce unwanted local minima or,
because the only practical alternative to a local minima is a completely ar-
bitrary solution.

5 Modified BP with NR type Algorithm

The back-propagation algorithm utilizing the steepest-gradient descent method
is given in section 2. In the steepest-gradient method (Rumelhaxt, et aL,
1986), the objective (error) function that is minimized is

where, p corresponds to the pattern that is currently under consideration,
opj is the target output value of the j t h unit in the output layer when pattern
p is input, apj is the actual output value of the j t h unit in the output layer
when pattern p is input, and E is the sum of errors over all the patterns that
are input. Once the thxeshold(0) values axe set, the 0 terms can be ignored
for further analysis. For unit j receiving input from unit i's in the lower layer,

^ i j O i (2)

where,

13

a sigmoid (squashing) function. Since the change in weight in a link is directly
(negatively) proportional to the rate of change of the error function with
respect to a change in weight in the link of interest,

A 9EP
&pWij OC —

By chain rule, the derivative can be written as the product of two parts:
the derivative of the error with respect to the output of the unit times the
derivative of the output with respect to the weight.

dEp dnetpj . .

from equation 2, we get

define

from equation 3,

& * (7)

which is the derivative of the squashing function / for the j t h unit, eval-
uated at the net input netPj to that unit.

K j is an unit in the output layer of the network, from equation 1,

(8)

from equations 6, 7, and S, we get

(9)

In the proposed method, the idea of optimizing a quadratic function as
in the Newton- Raphson method is utilized. The original objective function,
in the classical steepest gradient method, of minimizing the squares of the
differences between the actual and the desired output values summed over the

14

output units and all pairs of input/output vectors is replaced by an equivalent
exponential function. This is done in order to allow for the second derivative
to be derived from the objective function. The direction of descent which
minimizes (OJ — <ij)2 is equivalent to the direction of descent which minimizes
e{°3-*j) ? a^d tk e transformation is justified since both the exponential of a
non-negative function and the function itself are monotonically increasing.
By taking the exponential, the granularity of search is increased as the step-
size is increased.

The function to be minimized (ignoring the subscript p) is:

f(a) = ete-**)* (10)

where Oj and CLJ are the target and actual outputs (active values) of the
j**1 unit in the output layer. Instead of taking the second order gradient
direction pk as in previous attempts using second-order methods for back-
propagation, we use the gradient GkPk + 9k' This avoids the inversion of the
Hessian matrix G&, although it is only a scalar because we are only dealing
with one output unit at a time. The corresponding gradient, with respect
to dj, of the quadratic function, as per the Taylor's series expansion in the
Newton-Raphson algorithm can be derived as follows:

9j = -2(0, - afrh-**

-a^3 + 4(o,- - a-fete—i?

from which, we derive,

*(OJ) = 4(Oi - atfli-tr (11)

substituting equation 11 for the gradient (equation 8) and equation 7 in
equation 6, we get

SS = 4(o,- - aife^-^f'ineti) (12)

which is the corresponding modification in step 5 of the back-propagation
algorithm (section 3) if unit j is an output unit.

where f(netj) is the derivative of the activation function with respect to
a change in the net input to unit j. H unit j is a hidden unit, the modified
delta values are propagated from the output units downward to the hidden

15

tti&its. Hence the actimtloES of the hidden units are indirectly affected by
the modified delta values of units in the output layer. Since the second
order derivative of the objective function is taken into consideration here, the
algorithm is insensitive to saddle points in the solution space. Convergence
is also much faster since a quadratic function (as opposed to a linear function
as in the steepest-gradient method) is utilised in the solution procedure.

6 The Hybrid (NR-SG) Algorithm
By using the second-order gradient^ the NR algorithm search through the
weight space would demonstrate the Mowing behavior: During the initial
starts in the search process, wfaca the differences between the actual and
target classes are krge, the NR dgorithm tends to take larger step sizes due
to the cxfoacatial tnuudbnnation. Th» comld lead to undesirable effects
smeh as thraslkg liace the curvmtue of the search space is not effectively
takcm into consideration by the NR algorithm unless the starting point is
eh$m to the optimal solution* OECC the sesutdh. reaches the proximity of
the optimal solution, the step siwt tdkcm by the MR algorithm decreases
dnstically aad is thus more effective is eoavergtag to the final solution faster.
Tht «0timtioa for miimg the hybrid (NIUSG) algorithm is the relative good
p^#f»a»c«i of SG aad MR algodtibms farther and closer to the optimal
sdtattaon icspectiindiy* B#fh sto0pwt-g^adi«at descent wad Newton-Raphson
methods were iacMpofmtcd in this algorithm. The Steepest-Gradicsnt (SG)

ii tucdt to g«t doaear to the final solution and them the Jfewtoa-
a I Ml) method is kdtsated imm that point to converge to the final

The fiaa} sdhitm t i n 'resehed wwld he at kast as good ai that
k rtadbtd hj t i t Ml m SG metluad aknM»Y mi the mnrwgence k also
ft %bt hfhni isuethod th*a in tl« SG aad HE a#th#i« d^ac. T ic

hybrid a l p rill* ii a$

1, tntiiakzi * steps 1 aad 2 as in the back*propagation algorithm as given
m tecii&s 3.

'2, mkfdlatt the iruttai UB pm

I I

where, p is over all the input patterns, and j is over all the units in the
output layer.

3. SG algorithm - follow the back-propagation algorithm as given in sec-
tion 2 until

tSS = (tsSinUial — 0,04) * 0.8

4. NR algorithm - apply NR algorithm as given in section 5 until the tss
value becomes less than or equal to 0.04 (the pre-specified ecrit value).

In this study, steepest-descent algorithm was used during the initial pe-
riod until 80 percent of the difference between the final tss (total sums-of-
squares for all the input patterns - tss is the sums of squares of the differences
between the actual and the target activation values of the units in the out-
put layer) value (ecrit, was set at 0.04) and the initial tss value, was reached.
Hence, by using the NR method only for the last 20 percent of the values of
tss a better performance of the NR algorithm is guaranteed than otherwise.

7 A Financial Classification Example

For financial classification, the input patterns are taken to be the independent
variables, and the output patterns axe the dependent variables. Learning in
the network takes place by encoding the input patterns (independent vari-
ables) in the hidden layer(s), which is then decoded to map to the output
patterns (dependent variables). In this section, we use a loan evaluation
data set to go through the mapping of classification problems on to multi-
layered perceptrons. A brief description of the loan evaluation data is given
in appendix-B, and the data is used for detailed analyses in the next sec-
tion. In addition to the 12 continuous (cash flow components) variables, 3
qualitative components (nominal variables) were also included in this data
set. The three qualitative variables are guarantee, collateral, and secured
- both guarantee and collateral are boolean variables which take values of
either yes or no, and secured taked values 0 or 1 depending on whether a
firm is secured or not respectively^ Each of the 15 independent variables axe
assigned a separate input unit in the multi-layered perceptron network, Since
there are 5 classes, we have 5 output units? one for each of the classes. The
output unit with the highest activation value is taken to represent the class

I?

of a given example. The number of hidden units in the only hidden layer
used is taken to be 10 (half of the total number of input and output units).
The network is given in figure 3, and the weights in the links and the bias
values corresponding to the hidden and output layers are given in table-1.
Convergence of the network for SG, NR, and NR-SG are given in figure 4.
As can be seen from figure 4, for the SG algorithm, the tss value remains at
around 7 for a wide range of the number of epochs, and still did not converge
after 30,000 epochs.

insert figures 3 and 4 here

unit #

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
25 (-5.95)
26 (0.38)
27 (-1.53)
28 (-3.47)
29 (-3.99)

15
(0.74)
-0.83
-7.99
-8.66
2.75
0.52
-7.71
-0.97
-11.69
-19.17
1.68
4.92
1.32
-4.85
-3.22
-2.5«
-7.26
8.63
-7.68
-0.2

-1.38

16
(2.8)

-10.56
-2.49
-2.41
-0.76
10.23
-7.30
-7.82 !
10.72
15.03
-8.32
-5.61
-1.86
0.55 i
-3.82
4.41
-8.36
12.85
-4.65
7.04
-1.45

17
(5.99)
2.71
13.49
-2.33
-11.22
12.6
-4.97

! 7.88
-2.16
2.29
0.1

-17.68
-14.02
-11.67 |
-3.11
-1.61
12.69
-9.08
-18.2
-2.21
1.48

i 18
(-7.93)
-11.23
14.58
-4.9

12.46
-5.83
15.25
12.84
1.47 i
-11.4
-32.9

-11.18
21.45 !
-8.14
-9.3

5.22
-12.48
9.93
-8.38
-3.04

19
(-1.05)
-20.08
8.74
24.17
4.57
-2.9
-9.95
-16.53 i
8.35

-11.25
-1.95
-1.13
-0.11
-6.4

| 12-2' '
-6.S8
-18,92
4J7.'
7.65
-4.44
2.45

20
(-1.85)
-4.66
-6.63
-7.26
-3.35
5.1
-2.9
-6.39
1.94
4.83
-4.48 ;
-0.48
-4.29
0.31
-2.76
G.§

-2.37
-$M

\ -3.4T
5.83
-1.3 ',

21
(-1.73)
10.65
9.24
-8.6

-16.47
7.44
1.3

21.26
-11.42 !

! -3.31
-2.27
-21.14
-14.45

1̂.31
;, • -2 .6

.0.75 i
10.58

-9.12
-3.34
-1.38

22
(6.29)
-8.01
-8.88
-13.05
-3.07
0.04
5.25
-2.07
-4.5

11.56
-17.76
4.94
17.23
5.92
4.04
-1.23':

• -lAt'
-23.56
-7,53
8.45
1.47

23
(0.65)
-10.27
-3.86
6.94
15

-6.29
-3.87
-0.87
1.03

-25.58
-1.5
8.5
0.74
-9.88

:: 't.®7\
:/::-5.0l';

I'M..'.
-9.32
-3.31
5.43

Table-1: Weights and bias values using loan evaluation data

18

For the network, the learning rate parameter (77) was set at 0.25. The
momentum term (a) was set at 0,9 to allow for faster learning by filtering out
high curvatures and by allowing the effective weight steps to be larger. The
tss value to be reached for convergence (ecrit) was randomly assigned a value
of 0.04 as per Rumelhart et al. (1986). The input units are numbered from
0 through 14, hidden units numbered from 15 through 24, and the output
units from 25 through 29. The bias terms for both hidden units and output
units are given in brackets next to the appropriate units- Both continuous
as well as nominal variables were used as input without any additional pre-
processing such as by using dummy variables.

8 Applications

Three real-world financial risk classification data sets are used to compare
the performances of different algorithms under different input conditions.
Data sets from Abdel-Khalik and El-Sheshai (1980), Gentry, et al. (1985),
and a loan evaluation data are used to compare the relative performajices of
different algorithms under varying conditions of noise present in real-world
data. The different risk classification data sets (for evaluating loan payments,
bankruptcy prediction and loan evaluation respectively) were used due to
their differences in data structure. The Abdel-Khaiik and El-Sheshai (1980)
data consists of ratios and trends, the bankruptcy data set consists of 9
ratios, and the loan evaluation data set consists of 12 real-valued continuous
variables and 3 nominal variables. Also the number of classes were 2, 2, and 5
in the loan payments, bankruptcy and loan evaluation data sets respectively.

The performances of different methods are compared with respect to their
prediction/classification accuracies, and the time and number of epochs taken
by each to converge to a pre-specified tss value (= 0.04). In addition to back-
propagation, performances of ID3 and NEWQ - two similarity-based learning
algorithms, and Probit (Finney, 1971), a standard statistical procedure are
also studied. IDS and NEWQ axe briefly discussed in appendix-A, and a
brief description of the three real-world data are given in appendix-B.

If

8.1 Default Classification
For the Abdel-Khalik and El-Sheshai (1980) data set, the learning rate pa-
rameter (77) was set at 0.25, momentum term (a) was set to 0.9, and the final
convergence value for tss (ecrit) was set at 0.04. The network consisted of
18 input units (corresponding to the 18 input attributes), 1 output unit and
a hidden layer with 10 hidden units.

Mooney et al. (1989) used 10 % of the total number of input and output
units as the number of units in the hidden layer, which they found empirically
to work well. Fisher and McKusick (1989) tried 0, 10, and 20 hidden units
using their data sets from three domains. They reported results only using
10 hidden units which was the best over all domains. In Mooney et al. and
Fisher and McKusick's study, the input variables were all represented in
binary form. Effects on convergence using different number of hidden units
using this data is given in figure 5. From figure 5, the convergence remains
stable around 150 epochs over a wide range of number of hidden units. So,
we decided on 10 hidden units, which, is about half of the total number of
input and output units. Ten separate simulation runs were done for all three
back-propagation algorithms and the average values are reported in table-2.

insert figure 5 here

In addition to SG5 NR, and NR-SG, ID3, NEWQ, and Probit analyses
were also done using the same data set for comparison purposes. The 32
examples were used for training the network, or decision tree, or to obtain
the discriminant function as the case may be. There was a significant decrease
in the number of epochs required as wel as the time taken for NR and NR-SG
as compared to those for SG. Simulations were stopped either when the tss
value was less than 0.04 or when the number of epochs reached 30,000. Even
afeex 30,000 epochs, the tss for SG remained at 1.001 (on an average), and
presumably would have taken many more epochs to converge to 0.04. The
classification accuracy was a 100 percent in all the neural-network algorithms,
BD3t and NEWQ. The classification accuracy of Probit was just 78.1%, which
probably is due to the fact that Probit uses just a single hyper-plane (which
severely limits its ability to separate the examples belonging to different
classes effectively) to separate the two classes^ whereas this is not the case

2©

with the other methods.
Surprisingly, both classification and prediction results for SG, NR, NR-

SG, ID3, and NEWQ turned out to be the same, possibly due to the size
of the data set. This could also be because the points corresponding to the
examples in the example space are possibly scattered such that only 14 of the
16 testing examples fall under hyper-planes belonging to specific classes. The
results using ID3 are similar to those reported in Messier and Hansen (1988).
This prompted us to utilize other data sets, with different chair act eristics, in
this study for more conclusive results.

Although different machines were used for running the different programs,
run times are given in table-2 for comparing those of the back-propagation al-
gorithms. Since the different programs were run on different machines under
different environments (SG, NR, and NR-SG on a Convex-C220 under UNIX,
ID3 and NEWQ on IBM-PC/AT-286 under DOS, and Probit on IBM-3081
under VM/CMS), the run-times cannot be compared directly. The NR-type
algorithms performed much better than SG in terms of speed of convergence.
Due to the inherent parallelism in the back-propagation algorithm, speed-ups
in multiple orders of magnitude can be achieved by vectorizing the code.

epochs
time(sec)
tss
classification^ %)
prediction(%)

SG
30000
9024
1.001
100
87.5

NR
151.7
86.2
0.04
100
87.5

NR-SG
86.2
50.4
0.04
100
87.5

ID3
N/A
46*
N/A
100
87.5

NEWQ
N/A
12*

N/A
100
87.5

PROBIT
N/A
11**
N/A
78.1
37.5

(* both ID3 and NEWQ were run using IBM-PC/AT-286)
(** Probit was run using an IBM 3081)

Table-2: Summary of results using Abdel-Khalik, et aL data

8*2 Bankruptcy Prediction

With the growth in the number of bankruptcy cases, it is becoming increas-
ingly important for financial firms to be able to predict whether a client
firm will become bankrupt or not in the imminent future. Hence, it is of
vital importance to study and to improve the decision process involved in
bankruptcy prediction. As was done in Gentry, et al.(1985)9 the bankruptcy

21

data set was split into a training and a testing set- The training set con-
sisted of 58 randomly selected examples and testing set consisted of the 46
remaining examples. Ten different random sets of training and testing data
were used in the study, and the average of the ten different analyses are sum-
marized in table-3. The individual classification/prediction values are given
in table-4.

epochs
time(sec.)
tss
classification (%)
prediction(%)
total(%)

SG
30000
10045
3.184
100
67.4
85.6

NR
3086
929
.04
100
69.6
86.5

NR-SG
1842
429
.04
100
69.6
86.5

ID3
N/A
52*
N/A
100
56.7
80.9

NEWQ
N/A
17.8*
N/A
95.5
62.3
80.8

PROBIT
N/A

9.9**
N/A
84.3
54.3
71.1

(*both IDS and NEWQ were run using IBM-PC/AT-286)
(** Probit was run using IBM 3081)

Table-3: Summary of results using bankruptcy data

The learning rate parameter (TJ) was set at 0.25, momentum term (a)
was set at 0.9, and the ecrit value was set at 0,04. The back-propagation
network was made up of 9 input units corresponding to the 9 input attributes,
1 (binary) output unit corresponding to bankrupt and not-bankrupt firms,
and a hidden layer with 5 hidden units (half of the total number of input
and output units).

Since there is no set means to determine the number of hidden units to be
used, we experimented with 1 through 10 hidden units in the network using
the NR method* Prom the results of these runs, given in figure 6, we selected
5 hidden units, which required the least number of epochs to converge and
is half the total number of input and output units. The network did not
converge with 1 through 4 hidden units even after 30,000 epochs, and was
very unstable probably due to the input variables bong continuous rather
than nominal. Results using 5 through 10 hidden units are given in figure 6.

insert figure 6 here

22

classifi.cation(%)
1
2
3
4
5
6
7
8
9
10
prediction^ %)
1
2
3
4
5
6
7
8
9
10

SG

100
100
100
100
100
100
100
100
100
100

65.2
71.7
67.4
69.6
69.6
63.0
65.2
52.2
76.1
73.9

NR

100
100
100
100
100
100
100
100
100
100

65.2
71.7
69.6
71.7
69.6
65.2
65.2
56.5
82.6
78.3

NR-SG

100
100
100
100
100
100
100
100
100
100

65.2
71.7
69.6
71.7
69.6
65.2
65.2
56.5
82.6
78.3

ID3

100
100
100
100
100
100
100
100
100
100

43.5
52.2
56.5
63.0
69.6
56.5
63.0
45.7
69.6
47.8 i

NEWQ

93.1
100
98.3
93.1
96.6
93.1
94.8
94.8
98.3
93.1

58.7
58.7
52.2
67.4
65.2
65.2
71.7
56.5
60.9
65.2

PROBIT

86.2
84.5
82.8
82.8
86.2
77.6
86.2
82.8
84.5
89.7

52.2
56.5
54.3
60.9
54.3
50.0
58.7
47.8
56.5
52.2

Table-4: Individual classification/prediction results using bankruptcy data

As can be seen from table~4, prediction results for both NR and NR-SG
were the same throughout, although slightly better than SG in some cases.
Both training (classification) and testing (prediction) were done using hold-
out samples. Again, NR and NR-SG type algorithms performed significantly
better than SG-type algorithm in terms of the number of epochs and also
run-times for comparable classification/prediction accuracies. Although the
total performance of ID3 and NEWQ were almost the same, the classification
accuracy of IDS was better than those of NEWQfl and the prediction accu-
racy using NEWQ was better than those using ID3. The overall performance
of Probit was the worst of all the methods, although the prediction accuracy
using Probit is comparable to those of NR and NR-SG type algorithms as
implemented in back-propagation.

8.3 Loan Evaluation
The purpose of the loan evaluation process is to evaluate the credit-worthiness
of firms, as a measure of their abilities to repay loans. As noted by Shaw and
Gentry (1990), in addition to information available from financial statements,
qualitative information play a vital role in the loan evaluation process. The
loan evaluation data set was partitioned into a training and a testing set, each
consisting of 50 examples. NEWQ was not used since NEWQ only uses bi-
nary class values and the data has 5 classes. For the same reason, polytomous
prohit was used instead of the regular binary probit in which the dependent
variable can take on only binary values. As was done for bankruptcy data,
ten different random sets of training and testing examples were used, and
the average values from ten different analyses are summarized in table-5. As
before, the individual values for classification/prediction are given in table-6.

epochs
time(sec)
tss
classifi.cation(%)
prediction(%)
total(%)

SG
30000
13764
3.989
100
53.4
76.7

NR
1880
1218
0.04
100
58.1
79.1

NR-SG
1276
634
0.04
100
60
80

ID3
N/A

73
N/A
100
38
69

PROBIT
N/A

16
N/A
58.2
49.8

54

Table-5: Summary of results using loan evaluation data

As before, TJ was set at 0.25, a was set at 0.9, and ecrit at 0.04. The
multi4ayered perceptron network for this data consisted of 15 input units,
10 hidden units in a hidden layer, and 5 output units corresponding to the
five risk classification categories. The classification performance using probit
was much lower than those using other (similarity-based learning or back-
propagation) methods. Polytomous probit, which was used for this data set,
classified all the examples to be in class 3 (there were 54 examples in class
3). Hence, the percent classification/prediction using probit is proportional
to the number of examples belonging to class 3 which happened to be used
in the training and testing sets respectively. This reason could be attributed
to the poor performance of ID3 as compared to probit.

24

classification^)
1
2
3
4
5
6
7
8
9
10
prediction^ %)
1
2
3
4
5
6
7
8
9
10

SG

100
100
100
100
100
100
100
100
100
100

44
58
60
44
50
50
58
64
52
54

NR

100
100
100
100
100
100
100
100
100
100

53
62
64
56
60
54
58
68
52
54

NR-SG

100
100
100
100
100
100
100
100
100
100

56
64
64
62
62
60
58
68
52
54

ID3

100
100
100
100
100
100
100
100
100
100

40
34
40
38
48
36
36
30
46
32

PROBIT

68
52
56
66
60
58-
54
46
60
62

40
56
52
42
48
50
54
62
48
46

Table-6: Individual classification/prediction results using loan evaluation
data

8.4 Discussion

The NR algorithm performed consistently bettet than SG for all three data
sets. This is due to an increase in the granularity of the search process by
means of the exponential transformation of the objective function, and also
due to the second-order gradient seardi procedure. The increase in granu-
larity increases the step-si&e taken during searcli through the solution space^
hence increasing the speed, of convergence of NR algorithm* The second-order
gradient search process in NR utilizes information about curvatures in the
search space thus modifying the search process appropriately leading to faster

25

convergence to the final value, whereas the SG method did aot converge to
the final solution. The SG algorithm had problems converging because once
in the vicinity of the final solution the process started vacilating between a,
few values resulting in a movement further away from the final solution.

The hybrid algorithm performed even better than NH since it had the
advantages of both NR and SG - it moved toward the final solution slowly
while following the SG algorithm, and once in the vicinity of the final solution,
it utilized the curvature information to converge to the final solution by
following the NR algorithm.

Becker and LeCun (1988), Fahlman (1988), Parker (1987), and Waltrous
(1988), among others, have suggested the use of second-order gradient meth-
ods for accelerating the back-propagation procedure. However these methods
rely on matrix inversion and thus are more costly computationally. The NR
method uses aa expoaential objective function along with modificatioas to
the SG algorithm avoiding matrix inversion at the same time taking ad-
vantage of second-oider process, thus making the computation tasks in the
learning process easier.

One of the major problems with back-propagation algorithm is that it is
very slow to converge. This could be remedied either by improving the al-
gorithm itself and/or utilizing parallel computer architecture for faster pro-
cessing. In this paper, we have attempted to in/prove the performance of
the algorithm. Even with the improved learning procedure, the computation
performances of multi-layered perceptions in our study are still slow for three
reasons - the computation is simulated using serial processing computers, it
takes many iterations of adjustment by each unit before the whole network
reaches equilibrium, and it takes a large number of searching steps to find the
right set of connection weights. To speed up the training time parallel com-
puters axe necessary. Hiaton (1985), Zhang, et al. (1989), and Deprit (1989)
describe using parallel processing computers and the Connection Machine to
implement back-propagation algorithm for multi-layered perceptions. Kung,
Vlontos9 and Hwang (1990) describe a VLSI architecture for implementing
multi-layered perceptroas using a programmable systolic array. Because of
the parallel processing aature of neural-network computing, the use of par-
allel computers is necessary to take advantage of the inherent paxaUelism.
Similar observations can be made of the information processing character-
istics of human braia. Even though the individual neurons are slow, the
brain processes information expeditiously through massive paxaUelism. Re-

26

cent technological advances in VLSI and computer aided design have made
it possible to build massively paraHel computers, making the neural-network
computing method described in this paper practical for commercial applica-
tions*

9 Review of Results and Conclusions

The modified back-propagation algorithms (NR and NR-SG) performed bet-
ter than the regular back-propagation (SG) algorithm in terms of prediction
accuracy and speed of convergence due to the exponential transformations
and second-order gradient search. The NR-SG algorithm, due to its combi-
nation of NR and SG algorithms when they are at their best, performed the
best overall even among the back-propagation algorithms. Even while tak-
ing advantage of the benefits of a second-order method, the computational
process was simplified, in NR and NR-SG, by avoiding matrix inversions in
the process.

Back-propagation algorithm in a multi-layered perceptron is versatile and
can be used for learning ratios, continuous, as well as nominal variables
with any number of classes resulting in lesser degradation in performance
than inductive learning algorithms and probit. For continuous variables,
ID3 has problems finding the best split at a node due to the problem of
combinatorial explosion as the range of values that a continuous variable
takes increases. Since the number of discriminant functions required increases
with the number of classes, probit analysis becomes extremely difficult as the
number of classes increases.

Once implemented (learning occurs), the process of prediction of newer
examples is faster in back-propagation as compared to other methods since
speed of prediction using back-propagation does not depend on the number of
patterns that are stored in multi-layered perceptrons. Time required for pre-
diction in multi-layered perceptrons is just the time required for activations
to traverse from the input to the output nodes, which is negligible-

Overall, the back-propagation algorithms performed better than inductive
learning algorithms and Probit in terms of both prediction and classification
accuracies. One of the advantages of using back-propagation in a multi-
layered perceptron is1 that the network can be configured so as to increase
the performance^ which is not possible with inductive learning or probit.

27

Also, incremental learning ability of back-propagation facilitates knowledge
acquisition process where new knowledge can be added to the system as they
axe obtained.

Although the run times taken by the back-propagation algorithms are
more than those taken by the similarity-based learning algorithms and Pro-
bit, by hard-wiring the algorithm by means of VLSI circuits, the time taken
by the back-propagation algorithms can be made at least comparably faster
as those of similarity-based learning algorithms and probit. Currently, there
are VLSI implementations of neural networks such as Intel's AK107, Fujitsu's
MB4442, NEC's UPD7281, among others, in addition to implementations in
connection machines (Hinton 1985; Zhang et al 1989; Deprit 1989).

Probit is inefficient relative to back-propagation and inductive learning al-
gorithms since it utilizes only one hyperplane to separate two classes, whereas
the former two methods utilize as many hyper-planes as is necessary. In
back-propagation using multi-layered perceptrons, the hidden layer aids in
avoiding the problem of forming Eneax hyperplanes.

Both back-propagation and ID3 algorithms do not assume any distribu-
tions that the input data should possess, unlike Probit. Since Probit depends
on the distribution of the input data for analyses, violation of the same could
lead to gross inaccuracies in the results that are obtained.

Although Baum and Haussler (1989) formulate a lower bound on the
number of examples that are required for a given prediction accuracy, the
small size of our data sets precluded us from applying the same in this study.
Researchers (Ahmad, 1988; Kung and Hwang, 1988) have resorted to exper-
imentation with different numbers of hidden units before resorting to final
analysis. To this end, future research should be directed toward studying the
number of hidden units that are both sufficient and feasible given a certain
input-output data set.

References

[1] Abdel-Khalik, A. R., and K. M. El-Sheshai, "Information Choice and
Utilization in an Experiment on Default Prediction," Journal of Ac-
counting Research^ (1980), Autumn, pp. 325-342.

28

[2] Ahmad, S., "Scaling and Generalization in Neural Networks: A Case
Study," in Proceedings of the 1988 Conneetionist Models Summer School,
(Eds.) D. Touretzky, G. E. Hinton, T. J. Sejnowski, Palo Alto, CA:
Morgan Kaufmann, 1988.

[3] Anderson, J- A., "Neural Models with Cognitive Implications," in Basic
Processes in Reading, Laberge and Samuels (eds.) , Lawrence Erlbaum,
Hillsdale, NJ (1977).

[4] Angulin, D., and C. H. Smith, "Inductive Inference: Theory and Meth-
ods," Computing Surveys, (1983), 15, 3, pp. 237-269.

[5] Alterman, R. B., R. A. Avery., R. A. Eisenbeis, and J. F. Sinkey, jr.,
Application of Classification Techniques in Business, Banking, and Fi-
nance, Greenwich, CT: JAI Press (1981).

[6] Baum, E. B., and D. Haussler, "What Size Net Gives Valid Generaliza-
tion,5' Neural Computation, 1, (1989), pp. 151-160.

[7] Becker, Sue., and Yann le Cun, "Improving the Convergence of Back-
Propagation Learning with Second Order Methods," Proceedings of the
1988 Conneetionist Models Summer School, (1988), Pittsburgh.

[8] Braun, EL, and J. Chandler, "Predicting Stock Market Behavior through
Rule Induction: An Application of the Leaming-from-examples Ap-
proach," Decision Sciences, (1987), pp. 415-429.

[9] Breiman, L., J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees, Monterey, CA: Wadsworth (1984).

[10] Carbonell, J. G., and R. S. MichalsH, and T. M. Mitchell, "Machine
Learning: A Historical and Methodological Analysis/5 AI Magazine,
(1983), 4, 3, pp. 69-79.

[11] Carter, C, and J. Cartlett, "Assessing Credit Card Applications Using
Machine Learning," IEEE Expert, (1987), Fall, pp. 71-79.

[12] Currim, I. S., R. J. Meyer, and N. T. Le? "Disaggregate Tree-Structured
Modeling of Consumer Choice Data," Journal of Marketing Research,
August, (1988), pp. 253-265.

29

[13] Deprit, EM "Implementing Recurrent Back-Propagation on the Connec-
tion Machine," Neural Networks, (1989), 2, pp. 295-314.

[14] Dutta, S., and S. Shekhar, "Bond Rating: A Non-conservative Appli-
cation of Neural Networks," International Joint Conference on Neural
Networks, Vol. II, (1988), pp. 443-450.

[15] Fahlman, S. E., "Faster-Learning Variations on Back-Propagation: An
Empirical Study," Proceedings of the 1988 Connectionist Models Sum-
mer School, (1988), Pittsburgh.

[16] Finney, D. J., Prohii Analysis, 3rd. edition, Cambridge University Press
(1971).

[17] Fisher, D. EL, and K. B. McKusick, "An Empirical Comparison of ID3
and Back-propagation," Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, (1989), Detroit, MI, August.

[18] Gentry, James., P. Newbold, and D. Whitford, "Classifying Bankrupt
Finns with Funds Flow Components," Journal of Accounting Research
, (1985), 20, 1, Spring, pp. 146-160.

[19] G21, PMEp EM Walter Murray, and Margaret H. Wright, Practical Op-
timizaiion , Academic Press (1981).

[20] Hinton, G. E., "Learning in Parallel Networks," BYTE, (April 1985),
pp. 265-273.

[21] HopfiekL, J. J., and D. Tank, "Computing with Neural Circuits: A
Model," Science, (1986), 233, pp. 624-633.

[22] Homik, K., M. Stinchcombe, and H. WHte, aMultEayer Feedforward
Networks are Universal Approximators,11 Neural Networks, 2f (1989),
pp. 359-366.

[23] Koehler, Gary Jn and Antal Majthay^ "Generalization of Quintan's In-
duction Method/ Technical Report, Department of Decision and Infor-
mation Sciences^ The University of Floridaf Gainesville^ FL., August
14 (1988).

3©

[24] Kohonen, T., Self-Organization and Associative Memory, Springer-
Verlag, Berlin (1984).

[25] Kung, S. Y., and J, N. Hwang, "An Algebraic Projection Analysis for
Optimal Hidden Units Size and Learning Rates in Back-Propagation
Learning," Proceedings of the IEEE International Conference on Neural
Networks, (July 1988).

[26] Kung, S. Y., J. Vlontzos, and J. N. Hwang, "VLSI Array Processors for
Neural Network Simulation,51 Journal of Neural Network Computing,
Spring 1990, pp. 5-20.

[27] Lippmann, R. P., "An Introduction to Computing with Neural Net-
works," IEEE ASSP Magazine, (1987), April, pp. 4-22.

[28] Matheus, C. J., and W. E- Hohensee, "Learning in Artificial Neural
Systems," Computational Intelligence Journal, (1987), vol. 3, 4.

[29] Messier, W. F. jr., and J- V. Hansen, "Inducing Rules for Expert Sys-
tem Development: An Example Using Default and Bankruptcy Data,"
Management Science, (1988), 34, 12, pp. 1403-1415.

[30] Michaelsen, R. H., "An Expert System for Tax Planning," Expert Sys-
tems, (1984), October, pp. 149-167.

[31] Michalski, R. S., "A Theory and Methodology of Inductive Learning,"
Artificial Intelligence, (1983), 20, pp. 111-161.

[32] Mongers, J., "Rule Induction with Statistical Data - A Comparison with
Multiple Regression," Journal of Operations Research Society, (1987),
38, 4, pp. 347-351.

[33] Mooney, R., J- Shavlik, G. Towel, and A. Gove, aAn Experimental
Comparison of Symbolic and Connectionist Learning Algorithms,* Pro-
ceedings of the Eleventh International Joint Conference on Artificial In-
telligence, (1989), Detroit, MI, August.

[34] Orgler, Y. E., aA Credit Scoring Model for Commercial Lo&ns^ Journal
of Money, Credit and BanMng7 2, 4, (1970), pp. 435-445.

[35] Parker, D. B., "Optimal Algorithms for Adaptive Networks: Second
Order Back-Propagation, Second Order Direct Propagation, and Sec-
ond Order Hebbian Learning,'' Proceedings of the IEEE International
Conference on Neural Networks, (1987), pp. 593-600, San Diego, CA.

[36] Quinlan, J. R., "Induction of Decision Trees," Machine Learning, (1986),
1, pp. 81-106.

[37] Rangwala, S. S., and D. A. Dornfeld, "Learning and Optimization of
Machining Operations using Computing Abilities of Neural Networks,"
IEEE Transactions on Systems, Man, and Cybernetics, (1989), vol.19,
2, pp. 199-214.

[38] Rendell, L. A., "A General Framework for Induction and a Study of
Selective Induction," Machine Learning, (1986), 1, pp. 177-226.

[39] Rumelhart, David E., James L. McClelland, and the PDP Research
Group, Parallel Distributed Processing - Explorations in the microstruc-
ture of Cognition, Volume I: Foundations , The MIT Press (1986).

[40] Sejnowski, T. J., and C. M. Rosenberg, "Parallel Networks that Learn to
Pronounce English Text," Complex Systems, (1987), 1, 1, pp. 145-168.

[41] Shaw, ML J., and J. Gentry, "Inductive Learning for Risk Classification,"
IEEE Expert, (1990), February, pp. 47-53.

[42] Singleton, J. C, and A. J. Surkan, "Modeling the Judgement of Bond
Rating Agencies: Artificial Intelligence Applied to Finance," 1990 Mid-
west Finance Association Meetings, Chicago, IL, (1990), February.

[43] Walsh, G. R., Methods of Optimization, John Wiley (1975).

[44] Watrous, Raymond L. (1987), "Learning Algorithms for Connectionist
Networks: Applied Gradient Methods of Nonlinear Optimization," Pro-
ceedings of the IEEE International Conference on Neural Networks, pp.
619-627, (1987), San Diego, CA.

[45] Weiss, S. M., and I. Kapouleas, "An Empirical Comparison of Pattern
Recognition, Neural Nets, and Machine Learning Classification Meth-
ods,^ Proceedings of the Eleventh International Joint Conference on Ar-
UfkM Intelligence, (1989), Detroit, MI, August.

32

[46] Werbos, P., Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences, Ph.D. Thesis, Harvard University (1974).

[47] Zhang, X., M. McKenna, J. P. Mesirov., and D. Waltz, "An Efficient Im-
plementation of the Backpropagation Algorithm on the Connection Ma-
chine CM-2," Technical Report, Thinking Machines Corporation, (Au-
gust 29, 1989).

Appendix-A: ID3, and NEWQ
The two inductive learning systems (ID3 and NEWQ) as well as Probit are
briefly discussed in this section.

ID3
ID3(Quinlan, 1986) uses information-theoretic measures to generate a deci-
sion tree with the classifications at the leaf-nodes.

Let the number of classes in the instance space of interest be C (Ci, C 2 , . . . , Cc).
At any given node, the expected information that is required to classify the
instances at that node as belonging to class Ct* or otherwise is given by

) =

where, p is the proportion of the instances at that node that belong to class
Ci and n (= 1 — p) is the proportion of instances at that node that do not
belong to class C^

Let the attributes in the instance space be Aj (j = l..m) where each of
the attributes take on Vj values. At a given node let the number of instances
that take on the different values for Aj for class Ci be pi and let 7it* = 1 — pit

The expected information required for that branch of the tree with Aj as the
root node is

a weighted average of the proportion of instances that are present at the node
of interest. The information that is gained by branching on Aj is

The attribute which gains the most information at a node is chosen as the one
based on which the branching is performed. The process is used recursively
at each node of the tree until all the terminal nodes (leaves) are reached.

NEWQ
NEWQ (Koehler and Majthay, 1988) uses discriminant analysis procedures
to produce a decision tree in which a discriminant function (Fisher, 1936) is
used at each node for splitting.

34

Let w be a n-dimensional vector (corresponding to n attributes), and z
be a scalar (class value). For w non-zero, (w,z) defines a hyper-plane {x: w'x
= z}.

The algorithm begins by generating a hyper-plane (w,z) that strictly sepa-
rates at least one point from the remaining points in the example set (T). For
a 2-class problem, a hyper-plane is used to partition T into {x: w x < z, xe
T} and {x: w'x > z^xe T}, A new rule is created which augments the old
rule set and NEWQ is recursively called with each resulting partition. The
reader is referred to Koehler and Majthay (1988) for an elaborate discussion
of the NEWQ algorithm.

Appendix-B

Default Classification Data

Abdel-Khalik and El-Sheshai (1980) had previously used this data set to
classify a set of firms into those that would default and those that wouldn't
default on loan payments. This data set has 32 examples, for training, of
which 16 belong to the default class and the other 16 examples belong to the
non-default class, and 16 examples for testing, all of which belong to the non-
default class. The 18 attributes in the example set are: (1) Net income/total
assets, (2) Net income/sales, (3) Total debt/total assets, (4) Cash flow/total
debt, (5) long- long-term debt/net worth, (6) Current assets/current liabili-
ties, (7) Quick assets/sales, (8) Quick assets/current liabilities, (9) Working
capital/sales, (10) Current year equity/total debt, (11) Sales trend, (l2)Earn-
ings trend, (13) Current ratio trend, (14) Working capital/sales trend, (15)
Cash flow/total debt trend, (16) Long-term debt/net worth trend, (17) Net
income/total assets trend, and (18) Net income/sales trend.

Bankruptcy Prediction Data

This data set is from the Standard and Poors* Compusiai 1981 Industrial
Annual Research file of Companies and Cornpustat Industrial filesf and was
used to determine the companies- that failed during the period 1970-1981.
The data was used to predict bankruptcy of firms and is discussed in detail
in Gentry, et al.(1985). There are 9 continuous Yariables in the data set -

35

ratios of total net flow (TNF), funds from operations (NOPF), working capi-
tal which includes inventory, other current assets and Kabilities and accounts
payable (NWCFF), financial (NFFF), fixed coverage expenses (FCE), cap-
ital expenditures (NIFF), dividends (DIV), other assets and liability flows
(NOA&LF), and change in cash and marketable securities (CC) with total
assets (TA) - with 104 examples and two classes (either bankrupt or not).

Loan Evaluation Data

The loan evaluation data set was used to classify the riskiness involved with
firms' abilities to pay back loan. The riskiness is rated from 1 (very risky)
to 5 (safe), which form the 5 classes in the study using this data set. There
are 15 variables - 12 continuous and 3 nominal - total net flow/total assets,
operations, accounts receivable, inv, othca, accounts payable, othcl, otha&l,
financial, fcexp, invest, dividend, and three nominal variables guarantee, col-
lateral, and secured. There are 100 examples is this data set with 5 classes.

estimated
parameters

statistical classifier

input evaluate
function(s)

select best
among different
functional values

classification

inductive learning classifier

input

decision
tree

evaluate
input using
decision tree

deduce input class classification

neural network classifier

learned
weights and biases

input

propagate
input thror

network
select output unit
with highest value

classification

update weights

Figure 1: Block diagrams of classifiers

Figure 2: An Artificial Neural Unit, Uj, and Its Activation Function

output layer

CO
co
ctS

CO
CO
cS

CO
CO
cd

CO
CO
cd

CO
CO

hidden layer

Continuous Variables
(Cash Flow Components)

Nominal Variables
(Qualitative Components)

input layer

Figure 3: Network for Loan Evaluation Data

30

s 2 0 .

10 -

Q 0-

12 18
CThousands}

• of epocns

20 24

O SG

Rgure 4; Convergence Rates of SG, NR, and SG-NR for the Example Problem

2 3 4 5 6 7 8 9 1011121314151617181920
Number of hidden units

Figure 5: Convergence Speed Dynamics with Varying Number of Hidden Units
(Default dassifiaction Data)

6 7 8
Number of hidden units

9 10

Figure 6: Convergence Speed Dynamics with Varying Number of Hidden Units
(Bankraptcy Prediction Data)

